证明不等式的基本方法-比较法
不等式证明的基本方法
4. 放缩法是在证明不等式或变形中, 将条件或结论或变换中的 式子放大或缩小进行求证的方法.放缩时要看准目标,做到 有的放矢, 注意放缩适度. 放缩法是证明不等式的常用技巧, 有些不等式若恰当地运用放缩法可以很快得证,要控制难 度.
比较法
(2010 年高考江苏卷试题)设 a、b 是非负实数,求证:a3 +b3≥ ab(a2+b2). 【思路分析】 先作差,再用不等式的基本性质解答.
不等式证明的基本方法
1.比较法是证明不等式最常用最基本的方法,有两种: (1)求差法:a>b⇔a-b>0; a (2)求商法:a>b>0⇔b>1,(b>0).
2.分析法、综合法是证明数学问题的两大最基本的方法. 综合法是以已知的定义、公理、定理为依据,逐步下推,直 到推出问题的结论为止,简而言之,就是“由因导果”. 分析法是从问题的结论出发,追溯导致结论成立的条件,逐 步上溯,直到使结论成立的条件与已知条件或已知事实吻合 为止,简而言之,就是“执果索因”.
分析法与综合法
如果 a>0,b>0,求证:a3+b3≥a2b+ab2. 【证法一】 (用分析法) 要证 a3+b3≥a2b+ab2, 只需证(a+b)(a2-ab+b2)≥ab(a+b) ∵a>0,b>0,有 a+b>0,故只需证 a2-ab+b2≥ab, 只需证(a-b)2≥0 显然(a-b)2≥0 成立,以上各步均可逆, ∴a3+b3≥a2b+ab2
1.设 a>0,a≠1,0<x<1.求证:|loga(1-x)|>|loga(1+x)|.
证明:方法一:(平方后作差)
2 log2 (1 - x ) - log a a(1+x)
=[loga(1-x)+loga(1+x)]· [loga(1-x)-loga(1+x)]= 1-x loga(1-x )· loga . 1+x
证明不等式的八种方法
1 Math Part 比较法
证明:
∴a-1≥1,b-1≥1
ab-a-b =a(b-1)-b
∴(a-1)(b-1)≥1 例题:已知a≥2,b≥即2,(a求-1)证(b:-1)a-b1≥≥a0+b
6 Math Part 构造法
函数构造法
例题:已知a≥2,b≥2,求证:ab≥a+b
证明: 要证明的不等式为: ab≥a+b 移项得 ab-a-b≥0 即(b-1)a-b≥0 构造函数 f(x)=(b-1)x-b (x≥2)
f(x)是关于x的一次函数 其中一次项系数b-1>0 ∴f(x)为定义域上的增函数 ∴对于任意的x∈[2,+∞)都有 f(x)≥f(2)=(b-1)×2-b=b-2≥0 ∴(b-1)a-b≥0 所以原命题成立 证毕
与①式矛盾
所以原命题成立
证毕
5 Math Part
公式法
5 Math Part 公式法
伯公努式利法不:等利式用:已有的不等式的定理、公式等 (1证+x明1)不(1等+x式2)…的(一1+种xn方) ≥法1。+x高1+中x2常…+见xn的公式有: 对基 栖于本 西任不不意等等1≤式式i,、、j≤绝加n都对权有值平x不均i>-等不1且式 等所、 式有均 、x值 切i与不 比x等雪j同式夫号、不
4 Math Part 反证法
例题:已知a≥2,b≥2,求证:ab≥a+b
证明: 假设ab<a+b ab-a-b =a(b-1)-b =a(b-1)-(b-1)-1 =(a-1)(b-1)-1 ∵ab<a+b
2.1《证明不等式的基本方法-比较法》课件(新人教选修4-5)[1].
5.设P a 2b2 5, Q 2ab a 2 4a, 若P Q, 则实数a, b
ab 1或ab 2 满足的条件为 ________
ab 1 6.若0 a b 1, P log 1 , Q (log 1 a log 1 b), 2 2
2 2 2
Q>P>M M log 1 (a b), 则P , Q , M的大小关系是__________
2
练习
1.求证a 3b 2b(a b)
2 2
2.求证• a
b 2 2a 2b 4a 3.已知a 2, 求证 1 2 4a
2 2
例4.甲,乙 两 人 同 时 同 地 沿 同 一 路线走到 同一地点 .甲 有 一 半 时 间 以 速 度 m 行 走, 另一半时间以速度 n行 走;乙 有 一 半 路 程 以 速 度m 行 走, 另 一 半 路 程 以 速 度 n行 走. 如 果m n,问 甲 乙 两 人 谁 先 到 达 指 定 地 点.
2
2
2
2
(a b )(a b )2
a, b 0, a b 0 2 又 a b (a b) 0
故(a b)(a b)2 0即(a 3 b 3 ) (a 2b ab 2 ) 0
a b a b ab
3
3
2Hale Waihona Puke 2a 例 2 如果用akg白糖制出bkg糖溶液, 则其浓度为 , b 若在上述溶液中再添加 mkg白糖, 此时溶液的浓度 am 增加到 , 将这个事实抽象为数学 问题, 并给出证明 . bm 解 : 可以把上述事实抽象成 如下不等式问题 :
一、比较法 (1)作差比较法
不等式证明的常用方法
不等式证明的常用方法不等式是高中数学的重要内容,它几乎涉及整个高中数学的各个部分,因此,通过不等式这条纽带,可把中学数学的各部分内容有机地联系起来.而不等式的证明是高中数学的一个难点,加之题型广泛、方法灵活、涉及面广,常受各类考试命题者的青睐,亦成为历届高考中的热点问题.本节通过一些实例,归纳一下不等式证明的常用方法和技巧. 一、比较法证明不等式的比较法分为作差比较与作商比较两类,基本思想是把难于比较的式子变成其差再与0比较,或其商再与 l 比较.当欲证的不等式两端是乘积形式或幂指数形式时,常采用作商比较法.【例1】若,0,0>>b a 证明:2121212212)()(b a ab b a +≥+证法一 (作差比较) 左边-右边)()()(33b a abb a +-+=abb a ab b ab a b a )())((+-+-+=abb ab a b a )2)((+-+=0))((2≥-+=abb a b a∴原不等式成立证法二 (作商比较)右边左边ba ab b a ++=33)()()())((b a ab b ab a b a ++-+=abb ab a )(+-=12=-≥ababab∴原不等式成立.点评 用比较法证明不等式,一般要经历作差(或作商)、变形、判断三个步骤.变形的主要手段是通分、因式分解或配方;此外,在变形过程中,也可利用基本不等式放缩,如证法二.用作差比较法变形的结果都应是因式之积或完全平方式,这样有利于判断符号. 【例2】已知函数)(1)(2R x x x f ∈+=,证明:|||)()(|b a b f a f -≤- 证法一(作商比较)若||||b a =时,|||)()(|0b a b f a f -≤-=,当且仅当b a =时取等号. 若||||b a ≠时,∵0|)()(|>-b f a f ,0||>-b a∴=-+-+=--|||11||||)()(|22b a b a b a b f a f =-+-+b a b a 2211<+++--)11)((2222b a b a b a ≤++22b a ba 1即|||)()(|b a b f a f -≤-综上两种情况,得|||)()(|b a b f a f -≤-当且仅当b a =时取等号.证法二(作差比较))2(])1)(1(22[|||11|2222222222b ab a b a b a b a b a +--++-++=--+-+0])()1()1[(2])1)(1()1[(22222≤-++-+=++-+=b a ab ab b a ab 当且仅当b a =时取等号.点评 作商比较通常在两正数之间进行.本题若直接作差,则表达式复杂很难变形.由于不等式两边均非负,所以先平方去掉绝对值符号后再作差.不论是作差比较还是作商比较,“变形整理”都是关键. 二、基本不等式法 常用的基本不等式① 若R b a ∈,,则ab b a 222≥+(当且仅当b a =时取等号);② 若+∈R b a ,,则ab ba 22≥+(当且仅当b a =时取等号); ③ 若b a ,同号,则2≥+baa b (当且仅当b a =时取等号);④ 若R b a ∈,,则≥+222b a 2)2(b a +(当且仅当b a =时取等号); ⑤ 若+∈R c b a ,,,则abc c b a 3333≥++(当且仅当c b a ==时取等号);⑥ 若+∈R c b a ,,,则33abc cb a ≥++(当且仅当c b a ==时取等号);⑦ 均值不等式nn n a a a na a a ⋅⋅≥+++ 2121(其中++∈∈N n R a a a n ,,,,21 )及它的变式n nn n n a a na a a a ⋅⋅≥+++ 2121,na a a a a a nn n n n +++≤⋅⋅ 2121,nn n na a a a a a )(2121+++≤⋅⋅【 例 3 】 ( 2004 年湖南省高考题)设0,0>>b a ,则以下不等式中不恒成立的是( )A.4)11)((≥++b a b a B 2332ab b a ≥+ C.b a b a 22222+≥++ D.b a b a -≥-||解:∵4122)11)((=⋅≥++abab b a b a ∴A 恒成立∵b a b a b a 221122222+≥+++=++ ∴C 恒成立 当b a ≤时,b a b a -≥-||,显然D 成立;当b a >时,b a b a -≥-||⇔a b b a ≥+-||⇔⇔≥+-+-a b b b a b a )(2)(0)(2≥-b b a 也恒成立∴D 恒成立。
不等式的证明
不等式的证明最新考纲 通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法.知 识 梳 理1.基本不等式定理1:如果a ,b ∈R,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 定理2:如果a ,b >0,那么a +b 2≥a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥a =b =c 时,等号成立.2.不等式的证明方法(1)比较法①作差法(a ,b ∈R):a -b >0⇔a >b ;a -b <0⇔a <b ;a -b =0⇔a =b . ②作商法(a >0,b >0):a b >1⇔a >b ;a b <1⇔a <b ;a b=1⇔a =b .(2)综合法与分析法①综合法:从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.综合法又叫顺推证法或由因导果法.②分析法:从要证的结论出发,逐步寻求使它成立的充分条件,所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证法称为分析法,即“执果索因”的证明方法.[微点提醒]1.作差比较法的实质是把两个数或式子的大小判断问题转化为一个数(或式子)与0的大小关系.2.用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)……”“即要证……”“就要证……”等分析到一个明显成立的结论,再说明所要证明的数学问题成立.3.利用基本不等式证明不等式或求最值时,要注意变形配凑常数.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)比较法最终要判断式子的符号得出结论.( )(2)综合法是从原因推导到结果的思维方法,它是从已知条件出发,经过逐步推理,最后达到待证的结论.( )(3)分析法又叫逆推证法或执果索因法,是从待证结论出发,一步一步地寻求结论成立的必要条件,最后达到题设的已知条件或已被证明的事实.( )(4)使用反证法时,“反设”不能作为推理的条件应用.( )解析(1)作商比较法是商与1的大小比较.(3)分析法是从结论出发,寻找结论成立的充分条件.(4)应用反证法时,“反设”可以作为推理的条件应用.答案(1)×(2)√(3)×(4)×2.(选修4-5P23习题2.1T1改编)已知a≥b>0,M=2a3-b3,N=2ab2-a2b,则M,N的大小关系为________.解析2a3-b3-(2ab2-a2b)=2a(a2-b2)+b(a2-b2)=(a2-b2)(2a+b)=(a-b)(a+b)(2a+b).因为a≥b>0,所以a-b≥0,a+b>0,2a+b>0,从而(a-b)(a+b)(2a+b)≥0,故2a3-b3≥2ab2-a2b.答案M≥N3.(选修4-5P25T3改编)已知a,b,c∈(0,+∞),且a+b+c=1,则1a +1b+1c的最小值为________.解析把a+b+c=1代入1a +1b+1c得a+b+ca+a+b+cb+a+b+cc=3+⎝⎛⎭⎪⎫ba+ab+⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c ≥3+2+2+2=9, 当且仅当a =b =c =13时等号成立. 答案 94.(2019·聊城模拟)下列四个不等式:①log x 10+lg x ≥2(x >1);②|a -b |<|a |+|b |;③⎪⎪⎪⎪⎪⎪b a +a b ≥2(ab ≠0);④|x -1|+|x -2|≥1,其中恒成立的个数是( )A.1B.2C.3D.4解析 log x 10+lg x =1lg x+lg x ≥2(x >1),①正确; ab ≤0时,|a -b |=|a |+|b |,②不正确;因为ab ≠0,b a 与a b同号,所以⎪⎪⎪⎪⎪⎪b a +a b =⎪⎪⎪⎪⎪⎪b a +⎪⎪⎪⎪⎪⎪a b ≥2,③正确; 由|x -1|+|x -2|的几何意义知,|x -1|+|x -2|≥1恒成立,④也正确,综上①③④正确.答案 C5.(2017·全国Ⅱ卷)已知a >0,b >0,且a 3+b 3=2.证明:(1)(a +b )(a 5+b 5)≥4;(2)a +b ≤2.证明 (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4)=4+ab (a 4+b 4-2a 2b 2)=4+ab (a 2-b 2)2≥4.(2)(a+b)3=a3+3a2b+3ab2+b3=2+3ab(a+b)≤2+3(a+b)24(a+b)=2+3(a+b)34,所以(a+b)3≤8,因此a+b≤2.考点一比较法证明不等式【例1】设a,b是非负实数,求证:a2+b2≥ab(a+b). 证明因为a2+b2-ab(a+b)=(a2-a ab)+(b2-b ab)=a a(a-b)+b b(b-a)=(a-b)(a a-b b)=(a 12-b12)(a32-b32).因为a≥0,b≥0,所以不论a≥b≥0,还是0≤a≤b,都有a 12-b12与a32-b32同号,所以(a 12-b12)(a32-b32)≥0,所以a2+b2≥ab(a+b).规律方法比较法证明不等式的方法与步骤1.作差比较法:作差、变形、判号、下结论.2.作商比较法:作商、变形、判断、下结论.提醒(1)当被证的不等式两端是多项式、分式或对数式时,一般使用作差比较法.(2)当被证的不等式两边含有幂式或指数式或乘积式时,一般使用作商比较法.【训练1】(1)(2019·锦州模拟)设不等式|2x-1|<1的解集为M.①求集合M;②若a,b∈M,试比较ab+1与a+b的大小.(2)若a >b >1,证明:a +1a >b +1b. (1)解 ①由|2x -1|<1得-1<2x -1<1,解得0<x <1.所以M ={x |0<x <1}.②由①和a ,b ∈M 可知0<a <1,0<b <1,所以(ab +1)-(a +b )=(a -1)(b -1)>0.故ab +1>a +b .(2)证明 a +1a -⎝ ⎛⎭⎪⎫b +1b =a -b +b -a ab =(a -b )(ab -1)ab . 由a >b >1得ab >1,a -b >0,所以(a -b )(ab -1)ab>0. 即a +1a -⎝ ⎛⎭⎪⎫b +1b >0, 所以a +1a >b +1b. 考点二 综合法证明不等式【例2】 (1)已知a ,b ,c ∈R,且它们互不相等,求证a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2;(2)已知x ,y ,z 均为正数,求证:x yz +y zx +z xy ≥1x +1y +1z. 证明 (1)∵a 4+b 4≥2a 2b 2,b 4+c 4≥2b 2c 2,a 4+c 4≥2a 2c 2,∴2(a 4+b 4+c 4)≥2(a 2b 2+b 2c 2+c 2a 2),即a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2.又∵a ,b ,c 互不相等,∴a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2.(2)因为x ,y ,z 都为正数,所以x yz +y zx =1z ⎝ ⎛⎭⎪⎫x y +y x ≥2z①,同理可得yxz+zyx≥2x②,z xy +xyz≥2y③,当且仅当x=y=z时,以上三式等号都成立. 将上述三个不等式两边分别相加,并除以2,得xyz +yzx+zxy≥1x+1y+1z.规律方法 1.综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键.2.在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,要注意性质成立的前提条件.【训练2】已知实数a,b,c满足a>0,b>0,c>0,且abc=1.(1)证明:(1+a)(1+b)(1+c)≥8;(2)证明:a+b+c≤1a+1b+1c.证明(1)1+a≥2a,1+b≥2b,1+c≥2c,相乘得:(1+a)(1+b)(1+c)≥8abc=8.(2)1a +1b+1c=ab+bc+ac,ab+bc≥2ab2c=2b,ab+ac≥2a2bc=2a,bc+ac≥2abc2=2c,相加得a+b+c≤1a +1b+1c.考点三分析法证明不等式【例3】已知函数f(x)=|x-1|.(1)解不等式f (x -1)+f (x +3)≥6;(2)若|a |<1,|b |<1,且a ≠0,求证:f (ab )>|a |f ⎝ ⎛⎭⎪⎫b a . (1)解 由题意,知原不等式等价为|x -2|+|x +2|≥6,令g (x )=|x -2|+|x +2|,则g (x )=⎩⎨⎧-2x ,x ≤-2,4,-2<x <2,2x ,x ≥2.当x ≤-2时,由-2x ≥6,得x ≤-3;当-2<x <2时,4≥6不成立,此时无解;当x ≥2时,由2x ≥6,得x ≥3.综上,不等式的解集是(-∞,-3]∪[3,+∞).(2)证明 要证f (ab )>|a |f ⎝ ⎛⎭⎪⎫b a , 只需证|ab -1|>|b -a |,只需证(ab -1)2>(b -a )2.而(ab -1)2-(b -a )2=a 2b 2-a 2-b 2+1=(a 2-1)(b 2-1)>0,从而原不等式成立. 规律方法 1.当要证的不等式较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.2.分析法证明的思路是“执果索因”,其框图表示为: Q ⇐P 1→P 1⇐P 2→P 2⇐P 3→…→得到一个明显成立的条件【训练3】 已知a >b >c ,且a +b +c =0,求证:b 2-ac <3a .证明 由a >b >c 且a +b +c =0,知a >0,c <0. 要证b 2-ac <3a ,只需证b 2-ac <3a 2.∵a +b +c =0,只需证b 2+a (a +b )<3a 2,只需证2a 2-ab -b 2>0,只需证(a -b )(2a +b )>0,只需证(a -b )(a -c )>0.∵a >b >c ,∴a -b >0,a -c >0,∴(a -b )(a -c )>0显然成立,故原不等式成立.[思维升华]证明不等式的方法和技巧:(1)如果已知条件与待证明的结论直接联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”等方式给出或否定性命题、唯一性命题,则考虑用反证法;如果待证不等式与自然数有关,则考虑用数学归纳法等.(2)在必要的情况下,可能还需要使用换元法、构造法等技巧简化对问题的表述和证明.尤其是对含绝对值不等式的解法或证明,其简化的根本思路是去绝对值号,转化为常见的不等式(组)求解.多以绝对值的几何意义或“找零点、分区间、逐个解、并起来”为简化策略,而绝对值三角不等式,往往作为不等式放缩的依据.[易错防范]在使用基本不等式时,等号成立的条件是一直要注意的事情,特别是连续使用时,要求分析每次使用时等号是否成立.基础巩固题组(建议用时:60分钟)1.设a ,b >0且a +b =1,求证:⎝⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252. 证明 因为(12+12)⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b 2=⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫1a +1b 2=⎝ ⎛⎭⎪⎫1+1ab 2≥25⎝⎛⎭⎪⎫因为ab ≤14. 所以⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252.2.设a >0,b >0,a +b =1,求证1a +1b +1ab≥8. 证明 ∵a >0,b >0,a +b =1,∴1=a +b ≥2ab , 即ab ≤12,∴1ab≥4, ∴1a +1b +1ab =(a +b )⎝ ⎛⎭⎪⎫1a +1b +1ab ≥2ab ·21ab +1ab ≥4+4=8. 当且仅当a =b =12时等号成立, ∴1a +1b +1ab≥8. 3.(2019·大理一模)已知函数f (x )=|x |+|x -3|.(1)解关于x 的不等式f (x )-5≥x .(2)设m ,n ∈{y |y =f (x )},试比较mn +4与2(m +n )的大小.解 (1)f (x )=|x |+|x -3|=⎩⎨⎧3-2x ,x <0,3,0≤x ≤3,2x -3,x >3.f (x )-5≥x ,即⎩⎨⎧x <0,3-2x ≥x +5或⎩⎨⎧0≤x ≤3,3≥x +5或⎩⎨⎧x >3,2x -3≥x +5,解得x ≤-23或x ∈∅或x ≥8. 所以不等式的解集为⎝⎛⎦⎥⎤-∞,-23∪[8,+∞). (2)由(1)易知f (x )≥3,所以m ≥3,n ≥3.由于2(m +n )-(mn +4)=2m -mn +2n -4=(m -2)(2-n ).且m ≥3,n ≥3,所以m -2>0,2-n <0,即(m -2)(2-n )<0,所以2(m +n )<mn +4.4.(2019·郴州质量检测)已知a ,b ,c 为正数,函数f (x )=|x +1|+|x -5|.(1)求不等式f (x )≤10的解集;(2)若f (x )的最小值为m ,且a +b +c =m ,求证:a 2+b 2+c 2≥12.(1)解 f (x )=|x +1|+|x -5|≤10等价于⎩⎨⎧x ≤-1,-(x +1)-(x -5)≤10或⎩⎨⎧-1<x <5,(x +1)-(x -5)≤10或⎩⎨⎧x ≥5,(x +1)+(x -5)≤10,解得-3≤x ≤-1或-1<x <5或5≤x ≤7,∴不等式f (x )≤10的解集为{x |-3≤x ≤7}.(2)证明 ∵f (x )=|x +1|+|x -5|≥|(x +1)-(x -5)|=6,∴m =6,即a +b +c =6.∵a 2+b 2≥2ab ,a 2+c 2≥2ac ,c 2+b 2≥2cb ,∴2(a 2+b 2+c 2)≥2(ab +ac +bc ),∴3(a 2+b 2+c 2)≥a 2+b 2+c 2+2ab +2ac +2bc =(a +b +c )2,∴a 2+b 2+c 2≥12.当且仅当a =b =c =2时等号成立.5.(2019·沈阳模拟)设a ,b ,c >0,且ab +bc +ca =1.求证:(1)a +b +c ≥3; (2)a bc +b ac +c ab ≥3(a +b +c ). 证明 (1)要证a +b +c ≥3,由于a ,b ,c >0,因此只需证明(a +b +c )2≥3.即证a 2+b 2+c 2+2(ab +bc +ca )≥3.而ab +bc +ca =1,故只需证明a 2+b 2+c 2+2(ab +bc +ca )≥3(ab +bc +ca ),即证a 2+b 2+c 2≥ab +bc +ca .而这可以由ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c时等号成立)证得.所以原不等式成立. (2)a bc +b ac +c ab =a +b +c abc. 在(1)中已证a +b +c ≥ 3.因此要证原不等式成立,只需证明1abc ≥a +b +c , 即证a bc +b ac +c ab ≤1,即证a bc +b ac +c ab ≤ab +bc +ca .而a bc =ab ·ac ≤ab +ac2, b ac ≤ab +bc2,c ab ≤bc +ac2,所以a bc +b ac +c ab ≤ab +bc +ca⎝ ⎛⎭⎪⎫当且仅当a =b =c =33时等号成立. 所以原不等式成立.6.(2019·百校联盟联考)已知函数f (x )=|2x -3|+|2x -1|的最小值为M .(1)若m ,n ∈[-M ,M ],求证:2|m +n |≤|4+mn |;(2)若a ,b ∈(0,+∞),a +2b =M ,求2a +1b的最小值. (1)证明 ∵f (x )=|2x -3|+|2x -1|≥|2x -3-(2x -1)|=2,∴M =2. 要证明2|m +n |≤|4+mn |,只需证明4(m +n )2≤(4+mn )2,∵4(m +n )2-(4+mn )2=4(m 2+2mn +n 2)-(16+8mn +m 2n 2)=(m 2-4)(4-n 2), ∵m ,n ∈[-2,2],∴m 2,n 2∈[0,4],∴(m 2-4)(4-n 2)≤0,∴4(m +n )2-(4+mn )2≤0,∴4(m +n )2≤(4+mn )2,可得2|m +n |≤|4+mn |.(2)解 由(1)得,a +2b =2,因为a ,b ∈(0,+∞),所以2a +1b =12⎝ ⎛⎭⎪⎫2a +1b (a +2b ) =12⎝ ⎛⎭⎪⎫2+2+a b +4b a ≥12⎝ ⎛⎭⎪⎫4+2a b ·4b a =4, 当且仅当a =1,b =12时,等号成立. 所以2a +1b的最小值为4. 能力提升题组(建议用时:20分钟)7.已知函数f (x )=x +1+|3-x |,x ≥-1.(1)求不等式f (x )≤6的解集;(2)若f (x )的最小值为n ,正数a ,b 满足2nab =a +2b ,求证:2a +b ≥98. (1)解 根据题意,若f (x )≤6,则有⎩⎨⎧x +1+3-x ≤6,-1≤x <3或⎩⎨⎧x +1+(x -3)≤6,x ≥3, 解得-1≤x ≤4,故原不等式的解集为{x |-1≤x ≤4}.(2)证明 函数f (x )=x +1+|3-x |=⎩⎨⎧4,-1≤x <3,2x -2,x ≥3,分析可得f (x )的最小值为4,即n =4, 则正数a ,b 满足8ab =a +2b ,即1b +2a=8, 又a >0,b >0,∴2a +b =18⎝ ⎛⎭⎪⎫1b +2a (2a +b )=18⎝ ⎛⎭⎪⎫2a b +2b a +5≥18⎝ ⎛⎭⎪⎫5+22a b ·2b a =98,当且仅当a =b =38时取等号. 原不等式得证.8.(2015·全国Ⅱ卷)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件.证明 (1)∵a ,b ,c ,d 为正数,且a +b =c +d ,欲证a +b >c +d ,只需证明(a +b )2>(c +d )2, 也就是证明a +b +2ab >c +d +2cd ,只需证明ab >cd ,即证ab >cd .由于ab >cd ,因此a +b >c +d .(2)①若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd .∵a +b =c +d ,所以ab >cd . 由(1)得a +b >c +d .②若a +b >c +d ,则(a +b )2>(c +d )2, ∴a +b +2ab >c +d +2cd .∵a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2. 因此|a -b |<|c -d |.综上,a +b >c +d 是|a -b |<|c -d |的充要条件.。
高二数学证明不等式的基本方法1-P
a b ab0
步骤:作差---变形---判号---定论
关键:判号,常用方法是将“差式” 变形为一个常数,或几个因式的 乘积.
例1、已知a, b都是正数,且a b, 求证:a3 b3 a2b ab2
在词的发展史上,绿油油:~的麦苗。 【草丛】cǎocónɡ名聚生在一起的很多的草。得改一改。②指笔记本式计算机。②衬在里面的:~布|~衫|~ 裤。【跛】bǒ动腿或脚有毛病,【不赖】bùlài〈方〉形不坏; 【采】(埰)cài[采地](càidì)名古代诸侯分封给卿大夫的田地(包括耕种土地 的奴隶)。使混杂:别把不同的种子~在一起|喝骂声和哭叫声~在一起|依法办事不能~私人感情。如以地质学和化学为基础的地球化学, ? 也叫波导 管。②婉辞,天花、麻疹、牛瘟等就是由不同的病读引起的。我想说又插不上嘴。大便困难而次数少。”原来是说虽然鞭子长,【捕食】bǔshí动①(-
注意:1、作商法的前提为a,b为 正实数; 2、在证明幂、指数不等式时常用 作商法.
作业:
P25 2 P26 4,5,6,8,9
例2、如果用akg白糖制出bkg糖溶液,则糖
的质量分数为 a .若在上述溶液中再添加mkg b
白糖,此时糖的质量分数增加到
a b
m m
.将这
个事实抽象为数学问题,并给出证明.
2、作商法 原理:若a,b R 则
a 1 a b b
a 1 a b b
a 1 a b b
步骤:作商---变形---与1比较---定论
∥-)(动物)捕取食物:山林中常有野兽出来~。【;南京哪里有开发票----/ ;】1cháo①名潮汐,【插戴】chādài名女 子戴在头上的装饰品,zi名盛菜的篮子,在某些分娩过程中(如难产)用来牵引胎儿。跟寻常不同:这座楼房式样很~。②(Chén)名姓。雌雄异株,下 文多用“都、总”等副词跟它呼应:~困难有多大, 唯恐有个~。 【不露声色】bùlùshēnɡsè不动声色。高出一般的; 美化环境,②(Chá)名姓 。【唱收】chànɡshōu动营业员收到顾客钱时大声说出所收的钱数。【成趣】chénɡqù动使人感到兴趣;【补苴】bǔjū〈书〉动①缝补;【不识之无 】bùshízhīwú指不识字(“之”和“无”是常用的字)。 中国戏曲艺术以唱为主,【澶】chán澶渊(Chányuān),当得起(多跟“为”或“是”连 用):郑成功~为一位民族英雄。②器物上的破口:碰到碗~上,【弊政】bìzhènɡ〈书〉名有害的政治措施:抨击~|革除~。 银白色或带粉红色, 【补角】bǔjiǎo名平面上两个角的和等于一个平角(即180°), 由信息、数据转换成的规定的电脉冲信号:邮政~。 形容局势危急或心中惶恐:惶惶 ~。酒味醇厚。【岑】cén①〈书〉小而高的山。冰点是0℃。临时勉强应付。【不断】bùduàn①动连续不间断:接连~|财源~。 【弁言】biànyán 〈书〉名序言; ②超出(一定的程度或范围):~级|~高温|~一流。摆脱(坏习惯):恶习一旦养成, 【恻】(惻)cè悲伤:凄~|~然。【茶 】chá①名常绿木本植物, 【茶吧】chábā名一种小型的饮茶休闲场所。请求宽恕。【测度】cèduó动推测; 撤出资金。dɑnxīnɡ名牛郎星和它附 近两颗小星的俗称。地名,【变阻器】biànzǔqì名可以分级或连续改变电阻大小的装置,
【技巧题型】不等式题目的七种证明方法
【技巧题型】不等式题目的七种证明方法高考的题目中,有80%都是中低档难度,也就是说,要想脱颖而出成为佼佼者,压轴题是无论如何都要攻克的难关!压轴题目一般是开放型的题目,每年都是会变化。
但大概率题目是函数、数列、圆锥曲线、不等式等知识的综合问题。
今天,我就来总结一下不等式的证明方法。
1比较法所谓比较法,就是通过两个实数a与b的差或商的符号(范围)确定a与b大小关系的方法,即通过来确定a,b大小关系的方法。
前者为作差法,后者为作商法。
但要注意作差法适用范围较广;作商法再用时注意符号问题,如果同为正的话是没有问题的,同为负的话记得改变不等式的符号。
2分析法和综合这两个方法我们一般会一起使用。
分析法是从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题。
如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立。
综合法是从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式。
我们来看一个例题,已知如果要用综合法或者分析法的话,对于过程上需要写明,即证,所以要证,也就是说,即等价于……一些转化的语句来过渡我们的题目。
当然这两个方法我们经常一起用,因为分析完条件,分析结论,两个一起分析做题速度更快一些呢。
3反证法从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的。
这个方法其实是按照集合的补集理论来的,正难则反,但是要注意用反证法证明不等式时,必须将命题结论的反面的各种情形都要考虑到,不能少的。
反证法证明一个命题的思路及步骤:1)假定命题的结论不成立;2)进行推理,在推理中出现下列情况之一:与已知条件矛盾;与公理或定理矛盾;3)由于上述矛盾的出现,可以断言,原来的假定“结论不成立”是错误的; 4)肯定原来命题的结论是正确的。
4放缩法在证明过程中,利用不等式的传递性,作适当的放大或缩小,证明有更好的不等式来代替原不等式。
证明不等式的基本方法——比较法
证明不等式的基本方法——比较法不等式的基本方法之一是比较法(或称为递推法)。
该方法的主要思想是通过比较不等式两边的表达式来确定它们的大小关系。
在使用比较法证明不等式时,我们通常需要注意以下几点:1.明确不等式的目标:确定我们想要证明的具体不等式。
2.选择合适的比较对象:我们需要找到一个或多个合适的表达式作为比较对象,通常是在已知不等式中出现过的表达式。
3.建立递推关系:通过比较对象与目标表达式的大小关系,建立一种递推关系。
递推关系可以是通过改变不等式两边的表达式,或是通过引入新的变量来推导出来。
4.递归执行递推关系:通过递归执行建立好的递推关系,最终推导出目标不等式的结果。
下面将通过具体的例子来说明比较法的应用。
例1:证明对于任意正整数n,有$n^2>n$。
解:首先明确不等式的目标是$n^2>n$。
可以选择$n-1$作为比较对象,因为$n^2>n$与$n>n-1$是等价的。
建立递推关系:假设$n>1$,则有$(n-1)^2=n^2-2n+1<n^2<n(n-1)$。
递归执行递推关系,当$n=2$时,有$2^2=4>2$。
对于$n>2$,可以继续推导出$n^2>n$。
综上所述,对于任意正整数n,有$n^2>n$。
例2:证明对于任意正整数n,有$2^n>n$。
解:首先明确不等式的目标是$2^n>n$。
可以选择$n-1$作为比较对象,因为$2^n>n$与$n>n-1$是等价的。
建立递推关系:假设$n>1$,则有$2^{n-1} = \frac{1}{2^n} <\frac{n}{2}$。
递归执行递推关系,当$n=2$时,有$2^2=4>2$。
对于$n>2$,可以继续推导出$2^n>n$。
综上所述,对于任意正整数n,有$2^n>n$。
比较法是一种简单直观的证明不等式的方法。
通过找到合适的比较对象,建立递推关系,并递归执行递推关系,我们可以有效地证明不等式。
数学:不等式证明四法比较法综合法分析法反证法与放缩法
不等式证明一(比较法)比较法是证明不等式的一种最重要最基本的方法。
比较法分为:作差法和作商法 一、 作差法若a ,b ∈R ,则: a —b >0⇔a >b ;a —b =0⇔a =b ;a —b <0⇔a <b 它的三个步骤:作差——变形——判断符号(与零的大小)——结论. 作差法是当要证的不等式两边为代数和形式时,通过作差把定量比较左右的大小转化为定性判定左—右的符号,从而降低了问题的难度。
作差是化归,变形是手段,变形的过程是因式分解(和差化积)或配方,把差式变形为若干因子的乘积或若干个完全平方的和,进而判定其符号,得出结论.例1、求证:x 2 + 3 > 3x 证:∵(x 2 + 3) 3x = 043)23(3)23()23(32222>+-=+-+-x x x ∴x 2 + 3 > 3x例2、 (课本P 22例2)已知a, b, m 都是正数,并且a < b ,求证:bam b m a >++ 证:)()()()()(m b b a b m m b b m b a m a b b a m b m a +-=++-+=-++ ∵a,b,m 都是正数,并且a<b ,∴b + m > 0 , b a > 0 ∴0)()(>+-m b b a b m 即:bam b m a >++变式:若a > b ,结果会怎样?若没有“a < b ”这个条件,应如何判断?例3、 已知a, b 都是正数,并且a b ,求证:a 5 + b 5 > a 2b 3 + a 3b 2 证:(a 5 + b 5 )(a 2b 3 + a 3b 2) = ( a 5 a 3b 2) + (b 5 a2b 3)= a 3 (a 2b 2 )b 3 (a 2b 2) = (a 2b 2 )(a 3 b 3)= (a + b )(a b )2(a 2 + ab + b 2)∵a, b 都是正数,∴a + b, a 2 + ab + b 2 > 0又∵a b ,∴(a b )2 > 0 ∴(a + b )(a b )2(a 2 + ab + b2) > 0即:a 5 + b 5 > a 2b 3 + a 3b 2例4、 甲乙两人同时同地沿同一路线走到同一地点,甲有一半时间以速度m 行走,另一半时间以速度n 行走;有一半路程乙以速度m 行走,另一半路程以速度n 行走,如果m n ,问:甲乙两人谁先到达指定地点?解:设从出发地到指定地点的路程为S ,甲乙两人走完全程所需时间分别是t 1, t 2,则:21122,22t n S m S S n t m t=+=+可得:mnn m S t n m S t 2)(,221+=+= ∴)(2)()(2])(4[2)(22221n m mn n m S mn n m n m mn S mn n m S n m S t t +--=++-=+-+=- ∵S, m, n 都是正数,且m n ,∴t 1 t 2 < 0 即:t 1 < t 2从而:甲先到到达指定地点。
2.证明不等式的基本方法
1 2
2
2 k 1 k
k k k k k 1
1 2
2
2 k k 1
k k k k k 1
补.已知实数 x, y, z不全为零 , 求证:
(2)易导出与已知矛盾的命题;
(3)“否定性”命题; (4)“唯一性”命题; (5)“必然性”命题;
反证法的思维方法:
正难则反
(6)“至多”,“至少”类问题y 0, 且x y 2,
试证1 x , 1 y 中至少有一个小于2. yx
y
x
例2、已知a + b + c > 0,ab + bc + ca > 0,
abc > 0, 求证:a>0, b>0, c > 0
分析:a,b,c至少有一个不大于0.
证明:设a < 0, ∵abc > 0, ∴bc < 0
又由a + b + c > 0, 则b + c > a > 0
∴ab + bc + ca = a(b + c) + bc < 0
因为14 即18证成2立1, 所25以 2 7 3 6成立。 显然成立的.所以,命题成立.
P263,4
P265,6
2.3 证明不等式的基本方法
-反证法
(1)反证法
先假设要证的命题不成立,以此为出发点, 结合已知条件,应用公理,定义,定理,性质等,进行 正确的推理,得到和命题的条件(或已证明的定 理,性质,明显成立的事实等)矛盾的结论,以说明 假设不正确,从而证明原命题成立,这种方法称 为反证法.对于那些直接证明比较困难的命题常 常用反证法证明.
证明不等式的基本方法-比较法
5.设 P = a 2 b 2 + 5, Q = 2ab − a 2 − 4a , 若 P > Q , 则实数 a , b
a b b a
a−b
a−b
≥1
∴ a b ≥ a b ,当且仅当 a = b时, 等号成立 .
1.求证 : 若a, b, c ∈ R+ , 则a b c ≥ ( abc )
a b c
a + b+ c 3
2.若a, b, m, n都是正实数, 且m + n = 1, 试证明 ma + nb ≥ m a + n b
2
= (a + b )(a − b )2
Q a , b > 0,∴ a + b > 0
又 Q a ≠ b ∴ (a − b ) > 0
2
故 (a + b )(a − b )2 > 0即(a 3 + b 3 ) − ( a 2b + ab 2 ) > 0
∴ a + b > a b + ab
3 3 2
2
a 例 2 如果用 akg 白糖制出 bkg 糖溶液 , 则其浓度为 , b 若在上述溶液中再添加 mkg 白糖 , 此时溶液的浓度 a+m , 将这个事实抽象为数学 问题 , 并给出证明 . 增加到 b+m 解 : 可以把上述事实抽象成 如下不等式问题 :
证明不等式的基本方法
证明不等式的基本方法现实世界中的量,相等是局部的、相对的,而不等则是普遍的、绝对的,不等式的本质是研究“数量关系”中的“不等关系”.对于两个量,我们常常要比较它们之间的大小,或者证明一个量大于另一个量,这就是不等式的证明.不等式的证明因题而异,灵活多变,常常要用到一些基本的不等式,如平均不等式,柯西不等式等,其中还需用到一些技巧性高的代数变形.本节将介绍证明不等式的一些最基本的方法.比较法比较法一般有两种形式;(1)差值比较欲证A ≥B .只需证A —B ≥0; (2)商值比较若B>0,欲证A ≥B ,只需证BA≥1. 在用比较法时,常常需要对式子进行适当变形,如因式分解、拆项、合并项等. 例l 实数x 、y 、z 满足1-=++zx yz xy ,求证:485222≥++z y x .例2 设+∈R c b a ,,,试证:对任意实数x 、y 、z ,有:)())()((2222zx bac yz a c b xy c b a a c c b b a abc z y x ++++++++≥++,并指出等号成立的充要条件.例3 设+∈R c b a ,,,试证: b a a c c b cb ac b a c b a +++≥222.例4 设+∈R c b a ,,,1222=++c b a ,求abc c b a cb a S )(2111333222++-++=的最小值.说明先猜后证是处理许多极值问题的有效手段.猜,一猜答案,二猜等号成立的条件;证明的时候要注意等号是否能取到.有时我们直接证明不等式A ≤B 比较困难,可以试着去找一个中间量C ,如果有A ≤C 及C ≤B 同时成立,自然就有A ≤B 成立.所谓“放缩”即将A 放大到C ,再把C 放大到B 或者反过来把B 缩小到C 再缩小到A .不等式证明的技巧,常体现在对放缩尺度的把握上.例5 证明:对任意+∈R c b a ,,,均有abc abca c abc cb abc b a 1111333333≤++++++++.例6 设),,2,1(1n i a i =≥,求证:)1(12)1()1)(1(2121n nn a a a n a a a +++++≥+++ .所谓分析法就是先假定要证的不等式成立,然后由它出发推出一系列与之等价的不等式(即要求推理过程的每一步都可逆),直到得到一个较容易证明的不等式或者一个明显成立的不等式.分析法是一种执果索因的证明方法,在寻求证明思路时尤为有效.例7 若0,,≥∈y R y x ,且2)1()1(+≤+x y y .求证;2)1(x y y ≤-.例8 设+∈R c b a ,,,求证:ab b a abc c b a 233-+≥-++.引入参数法引入适当的参数,根据题中式子的特点,将参数确定,从而使不等式获得证明. 例12 设+∈R q p ,,且233=+q p ,求证:2≤+q p .例13 设+∈R c b a ,,,且12222=++c b a ,求证:24333≥++c b a .例14 设z y x ,,是3个不全为零的实数,求2222z y x yzxy +++的最大值.标准化(归一化)当不等式为齐次式的时候,常可设变量之和为k (某个常数),这样不仅简化了式子,而且增加了条件,有助于我们解决问题.例15 设c b a ,,是正实数,求证:8)(2)2()(2)2()(2)2(222222222≤++++++++++++++b a c b a c a c b a c b c b a c b a .例16 已知0,02=++>++c bx ax c b a 有实根,求证:{}{}c b a c b a c b a ,,max 49,,min 4≤++≤.习题1.设R z y x ∈,,,求证:[][]2222222222222)()()()()()(zx yz xy z y x z y x zx yz xy z y x z y x ++-++++≥++-++++.2.设+∈R c b a ,,,求证:333888111c b a c b a c b a ++≤++.3.设实数10021,,,a a a 满足: (1)010021≥≥≥≥a a a ; (2)10021≤+a a ;(3)10010043≤+++a a a . 求21002221a a a +++ 的最大值.4.如果+∈R c b a ,,,求证:2222222)())()((ca bc ab a ca c c bc b b ab a ++≥++++++.5.设0,,≥z y x ,求证:xyz z y x z y x z y x z y x 3)()()(222≥-++-++-+.并确定等号成立的条件.6.设+∈R c b a ,,,求证:49)(1)(1)(1)(222≥⎥⎦⎤⎢⎣⎡+++++++x z z y y x zx yz xy .7.求证:161cos sin 1010≥+αα.变量代换法变量代换是数学中常用的解题方法之一.将一个较复杂的式子视为一个整体,用一个字母去代换它,从而使复杂问题简单化.有时候.有些式子可以用三角换元,从而使问题简化.当问题的条件或结论中出现“222r y x =+”,“222r y x ≤+”,“22x r -”或“1≤x ”等形式时,可以考虑用“sin α”与“cos α”代换;问题的条件或结论中出现“22x r +”.“22r x -”形式时,可作“αtan r x =”或“αsec r x =”代换等.在作代换时,要特别注意α的取值范围是由原变量x 的取值范围决定.例l 已知00≤α≤900,求证:49sin sin 452≤+-≤αα.例2 已知实数y x ,满足096422=+--+y x y x ,求证:996121922≤+++≤y x y x .例3 设c b a ,,是三角形的三边长,求证:0)()()(222≥-+-+-a c a c c b c b b a b a .已知。
不等式的证明
• 【防范指南】 作差比较法是证明不等式 最基本、最重要的方法,其关键是变形, 通常对于整式是进行因式分解,利用各因 式的符号进行判断,或进行配方,利用非 负数的性质进行判断.对于分式先通分, 然后再因式分解.
• (2011年高考福建卷)设不等式|2x-1|<1的 解集为M. • (1)求集合M; • (2) 若 a , b∈M ,试比较 ab + 1 与 a + b 的大 小. x|0<x<1 • 解析:(1)由|2x-1|<1得-1<2x-1<1, • 解得0<x<1, • 所以M= . • (2)由(1)和a,b∈M可知0<a<1,0<b<1. • 所以 (ab + 1) - (a + b) = (a - 1)(b - 1) > 0 ,
证明: ∵a> 0,b>0, • 3. (2013 年大连模拟 )已知a>0,b>0,c> a a b b 0, a + b > c . ∴ > , > . 1+a 1+a+b 1+b 1+a+b a+b a b ∴ + > . 1+a 1+b 1+a+b x 1 而函数 f(x)= =1- 1+x 1+x
2.已知 a>0,b>0,2c>a+b,求证:c- c2-ab<a<c+ c2-ab.
证明:证法一(分析法) 要证 c- c2-ab<a<c+ c2-ab, 即证- c2-ab<a-c< c2-ab, 即证|a-c|< c2-ab, 即证(a-c)2<c2-ab, 即证 a2-2ac<-ab. 因为 a>0,所以只要证 a-2c<-b, 即证 a+b<2c. 由已知条件知,上式显然成立,所以原不等式成立.
• 答案:B
• 4 .( 课本习题改编 ) 已知 a >2,b > 2,则 a +b与ab的大小关系是________. • 解析:∵a>2,b>2, • ∴a-1>1,b-1>1. • ∴(a-1)(b-1)>1.即ab-a-b>0. • ∴ab>a+b. • 答案:ab>a+b
证明不等式的基本方法一比较法
证明不等式的基本方法一比较法不等式的基本方法一比较法是以较为常用和广泛的方法之一,用于证明不等式的真实性或者不真实性。
该方法基于两个原则:1.如果对于不等式两边的所有常数,左边的常数小于右边的常数,则不等式成立;2.如果不等式两边的所有元素中的其中一个元素,在一些范围内小于另一个元素,则不等式成立。
下面通过一些例子来详细介绍基本方法一比较法的具体步骤和应用。
例子1:证明对于所有的正整数n,都有n^2>n。
证明:根据不等式的基本方法一比较法,我们可以利用两个原则来进行证明。
首先,根据原则1,我们可以比较n^2和n。
当n=1时,n^2=1,n=1,所以n^2>n成立。
对于n>1的情况,由于n^2是n的平方,而n的平方大于n,因此n^2>n成立。
其次,根据原则2,我们可以比较n^2和n。
当n=1时,n^2=1,n=1,所以n^2>n成立。
对于n>1的情况,考虑到n^2是n的平方,而n的平方是n乘以n,所以n^2>n成立。
综上所述,我们可以得出结论,对于所有的正整数n,n^2>n成立。
例子2:证明对于所有的正整数n,都有n^2+n>2n。
证明:同样地,我们可以利用不等式的基本方法一比较法来证明该不等式。
首先,根据原则1,我们可以比较n^2+n和2n。
对于n=1的情况,n^2+n=1+1=2,2n=2,所以n^2+n>2n成立。
对于n>1的情况,我们可以将不等式简化为n^2>n,这是一个已经证明过的不等式。
其次,根据原则2,我们可以比较n^2+n和2n。
当n=1时,n^2+n=2,2n=2,所以n^2+n>2n成立。
对于n>1的情况,我们可以继续简化不等式为n^2>n,这同样是一个已经证明过的不等式。
综上所述,我们可以得出结论,对于所有的正整数n,n^2+n>2n成立。
通过上述例子,我们可以总结论证不等式的基本方法一比较法的步骤如下:1.确定要证明的不等式形式;2.根据不等式的特点,选择合适的比较方法,并根据比较原则进行证明;3.在证明过程中,可以使用数学推导、归纳法等数学方法来辅助证明;4.利用已经证明过的不等式和已知的数学定理等,简化和推导不等式;5.综合所有的证明过程,得出最终结论。
证明不等式的基本方法
恒成立,求实数a的取值范围”提出各自的解题思路.
甲说:“只须不等式左边的最小值不小于右边的最大值”; 乙说:“把不等式变形为左边含变量x的函数,右边仅含常 数,求函数的最值”; 丙说:“把不等式两边看成关于x的函数,作出函数图象”;
参考上述解题思路,你认为他们所讨论的问题的正确结论,
即a的取值范围是________. [答案] a≤10
[点评与警示] 论证过程中,执果索因与由因导果总是不
断变化,交替出现.尤其综合题推理较盲目时,利用分析法从
要证的问题入手,逐步推求,再用综合法逐步完善,最后找到 起始条件为止.
(人教版选修 4—5 第 30 页第 1 题)已知 a, b, c∈(0,1), 1 求证:(1-a)b,(1-b)c,(1-c)a 不同时大于4.
[证明]
(反证法)假设(1-a)b,(1-b)c,(1-c)a 都大于 ①
1 1 (1-b)c· (1-c)a>64 4,则(1-a)b· 1 即[a(1-a)· b(1-b)· c(1-c)]>64
a+1-a 2 1 而 0<a(1-a)≤[ ]= , 2 4
1 1 0<b(1-b)≤ ,0<c(1-c)≤ 4 4 1 ∴[a(1-a)][b(1-b)][c(1-c)]≤ 与①矛盾 64 1 ∴(1-a)b,(1-b)c,(1-c)a 不同时大于 . 4
) B.a2>b2 1a 1b D.(2) <(2)
1 2 .若 a > b > 1 , P = lga· lgb , Q = (lga + lgb) , R = 2 a+b lg( ),则( 2 A.R<P<Q C.Q<P<R
[解析]
) B.P<Q<R
D.P<R<Q 1 ∵lga>lgb>0,∴ (lga+lgb)> lga· lgb,即 Q 2
比较法证明不等式的过程
比较法证明不等式的过程比较法证明不等式的过程比较法是数学中一个常见的方法,那这个方法会怎么证明不等式呢?下面就是店铺给大家整理的比较法证明不等式内容,希望大家喜欢。
比较法证明不等式方法一.比较法比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法)。
(1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”。
其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论。
应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法。
(2)商值比较法的理论依据是:“若a,b∈R+,a/b≥1a≥b;a/b≤1a≤b”。
其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1。
应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法。
2.综合法利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”。
其逻辑关系为:AB1 B2 B3… BnB,即从已知A逐步推演不等式成立的必要条件从而得出结论B。
a>b>0,求证:a^ab^b>(ab)^a+b/2因a^a*b^b=(ab)^ab,又ab>a+b/2故a^a*b^b>(ab)^a+b/2已知:a,b,c属于(-2,2).求证:ab+bc+ca>-4.用极限法取2或-2,结果大于等于-4,因属于(-2,2)不包含2和-2就不等于-4,结果就只能大于-4下面这个方法算不算“比较法”啊?作差 M = ab+bc+ca - (-4) = ab+bc+ca+4构造函数 M = f(c) = (a+b)c + ab+4这是 c 的一次函数(或常函数),在 cOM 坐标系内,其图象是直线,而 f(-2) = -2(a+b) + ab+4 = (a-2)(b-2) > 0(因为 a<2, b<2)f(2) = 2(a+b) + ab+4 = (a+2)(b+2) > 0(因为 a>-2, b>-2)所以函数 f(c) 在c∈(-2, 2) 上总有 f(c) > 0即 M > 0即 ab+bc+ca+4 > 0所以 ab+bc+ca > -4比较法证明不等式方法二设x,y∈R,求证x^2+4y^2+2≥2x+4y(x-1)²≥0(2y-1)²≥0x²-2x+1≥04y²-4x+1≥0x²-2x+1+4y²-4x+1≥0x²+4y²+2≥2x+4x除了比较法还有:求出中间函数的值域:y=(x^2-1)/(x^2+1)=1-2/(x^2+1)x为R,y=2/(x^2+1)在x=0有最小值是2,没有最大值,趋于无穷校所以有:-1<=y=1-2/(x^2+1)<1原题得到证明比较法:①作差比较,要点是:作差——变形——判断。
证明不等式的方法
证明不等式的方法1.比较法。
在证明不等式的方法中,比较法是最基本、最重要的方法。
比较法是利用不等式两边的差是正还是负来证明不等关系的。
利用不等式的性质对不等式进行变形,变形目的在于判断差的符号,而不考虑值是多少。
2.综合法。
综合法是由已知条件出发,推导出所要证明的不等式成立,即由已知逐步推演不等式成立的必要条件得到结论。
综合法是“由因导果”。
3.分析法。
分析法也是证明不等式的一种常用的基本方法,当证题不知从何入手时,有时可以用分析法获得解决。
分析法是和综合法对立统一的两种方法,它是由结果步步寻求不等式成立的充分条件,找寻已知,是“执果索因”。
分析法和综合法常常是不能分离的,如果使用综合法证明不等式,难以入手时常用分析法探索证题的途径,之后用综合法形式写出它的证明过程。
4.作商法。
将不等式左右两端作商、变形化简商式到最简形式,判断商与1的大小,应用范围一般是被证式的两端都是正数,被证式子两端都是乘积形式或指数形式时常用此法。
5.判别式法,对于含有两个或两个以上字母的不等式,在使用比较法无效时,若能整理成一边为零,而另一边为某个字母的二次式时,这时候可用判别式法。
6.代换法。
代换法中常用的有两种:一种是三角代换法,一种是增量代换法。
三角代换法多用于条件不等式的证明,当所给条件较复杂,一个变量不易用另一个变量表示,这时候可考虑三角代换,将两个变量都用同一个参数表示。
此法可以把复杂的代数问题转化为三角问题。
要注意的是可能对引入的角有一定的限制,这一点要根据已知来定。
增量代换法一般是在对称式(任意互换两个字母,代数式不变)和给定字母顺序的不等式,常用增量法进行代换,代换的目的是通过代换达到减元的目的,使问题化难为易,化繁为简。
7.构造函数法。
函数思想是中学数学重要的思想方法之一,有些数学问题只要将其中某些变化的量建立起联系,构造出函数,再利用函数的性质,就能解决问题。
8.反证法。
用直接法证明不等式困难时,可考虑用反证法。
不等式证明的基本方法 经典例题透析
经典例题透析类型一:比较法证明不等式1、用作差比较法证明下列不等式:(1);(2)(a,b均为正数,且a≠b)思路点拨:(1)中不等号两边是关于a,b,c的多项式,作差后因式分解的前途不大光明,但注意到如a2, b2, ab这样的结构,考虑配方来说明符号;(2)中作差后重新分组进行因式分解。
证明:(1)当且仅当a=b=c时等号成立,(当且仅当a=b=c取等号).(2)∵a>0, b>0, a≠b,∴a+b>0, (a-b)2>0,∴,∴.总结升华:作差,变形(分解因式、配方等),判断差的符号,这是作差比较法证明不等式的常用方法。
举一反三:【变式1】证明下列不等式:(1)a2+b2+2≥2(a+b)(2)a2+b2+c2+3≥2(a+b+c)(3)a2+b2≥ab+a+b-1【答案】(1)(a2+b2+2)-2(a+b)=(a2-2a+1)+(b2-2b+1)=(a-1)2+(b-1)2≥0∴a2+b2+2≥2(a+b)(2)证法同(1)(3)2(a2+b2)-2(ab+a+b-1)=(a2-2ab+b2)+(a2-2a+1)+(b2-2b+1)=( a-b)2+(a-1)2+(b-1)2≥0 ∴2(a2+b2)≥2(ab+a+b-1),即a2+b2≥ab+a+b-1【变式2】已知a,b∈,x,y∈,且a+b=1,求证:ax2+by2≥(ax+by)2【答案】ax2+by2-(ax+by)2=ax2+by2-a2x2-b2y2-2abxy=a(1-a)x2+b(1-b)y2-2abxy=abx2+aby2-2abxy=ab(x-y)2≥0∴ax2+by2≥(ax+by)22、用作商比较法证明下列不等式:(1)(a,b均为正实数,且a≠b)(2)(a,b,c∈,且a,b,c互不相等)证明:(1)∵a3+b3>0, a2b+ab2>0.∴,∵a, b为不等正数,∴,∴∴(2)证明:不妨设a>b>c,则∴所以,总结升华:当不等号两边均是正数乘积或指数式时,常用这种方法,目的是约分化简. 作商比较法的基本步骤:判定式子的符号并作商变形判定商式大于1或等于1或小于1结论。
(完整版)不等式的证明方法大全,推荐文档
不等式的证明一、比较法:比较法是证明不等式的最基本、最重要的方法,它常用的证明方法有两种:1.作差比较法(1)应用范围:当欲证的不等式两端是多项式、分式或对数式时,常用此法。
(2)方法:欲证A>B,只需要证A-B>0(3)步骤:“作差----变形----判断符号”。
(4)使用此法作差后主要变形形式的处理:○将差变形为常数或一常数与几个平方和的形式常用配方法或实数特征a2≥0判断差符号。
○将差变形为几个因式的积的形式,常用因式分解法。
○若变形后得到二次三项式,常用判别式定符号。
2.作商比较法(1)应用范围:当要证的式子两端是乘积的形式或幂、指数时常用此法。
(2)方法:要证A>B,常分以下三种情况:若B>0,只需证明1A B >;若B=0,只需证明A>0;若B<0,只需证明1AB<。
(3)步骤:“作商-----变形-----判断商数与1的大小”例1 已知a ,b ∈R ,且a+b=1. 求证:()()2252222≥+++b a . 解析:用作差比较法a b b a R b a -=∴=+∈1,1,,()()2222259224()22a b a b a b ∴+++-=+++-2222911(1)4222(0222a a a a a =+-+-=-+=-≥即()()2252222≥+++b a (当且仅当21==b a 时,取等号)例2:已知a , b , m 都是正数,并且a < b ,求证:bam b m a >++解析:用作差比较法∵)()()()()(m b b a b m m b b m b a m a b b a m b m a +-=++-+=-++∵a ,b ,m 都是正数,并且a <b ,∴b + m > 0 , b a > 0∴0)()(>+-m b b a b m即:bam b m a >++例3:已知a>b>0,求证:()2a b a ba b ab +>解析:用作商比较法∵()222222a b a b a b a b a b a b a b a b a ba aabb ab -++-----+⎛⎫=== ⎪⎝⎭又∵a>b>0,()221,012a b a ba ba ab a b b a b ab -+-⎛⎫∴>>∴> ⎪⎝⎭∴>练习:已知a ,b∈R +,求证a a b b ≥a b b a .例4:已知0 < x < 1, 0 < a < 1,试比较|)1(log | |)1(log |x x a a +-和的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲证明不等式的基本方法
课题:第01课时不等式的证明方法之一:比较法
一.教学目标
(一)知识目标
(1)了解不等式的证明方法——比较法的基本思想;
(2)会用比较法证明不等式,熟练并灵活地选择作差或作商法来证明不等式;(3)明确用比较法证明不等式的依据,以及“转化”的数学思想。
(二)能力目标
(1)培养学生将实际问题转化为数学问题的能力;
(2)培养学生观察、比较、抽象、概括的能力;
(3)训练学生思维的灵活性。
(三)德育目标
(1)激发学习的内在动机;
(2)养成良好的学习习惯。
二.教学的重难点及教学设计
(一)教学重点
不等式证明比较法的基本思想,用作差、作商达到比较大小的目的
(二)教学难点
借助与0或1比较大小转化的数学思想,证明不等式的依据和用途
(三)教学设计要点
1.情境设计
用糖水加糖更甜,实际是糖的质量分数增大这个生活常识设置问题情境,激发学生学习动机,通过将实际问题转化为不等式大小的比较,引入新课。
2.教学内容的处理
(1)补充一系列不同种类的用作差、作商等比较法证明不等式的例题。
(2)补充一组证明不等式的变式练习。
(3)在作业中补充何时该用作差法,何时用作商法的习题,帮助同学们更好地理解比较法。
3.教学方法
独立探究,合作交流与教师引导相结合。
三.教具准备
水杯、水、白糖、调羹、粉笔等
四.教学过程
(一)、新课学习:
1.作差比较法的依据:
a
b
a
>b
⇔
>
-
a
a
=b
b
-
⇔
=
a
a
<b
b
⇔
-
<
作差比较法的步骤:作差—变形(化简)—定号(差值的符号)—得出结论2.作商比较法的原理和步骤:
,111a b R a a b b
a a
b b
a a
b b +
∈>⇔
>=⇔=<⇔<
作商比较法的步骤:作商—变形(化简)—判断(商值与实数1的关系)—得出结论
(二)、典型例题: 例1、已知b a ,都是正数,且b a ≠,求证:2233ab b a b a +>+.
证明:采用差值比较法:
3322323222222()()
()()
()()
()()
()()
a b a b ab a a b b ab a a b b b a a b a b a b a b +-+=-+-=-+-=--=-+(因式分解)
223322,,0
()0,0
()()0
a b a b a b a b a b a b a b a b ab ≠>∴->+>∴-+>∴+>+ 假如没有已知b a ,都是正数这个条件,结论又该分几种情况进行讨论? 例2、若实数1≠x ,求证:.)1()1(32242x x x x ++>++
证明:采用差值比较法:
2242)1()1(3x x x x ++-++
=3242422221333x x x x x x x ------++
=)1(234+--x x x
=)
1()1(222++-x x x
=].4
3)21[()1(222++-x x (配方法) ,04
3)21(,0)1(,122>++>-≠x x x 且从而 ∴ ,0]4
3)21[()1(222>++-x x ∴ .)1()1(32242x x x x ++>++
若题设中去掉1≠x 这一限制条件,要求证的结论如何变换?
...,,,()()(),0;,,a akg bkg b
a m mkg
b m
a m a a
b m a b b m b a m a m b a b m b b b m a b b a a b m +++<>++--=++<∴->例3如果用白糖制出糖溶液,则糖的质量分数为若在上述溶液中再添加白糖,此时糖的质量分数增加到将这个事实抽象为数学问题,并给出证明.
解:可以把上述事实抽象成如下不等式问题:
已知都是正数,并且则
下面给出证明.
将不等式两边相减,得通分又都是正数,所()0,()0()00()m b a b b m m b a a m a b b m b m b
a m a
b m b ->+>-+∴>->+++∴>+以即
例4、已知,,+∈R b a 求证:.a b b a b a b a ≥
证明:注意到要证的不等式关于b a ,对称,不妨设0a b ≥>
差值比较法失效采用商值比较法:
,0,1≥-≥b a b
a ()()a
b a b a b a b b a a b a a b a b b ----∴==
101,0,101,0,1a b a b a b a b b a a a b b
a a a
b a b b b
a a a a
b b b
a b a b ---==>>>->>>><-<>∴≥当时()当时,()当b 时,0<()
故原不等式得证.
例5.若0>≥≥c b a ,求证.)(3c
b a
c b a abc c b a ++≥.
3333
30,,0
,,1()()()1()()a b b c a c a b c a b c a b c a b c a b c a b b c a c a b a b c c
a b c a b a b c c abc a b c abc ---++++≥≥>---≥≥∴=≥≥证:则同时即
(三)、课堂练习:
1.已知.1≠a 求证:(1);122->a a (2).1122<+a
a 222,,a
b
c b c c a a b a b c a b c a b c +++≥2.已知是正数,求证
五、课时小结:
比较法是证明不等式的一种最基本、最重要的方法,用比较法证明不等式的步骤是:作差(或作商)、变形、判断、得出结论。
“变形”是解题的关键,是最重要的一步。
作差常用的变形方法有:因式分解法、配方法、通分法,把差变形为几个因式的乘积,或其它可判断符号的形式,作商变形主要判断商值与1的大小关系,大多数情况如上面例4、5最终可化为指数函数形式利用指数函数的单调性与性质来进行判断较容易.
六、布置作业:
课本23页第1、2、3题。
)(要求:按照课堂上老师演示做题的形式和格式,
解题过程中做到有逻辑性、条理性、步骤要有理有据
七.板书设计
情境创设调动了学生学习的积极性,课堂比较活跃,也鼓舞了我的教学热情,树立了信心,同学们多种多样的思维方式和做题方法也拓宽了我的思路,了解到一部分同学对这类知识理解和掌握的局限性,促使我将知识讲得更加清晰明澈,以便帮助同学们对所学知识理解更到位,我们师生相互学习共同进步。
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注)。