齿轮传动的失效分析)
齿轮传动的失效分析及改善措施
齿轮传动的失效分析及改善措施在机械功能效应中机械齿轮停止工作对整个运行过程带来的影响非常大。
文章从机械齿轮的传动特性作为起点,提出了在运行的过程中最多见的几种实效的状态,并进行改进。
标签:齿轮传动;失效;研究1 齿轮传动的特点齿轮的机能传动是通过主动轮在助力从动齿轮的齿槽来实现的,在传动的过程中有以下几个特点:第一,因为齿轮在传递转动的时候是依附齿轮不断推压形成的,因此轮齿的受力方式是齿轮受力;第二,轮齿的受力面任何一个地方在接触轮齿时产生的应力都是从小到大、由无至有、继续从大至小直至归零这么一个过程,其主要受力方式是弯曲应力;第三,运行的过程中,节点的地方只有滚动,另外的齿面都是推动的方式,但是其顶部较根部的运行速度要大很多。
2 常见的齿轮传动失效形式2.1 轮齿折断在一般情况下齿轮的折损有以下两种现象,第一种为疲劳而导致的折断:齿轮在进行传动的时候,轮齿的受力就好比悬臂梁,齿根在受载时会出现很大的弯曲应力,在这个时候齿轮运行时会在交变的应力里,但是若保持一会之后齿轮就可能会到疲劳的最高限度,这样齿根圆角的地方就一定会因疲劳导致裂纹,若不断增加应力循环,裂纹也会越来越大,最后的结果就是齿轮会因为疲劳最终破损。
第二种就是负载过大折断:运行的时候齿轮当经受重大冲击负荷又或者负载过大,亦或者是在安装时精密度不准使得一部分的齿轮受载这都会使得过载折损。
但是和疲劳折损的不同之处在于,负荷太大折断有不固定的断裂位置,而且有粗糙的断面。
如图1所示:图1 轮齿折断有两种情况2.2 齿面点蚀齿轮在运行时接触面在不断产生应力,表面的金属有可见的脱落情况,这样齿面就会失灵,这也就是所谓齿面的点蚀。
因为齿轮的节线周围摩擦与应力都比较大,所以一般节线的根部出现点蚀情况最多。
进行滚滑运作的时候,滚滑的相接的两个面进行运作的时候因为摩擦过大导致裂纹的出现,齿轮底部因为滚滑运作追越面,在两个齿轮相互滚动的过程中,追越面中的裂缝因为润滑油导致被迫渗入裂纹中,使之越来越大,因为油液受到不断的挤压渗出,所以裂纹里不会出现高压油。
浅析齿轮传动失效的形式及对策
新校园XinXiaoYuan摘要:本文介绍了齿轮失效的五种基本形式及其原因,并针对失效原因提出解决办法,就提高齿轮的寿命提出建议。
关键词:齿轮;传动失效;形式;对策一、齿轮传动失效的形式齿轮在传动过程中发生轮齿折断、齿面点蚀、齿面损坏等现象,从而失去正常工作能力,这种现象称为齿轮轮齿的失效。
1.面点蚀。
齿轮在传递动力时,两工作齿面实际上是线接触。
实际上,因齿面的弹性变形会形成很小的面接触。
由于接触面积很小,所以会产生很大的接触应力。
传动过程中,齿面间的接触应力从零增加到最大值,又从最大值降到零。
当接触应力的循环次数超过某一限度时,工作吃面便会产生微小的疲劳裂纹。
如果裂缝内渗入润滑油,在另一齿轮挤压下封闭在裂纹内的油压会急剧升高,加速裂纹的扩展,最终导致表面层上的小块金属的剥落,形成小凹坑,这种现象为疲劳点蚀。
点蚀使轮齿工作表面损坏,造成传动不平稳,并产生噪声,轮齿啮合情况会逐渐恶化而导致齿轮报废。
齿面点蚀是在润滑良好的封闭齿轮传动中轮齿失效的主要形式之一。
在开式齿轮传动中,由于齿面磨损较快,点蚀还来不及出现或扩展即被磨掉,所以一般看不到点蚀现象。
齿面抗点蚀的能力主要与齿面硬度有关,提高齿面硬度,减小齿面的表面粗糙度值和增加润滑油的黏度都有利于防止点蚀。
2.面磨损。
齿轮在传动过程中,轮齿不仅受到载荷的作用,而且接触的两齿面间有相对滑动,使齿面发生磨损。
齿面磨损的速度符合预计设计期限,则视为正常磨损。
正常磨损的齿面很光亮,没有明显的痕迹,在规定的磨损量内并不影响齿轮的正常工作。
但齿面磨损严重时,渐开线齿廓被损坏,使齿侧间隙增大而引起传动不平稳,产生冲击和噪声,甚至会因齿厚过度磨薄而发生轮齿折断。
产生齿面磨损的原因主要有:一方面齿轮在传动过程中,工作齿面间有相对滑动;另一方面齿面不干净,有金属微粒、尘埃、污物等进入轮齿啮合区域引起磨料性磨损。
3.面胶合。
在重载传动中,齿轮副两齿轮工作齿面发生金属表面直接接触而产生“焊接”现象,称为齿面胶合。
机械传动齿轮失效问题分析与应对策略
机械传动齿轮失效问题分析与应对策略简介:机械传动齿轮是机械传动中最常用的部件之一。
它能够将动力从一个部件传递到另一个部件,提供准确、可靠的转速和扭矩转换。
然而,随着运行时间的增长,齿轮会发生磨损、断裂等问题,甚至会导致传动系统失效。
本文将分析机械传动齿轮失效的原因,并提出相应的应对策略。
一、齿轮失效原因(一)磨损在机械传动中,齿轮是直接接触的部件。
长时间使用后,会产生磨损现象,使齿轮失去表面光滑度,从而导致传递扭矩的能力下降,甚至失效。
另外,润滑不良、工作环境恶劣等因素也会加速齿轮磨损的过程。
例如,在没有黄油的情况下,齿轮磨损将更加严重。
(二)齿轮断裂齿轮断裂是指齿轮在运行过程中出现裂纹或破裂,导致传动系统失效。
齿轮断裂的原因可能是材料质量问题、设计问题、制造过程问题等。
如果齿轮的强度和韧性不足,它们容易断裂。
此外,过度负载和振动也会导致齿轮断裂。
(三)腐蚀腐蚀是由介质(如氧气、水、氯化物等)侵蚀导致的齿轮失效。
齿轮被腐蚀后,表面会产生锈斑、氧化层等,从而降低其防锈性能和强度。
对于工作环境中包含腐蚀性介质的传动系统,应采取特殊材料或涂层来保护齿轮。
(四)安装问题齿轮的安装过程非常重要。
如果安装不当,可能导致齿轮错位、偏心、轴与孔的相位差、轴的弯曲或变形等问题。
这些问题会导致齿轮失效或降低传动效率。
因此,正确的安装与对齐是避免齿轮失效的关键因素之一。
二、齿轮失效的应对策略(一)制定维护计划对于机械传动中的齿轮,备份计划是必不可少的。
应定期检查齿轮状态,如磨损、断裂等,及时进行润滑、更换和维修。
制订完善的维护计划能够减少齿轮失效,延长设备使用寿命。
(二)选用合适的材料齿轮的材料和强度与意外磨损和断裂息息相关。
开发并使用高品质和高强度的合金材料,可提高齿轮的寿命以及防止齿轮失效。
(三)加强润滑润滑在防止齿轮失效中发挥重要作用。
正确使用黄油,以保持齿轮表面光滑和防止磨损。
此外,污染和过热的润滑剂也是齿轮失效的根本原因之一。
机械基础-齿轮传动失效分析
二、齿面点蚀
产生原因 接触应力——疲劳裂纹 ——裂纹扩展——麻点状小坑
二、齿面点蚀
发生场合及产生部位
发生在:闭式齿轮传动中 靠近节线的齿根面处
二、齿面点蚀
预防措施
提高齿面硬度 降低表面粗糙度值 改善润滑条件 改变设计参数
轮齿折断
齿面点蚀
齿面磨损
齿面胶合
塑性变形
一、轮齿折断
产生原因 疲劳折断 过载折断
一、轮齿折断
硬齿面(齿面硬度>350HBW)闭式传动齿轮,失效形式是轮齿折断
发生场合及产生部位 发生在:开式齿轮传动和 闭式硬齿面齿轮传动中 直齿轮:全齿折断 斜齿轮:局部折断
一、轮齿折断
硬齿面(齿面硬度>350HBW)闭式传动齿轮,失效形式是轮齿折断
带式输送机的设计
学习导图
CONTENTS
一、轮齿折断 二、齿面点蚀 三、齿面磨损 四、齿面胶合 五、塑性变形 六、总结
任务导入
某齿轮箱,齿轮使用一段时间后发生如下损坏,请分析失效形式,产生原因, 提出防止失效措施。
任务导入
齿轮设计首要考虑齿轮在传动中不发生失效,常见的齿轮失效一般发生在轮齿 上。
三、齿面磨损
产生原因 硬质微粒进入——轮齿表面磨损
三、齿面磨损
发生场合及产生部位
发生在:开式齿轮传动中 全齿面磨损
三、齿面磨损
预防措施
加防护装置 提高齿面硬度 减小接触应力 降低表面粗糙度值 保持润滑油的清洁
四、齿面胶合
产生原因
压力大,温度升高 ——金属相互粘连 ——粘住的地方被撕破——带状或 大面积的伤痕
四、齿面胶合
机械传动齿轮失效问题分析与应对策略
机械传动齿轮失效问题分析与应对策略
机械传动齿轮失效问题是机械设备运行过程中常见的故障,如果不及时解决,将会导
致机械设备的停止运行和生产中断。
进行齿轮失效问题的分析和应对策略十分重要。
齿轮失效问题的常见原因包括:
1. 齿轮负荷过大:长时间运行或者超负荷工作会导致齿轮磨损加剧,从而出现齿轮
失效问题。
2. 润滑不良:如果齿轮没有得到足够的润滑,会导致齿轮磨损加剧,进而失效。
3. 齿轮设计问题:齿轮的设计是否合理,齿轮的材质是否适用,齿轮的尺寸是否合
适等都会影响齿轮的使用寿命和失效情况。
4. 齿轮制造质量问题:齿轮的制造工艺和质量问题也会导致齿轮的失效。
应对这些问题,可以采取以下策略:
1. 加强润滑:确保齿轮得到足够的润滑,可以采取定期更换润滑油,增加油脂的用
量等方法,使齿轮在运行时摩擦减小,从而延长齿轮的使用寿命。
2. 提高齿轮的质量:在齿轮的设计和制造过程中,要高度重视齿轮的质量,选择合
适的材料,制定合理的工艺,做好齿轮的检验和质量控制工作,以确保齿轮的质量。
3. 加强齿轮的检查和维护:定期对齿轮进行检查,及时发现问题,采取有效的维护
措施,延长齿轮的寿命。
及时更换磨损严重的齿轮,修复齿轮表面的损坏等。
4. 增加齿轮的寿命:在齿轮的使用过程中,可以采取一些延长齿轮寿命的方法,改
变齿轮的工作条件,减少齿轮的负荷,加强齿轮的冷却等。
要解决齿轮失效问题,需要分析具体原因,并采取相应的应对策略。
通过加强润滑、
提高齿轮质量、加强检查和维护以及延长齿轮寿命等措施,可以有效地解决齿轮失效问题,保障机械设备的正常运行。
齿轮传动系统失效原因分析及预测研究
齿轮传动系统失效原因分析及预测研究一、齿轮传动系统的基本结构齿轮传动系统是一种常见的动力传递装置,它利用齿轮之间的啮合来传递动力,实现旋转运动的传递。
齿轮传动系统包括齿轮、轴承、密封装置等组成部分。
其中,齿轮是齿轮传动系统的核心部件,其质量和精度决定着齿轮传动系统的正常运转和寿命。
二、齿轮传动系统失效原因分析齿轮传动系统的失效原因多种多样,常见的有以下几种:1.齿面磨损:齿轮传动系统长时间受重载和高速运转的作用,齿面容易出现磨损。
齿面磨损程度越大,齿轮的噪声和振动就越大,从而导致齿轮传动系统失效。
2.齿面断裂:齿轮传动系统在受到过大的冲击力时,齿面容易出现断裂。
齿面断裂会造成齿轮传动系统的失效,严重的会导致整个机械设备的损坏。
3.齿面损伤:齿轮传动系统在长期使用过程中,齿面会产生小细节损伤,这些小损伤在长时间的使用下,会导致齿轮传动系统的噪声增加,甚至损坏齿轮。
4.轴承过载:齿轮传动系统中轴承的过载会造成轴承的损坏,从而导致整个齿轮传动系统的失效。
轴承过载的原因可能是机械设备的设计问题,或者是在使用过程中对机械设备的错误使用和维护。
五、齿轮传动系统的预测研究为避免齿轮传动系统失效对机械设备的影响,预测研究应成为重点,将其应用到机械设备的日常维护中。
目前,齿轮传动系统预测研究的主要方法有以下几种。
1.振动分析法:通过振动信号采集技术,对振动信号进行分析,从而判断齿轮传动系统的正常或失效状态。
2.声学特性分析法:通过分析齿轮传动系统的噪声谱,可以判断齿轮的状态以及未来的寿命。
3.温度信号分析法:通过采集齿轮传动系统的温度变化,可以对齿轮传动系统的运行状态进行判断。
4.油液分析法:通过对齿轮传动系统中的润滑油进行分析,可以判断齿轮的磨损程度和未来的寿命。
总结:齿轮传动系统是机械设备的核心组成部分,为避免其失效对机械设备的影响,应加强对其预测研究与维护。
通过振动分析法、声学特性分析法、温度信号分析法和油液分析法等技术手段,可以对齿轮传动系统的正常或失效状态进行判断,保障机械设备的正常运行和寿命。
机械传动齿轮失效问题分析与应对策略
机械传动齿轮失效问题分析与应对策略
机械传动齿轮是机械传动系统的重要组成部分,常见于各类机械设备中。
但是,在长期使用的过程中,齿轮失效问题也时常发生。
本文将针对齿轮失效问题进行分析,并提出相应的应对策略。
一、齿面磨损问题
齿面磨损是机械传动齿轮最常见的失效问题之一。
经过长时间的使用,齿面会因为摩擦而磨损,严重时可能会导致齿面失效。
另外,如果齿轮安装不正确或者润滑不良,也可能会加剧齿面磨损问题。
应对策略:为了有效避免齿面磨损问题,需要选择质量好的齿轮产品,并且在安装过程中认真对齐齿轮,确保润滑油的质量和数量都达到标准要求。
二、弯曲变形问题
由于齿轮工作时承受了巨大的转速和扭矩,因此会出现一些弯曲变形的现象。
这种情况可能会导致齿轮与周围部件之间的间隙变大或者减小,影响齿轮的工作效果。
应对策略:为了有效应对弯曲变形问题,需要在设计和生产齿轮时考虑齿轮的工作环境和承受的转速和扭矩等因素,选择相应的合金材料或者特殊设计,确保在工作过程中齿轮不会变形。
齿轮工作时,可能会发生齿面的疲劳损伤或者断裂问题,这种情况通常是由于齿轮质量不高或者在制造过程中有缺陷导致的。
综上所述,齿轮失效问题是机械传动系统中无法避免的,但可以通过合理选择齿轮产品、加强品质控制、提高制造技术水平等手段来降低失效率,确保机械传动系统的高效稳定运行。
机械传动齿轮失效问题分析与应对策略
机械传动齿轮失效问题分析与应对策略齿轮传动系统是重要的机械传动方式之一,在机械设备中得到了广泛应用。
然而,由于操作条件的不同和使用时间的累积,齿轮传动系统可能产生失效问题。
本文将从齿轮传动系统失效的原因、影响、检测方法和应对策略四个方面进行分析。
一、齿轮传动系统失效的原因1. 齿轮制造质量不合格。
制造过程中存在缺陷,导致齿轮表面不光滑,齿形不规则等问题,从而降低了齿轮传动的精度和效率。
2. 油膜破坏。
传动系统运转过程中,油膜能够减少齿轮表面之间的摩擦,减少齿轮的磨损。
若油膜破坏,齿轮会过热,表面硬度降低,导致失效。
3. 轴承磨损和松动。
轴承支撑齿轮,若轴承磨损或松动,会导致齿轮在运动中产生振动和变形,增加齿轮表面疲劳,进而引发齿轮失效。
4. 转速过高或负载过重。
齿轮传动系统工作在超出其设计转速或承载能力的条件下,会导致齿面磨损和变形,导致齿轮失效。
1. 降低机械传动效率。
失效后的齿轮传动系统会引起能量损失,降低传动效率,从而影响机械设备的运行效率。
2. 增加机械设备维护和更换成本。
失效后的齿轮传动系统需要更换或维护,这将增加机械设备的运行成本和停机时间。
3. 影响机械设备的安全性。
齿轮传动系统失效会引起机械设备的振动和噪声增加,影响机械设备的安全性和稳定性,甚至可能引发事故。
1. 精度检测。
通过检测齿轮的齿形精度、齿距、齿廓形状等参数,发现齿轮制造过程中的缺陷和磨损程度,以便及时采取措施。
2. 摩擦学检测。
通过检测齿轮表面的摩擦系数、油膜厚度和磨损机理,判断齿轮表面摩擦情况和运行状态,以确保齿轮表面油膜的正常生成和运行。
3. 振动和噪声检测。
通过振动和噪声检测,确定齿轮的振动和噪声情况,尤其是失效齿轮的振动会频繁出现在其工作频率之上。
四、应对策略1. 选择合适的齿轮制造商并注意齿轮的制造质量。
2. 营造合适的传动条件,如避免转速过高、过载等。
3. 定期检测齿轮传动系统的运行情况,及时发现问题。
4. 在齿轮失效时,及时更换齿轮并进行维护,以保证机械设备的正常运行。
齿轮传动失效分析及预防
经验交流现代农村科技2019年第9期齿轮传动是机械传动中应用最广泛的一种传动形式,它具有传动平稳、传动比准确、承载能力强、工作效率高、结构紧凑等优点。
但齿轮在传动过程中也会出现传动失效的问题,且失效形式是多种多样的。
齿轮齿圈、轮辐、轮毂部分的结构尺寸通常是经验设计的,其强度和刚度较为富裕,因此在传动中极少失效。
齿轮传动的主要失效部位为轮齿,根据轮齿失效部位的不同分为齿体失效和齿面失效。
1轮齿折断轮齿折断的类型有两种:疲劳折断和过载折断。
疲劳折断是由于轮齿受重复弯曲应力作用,当弯曲应力超过材料疲惫极限时,在轮齿齿根受拉一侧就会产生疲劳裂纹,在齿根应力集中处,裂纹加速扩展,直至轮齿折断。
过载折断是由于轮齿受短时意外严重过载或冲击时,齿轮材料较脆时,轮齿突然折断。
轮齿折断常发生在闭式硬齿面及开式齿轮传动中轮齿受拉应力一侧的齿根部位。
对于齿宽较小的直齿轮常发生全齿折断,对于齿宽较大的直齿轮、斜齿轮常发生部分齿折断。
防止轮齿折断,提高抗断齿能力的措施:当分度圆直径为定值时,减小齿轮齿数并增大齿轮模数,以便增大齿根齿厚,进而提高齿根弯曲疲劳强度;采用正变位的方法加工齿轮,以提高齿根抗弯强度;提高齿面硬度,进而提高齿面接触疲劳强度;增大齿根处圆角半径,以减小应力集中;提高加工精度,降低表面粗糙度,减少加工损伤,避免应力集中;提高轮齿精度和齿轮支撑刚度,进而改善轮齿载荷分布;对齿轮齿根进行强化处理;对齿轮齿芯进行热处理,提高其韧性。
2齿面点蚀齿面点蚀是由于齿面受到脉动循环接触应力作用,当接触应力超过材料的接触疲劳极限时,就会产生细微裂纹,这时润滑油进入裂缝,形成高压封闭油腔,润滑油的楔挤作用使裂纹扩展,直至齿面材料点状剥落。
齿面点蚀常发生在闭式软齿面齿轮靠近节线的齿根面上。
之所以靠近节线是由于齿轮传动重合度小于2,节线处一般只有一对齿啮合,接触应力较大;同时由于节线处做纯滚动,靠近节线附近滑动速度小,油膜不易形成,摩擦力大,易产生裂纹。
关于机械传动齿轮失效问题的探讨
关于机械传动齿轮失效问题的探讨机械传动齿轮是现代机械装置不可或缺的组成部分之一,其传动效率高,可靠性强,广泛应用于工业生产领域。
然而,由于多种因素的影响,齿轮传动系统往往面临着各种失效问题,如断齿、磨损、变形、脆裂等,这些问题不仅会影响机械传动的性能和寿命,而且还会给生产带来严重的经济损失。
因此,对机械传动齿轮失效问题进行深入的探讨,具有重要的理论意义和实践价值。
一、齿轮传动失效的分类和原因分析1、齿面断裂齿面断裂是齿轮传动失效中最严重的一种形式,多数情况是由于齿面的不均匀载荷、过载和连续冲击引起的。
此外,强烈的振动和共振现象也可能导致齿面断裂。
齿面断裂主要有疲劳断裂和崩裂断裂两种形式。
2、齿面磨损齿轮的磨损是由于齿轮传动过程中齿面间相对滑动、压力和磨料等物质的摩擦而引起的。
齿面磨损的程度取决于工作载荷、材料硬度和润滑条件等因素。
齿面磨损会导致传动性能和寿命下降,甚至可能引起齿轮失效。
3、错位锥齿轮齿面磨损错位锥齿轮是一种压力角不同的较常见的齿轮传动形式。
由于压力角不同,错位锥齿轮齿面的磨损较容易出现。
齿面磨损会导致齿形准确度下降,出现不正常噪声和振动,浪费能量,降低系统效率。
4、齿面点蚀齿面点蚀是齿轮传动快速运动过程中齿面间发生的微观振动引起的表面过载破坏现象。
点蚀的形成取决于载荷、速度、温度和润滑等因素。
点蚀的存在可能引起表面粗糙度变化,齿形准确度下降,噪声增加,系统效率下降等问题。
5、齿面脱落齿面脱落是指齿面上出现裂纹和切口,最终导致齿面松脱和脱落的一种失效形式。
齿面脱落可能是由于弯曲应力、磨损、冲击载荷、过载或材料质量问题等因素引起的。
齿面脱落会导致传动齿轮性能下降,噪声、振动和能量损失增大,严重时甚至会引起其他部件损坏。
二、齿轮传动失效的解决方法对于齿轮传动失效问题,可以通过多种方法来解决:1、提高传动齿轮的材料质量和硬度,以增加其疲劳极限和磨损抗力。
2、改进齿轮设计,适当增加齿宽和齿数,以减小齿面载荷和增强齿轮传动的可靠性。
齿轮传动的失效分析及改善措施
整体结构并进行强度计算, 挑选出最适合 的方案 ; 接下来就能够根据有 限元与保角映射的方法来计算其齿根的应力 , 圆角与过渡作用的部分使 用半径 较大的齿根 , 在对外部齿 轮进行加工 的时候利用 凸头留磨 的滚 刀 方式, 这样会 有效 的减 轻弯 曲应力 , 强度 随之增加 , 其次 , 进行轮 齿 的契 合形 变分析的时候应该将 弹力学也考虑 到其 中, 将齿轮顶 部修缘与齿 面 的喷丸技术 与其抗 疲劳程 度进行增 强 , 最后 , 采用 极压强 粘度 的添加 剂
3 . 1优化设 计 最 开始 可以按照行业 的标准 , 使用 C A D或者其他软 件挑选齿轮 的
传动的过程中有以下几个特点: 第一 , 因为齿轮在传递转动的时候是依 附齿轮 不断推压形成 的 , 因此轮齿 的受 力方 式是齿 轮受力 ; 第二 , 轮齿 的 受 力面任何 一个地 方在接触 轮齿 时产 生 的应 力都是 从小到 大 、由无 至 有、 继续从 大至小直至归零 这么一个过 程 , 其主要受力 方式是弯 曲应 力 ; 第三, 运 行 的过 程 中 , 节点 的地方 只有 滚动 , 另外 的齿 面都 是推 动 的方 式, 但是其顶 部较根部 的运行速度 要大很多 。 2常见 的齿 轮传 动失效形式
会出现很大的弯曲应力,在这个时候齿轮运行时会在交变的应力里, 但 的性能也加强了, 一般挑选冶金好与真空式的精炼钢 , 由于这类材料的
是若保持—会之后齿 轮就可能会到疲 劳的最高 限度 , 这样 齿根 圆角的地 方就一定会 因疲 劳导致裂纹 , 若不 断增加应力循 环 , 裂纹也会越来 越大 , 最后的结果就是 齿轮会 因为疲劳最 终破损 。第二 种就是负载 过大折断 : 运行 的时候齿 轮当经受重大冲击负荷 又或者负 载过大 , 亦或者是 在安装 时精密度不准使 得一部分 的齿轮受载这都 会使 得过载折损 。 但 是和疲劳 折损 的不 同之 处在 于 , 负荷太大折 断有不 固定 的断裂位 置 , 而且有粗 糙 精密度好 , 相对于其他 的材料来说 氧 、 氮的含量较低 , 其 强度与 塑性 者 艮 好, 这样也避免各种f 青 况出现的频率过高。 3 - 3优化加工工艺 进行机 械加工 轮齿的时候 , 必 须将粗 、 精两种齿 轮分开 , 必须 先将滚 刀对齿 轮进行粗 切之后 再精滚 , 其 深度必 须保持一 个百分 比, 这样 才能 够达 到精准度 , 其 深度 的误 差必须 保持在零 左右 , 进行 精滚之 后误 差在 的断面 。 零 零三毫米 左右 。其精度必须保 持在九级之上 , 其粗糙程度 也要按照 如图 1所示 : 设计 的标准来做。可以在磨齿 后再进行振动 抛光或者 电抛光 , 来提高 表 面的粗糙 度。 利用齿形修缘 、 齿 面修形 以及 大 圆弧齿根等技术 , 减轻或 消 除啮合的偏载和干涉, 降低齿根应力集中, 增大齿轮 陛柔度。 对齿形进 行适当的诸如剃齿 、 研齿、 磨齿等修饰 , 可以提高百分之十五到二十五的 接触极限应力; 对轮齿作纵 向修形, 比如修齿腹, 可以提高齿轮两倍的使 用寿命, 可以减少约五分之一左右的弯曲应力, 还可以降低噪声污染。 当 切齿 刀具的硬度 比工件 的硬度高两到 五倍且有较好 的耐磨 陛及韧 性时 , 所 呈现 的切削效果 最好 。通 常使用 刮削法 以及 磨削法 加工硬 齿面 的齿 轮, 齿胚需 经过多次切削加工 和热处理 。 图 1轮齿折 断有两种情况 3 4 优化热处理工艺 2 . 2齿 面点蚀 通常机械齿轮 的承 载能力 不只 由表面硬度来决 定 , 它同时还受 着表 齿轮在运行 时接触面在不断产生应力 , 表面 的金属 有可见 的脱 落情 层向芯部过渡 区域 的剪应 力和剪切强度 比值大小 的影响 , 该 比值不 能超 况, 这样齿面就会失灵 , 这也就是 所谓齿面 的点蚀 。 因为齿 轮的节线周 围 过 0 . 5 5 。处 理齿轮硬化最 好的方法就 是深层渗碳淬 火 , 它可 以得 到充足 摩擦与应力都 比较 大 , 所 以一 般节线 的根部 出现点蚀 隋况最多 。进行滚 的硬化层深度、 较小的过渡区域残余拉力以及比较高的芯部硬度。通常 滑运作 的时 候 , 滚滑 的相 接的两个面进 行运作 的时候 因为摩擦过 大导致 齿面 的含碳量最好控制 在 n 8 %~ 1 % 之问, 从齿表 面到 芯部 的硬度梯 度要 裂纹 的出现 , 齿 轮底部 因为滚滑运 作追越 面 , 在两个 齿轮相互 滚动 的过 缓和 。经过 回火 和淬火 的渗碳 齿轮其表 面硬 度要达到 HR C 5 8 - , 6 2 之间, 程 中, 追越面中 的裂缝 因为润滑 油导致被迫 渗入裂纹 中 , 使之越 来越大 , 要消除齿轮尤其是表层的残余内应力。 进一步推广氮碳共渗等新的加工 因为油液受 到不断的挤压渗 出 , 所 以裂纹里不会 出现高压油 。齿 轮底部 工艺 , 通常氮 的渗入 深度不超过 0 . 2毫米 , 不仅 可以产生 压应力 , 还 可 以 的裂纹在逐渐 扩大之后就会 出现脱 落的现象 , 也就是点蚀 。 可 以参考 : 累 硬化表层 。 与单纯渗碳齿轮相 比 , 采用氮碳共 渗工 艺所加工的齿轮 , 其强 积故 障数曲线来进一步理解点蚀 的机理 。 度极 限应力 可以提到百分之十 三以上 , 使用寿命延 长一倍 。在 进行热处 2 . 3齿面磨粒磨 损 理加工后 , 还要做油浴 ^ 工时效处理 。 在 润滑度达不到要求 的时候或者是 在开式 的传动模式 的时候 , 灰尘 3 . 5优化润滑工 艺 会 到啮合 区域 , 导致 表面材料 的损耗 , 这 种情况也 就是轮 齿表处 的磨粒 齿轮 出现磨 损实效的 隋况与润滑分不 开 , 大 多的低速度 重载的齿轮 损耗 。出现这种情况 的时候 , 在滑动 的方向与速度上会有平行 的滑痕 。 的触动应力都很高, 因此其齿轮的接触面使用的材料的弹 陛是非常重要 2 . 4齿面塑性变形 的。另外, 在进行齿轮契合的过程中, 除切点外其余均为滚滑运动 , 这一 生 与 E H L ( 弹『 生 流体动力 润滑理论 ) 完 全相符 , 与传统 Ma r t i n 润 滑理 轮齿表面在低速超重 负荷的情况 中, 因为滑动产生 的摩擦与轮齿 表 特 l 面应力 相结合 , 轮齿 的材料 将会 出现塑性 流动 , 这样 的情况也 就是所 谓 论相 比 , E HL最 大 的不 同是齿 轮表层 的局部 弹性 变形量 通常 比按 照刚 的塑性变形 。其方 向平行 与滑动 的方 向 , 由于滑动 时的摩擦与其方 向的 性边界计算的油膜厚度大出数倍, 所以对油膜的压力分布和形状都有着 节线正好 是相反 的 ,因此 主动轮 的轮齿 的表面 的变形是 出现在齿轮 顶 明显的影响。在设计齿轮的润滑参数时可以参照这个规律, 按照实际情 部, 同时有飞 边 的现 象 , 而节 线 周 围就会是 沟谷 , 在 动轮上 是恰 恰相 反 况 选择适用 的润滑油 。
齿轮传动的失效分析)
一般来说,齿轮传动的失效主要发生在轮齿上。
轮齿部分的失效形式分为两大类:轮齿折断,齿面失效。
1. 轮齿折断折断失效通常有轮齿的弯曲疲劳折断、过载折断和随机折断。
•疲劳折断:工作时轮齿反复受载,使得齿根处产生疲劳裂纹,并逐步扩展以至轮齿折断的失效。
疲劳裂纹多起源于齿根受拉的一侧。
•过载折断:齿轮受到突然过载,或经严重磨损后齿厚减薄时,轮齿会发生过载折断。
•随机折断:通常是指由于轮齿缺陷、点蚀或其它应力集中源在轮齿某部位形成过高应力集中而引起轮齿折断。
断裂部位随缺陷或过高有害残余应力的位置而定,与齿根圆角半径无关。
•轮齿折断的形式有整体折断和局部折断。
整体折断多发生于直齿轮,局部折断多发生于斜齿和人字齿轮,齿宽较大的直齿轮和由于安装、制造因素使得局部受载过大的直齿轮,也可能发生局部折断。
疲劳折断的断口较光滑,过载折断的断口则较粗糙。
•增大齿根过渡圆角半径,减小齿面粗糙度,对齿根进行喷丸或碾压强化处理消除该处的加工刀痕,选用韧性较好的材料,采用合理的变位等,均有助于提高轮齿的抗折断能力。
•通常,轮齿疲劳折断是闭式硬齿面齿轮传动的主要失效形式。
2. 齿面失效齿面失效常见的失效形式有:点蚀、胶合、齿面磨损和齿面塑性变形。
(1) 点蚀齿轮在啮合过程中,相互接触的齿面受到周期性变化的接触应力的作用。
若齿面接触应力超出材料的接触疲劳极限时,在载荷的多次重复作用下,齿面会产生细微的疲劳裂纹;封闭在裂纹中的润滑油的挤压作用使裂纹扩大,最后导致表层小片状剥落而形成麻点,这种疲劳磨损现象,齿轮传动中称为点蚀(图9.3-13)。
节线靠近齿根的部位最先产生点蚀。
润滑油的粘度对点蚀的扩展影响很大,点蚀将影响传动的平稳性并产生冲击、振动和噪音,引起传动失效。
•点蚀又分为收敛性点蚀和扩展性点蚀。
收敛性点蚀指新齿轮在短期工作后出现点蚀痕迹,继续工作后不再发展或反而消失的点蚀现象。
收敛性点蚀只发生在软齿面上,一般对齿轮工作影响不大。
齿轮传动机构的主要失效形式
齿轮传动机构的主要失效形式包括以下几种:
1. 齿面磨损:由于齿轮之间的摩擦和滑动,齿面会发生磨损,导致齿轮的承载能力下降。
2. 齿面疲劳:齿轮在长期运行过程中,由于受到周期性载荷的作用,齿面上会出现裂纹和剥落现象,最终导致齿轮的失效。
3. 齿面塑性变形:当齿轮承受过大的负载时,齿面会发生塑性变形,从而导致齿轮的失效。
4. 齿面剥落:在齿轮传动中,由于齿面受到冲击载荷的作用,齿面会出现剥落现象,从而影响齿轮的承载能力。
5. 齿面断裂:当齿轮受到过大的冲击载荷或过大的负载时,齿面会发生断裂,从而导致齿轮的失效。
为了避免齿轮传动机构的失效,需要在设计和制造过程中采取相应的措施,如选择合适的材料、优化齿轮的几何形状和参数、加强齿轮的润滑和冷却等。
此外,在运行过程中,还需要定期进行检查和维护,及时发现和解决问题,以保证齿轮传动机构的正常运行。
机械传动齿轮失效问题分析与应对策略
机械传动齿轮失效问题分析与应对策略机械传动是工业中常用的运动变换机构,而齿轮传动则是其中一种重要的方式。
齿轮传动由于具有传动效率高、传动精度高等优点而被广泛应用。
但是,齿轮传动在使用中也存在一些问题,其中之一就是齿轮失效问题。
本文将分析机械传动齿轮失效的原因及应对策略。
一、齿轮疲劳失效齿轮疲劳失效是一种常见的齿轮失效形式,其原因是长期使用齿轮过程中,齿轮接触面上的应力远超过齿轮材料的循环极限,导致齿轮出现裂纹、开裂、脱落等失效现象。
齿轮疲劳失效主要与以下几个方面有关:1.材料的选择和质量问题。
齿轮的材料应具有高的强度、韧性和疲劳极限,材料的强度不能低于齿轮所受载荷和工作条件的要求。
2.齿轮设计问题。
齿轮设计应合理,齿轮轴心与轴承轴心的异心、齿轮轴向间隙、齿轮齿面间隙等都会影响齿轮的工作性能。
应对策略:1.选择材料质量好的齿轮材料,采用有生命力的齿轮材料,同时对材料进行质量检查。
2.齿轮的设计应根据使用条件,考虑加载方式,设计合理的齿形和齿数分布,减小齿轮接触应力集中,将接触应力分散在齿根上。
齿轮强度失效指齿轮在受到较大的载荷作用下,由于齿轮强度不足而导致齿轮失效。
齿轮强度失效一般是由于以下几个方面引起:1.齿轮材料强度不够。
3.齿轮使用过程中受到过载。
三、齿轮几何形状失效齿轮几何形状失效是指齿轮齿形形状、齿数分布等导致齿轮失效的情况。
这种失效往往是由于齿轮制造过程中的设计、工艺、检验等环节出现差错造成的。
1.齿轮制造过程应严格遵循设计要求,及时发现并纠正制造过程中的差错。
2.对齿轮进行质量检测,保证齿轮几何形状符合要求。
综上所述,机械传动中齿轮失效可能会导致生产过程中出现严重故障,因此,在齿轮设计、制造、运行等各个环节中应注意以上提到的问题,并采取相应的措施,以减少齿轮失效的风险。
齿轮传动失效形式及预防方法
齿轮传动失效形式及预防方法
齿轮传动是一种常见的机械传动方式,广泛应用于各种机械设备中。
然而,齿轮传动也存在着多种失效形式,下面进行简要介绍。
1. 疲劳断裂:齿轮传动在长期使用过程中,由于受到周期性的载荷和温度变化的影响,齿轮的齿面会产生疲劳断裂。
疲劳断裂通常发生在齿轮的齿面接触处,这是由于齿面接触时产生的高温和高压造成的。
2. 磨损:齿轮传动中,齿轮之间的接触会导致磨损,从而影响齿轮传动的效率和质量。
磨损通常是由于齿轮之间的摩擦和接触造成的,可能是由于齿轮的材料疲劳、润滑不足或接触压力过高等原因引起的。
3. 热失效:齿轮传动过程中,由于齿轮之间的摩擦和传动效率的影响,齿轮传动会产生热量,从而导致齿轮的温度升高。
如果热量积累过多,可能会导致齿轮的过热失效。
4. 腐蚀:齿轮传动过程中,如果齿轮的材料受到腐蚀,可能会导致齿轮的齿面磨损和断裂。
腐蚀可能是由于润滑油的质量不良、环境条件恶劣或齿轮的材料质量问题引起的。
5. 结构失效:齿轮传动的结构失效也是一种常见的失效形式。
这可能是由于齿轮的结构设计不合理、材料选择不当或制造质量不良等原因引起的。
为了避免齿轮传动中的失效形式,需要采取一系列措施。
例如,可以选择适当的齿轮材料,合理选择齿轮的结构和尺寸,加强齿轮的润滑和保养,以及提高齿轮的制作质量和结构设计等。
这些措施可以有效地延长齿轮传动的使用寿命,提高机械设备的工作效率和质量。
机械传动齿轮失效问题分析与应对策略
机械传动齿轮失效问题分析与应对策略齿轮是一种常见的机械传动元件,其结构简单,传动能力强,在机械传动中应用广泛。
但是,在使用过程中,齿轮也会出现失效问题,如齿面磨损、断齿、开裂、疲劳裂纹等,这些问题不仅会导致传动效率降低,还会造成设备损坏甚至危及人身安全。
因此,对齿轮失效问题进行分析并提出应对策略具有重要的实际意义。
一、齿轮失效原因分析1. 材料问题:齿轮制造材料不合适或合金成分不稳定,容易引发材料脆化、疲劳等问题,导致齿轮失效。
2. 制造质量问题:齿轮的制造精度、表面处理质量、热处理效果等都会影响其性能和寿命,如果制造不当,就容易导致齿面磨损、断齿等问题。
3. 配合间隙问题:齿轮传动时,配合间隙过大或过小都会影响传动效率和齿轮的寿命。
如果配合过紧,会导致齿面接触应力过大,易出现裂纹;如果配合过松,会导致齿面磨损加剧。
4. 传动负荷问题:齿轮传动时,受到外界负荷的影响,导致齿面接触应力增加,容易出现疲劳裂纹,甚至导致齿面剥落。
5. 使用环境问题:齿轮的使用环境对其寿命也会产生很大影响。
如果环境温度过高或过低、湿度过大或过小等因素都会使齿轮材料变质、疲劳寿命下降。
二、齿轮失效应对策略1. 选择合适的材料:选用合适的材料制造齿轮,根据应用环境和外界负荷情况,选择合适的材料和合金成分,提高齿轮的强度和耐磨性。
2. 提高制造质量:在制造过程中,严格控制制造工艺,提高齿轮的精度和表面质量,在热处理时保持温度和时间的精准控制,确保齿轮的质量达到要求。
3. 确定合适的配合间隙:根据传动负荷和工作条件等因素,确立合适的配合间隙,控制其在允许的范围内,避免齿面接触应力过大或过小。
4. 降低传动负荷:通过设计齿轮的结构和传动比等方式,降低齿轮的传动负荷,减少外界负荷对齿轮的影响,提高其寿命。
5. 确保适宜使用环境:对于应用于不同环境场合的齿轮,应根据其要求合适的加入防锈油及润滑油等,降低摩擦和磨损,延长其使用寿命。
综上所述,齿轮作为机械传动的重要元件,其性能和寿命对设备的运行和工业生产起着至关重要的作用。
机械传动齿轮失效问题分析与应对策略
机械传动齿轮失效问题分析与应对策略在机械传动系统中,齿轮是一种常见的传动元件。
由于长时间使用、设计不合理、制造工艺不良等因素,齿轮可能会出现失效问题。
本文将从失效问题的分类和原因分析两个方面,探讨机械传动齿轮失效的问题,并提出相应的应对策略。
一、失效问题的分类齿轮失效问题主要可以分为以下几类:胶合失效、齿面磨损、断裂、胶合损伤以及齿轮表面损伤。
1. 胶合失效胶合失效是指齿轮齿面由于工作负荷过大或工况恶劣导致胶合层的破裂和脱落。
胶合层起到承受工作负荷的作用,一旦胶合层失效,会导致齿轮无法正常传动。
胶合失效的主要原因是齿轮的工作负荷超过了设计要求或使用条件恶劣。
2. 齿面磨损齿面磨损是指齿轮齿面上的磨损现象,常见的磨损形式有磨损、剥落、腐蚀等。
齿面磨损的主要原因是齿轮的工作负荷过大、摩擦副材料不良、润滑条件差等。
3. 断裂断裂是指齿轮在工作过程中突然发生不可修复的破裂。
断裂一般表现为齿轮轴的断裂、齿面断裂、胶合层断裂等。
断裂的主要原因是齿轮的疲劳寿命到达或受到冲击载荷。
4. 胶合损伤胶合损伤是指在齿轮的齿面和胶合层之间产生的损伤现象,主要表现为胶合层剥离、胶合层疲劳裂纹等。
胶合损伤的主要原因是胶合层制造工艺不良、粘结剂质量差等。
5. 齿轮表面损伤齿轮表面损伤是指齿轮表面因工作负荷过大或工况恶劣导致的表面破损现象,主要表现为磨损、剥落、腐蚀等。
齿轮表面损伤的主要原因是工作负荷超过设计要求、使用条件恶劣等。
二、原因分析与应对策略机械传动齿轮失效的原因复杂多样,需要通过分析具体情况来制定相应的应对策略。
以下是常见问题的原因分析和相应的应对策略:1. 胶合失效原因分析:胶合失效主要是由于齿轮的工作负荷过大或工况恶劣所致。
应对策略:调整工作负荷,确保其在设计要求范围内;改善工况条件,避免高温、高湿等恶劣环境。
2. 齿面磨损原因分析:齿面磨损主要是由于齿轮的工作负荷过大、摩擦副材料不良、润滑条件差等引起的。
应对策略:优化齿轮轴承设计,减小工作负荷;选择合适的摩擦副材料,并改善润滑条件。
齿轮轮齿的5大失效表现形式及原因分析
一、齿面点蚀
1、产生原因及现象:脉动偱环的接触应力→齿面产生微小裂纹,在齿轮的挤压下润滑油压上升→裂纹扩展,小块金属剥落→小坑(麻点)
2、发生部位:靠近节线的齿根面处
3、发生场合:闭式传动
4、预防措施:提高齿面硬度、降低表面粗糙度值、合理选择润滑油的粘度及采用正角度变位齿轮传动
二、齿面磨损
1、产生原因及现象:铁屑、灰层进入,啮合齿面间的相对滑动摩擦而产生磨损,齿形变瘦
2、发生场合:开式传动
3、预防措施:采用闭式传动,提高齿面硬度,减小接触应力,降低表面粗糙度值,保持润滑油的清洁
三、齿面胶合
1、产生原因:高速重载时散热不好,低速重载时,压力过大,使油膜破坏,金属熔焊在一起而发生胶合。
2、发生部位:靠近节线的齿顶面
3、发生场合:高速、低速重载齿轮
4、预防措施:适宜的润滑油、提高硬度、减小表面粗糙度值、采用抗胶合能力强的齿轮材料
四、齿面塑性变形(飞边)
1、产生原因:较软齿面的齿轮在频繁起动和严重过载,由于齿面很大压力和摩擦力的作用使齿面金属局部塑性变形
2、发生部位:主动轮形成凹沟,从动轮齿面形成凸棱
3、预防措施:提高齿面硬度、选用较高粘度的润滑油,避免频繁起动和严重过载
五、轮齿折断
1、原因:变载(疲劳、过载)
2、发生后果:不能正常传动,甚至造成重大事故
3、发生场合:开式齿轮传动和硬齿面闭式齿轮传动中
4、预防措施:选择适当的模数和齿宽,采用合适的材料及热处理工艺,减小齿根处的应力集中。
机械传动齿轮失效问题分析与应对策略
机械传动齿轮失效问题分析与应对策略在机械传动系统中,齿轮是一种常见的传动元件,常用于传递动力和转速。
由于齿轮长期工作在高负荷和高转速的环境下,可能会发生齿轮失效的问题。
齿轮失效会导致传动系统的故障和停机,造成生产停工以及维修和更换齿轮的成本。
对齿轮失效问题进行分析并采取相应的应对策略,对确保机械传动系统的可靠运行至关重要。
齿轮失效通常可以分为以下几种类型:齿面磨损、齿面疲劳断裂、裂纹和齿面损坏。
齿面磨损是一种比较普遍的齿轮失效现象。
齿轮工作时,由于摩擦和载荷作用,齿面可能会逐渐磨损。
齿面磨损不仅会影响齿轮的传动效率,还会增加噪音和振动,并缩短齿轮的使用寿命。
分析齿面磨损的原因,主要有以下几点:润滑不良、载荷过大、工作温度过高等。
需要按时进行润滑、控制载荷以及保持适当的工作温度,以减少齿面磨损。
还可以通过齿面硬化和涂层来提高齿轮的耐磨性。
齿面疲劳断裂是一种齿轮常见的失效模式。
疲劳断裂通常发生在齿距逐渐产生裂纹并最终导致断裂的部位。
齿面疲劳断裂的原因一般有以下几点:载荷过大、应力集中、材料质量不良、几何尺寸设计不合理等。
为了减少齿面疲劳断裂的可能性,可以通过优化齿轮的几何尺寸和材料选择,改善工作条件,控制载荷,增加载荷分布均匀性,以及进行表面强化处理等。
裂纹是另一种可能导致齿轮失效的重要因素。
裂纹通常由于材料缺陷、应力集中和载荷过大等原因引起。
如果裂纹在工作过程中持续扩展,最终可能导致齿轮失效。
检测和修复裂纹是防止齿轮失效的重要手段。
常用的检测手段有超声波检测、磁粉探伤和光学检测等。
对于发现的裂纹,可以通过磨削、焊接或更换齿轮来进行修复。
齿面损坏是一种可能导致齿轮失效的另一原因。
齿面损坏通常是由于齿面载荷不均匀、设计不合理或制造缺陷等原因引起的。
齿面损坏可能会导致齿轮传动效果不佳、噪音增大以及齿面疲劳断裂等问题。
为了减少齿面损坏的发生,可以加强齿轮的硬度、改善齿轮的强度和刚度,优化齿面几何形状,提高加工质量和润滑条件等。
齿轮传动的失效分析及改善措施
滚 动 的 ,其 它 齿 面 各 接 触 点 都 是 连 滚 带 滑 ,而 齿 顶 部分 的运 行速 度要 远远 大 于齿 根部 分 。
通 常 点 蚀会 先 发 生 于 靠近 节 线 的 齿 根 处 。在 滚 滑 过 程 中 ,互 相 滚 滑 的接 触 表 面 在 滑 动 时 会 由于 摩
不 固定 的 ,并 且 断面 相对 粗糙 。如 图 l 示 : 所
发 生 一 定 的 塑 性 流 动 ,这 种 现 象就 是齿 面 塑性 变 形 。它 的变 形 方 向 与 滑 动 方 向相 平 行 , 因为 滑 动 摩 擦 力 以 入 主 动 轮 齿 的 滑 动 方 向 与节 线 是相 背 而
轮 在 工 作 时 受 到 了 严 重 的冲 击 载 荷 或 过 载 作 用 ,
23 齿 面磨粒 磨 损 .
当润 滑 不充分 或 者处于 开式 传动 时 ,会 有外界
灰 尘 杂质 进 入 啮合 区 ,从 而 引起 齿 面 材料 的 损失 , 这种 现 象就是 齿面 磨粒 磨损 。 当出现齿 面磨 粒磨损 时 ,会在 滑动 速度 方 向产 生平 行的 线道滑痕 。
成 飞 边 ,在 节 线 附近 处 产 生 沟 谷 ,而 从 动 轮 则 与
其相反。
节 线 附近 的 应 力 以及 摩 擦 系 数 都 相 对 较 大 ,因 此
收稿日翔:2 1-1-0 00 1 5 作者简介:陈苗青 (9 8 17 一),女 ,浙江义乌人 ,本科 ,中教一级 ,研究方 向为机械传动。
先 , 由于 齿 轮 的 传 动 过 程 是 依 靠 齿 面 推 压 来 实 现
的 ,所 以轮 齿 中 总是 齿 面 受 力 ;其 次 ,轮 齿 中齿
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一般来说,齿轮传动的失效主要发生在轮齿上。
轮齿部分的失效形式分为两大类:轮齿折断,齿面失效。
1. 轮齿折断
折断失效通常有轮齿的弯曲疲劳折断、过载折断和随机折断。
•疲劳折断:工作时轮齿反复受载,使得齿根处产生疲劳裂纹,并逐步扩展以至轮齿折断的失效。
疲劳裂纹多起源于齿根受拉的一侧。
•过载折断:齿轮受到突然过载,或经严重磨损后齿厚减薄时,轮齿会发生过载折断。
•随机折断:通常是指由于轮齿缺陷、点蚀或其它应力集中源在轮齿某部位形成过高应力集中而引起轮齿折断。
断裂部位随缺陷或过高有害残余应力的位置而定,与齿根圆角半径无关。
•轮齿折断的形式有整体折断和局部折断。
整体折断多发生于直齿轮,局部折断多发生于斜齿和人字齿轮,齿宽较大的直齿轮和由于安装、制造因素使得局部受载过大的直齿轮,也可能发生局部折断。
疲劳折断的断口较光滑,过载折断的断口则较粗糙。
•增大齿根过渡圆角半径,减小齿面粗糙度,对齿根进行喷丸或碾压强化处理消除该处的加工刀痕,选用韧性较好的材料,采用合理的变位等,均有助于提高轮齿的抗折断能力。
•通常,轮齿疲劳折断是闭式硬齿面齿轮传动的主要失效形式。
2. 齿面失效齿面失效常见的失效形式有:点蚀、胶合、齿面磨损和齿面塑性变形。
(1) 点蚀
齿轮在啮合过程中,相互接触的齿面受到周期性变化的接触应力的作用。
若齿面接触应力超出材料的接触疲劳极限时,在载荷的多次重复作用下,齿面会产生细微的疲劳裂纹;封闭在裂纹中的润滑油的挤压作用使裂纹扩大,最后导致表层小片状剥落而形成麻点,这种疲劳磨损现象,齿轮传动中称为点蚀(图9.3-13)。
节线靠近齿根的部位最先产生点蚀。
润滑油的粘度对点蚀的扩展影响很大,点蚀将影响传动的平稳性并产生冲击、振动和噪音,引起传动失效。
•点蚀又分为收敛性点蚀和扩展性点蚀。
收敛性点蚀指新齿轮在短期工作后出现点蚀痕迹,继续工作后不再发展或反而消失的点蚀现象。
收敛性点蚀只发生在软齿面上,一般对齿轮工作影响不大。
扩展性点蚀指随着工作时间的延长而继续扩展的点蚀现象,常在软齿面轮齿经跑合后,接触应力高于接触疲劳极限时发生。
硬齿面齿轮由于材料的脆性,凹坑边缘不易被碾平,而是继续碎裂成为大凹坑,所以只发生扩展性点蚀。
严重的扩展性点蚀能使齿轮在很短的时间内报废。
•提高齿面硬度和降低表面粗糙度,在许可的范围内增大相互啮合齿轮的综合曲率半径,采用粘度较高的润滑油等,有助于提高齿轮的抗点蚀能力。
(2) 齿面胶合
齿面胶合是指在重载或高速传动时,齿面局部金属焊接继而又因相对滑动,其齿面的金属从其表面被撕落,轮齿表面沿滑动方向出现粗糙沟痕的现象。
•在高速重载情况下工作的齿轮,由于其滑动速度大而导致瞬时温度过高,使油膜破裂而产生粘焊,从而引起的胶合称为热胶合。
在低速重载情况下,由于齿面应力过大,相对速度低,油膜不易形成,使接触处产生了局部高温而发生的胶合,称为冷胶合。
胶合从程度上可分为轻微胶合、中等胶合和破坏胶合。
轻微胶合需要借助于显微镜才能见其粘着痕迹;中等胶合的条纹细浅,肉眼可见;破坏胶合沿齿廓相对滑动方向呈明显的粘撕沟痕,整个齿面明显发生材料移失现象,振动噪音增大,齿轮迅速失效,严重时发产咬死。
•提高齿面硬度,降低表面粗糙度,采用有抗胶合添加剂的润滑油,采取有效冷却,选用合理变位,减小模数和齿高来降低滑动速度,选用抗胶合性能好的材料等,有助于提高齿轮的抗胶合能力。
(3) 齿面磨损
齿轮传动在工作时,齿廓表面在啮合中存在着相对滑动,齿面由此产生摩擦导致齿面磨损。
齿面磨损常见的具体形式包括:磨粒磨损、低速磨损和腐蚀磨损。
当金属微粒、灰尘、异物等落入相啮合的齿面之间,它们将起到磨料的作用从而引起齿面磨粒磨损。
磨粒磨损是开式齿轮传动最常见的失效;闭式传动新齿轮在磨合后未予清洗或密封不良等导致润滑油污染时,也会引起磨粒磨损。
当齿轮圆周速度过低时(〈0.5m/s〉,相啮合齿面间的弹性流体动力膜厚很小,会引起齿面材料的连续性磨损,称为低速磨损,它通常发生在低速传动中。
润滑油中的一些活性成分会和齿轮材料发生化学与电化学作用引起腐蚀磨损。
•齿面磨损造成齿厚减薄,齿廓形状破坏,啮合侧隙增大,导致振动、噪音和冲击,严重时会使得齿轮因强度不足而折断。
•齿轮工作过程中,保持清洁,适时更换润滑油,采用合适的密封和润滑装置,改善润滑方式,选用粘度较高的润滑剂和合适的极压添加剂,选用合适的材料等,有助于减轻齿面的磨损。
(4) 齿面塑性变形
由于载荷和摩擦力过大,齿面材料在啮合过程中,产生塑性流动从而造成齿面形状损坏,齿面塑性变形。
一般发生在软齿面齿轮上。
•由于主动轮齿齿面上所受到的摩擦力背离节线,分别朝向齿顶和齿根作用,因此产生塑性变形后,齿面上节线附近就下凹;从动轮轮齿表面所受到的摩擦力则分别由齿顶及齿根朝向节线作用,产生塑性变形之后,齿面上节线附近就上凸。
这种失效常在低速重载、频繁起动和过载传动中出现。
减小接触应力,适当提高齿面硬度,提高润滑油的粘度等,有助于减轻和防止齿面塑性变形。
•此外,齿轮传动中,由于安装及制造误差过大、材料缺陷、磨削烧伤和裂纹、表面处理不当等原因,也会造成多种失效。
加强原材料和成品检验、控制加工和安装质量,改进热处理工艺,对有效的减少齿轮失效,提高齿轮强度具有重要的意义。
3. 设计计算准则
目前设计一般使用条件的齿轮传动时,通常按保证齿面接触疲劳强度和齿根弯曲疲劳强度两准则计算。
对于高速大功率的齿轮传动,进行胶合能力的计算。
工程实践中,一般推荐采用以下的设计计算准则。
闭式齿轮传动:
传动形式主要失效形式设计计算准则
中、小功率软齿面
齿面点蚀接触疲劳强度设计计算
齿根疲劳折断弯曲疲劳强度校核计算硬齿面
齿根疲劳折断弯曲疲劳强度设计计算
齿面点蚀接触疲劳强度校核计算
大功率、重载高速
齿面点蚀接触疲劳强度设计计算
齿根疲劳折断弯曲疲劳强度校核计算
齿面热胶合热胶合强度计算
低速
齿面点蚀接触疲劳强度设计计算
齿根疲劳折断弯曲疲劳强度校核计算
齿面冷胶合冷胶合强度计算
开式齿轮传动:
主要的失效形式为弯曲疲劳折断和磨粒磨损。
按弯曲疲劳强度进行计算,算得的模数增大10~15%来考虑磨损影响,由于磨损速度大大超过齿面疲劳裂纹扩展速度,故不需进行接触疲劳强度计算。
齿轮传动中有短时过载的,均需进行静强度计算。