北师大版数学九年级上册九年级数学概率的进一步认识章节检测试题

合集下载

北师大九年级数学上册_第三章_概率的进一步认识_单元检测试卷

北师大九年级数学上册_第三章_概率的进一步认识_单元检测试卷

北师大九年级数学上册_第三章_概率的进一步认识_单元检测试卷骰子得到的数m和n作为点P的坐标,则点P落在反比例函数y=6x图象与坐标轴所围成区域内(含落在此反比例函数的图象上的点)的概率是()A.1 8B.29C.1118D.7189.如图,直线a // b,直线c与a、b都相交,从所标识的∠1、∠2、∠3、∠4、∠5这五个角中任意选取两个角,则所选取的两个角互为补角的概率是()A.3 5B.25C.15D.2310.有一个从袋子中摸球的游戏,小红根据游戏规则,作出了如下图所示的树形图,则此次摸球的游戏规则是()A.随机摸出一个球后放回,再随机摸出1个球B.随机摸出一个球后不放回,再随机摸出1个球C.随机摸出一个球后放回,再随机摸出3个球D.随机摸出一个球后不放回,再随机摸出3个球二、填空题(共10 小题,每小题 3 分,共30 分)11.一个不透明口袋中有若干白球,小颖又往袋中放入只有颜色不同的黑色小球8个,多次摸球试验后发现摸到黑球的频率稳定在20%,则此口袋中原有白球________个.12.在一个暗箱里放有m个除颜色外其他完全相同的小球,这m个小球中红球只有4个,每次将球搅匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在25%,那么可以推算m大约是________.13.将分别标有数字0,1,2,3的司长卡片背面朝上洗匀后,抽取一张作为十位上的数字,再抽取一张作为个位上的数字,每次抽取都不放回,则所得的两位数恰好是奇数的概率等于________.14.在A地与B地之间共有4条行走的道路,甲、乙两人分别从A,B两地同时出发,相向而行.如果他们都任意选择一条道路行走,那么他们在途中相遇的概率是________.15.在一个不透明的布袋中,红色、黑色、白色的球共有20个,除颜色外,形状、大小、质地等完全相同,小明通过大量摸球试验后发现摸到红色、黑色球的频率分别稳定在10%和30%,则口袋中白色球的个数很可能是________个.16.有两把不同的锁和三把钥匙,其中两把钥匙分别能打开其中一把锁,第三把钥匙不能打开这两把锁.任意取出一把钥匙去开任意的一把锁,一次打开锁的概率为________.17.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上数字为7,则从3、4、5、6、8、9中任选两个不同的数,与7组成“中高数”的概率是________.18.小丽、小华和小红照相,她们三人随意排成一排进行拍照,小红恰好排在中间的概率是________.19.在一个不透明的布袋中,有黄色、白色的乒乓球共20个,这些球除颜色外都相同.小刚通过多次摸球实验后发现其中摸到黄球的频率稳定在60%,则布袋中白球的个数很可能是________个.20.六张大小、质地均相同的卡片上分别标有1、2、3、4、5、6,现将标有数字的一面朝下扣在桌面上,从中随机抽取一张(放回洗匀),再随机抽取第二张.记前后两次抽得的数字分别为m、n,若把m、n分别作为点A的横坐标和纵的图象上的概率是________.坐标,则点A(m, n)在函数y=12x三、解答题(共 6 小题,每小题10 分,共60 分)21.一个不透明的口袋里有4个除颜色外都相同的球,其中有3个红球,1个黄球.(1)若从中随意摸出两个球,用树状图或列表法求摸出两个红球的概率;(2)若要使从中随意摸出一个球是黄球的概率为2,求袋子中需再加入几个黄球?322.一个不透明的袋子中装有三个完全相同的小球,分别标有数字3、4、5.从袋子中随机取出一个小球,用小球上的数字作为十位的数字,然后放回;再取出一个小球,用小球上的数字作为个位上的数字,这样组成一个两位数,试问:按这种方法能组成哪些位数?十位上的数字与个位上的数字之和为9的两位数的概率是多少?用列表法或画树状图法加以说明.23.小明和小丽用形状大小相同、面值不同的5张邮票设计了一个游戏,将面值1元、2元、3元的邮票各一张装入一个信封,面值4元、5元的邮票各一张装入另一个信封.游戏规定:分别从两个信封中各抽取1张邮票,若它们的面值和是偶数,则小明赢;若它们的面值和是奇数,则小丽赢.请你判断这个游戏是否公平,并说明理由.24.把3,5,6三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下卡片上的数字,放回后洗匀,再从中抽取一张卡片,记录下数字,请用列表法或树状图法求两次抽取的卡片上的数字都是奇数的概率.25.猜数字游戏:小明手里有分别标有正整数的四张卡片,小明将四张卡片洗匀后,背面朝上放在桌上,由小刚蒙眼每次抽取两张,并由小明将数字和记录下来后放回,然后重复上面的游戏.当所有可能的数字和都已出现后,小刚猜出数字和578911出现次数81022911(2)猜猜卡片上的数字有哪些?(3)求数字和为偶数的概率.26.为了备战初三物理、化学实验操作考试,某校对初三学生进行了模拟训练,物理、化学各有4各不同的操作实验题目,物理用番号①、②、③、④代表,化学用字母a、b、c、d表示,测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定,第一次抽签确定物理实验题目,第二次抽签确定化学实验题目.(1)请用树形图法或列表法,表示某个同学抽签的各种可能情况.(2)小张同学对物理的①、②和化学的b、c号实验准备得较好,他同时抽到两科都准备的较好的实验题目的概率是多少?答案1.C2.B3.B4.B5.D6.B7.D8.D9.A10.A11.3212.1613.4914.1415.1216.1317.2518.1319.820.1921.解:(1)∵从中随意摸出两个球的所有可能的结果个数是12,随意摸出两个球是红球的结果个数是6,∴从中随意摸出两个球的概率=612=12;(2)设需再加入x个黄球.依题意可列:1+x3+1+x =23,解得x=5∴要使从中随意摸出一个球是黄球的概率为23,袋子中需再加入5个黄球.22.解:画树状图如下:共有9种等可能的结果数,即按这种方法能组成的两位数有33,34,35,43,44,45,53,54,55;其中十位上的数字与个位上的数字之和为9的两位数有45和54两个,∴P(十位与个位数字之和为9)=29.23.解:游戏是公平的,抽取的面值之和列表(或树状图)为:第一张第二张45156267378总共有6种可能,面值和是偶数和奇数各3种可能P(小明赢)=12,P(小丽赢)=12.∴游戏对双方是公平的.24.画树状图如下:由树状图可知,共有9种等可能结果,其中两次抽取的卡片上的数字都是奇数的有4种结果,∴两次抽取的卡片上的数字都是奇数的概率为49.25.解:(1)数字和为8出现的频率=228+10+22+9+11=1130;(2)卡片上的数字有2、3、5、6;(3)因为数字和为8出现的频率为1130,所以可估计数字和为偶数的概率为13.26.解:(1)画树状图得:如图,可得某个同学抽签的所有等可能情况有16种;(2)∵小张同时抽到两科都准备的较好的实验题目的有①b,①c,②b,②c共4种情况,∴他同时抽到两科都准备的较好的实验题目的概率是416=14.。

北师大新版数学九年级上学期《第3章概率的进一步认识》单元测试

北师大新版数学九年级上学期《第3章概率的进一步认识》单元测试

北师大新版数学九年级上学期《第 3 章概率的进一步认识》单元测试一.选择题(共12 小题)1.在某校运动会 4×400m 接力赛中,甲乙两名同学都是第一棒,参赛同学随机从四个赛道中抽取赛道,则甲乙两名同学恰巧抽中相邻赛道的概率为()A.B.C.D.2.有大小、形状、颜色完好同样的 3 个乒乓球,每个球上分别标有数字1,2,3 中的一个,将这 3 个球放入不透明的袋中搅匀,假如不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是()A.B.C.D.3.小茜课间活动中,上午大课间活动时能够先从跳绳、乒乓球、健美操中随机选择一项运动,下午课外活动再从篮球、武术、太极拳中随机选择一项运动.则小茜上、下午都选中球类运动的概率是()A.B.C.D.4.在一个不透明的袋子里共有 2 个黄球和 3 个白球,每个球除颜色外都同样,小亮从袋子中随意摸出一个球,结果是白球,则下边对于小亮从袋中摸出白球的概率和频次的说明正确的选项是()A.小亮从袋中随意摸出一个球,摸出白球的概率是 1B.小亮从袋中随意摸出一个球,摸出白球的概率是0C.在此次实验中,小亮摸出白球的频次是 1D.由此次实验的频次去预计小亮从袋中随意摸出一个球,摸出白球的概率是 1 5.点 P 的坐标是( x,y),从﹣ 3、﹣ 2、0、2、3 这五个数中任取一个数作为x 的值,再从余下的四个数中任取一个数作为y 的值,则点 P(x,y)在平面直角坐标系中第四象限内的概率是()A.B.C.D.6.同时转动以下图的两个转盘,则转盘停止转动后,指针同时落在红色地区的概率为()A.B.C.D.7.从﹣ 2,﹣1,2 这三个数中任取两个不一样的数相乘,积为正数的概率是()A.B.C.D.8.从 3、1、﹣ 2 这三个数中任取两个不一样的数作为P 点的坐标,则 P 点恰巧落在第四象限的概率是()A.B.C.D.9.某中学初三年级四个班,四个数学老师分别任教不一样的班.期末考试时,学校安排一致监考,要求同年级数学老师互换监考,那么安排初三年级数学考试时可选择的监考方案有()种.A.8B.9C.10D.1210.已知 | a| =2,| b| =3,则 | a﹣ b| =5 的概率为()A.0B.C.D.11.从 2 种不一样样式的衬衣和 2 种不一样样式的裙子中分别取一件衬衣和一条裙子搭配,有()种可能.A.1B.2C.3D.412.不透明的袋子里装有 2 个红球和 1 个白球,这些球除了颜色外都同样.从中随意摸一个,放回摇匀,再从中摸一个,则两次摸到球的颜色同样的概率是()A.B.C.D.二.填空题(共7 小题)13.甲、乙、丙 3 名学生随机排成一排摄影,此中甲排在中间的概率是.14.在一个不透明的布袋中装有标着数字2,3,4,5 的 4 个小球,这 4 个小球的材质、大小和形状完好同样,现从中随机摸出两个小球,这两个小球上的数字之积大于 9 的概率为15.从 2019 年高中一年级学生开始,湖南省全面启动高考综合改革,学生学习完必修课程后,能够依据高校有关专业的选课要乞降自己兴趣、理想、优势,从思想政治、历史、地理、物理、化学、生物 6 个科目中,自主选择3 个科目参加等级考试.学生 A 已选物理,还从思想政治、历史、地理 3 个文科科目中选 1能性相等,选化学、生物的可能性相等,则选修地理和生物的概率为.16.从﹣ 2,﹣ 8,5 中任取两个不一样的数作为点的横纵坐标,该点在第三象限的概率为.17.同时掷两个质地均匀的六面体骰子,两个骰子向上一面点数同样的概率是.18.某批足球的质量查验结果以下:抽取的蓝球数 n 100 200 400 600 800 1000 1200优等品频数 m 93 192 380 561 752 941 1128优等品频次从这批足球中,随意抽取的一只足球是优等品的概率的预计值是.bx c( a≠ 0)与 x 轴有两个交点,那么以该抛物线的219.假如一条抛物线 y=ax + +极点和这两个交点为极点的三角形称为这条抛物线的“抛物线三角形”.在抛物线y=ax2+bx+c 中,系数 a、b、c 为绝对值不大于 1 的整数,则该抛物线的“抛物线三角形”是等腰直角三角形的概率为.三.解答题(共9 小题)20.一个不透明的口袋里装有分别标有汉字“书”、“香”、“历”、“城”的四个小球,除汉字不一样以外,小球没有任何差别,每次摸球前先搅拌均匀.( 1)若从中任取一个球,球上的汉字恰巧是“书”的概率为.(2)从中任取一球,不放回,再从中任取一球,请用树状图或列表的方法,求拿出的两个球上的汉字能构成“历城”的概率.21.“食品安全”遇到全社会的宽泛关注,济南市某中学对部分学生就食品安全知识的认识程度,采纳随机抽样检查的方式,并依据采集到的信息进行统计,绘制了下边两幅尚不完好的统计图.请你依据统计图中所供给的信息解答以下问题:( 1)接受问卷检查的学生共有人,扇形统计图中“基本认识”部分所对应扇形的圆心角为;(2)请补全条形统计图;(3)若该中学共有学生 900 人,请依据上述检查结果,预计该中学学生中对食品安全知识达到“认识”和“基本认识”程度的总人数;( 4)若从对食品安全知识达到“认识”程度的2个女生和2个男生中随机抽取 2人参加食品安全知识比赛,请用树状图或列表法求出恰巧抽到 1 个男生和 1 个女生的概率.22.为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”,比赛项目为: A.唐诗; B.宋词; C.论语; D.三字经.比赛形式为两人抗衡赛,即把四种比赛项目写在 4 张完好同样的卡片上,比赛时,比赛的两人从中随机抽取1张卡片作为自己的比赛项目(不放回,且每人只好抽取一次)比赛时,小红和小明分到一组.( 1)小明先抽取,那么小明抽到唐诗的概率是多少?(2)小红善于唐诗,小红想:“小明先抽取,我后抽取”抽到唐诗的概率是不一样的,且小明抽到唐诗的概率更大,若小红后抽取,小红抽中唐诗的概率是多少?小红的想法对吗?23.小明手中有一根长为5cm 的细木棒,桌上有四个完好同样的密封的信封.里面各装有一根细木棒,长度分别为:2、3、 4、5(单位: cm).小明从中随意抽取两个信封,而后把这 3 根细木棒首尾按序相接,求它们能搭成三角形的概率.(请用“画树状图”或“列表”等方法写出剖析过程)24.如图,有一个能够自由转动的转盘被均匀分红 3 个扇形,分别标有 1、2、3 三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束获得一组数(若指针指在分界限时重转).(1)请你用树状图或列表的方法表示出每次游戏可能出现的全部结果;(2)求每次游戏结束获得的一组数恰巧是方程 x2﹣3x+2=0 的解的概率.25.某工厂甲、乙两个部门各有职工200 人,为认识这两个部门职工的生产技术状况,有关部门进行了抽样检查,过程以下.从甲、乙两个部门各随机抽取20 名职工,进行了生产技术测试,测试成绩(百分制,单位:分)以下:甲: 78 86 74 81 75 76 87 70 75 9075 79 81 70 75 80 85 70 83 77乙: 92 71 83 81 72 81 91 83 75 8280 81 69 81 73 74 82 80 70 59整理、描绘数据按以下分数段整理、描绘这两组样本数据:成绩 x 50≤x≤59 60≤x≤69 70≤x≤ 79 80≤x≤89 90≤ x≤ 100 人数部门甲0 0 12 7 1乙 1 1 6(说明:成绩 80 分及以上为生产技术优异, 70﹣﹣ 79 分为生产技术优异, 60﹣﹣69 分为生产技术合格)依据上述表格绘制甲、乙两部门职工成绩的频数散布图.剖析数据两组样本数据的均匀数、中位数、众数以下表所示:部门均匀数中位数众数甲 78.35 77.5 75乙7881(1)请将上述不完好的统计表和统计图增补完好;(2)请依据以上统计过程进行以下推测;①预计乙部弟子产技术优异的职工人数是多少;②你以为甲、乙哪个部门职工的生产技术水平较高,说明原因.(起码从两个不一样的角度说明推测的合理性)26.某商场在端午节时期展开优惠活动,凡购物者能够经过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向 A 地区时,所购置物件享受 9 折优惠、指针指向其余地区无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个地区的字母同样,所购置物件享受8 折优惠,其余状况无优惠.在每个转盘中,指针指向每个区城的可能性同样(若指针指向分界限,则从头转动转盘)( 1)若顾客选择方式一,则享受9 折优惠的概率为;( 2)若顾客选择方式二,请用树状图或列表法列出全部可能,并求顾客享受8折优惠的概率.27.合肥地铁一号线的开通运转给合肥市民出行方式带来了一些变化,小朱和小张准备利用课余时间,以问卷的分式对合肥市民的出行方式进行检查,如图是合肥地铁一号线图(部分),小朱和小张分别从塘西河公园站(用 A 表示)、金斗公园站(用 B 表示)、云谷路站(用 C 表示)、万达城站(用 D 表示)这四站中,随机选用一站作为检查的站点.(1)在这四站中,小朱选用问卷检查的站点是万达城站的概率是多少?(2)求小朱选用问卷检查的站点与小张选用问卷检查的站点相邻的概率.28.张三同学扔掷一枚骰子两次,两次所扔掷的点数分别用字母m、 n 表示(1)求使对于 x 的方程 x2﹣ mx+2n=0 有实数根的概率;(2)求使对于 x 的方程 mx2+nx+1=0 有两个相等实根的概率.参照答案一.选择题1.D.2.C.3.A.4.C.5.A.6.A.7.C.8.B.9.B.10.B.11.D.12.B.二.填空题13.14..15..16..17.18..19..三.解答题20.解:( 1)若从中任取一个球,球上的汉字恰巧是“书”的概率为,故答案为:;( 2)列表以下:书香历城书(书,香)(书,历)(书,城)香(香,书)(香,历)(香,城)历(历,书)(历,香)(历,城)城(城,书)(城,香)(城,历)共有 12 种等可能的结果数,此中拿出的两个球上的汉字能构成“历城”的结果数为 2,因此拿出的两个球上的汉字能构成“历城”的概率═=.21.解:( 1)30÷50%=60,因此接受问卷检查的学生共有60 人;扇形统计图中“基本认识”部分所对应扇形的圆心角的度数为×360°=90°;故答案为 60;90°;(2)“认识”部分的人数 =60﹣15﹣ 30﹣10=5,条形统计图为:(3) 900×=300,因此预计该中学学生中对食品安全知识达到“认识”和“基本认识”程度的总人数为 300 人;( 4)画树状图为:(分别用A、B 表示两名女生,用C、D 表示两名男生)共有 12 种等可能的结果数,此中恰巧抽到 1 个男生和 1 个女生的结果数为8,因此恰巧抽到 1 个男生和 1 个女生的概率 = =.22.解:( 1)小明先抽取,那么小明抽到唐诗的概率为;( 2)小红的想法不对.原因以下:画树状图为:共有 12 种等可能的结果数,此中红明抽到唐诗的结果数为3,因此小红抽中唐诗的概率= =,因此小明抽到唐诗的概率和小红抽到唐诗的概率同样大.23.解:画树状图以下:由树状图可知,共有12 种等可能结果,此中能围成三角形的结果共有10 种,因此能搭成三角形的概率为=.24.解:( 1)列表以下:1 2 31 (1,1)(2,1)(3,1)2 (1,2)(2,2)(3,2)3 (1,3)(2,3)(3,3)( 2)全部等可能的状况数为 9 种,此中是 x2﹣3x+2=0 的解的为( 1,2),( 2,1)共 2 种,则 P是方程解= .25.解:( 1)补全图表以下:成绩 x50≤ x≤59 60≤x≤69 70≤x≤ 79 80≤x≤8990≤ x≤ 100 人数部门甲0 0 12 7 1乙 1 1 6 10 2( 2)①预计乙部弟子产技术优异的职工人数是200×=120 人;②甲或乙,1°、甲部弟子产技术测试中,均匀分较高,表示甲部门职工的生产技术水平较高;2°、甲部弟子产技术测试中,没有技术不合格的职工,表示甲部门职工的生产技能水平较高;或 1°、乙部弟子产技术测试中,中位数较高,表示乙部门职工的生产技术水平较高;2°、乙部弟子产技术测试中,众数较高,表示乙部门职工的生产技术水平较高.26.解:( 1)若选择方式一,转动转盘甲一次共有四种等可能结果,此中指针指向 A 地区只有 1 种状况,∴享受 9 折优惠的概率为,故答案为:;( 2)画树状图以下:由树状图可知共有12 种等可能结果,此中指针指向每个地区的字母同样的有 2 种结果,因此指针指向每个地区的字母同样的概率,即顾客享受8折优惠的概率为=.27.解:( 1)小朱选用问卷检查的站点是万达城站的概率=;( 2)画树状图为:共有 16 种等可能的结果数,此中小朱选用问卷检查的站点与小张选用问卷检查的站点相邻的结果数为6,因此小朱选用问卷检查的站点与小张选用问卷检查的站点相邻的概率= =.28.解:( 1)画树状图为:共有 36 种等可能的结果数,此中知足△ =m2﹣ 8n≥0 的结果数为 10,因此使对于 x 的方程 x2﹣ mx+2n=0 有实数根的概率 = = ;( 2)知足△=n2﹣ 4m=0 的结果数为 2,因此使对于 x 的方程 mx2+nx+1=0 有两个相等实根的概率 = =.。

第3章 概率的进一步认识 北师大版数学九年级上册单元测试卷(含答案)

第3章 概率的进一步认识 北师大版数学九年级上册单元测试卷(含答案)

第三章 概率的进一步认识时间:90分钟 满分:100分一、选择题(共8小题,每小题3分,共24分.每小题有四个选项,其中只有一个选项符合题意)1.用频率估计概率,可以发现抛掷硬币“正面向上”的概率为0.5,那么掷一枚质地均匀的硬币10次,下列说法正确的是( )A.每两次必有1次正面向上B.可能有5次正面向上C.必有5次正面向上D.不可能有10次正面向上2.[教材变式P 61练习](2021·辽宁阜新中考)小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是( )A.12 B.23 C.56 D.163.(2022·山东济南历城区期末)一个不透明的袋子里装有白棋子、黑棋子共20个,这些棋子除颜色外都相同.小明从中随机摸出一颗棋子,记下颜色后放回,通过多次重复试验发现,摸出白棋子的频率稳定在0.6,则袋子中白棋子的个数最有可能是( )A.5B.8C.12D.154.(2022·安徽宿州期中)2022年冬奥会吉祥物为“冰墩墩”,冬残奥会吉祥物为“雪容融”.现有三张正面印有吉祥物的不透明卡片,卡片除正面图案不同外,其余均相同,其中两张正面印有“冰墩墩”图案,一张正面印有“雪容融”图案,将三张卡片正面向下洗匀,从中随机一次性抽取两张卡片,则抽出的两张卡片正面都印有“冰墩墩”图案的概率是( )A.13 B.12 C.49 D.235.(2021·重庆期末)一个不透明的袋子中装有3个白球,2个黑球,它们除颜色外都相同.将球摇匀后,从中随机摸出一个球,记下颜色后不放回,再随机摸出一个球.两次摸到的球颜色相同的概率是( )A.23 B.25 C.1325 D.13206.(2022·河南许昌一中月考)某市教委部门高度重视自然灾害中的安全教育,要求各级各类学校从认识安全警示标志入手开展安全教育活动.某数学兴趣小组准备了4张印有安全警示标志的卡片,正面图案如图所示,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张卡片,则这两张卡片上的正面图案中有一张是轴对称图形的概率是( )A.12B.13C.14D.167.(2021·辽宁铁岭期末)若从1,2,3,4这四个数字中任选一个记为a ,再从这四个数字中任选一个记为c ,则关于x 的一元二次方程ax 2+4x+c=0没有实数根的概率为( )A.14B.13C.12D.238.(2022·江苏南京鼓楼区期中)如图是用画树状图的方法画出的某个试验的所有可能发生的结果,则这个试验不可能是( )A.在一个不透明的袋中有3个除颜色外完全相同的小球,其中2个黑球,1个白球,从中随机取出2个球B.小明,小王两个人分别去买一个盲盒,在三款盲盒中买到同一款盲盒C.从某学习小组的两名男生和一名女生中随机选取两名学生进行竞答D.体育测试中,随机从足球、篮球、排球三个项目中选择两个项目二、填空题(共5小题,每小题4分,共20分)9.(2022·北京期末)经过某个十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,那么甲汽车经过这个十字路口时,向右转的概率是 .10.为积极响应“无偿献血,传递温暖”的号召,某高校一寝室的4个同学参与到爱心献血的活动中,他们其中有2个A 型血,1个B 型血,还有1个O 型血,现从该寝室随机抽取2个同学参与第一批次献血,则2个同学都是A 型血的概率为 .11.(2021·广东汕头潮阳区模拟)在如图所示的电路图中,随机闭合开关S 1,S 2,S 3中的两个,能让灯泡L 1发光的概率是 .12.(2022·辽宁锦州期中)一张纸片上有一个不规则的图案,小雅想了解该图案的面积是多少,她采取了以下的试验办法:用一个长为5 cm,宽为3 cm的长方形,将不规则图案围起来如图(1)所示,然后在适当位置随机地向长方形区域扔小球,并记录小球落在不规则图案内的次数(球落在界线上或长方形区域外不计入试验结果),她将若干次有效试验的结果绘制成了图(2)所示的折线统计图,由此她估计此不规则图案的面积为 cm2.(结果保留整数)图(1)图(2)13.(2021·江苏镇江中考)一只不透明的袋子中装有1个黄球,现放若干个红球进去,它们与黄球除颜色外都相同,搅匀后从中任意摸出两个球,若使得P(摸出一红一黄)=P(摸出两红),则放入的红球个数为 .三、解答题(共6小题,共56分)14.(8分)近几年,各式各样的共享经济模式在各个领域迅速普及应用,如图是某同学收集的四个共享经济领域的图标,将收集到的图标制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同),背面朝上,洗匀放好.(1)从中随机抽取一张,抽到的卡片上的图标恰好是“共享知识”的概率为 ;(2)从中随机抽取一张卡片,放回后洗匀,再从中随机抽取一张卡片,请用列表或画树状图的方法求抽到的两张卡片上的图标恰好是“共享出行”和“共享知识”的概率.15.(8分)某商场在“五一”促销活动中规定,顾客每消费100元就能获得一次抽奖机会.为了活跃气氛,设计了两种抽奖方案.方案一:转动转盘A一次,指针指向红的部分可领取一份奖品.方案二:转动转盘B两次,两次指针都指向红的部分可领取一份奖品.(两个转盘都被平均分成3份,若指针指向分界线,则重转)(1)转动一次转盘A,获得奖品的概率是 ;(2)如果你获得一次抽奖机会,你会选择哪种方案?请用列表法或画树状图法说明理由.16.(9分)(2022·辽宁抚顺新抚区期末)一个黑箱子里装有红、白两种颜色的球共4只,它们除颜色外,其他都相同.小明将球搅匀后从箱子中随机摸出一个球,记下颜色,再把它放回,不断重复试验,根据多次试验结果画出如下的折线统计图.(1)当试验次数很大时,摸到白球的频率将会接近 (精确到0.01),从箱子中摸一次球,摸到红球的概率是 ;(2)从该箱子里随机摸出一个球,不放回,再摸出一个球.用画树状图法或列表法求摸到一个红球和一个白球的概率.17.(10分)甲、乙、丙、丁四名同学进行一次乒乓球单打比赛,要从中选两位同学打第一场比赛.(1)请用画树状图法或列表法求出恰好选中甲、乙两位同学的概率;(2)请利用若干个除颜色外其他都相同的球,设计一个摸球试验(至少摸两次),并根据该试验写出一个发生概率与(1)中所求概率相同的事件.18.(10分)(2021·黑龙江大庆期中)如图(1),一枚质地均匀的正四面体骰子,它有四个面,每个面上分别以1,2,3,4标号;如图(2),等边三角形ABC的三个顶点处各有一个圆圈.明明和亮亮想玩跳圈游戏,游戏的规则为:游戏者从圈A起跳,每投掷一次骰子,骰子着地的一面点数是几,就沿着三角形的边逆时针方向连续跳跃几个边长.如:若第一次掷得点数为2,就逆时针连续跳2个边长,落到圈C;若第二次掷得点数为4,就从圈C继续逆时针连续跳4个边长,落到圈A.(1)明明随机掷一次骰子,她跳跃后落到圈A的概率为 ;(2)明明和亮亮一起玩跳圈游戏:明明随机投掷一次骰子,亮亮随机投掷两次骰子,以最终落到圈A为胜者.这个游戏公平吗?请说明理由. 图(1) 图(2)19.(11分)(2021·辽宁本溪期末)为了解学生对食品安全知识的了解情况,学校随机抽取了部分学生进行问卷调查,将调查结果按照“A:非常了解,B:了解,C:了解较少,D:不了解”四类分别进行统计,并绘制了下列两幅统计图(不完整).请根据图中信息,解答下列问题:(1)此次共调查了 名学生;扇形统计图中D所在扇形的圆心角为 ;(2)将上面的条形统计图补充完整;(3)若该校共有800名学生,请你估计对食品安全知识“非常了解”的学生的人数;(4)现有“非常了解”的男生2名,女生2名,从这4名学生中随机抽取2名学生进行座谈,刚好抽到同性别学生的概率是多少?第三章 概率的进一步认识12345678BD C A B A C B9.1310.1611.1312.613.31.B 抛掷硬币“正面向上”的概率为0.5,那么掷一枚质地均匀的硬币10次,可能有5次正面向上.2.D 画树状图如图所示,可知共有6种等可能的结果,恰好拿到红色帽子和红色围巾的结果有1种,∴恰好拿到红色帽子和红色围巾的概率为16.3.C 设袋子中白棋子有x 个,根据题意,得x20=0.6,解得x=12,∴袋子中白棋子的个数最有可能是12.4.A 把两张正面印有“冰墩墩”图案的卡片分别记为A 1,A 2,正面印有“雪容融”图案的卡片记为B,根据题意画树状图如下:从树状图可知,共有6种等可能的结果,其中抽出的两张卡片正面都印有“冰墩墩”图案的结果有2种,故P (抽出的两张卡片正面都印有“冰墩墩”图案)=26=13.5.B 画树状图如图:由树状图可知,共有20种等可能的结果,两次摸到的球颜色相同的结果有8种,∴两次摸到的球颜色相同的概率为820=25.6.A 把4张卡片从左到右依次标记为A,B,C,D,画树状图如图所示:由树状图可知,共有12种等可能的结果,因为只有C 卡片上的正面图案是轴对称图形,所以这两张卡片上的正面图案中有一张是轴对称图形的结果有6种,故P (这两张卡片上的正面图案中有一张是轴对称图形)=612=12.7.C 画树状图如图:由树状图可知,共有16种等可能的结果,其中使Δ=42-4ac<0,即ac>4的结果有8种,∴关于x 的一元二次方程ax 2+4x+c=0没有实数根的概率为816=12.8.B 在一个不透明的袋中有3个除颜色外完全相同的小球,其中2个黑球,1个白球,从中随机取出2个球,设A ,B 表示黑球,C 表示白球,则可画出题中的树状图;从某学习小组的两名男生和一名女生中随机选取两名学生进行竞答,设A ,B 表示男生,C 表示女生,则可画出题中的树状图;体育测试中,随机从足球、篮球、排球三个项目中选择两个项目,设A 表示足球,B 表示篮球,C 表示排球,则可画出题中的树状图;而小明,小王两个人分别去买一个盲盒,在三款盲盒中买到同一款盲盒,设A ,B ,C 分别表示三款盲盒,树状图为:9.1310.16 列表如下:AA B O A(A,A)(A,B)(A,O)A(A,A)(A,B)(A,O)B(B,A)(B,A)(B,O)O (O,A)(O,A)(O,B)由表可知共有12种等可能的结果,其中2个同学都是A 型血的结果有2种,∴P (2个同学都是A 型血)=212=16.11.13 根据题意画出树状图如下.由树状图可知,共有6种等可能的情况,其中能让灯泡L 1发光的情况有2种,即S 1S 2,S 2S 1,所以能让灯泡L 1发光的概率为26=13.12.6 假设不规则图案的面积为x cm 2,由题意得长方形的面积为15 cm 2,当事件A 试验次数足够多,即样本足够大时,其频率可估计事件A 发生的概率,故由题中折线统计图可知,小球落在不规则图案内的概率大约为0.4,所以x 15=0.4,解得x=6,所以估计此不规则图案的面积为6 cm 2.13.3 假设袋中的红球个数为1,此时袋中有1个黄球、1个红球,搅匀后从中任意摸出两个球,P (摸出一红一黄)=1,P (摸出两红)=0,不符合题意;假设袋中的红球个数为2,画树状图如下:由树状图可知,共有6种等可能的结果,其中两次摸到红球的结果有2种,摸出一红一黄的结果有4种,∴P (摸出一红一黄)=46=23,P (摸出两红)=26=13,不符合题意;假设袋中的红球个数为3,画树状图如下:由树状图可知,共有12种等可能的结果,其中两次摸到红球的结果有6种,摸出一红一黄的结果有6种,∴P (摸出一红一黄)=P (摸出两红)=612=12,符合题意,∴放入的红球个数为3.14.【参考答案】(1)14(3分)(2)根据题意画出如图所示的树状图:由树状图可知,共有16种等可能的结果,其中抽到的两张卡片上的图标是“共享出行”和“共享知识”的结果有2种,所以抽到的两张卡片上的图标是“共享出行”和“共享知识”的概率是216=18.(8分)15.【参考答案】(1)13(3分)(2)选择方案二.(4分)理由:画树状图如下.由树状图可知,共有9种等可能的结果,其中两次指针都指向红的部分的结果有4种,所以P (转动转盘B 两次,领取一份奖品)=49.(6分)由(1)知转动转盘A 一次,领取一份奖品的概率是13,因为13<49,所以选择方案二.(8分)16.【解题思路】(1)当试验次数达到1 500次时,摸到白球的频率接近于0.75,由此可估计摸到红球的概率;(2)先根据(1)的结论求出白球的个数和红球的个数,再列表得出所有等可能的结果,从中找到符合条件的结果,进而可求得概率.【参考答案】(1)0.75 14(4分)解法提示:由折线统计图可知,当试验次数很大时,摸到白球的频率将会接近0.75,从箱子中摸一次球,摸到红球的概率为1-0.75=0.25=14.(2)由(1)知,箱中白球的个数为4×0.75=3,则红球的个数为4-3=1,列表如下:白白白红白(白,白)(白,白)(红,白)白(白,白)(白,白)(红,白)白(白,白)(白,白)(红,白)红(白,红)(白,红)(白,红)由表知,共有12种等可能的结果,其中摸到一个红球和一个白球的结果有6种,∴摸到一个红球和一个白球的概率为612=12.(9分)17.【参考答案】(1)根据题意,画树状图如下: (3分)由树状图,可知共有12种等可能的结果,其中恰好选中甲、乙两位同学的结果有2种,所以P (恰好选中甲、乙两位同学)=212=16.(5分)(2)答案不唯一.如:在一个不透明的袋子中,放入四个除颜色外其他都相同的球,它们的颜色分别为白、黄、粉、橙,从袋中随机摸出一个球记下颜色,不放回,再从袋中随机摸出一个球,记下颜色.事件:两次摸出的球一个是白球,一个是粉球.(10分)18.【参考答案】(1)14(3分)(2)这个游戏不公平.(4分)理由:画树状图如图,共有16种等可能的结果,其中亮亮随机投掷两次骰子,最终落到圈A 的结果数为5,即共跳3个边长或6个边长,所以P (亮亮随机投掷两次骰子,最终落回到圈A )=516.(8分)因为14<516,所以这个游戏不公平.(10分)19.【参考答案】(1)120 54°(2分)解法提示:(25+23)÷40%=120(名),360°×10+8120=54°.(2)D 所占的百分比为(10+8)÷120×100%=15%,A 中的人数为120×(1-40%-20%-15%)=30(名),其中男生有30-16=14(名),C 中的人数为120×20%=24(名),其中女生有24-12=12(名).补全条形统计图如图所示:(4分)(3)800×(1-40%-20%-15%)=200(名),答:估计对食品安全知识“非常了解”的学生的人数为200.(7分)(4)画树状图:由树状图可知,共有12种等可能的结果,抽到同性别学生的结果有4种,所以P (刚好抽到同性别学生)=412=13.(11分)。

北师大版数学九年级上册第三章概率的进一步认识单元测试卷(有答案)

北师大版数学九年级上册第三章概率的进一步认识单元测试卷(有答案)

概率的进一步认识单元测试卷(满分100分,时间60分钟) 一、选择题(每小题3分,共30分)1. 有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为a 的值,然后再从剩余的两张卡片中随机抽取一张,以其正面的数字作为b 的值,则点(a ,b )在第二象限的概率是( ) A.61 B.31 C.21 D.32 2. 下列说法正确的是( )A .在一次抽奖活动中,“中奖的概率是1001”表示抽奖100次就一定会中奖 B .随机抛一枚硬币,落地后正面一定朝上 C .同时掷两枚均匀的骰子,朝上一面的点数和为6D .在一副没有大、小王的扑克牌中任意抽一张,抽到的牌是6的概率是131 3. 在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为32,则黄球的个数为( )A.2B.4C.12D.16 4. 让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域, 则这两个数的和是2的倍数或是3的倍数的概率等于( ) A.163B.83C.85D.1613 5. 在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法来估算正面朝上的概率,其试验次数分别为10次,50次,100次,200次,其中试验相对科学的是( ) A .甲组 B .乙组 C .丙组 D .丁组 6. 某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码锁的概率是( ) A.101B.91C.31D.217. 在一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为了估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400 次,其中88次摸到黑球,估计盒中大约有白球( )A. 28个B. 30个C. 36个D. 42个 8. 某市民政部门五一期间举行“即开式福利彩票”的销售活动,发行彩票10万张(每张彩票2元),在这次彩票销售活动中,设置如下奖项:A.20001 B.5001 C. 5003 D.20019. 青青的袋中有红、黄、蓝、白球若干个,晓晓又放入5个黑球,通过多次摸球试验,发现摸到红球、黄 球、蓝球、白球的频率依次为30%、15%、40%、10%,则青青的袋中大约有黄球( )A.5个B.10个C.15个D.30个 10. 一天晚上,小伟帮妈妈清洗茶杯,三个茶杯只有颜色不同,其中一个无盖.突然停电了,小伟只好把 杯盖与茶杯随机地搭配在一起,则花色完全搭配正确的概率是( ) A.31 B.21 C. 61 D.121二、填空题(每小题3分,共18分)11. 某长途汽车站的显示屏,每隔五分钟显示某班次汽车的信息,显示时间持续1分钟,某人到达该车站时,显示屏上正好显示该班次信息的概率是 .12. 一个不透明的袋子中只装有2个红球和2个蓝球,它们除颜色外其余都相同.现随机从袋中摸出两个球,颜色能配成紫色的概率是 .13. 林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组统计数据:成活的棵数m8651365222035007056131701758026430成活的频率nm0.865 0.904 0.888 0.875 0.882 0.878 0.879 0.881估计该种幼树在此条件下移植成活的概率为__________.14. 现有两个不透明的盒子,其中一个装有标号分别为1,2的两张卡片,另一个装有标号分别为1,2,3的三张卡片,卡片除标号外其他均相同.若从两个盒子中各随机抽取一张卡片,则两张卡片标号恰好相 同的概率是 .15. 若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是__________.16. 为了估计湖里有多少条鱼,我们从湖里捕上100条做上标记,然后放回湖里,经过一段时间待带标记 的鱼完全混合于鱼群中后,第二次捕得200条,发现其中带标记的鱼25条,通过这种调查方式,我们可以估计出这个湖里有______条鱼.三、解答题(4小题,共52分)17. (12分) 在一个不透明的盒子里装有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是“摸到白色球”的频率折线统计图.(1)请估计:当n 很大时,摸到白球的频率将会接近 (精确到0.01),假如你摸一次,你摸到白 球的概率为 ;(2)试估算盒子里白、黑两种颜色的球各有多少个?(3)在(2)条件下如果要使摸到白球的概率为35,需要往盒子里再放入多少个白球?18. (11分)新年联欢会,班里组织同学们进行才艺展示如图所示的转盘被等分成四个扇形,每个扇形区域代表一项才艺:1-唱歌;2-舞蹈;3-朗诵;4-演奏,每名同学要随机转动转盘两次,转盘停止后,根据指针指向的区域确定要展示的两项内容(若两次转到同一区域或分割线上,则重新转动,直至得出不同结果).求小明恰好展示“唱歌”和“演奏”两项才艺的概率.19. (14分) 小明和小刚用如图所示的两个转盘做配紫色游戏,游戏规则是:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可以配成紫色,此时小刚得1分,否则小明得1分.(1)用列表(或树状图)法分别求出小明和小刚的得分;(2)这个游戏公平吗?请说明理由;如果不公平,如何修改规则才能使游戏双方公平?20.(15分)为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传球给其余两人的机会是均等的,由甲开始传球,共传球三次. (1)请利用树状图列举出三次传球的所有可能情况; (2)求三次传球后,球回到甲脚下的概率;(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大.答案一、1-5 BDBCD 6-10 ABCCC二、11、61 12、32 13、 0.881 14、31 15 、65 16、 800 三、解答题.17. (1)根据题意得:当n 很大时,摸到白球的概率将会接近0.50;假如你摸一次,你摸到白球的 概率为0.5;(2)40×0.5=20,40﹣20=20;答:盒子里白、黑两种颜色的球分别有20个、20个; (2)设需要往盒子里再放入x 个白球;根据题意得:534020=++x x ,解得:10=x ;经检验,10=x 是原方程的解. 答:需要往盒子里再放入10个白球.18. 解:转动转盘两次所有可能出现的结果列表如下:(树状图同样得分)。

北师版九年级数学上册 第三章 概率的进一步认识 综合测试卷(含答案)

北师版九年级数学上册  第三章 概率的进一步认识    综合测试卷(含答案)

北师版数学九年级上册 第3章 概率的进一步认识综合测试卷(时间90分钟,满分120分)第Ⅰ卷(选择题)一.选择题(本大题共10小题,每小题3分,共30分)1. 将一枚质地均匀的硬币先后抛掷两次,则至少出现一次正面向上的概率为( ) A.14 B.12 C.34 D.232. 笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1~10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是( ) A.110 B.15 C.310 D.253.如图是两个可以自由转动的均匀圆盘A 和B ,A ,B 分别被均匀地分成三等份和四等份,同时自由转动圆盘A 和B ,圆盘停止后,指针分别指向的两个数字的积为偶数的概率是( ) A.34 B.23 C.12 D.134.小明的袋中有红、黄、蓝、白球若干个,晓晓又放入5个黑球,通过多次摸球试验,发现摸到红球、黄球、蓝球、白球的频率依次为30%,15%,40%,10%,则小明的袋中大约有黄球( ) A .5个 B .10个 C .15个 D .30个5.一个不透明的袋子中有1个红球,2个黄球,这些球除颜色外无其他差别,从袋子中随机摸出1个球后放回,再随机摸出1个球,两次摸出的球都是黄球的概率( ) A.23 B.13 C.14 D.496.甲、乙两人用如图所示的两个转盘(每个转盘被分成面积相等的3个扇形)做游戏.游戏规则:转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.甲获胜的概率是( ) A.13 B.49 C.59 D.237.某展览大厅有2个入口和2个出口,其示意图如图所示,参观者可从任意一个入口进入,参观结束后可从任意一个出口离开,则一位参观者从入口1进入并从出口A 离开的概率是( ) A.12 B.13 C.14 D.168.一天晚上,小丽在清洗两只颜色分别为粉色和白色的有盖茶杯时,突然停电了,小丽只好把杯盖和茶杯随机搭配在一起,则其颜色搭配一致的概率是( )A.14B.12C.34D .1 9.某超市举行购物“翻牌抽奖”活动,如图所示,四张牌分别对应价值5,10,15,20(单位:元)的四件奖品,如果随机翻两张牌,且第一次翻过的牌不再参加下次翻牌,则所获奖品总价值不低于30元的概率为( ) A.12 B.23 C.13 D.3410.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( ) A .16个 B .15个 C .13个 D .12个第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11.对于▱ABCD ,从以下五个关系式中任取一个作为条件:①AB =BC ;②∠BAD =90°;③AC =BD ;④AC ⊥BD ;⑤∠DAB =∠ABC ,能判定▱ABCD 是矩形的概率是________.12. 下表记录了某种幼树在一定条件下移植成活情况:由此估计这种幼树在此条件下移植成活的概率约是______ (精确到0.1).13.春节期间,《中国诗词大会》节目的播出深受观众喜爱,进一步激起了人们对古诗词的喜爱.现有以下四句古诗词:①锄禾日当午;②春眠不觉晓;③白日依山尽;④床前明月光.甲、乙两名同学从中各随机选取了一句写在了纸上,则他们选取的诗句恰好相同的概率为________.14. 有A,B两只不透明的口袋,每只口袋里装有两只相同的球,A袋中的两只球上分别写了“细”“致”的字样,B袋中的两只球上分别写了“信”“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是________.15.如图,电路图上有四个开关A,B,C,D和一个小灯泡,闭合开关D或同时闭合开关A,B,C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是_____. 16.从1,-1,0三个数中任取两个不同的数作为点的坐标,则该点在坐标轴上的概率是_____. 17.盒子里有完全相同的三个小球,球上分别标有数字-2,1,4,随机摸出一个小球,其上的数字记为p(放回),再随机摸出一个小球,其上的数字记为q,则满足关于x的方程x2+px+q=0有实数根的概率是__________.18.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做“中高数”,如796就是一个“中高数”.若十位上的数字为6,则从3,4,5,7,8中任选两数(不重复),与6组成“中高数”的概率是___________.三.解答题(共8小题,66分)19.(6分)4件同型号的产品中,有1件不合格品和3件合格品.(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;(3)在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量的重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约为多少?20.(6分) 如图,数轴上的点A,B,C,D表示的数分别为-3,-1,1,2,从A,B,C,D四点中任意取两点,求所取两点之间的距离为2的概率.21.(8分) 小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.(1)小明和小刚都在本周日上午去游玩的概率为________;(2)求他们三人在同一个半天去游玩的概率.22.(8分) 有两个信封,每个信封内各装有四张完全相同的卡片,其中一个信封内的四张卡片上分别写有1,2,3,4四个数,另一个信封内的四张卡片上分别写有5,6,7,8四个数,甲、乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于20,则甲获胜,否则乙获胜.(1)请你通过列表(或画树状图)计算甲获胜的概率;(2)你认为这个游戏公平吗?为什么?23.(8分) 由于只有1张市运动会开幕式的门票,小王和小张都想去,两人商量采取转转盘(如图,转盘盘面被分为面积相等,且标有数字1,2,3,4的4个扇形区域)的游戏方式决定谁胜谁去观看.规则如下:两人各转动转盘一次,当转盘指针停止,如两次指针对应盘面数字都是奇数,则小王胜;如两次指针对应盘面数字都是偶数,则小张胜;如两次指针对应盘面数字是一奇一偶,视为平局,若为平局,继续上述游戏,直至分出胜负.如果小王和小张按上述规则各转动转盘一次,则:(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.24.(8分) 如小美周末来到公园,发现在公园一角有一种“守株待兔”游戏.游戏设计者提供了一只兔子和一个有A,B,C,D,E五个出入口的兔笼,而且笼内的兔子从每个出入口走出兔笼的机会是均等的.规定:①玩家只能将小兔从A,B两个出入口放入:②如果小兔进入笼子后选择从开始进入的出入口离开,则可获得一只价值4元的小兔玩具,否则应付费3元.(1)请用画树状图的方法,列举出该游戏的所有可能情况;(2)小美得到小兔玩具的机会有多大?(3)假设有125人次玩此游戏,估计游戏设计者可赚多少元.25.(10分) 我省中小学积极开展综合实践活动,某校准备组织开展四项综合实践活动:“A.我是非遗小传人,B.学做家常餐,C.爱心义卖行动,D.找个岗位去体验”.为了解学生最喜爱哪项综合实践活动,随机抽取部分学生进行问卷调查(每位学生只能选择一项),将调查结果绘制成下面两幅不完整的统计图,请结合图中提供的信息回答下列问题:(1)本次一共调查了______名学生,在扇形统计图中,m的值是_______;(2)补全条形统计图;(3)若该校共有1 200名学生,估计最喜爱B和C项目的学生一共有多少名?(4)现有最喜爱A,B,C,D活动项目的学生各一人,学校要从这四人中随机选取两人交流活动体会,请用列表或画树状图的方法求出恰好选取最喜爱C和D项目的两位学生的概率.26.(12分) 图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和是几,就从图②中的A点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法跳动.(1)随机掷一次骰子,则棋子跳动到点C处的概率是__________;(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率.图①图②参考答案:1-5CCBCD 6-10CCBCD11. 3 512. 0.913. 1 414. 1 415. 1 216. 2 317. 2 318.31019. 解:(1)P(抽到的是不合格品)=14 (2)假设不合格的产品为F ,合格的三件产品分别为T 1,T 2,T 3,通过列表(表略)可知一共有:(F ,T 1),(F ,T 2),(F ,T 3),(T 1,T 2),(T 1,T 3),(T 2,T 3)共6种情况,因此可得P(抽到的都是合格品)=36=12 (3)P =3+x 4+x =0.95,解得x =16,经检验是原方程的解,∴x =16 20. 解:画树状图为:由树状图可知共有12种等可能的结果数,其中所取两点之间的距离为2的结果数为4,∴所取两点之间的距离为2的概率=412=1321. 解:(1) 画树状图为:小明和小刚都在本周日去游玩有4种可能的结果,其中都在本周日上午去游玩的可能性只有1种,∴小明和小刚都在本周日上午去游玩的概率为14(2)由树状图可知,他们三人在同一个半天去游玩的结果有(上,上,上)、(下,下,下)这2种,∴他们三人在同一个半天去游玩的概率为28=1422. 解:(1)列表如下:由上表可知该游戏所有等可能的结果共16种,其中两卡片上的数字之积大于20的有5种,∴甲获胜的概率为516(2)不公平,∵甲获胜的概率为516,乙获胜的概率为1116,∴这个游戏不公平23. 解:(1)∵转盘的4个等分区域内只有1,3两个奇数,∴小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率=24=12(2)列表如下:所有等可能的情况有16种,其中两指针所指数字都是偶数或都是奇数的情况都是4种,∴P(小王胜)=416=14,P(小张胜)=416=14,∴游戏公平24. 解:(1)画树状图略(2)共有10种等可能的结果,其中从开始进入的出入口离开的情况有2种,所以小美玩一次“守株待兔”游戏能得到小兔玩具的概率为15(3)125×0.8×3-125×0.2×4=200,所以估计游戏设计者可赚200元 25. 解:(1)200 20%(2)最喜爱C 项目的人数是200×25%=50(人),补图如下(3)估计最喜爱B 和C 项目的学生一共有1 200×(45%+25%)=840(名) (4)画树状图为:由图可知共有12种等可能的结果数,恰好选取最喜爱C 和D 项目的两位学生的结果数为2种,∴P(恰好选取最喜爱C 和D 项目的两位学生)=212=1626. 解: (1)14(2)列表如下:由表可知共有16种等可能的结果,两次的和为14可以到达点C ,有3种情形,∴棋子最终跳动到点C 处的概率为316。

北师大版数学九年级上册第三章《概率的进一步认识》单元检测卷含答案

北师大版数学九年级上册第三章《概率的进一步认识》单元检测卷含答案

北师大版数学九年级上册第三章《概率的进一步认识》单元检测卷[检测内容:第三章 满分:120分 时间:120分钟]一、选择题(每小题3分,共30分)1. 在一个不透明的布袋中,红色、黑色、白色的球共有120个,这些球除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在15%和45%,则布袋中白色球的个数很可能是( )A. 48个B. 60个C. 18个D. 54个2. 在0,1,2三个数字中任取两个,组成两位数,则组成的两位数是奇数的概率为( )A. B. C. D. 141612343. 在用摸球试验来模拟6人中有2人生肖相同的概率的过程中,有如下不同的观点,其中正确的是( )A. 摸出的球不能放回B. 摸出的球一定放回C. 可放回,可不放回D. 不能用摸球试验来模拟此事件4. 如图所示,有以下3个条件:①AC =AB ,②AB ∥CD ,③∠1=∠2.从这3个条件中任选2个作为题设,另1个作为结论,则组成的命题是真命题的概率是( )A. 0B.C.D. 11323第4题第5题5. 让如图所示的两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则两个数的和是2的倍数或是3的倍数的概率等于( )A.B.C.D. 316385813166. 在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.B.C.D. 121314167. 小明与小刚一起玩抛掷两枚硬币的游戏,游戏规则:抛出两个正面,小明赢1分,抛出其他结果,小刚赢1分,谁先到10分,谁就获胜.这是一个不公平的游戏规则,要把它修改成公平的游戏,下列做法中错误的是( )A. 把“抛出两个正面”改为“抛出两个同面”B. 把“抛出其他结果”改为“抛出两个反面”C. 把“小明赢1分”改为“小明赢3分”D. 把“小刚赢1分”改为“小刚赢3分”8. 如图,一个质地均匀的正四面体上依次标有数字-2,0,1,2,连续抛掷两次,朝下一面的数字分别是a ,b ,将其作为M 点的横、纵坐标,则点M (a ,b )落在以A (-2,0),B (2,0),C (0,2)为顶点的三角形内(包含边界)的概率是( )A. B.C.D. 38716129169.在平面直角坐标系中,作△OAB ,其中三个顶点分别是O (0,0),B (1,1),A (x ,y )(-2≤x ≤2,-2≤y ≤2,x ,y 均为整数),则所作△OAB 为直角三角形的概率是( )A.B.C.D. 2535151210. 如图所示,有一电路AB 由图示的开关控制,闭合a ,b ,c ,d ,e 五个开关中的任意两个开关,使电路形成通路,则使电路形成通路的概率是( )A.B.C.D. 25353412二、填空题(每小题3分,共24分)11. 在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是  .12. 向一个装有很多黄豆的袋子里放入100粒绿豆,每次倒出10粒记下所倒出的绿豆的数目,再把它们放回去,做相同的试验100次,共倒出绿豆240粒,则袋中原有黄豆约粒.13. 在分别写有数字-1,0,1,2的四张卡片中,随机抽取一张后放回,再随机抽取一张,以第一次抽取的数字作为横坐标,第二次抽取的数字作为纵坐标的点落在第一象限的概率是 .14. 有四条线段,长度分别为3,5,7,9,从中任取三条,能构成三角形的概率为 .15. 有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意一把锁,一次打开锁的概率是 .16. 某人设摊“摸彩”,只见他手持一袋,内装大小、质地完全相同的3个红球、2个白球,每次让顾客“免费”从袋中摸出两球,若两球的颜色相同,则顾客获得10元钱,否则顾客付给这个人10元钱.请你判断一下,该活动对顾客(填“合算”或“不合算”).17. 对于平面内任意一个凸四边形ABCD,现从以下四个关系式①AB=CD;②AD=BC;③AB∥CD;④∠A=∠C中任取两个作为条件,能够得出这个四边形ABCD是平行四边形的概率是 .18. 如图,小华和小明做转盘游戏,当两个转盘所转到的数字之积为奇数时,小华得2分,当两个转盘所转到的数字之积为偶数时,小明得1分,这个游戏.(填“公平”或“不公平”)三、解答题(共66分)19. (8分)某校九年级(1)、(2)班联合举行毕业晚会,组织者为了使气氛热烈、有趣,策划时计划整场晚会以转盘游戏的方式进行,每个节目开始时,两班各派一人先进行转盘游戏,胜者获得一件奖品,负责表演一个节目,(1)班和(2)班的文娱委员利用分别标着数字1,2,3和4,5,6,7的两个转盘(如图)设计一种游戏方案,两人同时各转动一个转盘一次,将转到的数字相加,和为偶数时,(1)班代表胜,否则(2)班代表胜,你认为该方案对双方是否公平?为什么?20. (8分)在一个不透明的口袋里装有只有颜色不同的黑白两种颜色的球共20个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸球的次数n1001502005008001000摸到白球的次数m68109136345568701摸到白球的频率0.680.730.680.690.710.70(1)请估计:当n很大时,摸到白球的频率将会接近;(2)假如你去摸一次,摸到白球的概率是,摸到黑球的概率是;(3)试估算口袋中黑、白两种颜色的球各有多少个.21. (9分)甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.(1)请用画树状图法或列表法,求恰好选中甲、乙两位同学的概率;(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.22. (9分)大课间活动时,有两个同学做了一个数字游戏:有三张正面写有数字-1,0,1的卡片,它们背面完全相同,将这三张卡片背面朝上洗匀后,其中一个同学随机抽取一张,将其正面的数字作为p的值,然后将卡片放回并洗匀,另一个同学再从这三张卡片中随机抽取一张,将其正面的数字作为q的值,两次结果记为(p,q).(1)请你帮他们用画树状图或列表的方法表示(p,q)所有可能出现的结果;(2)求满足关于x的方程x2+px+q=0没有实数解的概率.23. (10分)试验探究:有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有整数1和2.B布袋中有三个完全相同的小球,分别标有整数-1,-2和-3.平平从A布袋中随机取出一个小球,记录其标有的整数为x,再从B布袋中随机取出一个小球,记录其标有的整数为y,这样就确定点Q的一个坐标为(x,y).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(2)求点Q落在直线y=x-3上的概率.24. (10分)如图,有四张背面相同的纸牌A,B,C,D,其正面分别是红心、方块、黑桃、梅花,其中红心、方块为红色,黑桃、梅花为黑色,小明将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张洗匀后再摸出一张.A B C D(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A,B,C,D表示);(2)求摸出的两张牌同为红色的概率.25. (12分)珊珊与静静设计了A,B两种游戏:游戏A的规则:用3张数字分别是2,3,4的扑克牌,将牌洗匀后背面朝上放置在桌面上,第一次随机抽出一张牌记下数字后再原样放回,洗匀后再第二次随机抽出一张牌记下数字.若抽出的两张牌上的数字之和为偶数,则珊珊获胜;若两数字之和为奇数,则静静获胜.游戏B的规则:用4张数字分别是5,6,8,8的扑克牌,将牌洗匀后背面朝上放置在桌面上,珊珊先随机抽出一张牌,抽出的牌不放回,静静从剩下的牌中再随机抽出一张牌.若珊珊抽出的牌面上的数字比静静抽出的牌面上的数字大,则珊珊获胜;否则静静获胜.请你帮静静选择其中一种游戏,使她获胜的可能性较大,并说明理由.参考答案1. A2. A3. B4. D5. C6. A7. D8. B9. A 10. B11. Error!12. 31713. Error!14. Error!15. Error!16. 不合算17. Error!18. 公平19. 解:公平.理由:利用树状图法得出所有可能结果如下:所有可能结果有12种,其中数字之和为偶数的有6种,数学之和为奇数的也有6种.所以(1)班代表胜的概率为Error!,(2)班代表胜的概率也为Error!,所以该游戏方案对双方是公平的.20. 解:(1)0.70(2)0.700.30(3)白球有20×0.70=14(个),黑球有20-14=6(个).21. 解:(1)方法1:画树状图,如图所示.共有12种等可能的结果,其中满足条件的结果有2种.∴P(恰好选中甲、乙两位同学)=Error!.方法2:列表格如下:甲乙丙丁甲甲、乙甲、丙甲、丁乙乙、甲乙、丙乙、丁丙丙、甲丙、乙丙、丁丁丁、甲丁、乙丁、丙共有12种等可能的结果,其中满足条件的结果有2种.∴P(恰好选中甲、乙两位同学)=Error!. (2)P(恰好选中乙同学)=Error!.22. 解:(1)画树状图如下:由图可知共有9种等可能的结果.(2)若方程x2+px+q=0没有实数解,则Δ=p2-4q<0.由(1)可得满足Δ=p2-4q<0的有(-1,1),(0,1),(1,1),∴满足关于x的方程x2+px+q=0没有实数解的概率为Error!=Error!.23. 解:(1)列表为:y-1-2-3x1(1,-1)(1,-2)(1,-3)2(2,-1)(2,-2)(2,-3)∴点Q的坐标有(1,-1),(1,-2),(1,-3),(2,-1),(2,-2),(2,-3)六种可能情况. (2)“点Q落在直线y=x-3上”记为事件A,则有(1,-2)和(2,-1)两点满足条件,∴P(A)=Error!=Error!,即点Q落在直线y=x-3上的概率为Error!.24. 解:(1)画树状图如图所示:列表法:第二次A B C D第一次A AB AC ADB BA BC BDC CA CB CDD DA DB DC(2)P(摸出的两张牌同为红色)=Error!=Error!.25. 解:对游戏A:画树状图如图所示:或用列表法:第二次234第一次2(2,2)(2,3)(2,4)3(3,2)(3,3)(3,4)4(4,2)(4,3)(4,4)所有可能出现的结果共有9种,其中两数字之和为偶数的有5种,所以游戏A珊珊获胜的概率为Error!,而静静获胜的概率为Error!.即游戏A对珊珊有利,获胜的可能性大于静静.对游戏B:画树状图如图所示:或用列表法:静静5688珊珊5-(5,6)(5,8)(5,8)6(6,5)-(6,8)(6,8)8(8,5)(8,6)-(8,8)8(8,5)(8,6)(8,8)-所有可能出现的结果共有12种,其中珊珊抽出的牌面上的数字比静静大的有5种:根据游戏B的规则,当静静抽出的牌面上的数字与珊珊抽到的数字相同或比珊珊抽到的数字大时,则静静获胜.所以游戏B珊珊获胜的概率为Error!,而静静获胜的概率为Error!.即游戏B对静静有利,获胜的可能性大于珊珊.综上所述,静静应选择游戏B.。

(常考题)北师大版初中数学九年级数学上册第三单元《概率的进一步认识》检测题(包含答案解析)

(常考题)北师大版初中数学九年级数学上册第三单元《概率的进一步认识》检测题(包含答案解析)

一、选择题1.小明在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则最可能符合这一结果的实验是()A.掷一枚骰子,出现3点的概率B.抛一枚硬币,出现反面的概率C.任意写一个整数,它能被3整除的概率D.从一副扑克中任取一张,取到“大王”的概率2.在一个不透明的袋子中,装有红球、黄球、篮球、白球各1个,这些球除颜色外无其他差别,从袋中随机取出一个球,取出红球的概率为()A.12B.13C.14D.13.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后,从中任取一张(不放回),再从剩余的卡片中任取一张,则两次抽取的卡片上的数字之积为正偶数的概率是()A.49B.112C.13D.164.三张背面完全相同的数字牌,它们的正面分别印有数字1,2,3,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a、b、c,则以a、b、c为边长能构成等腰三角形的概率是()A.19B.13C.59D.795.在一个不透明的口袋中,装有若干个红球和6个黄球,它们只有颜色不同,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率稳定在0.6,则估计口袋中大约有红球()A.24个B.10个C.9个D.4个6.有三个质地、大小一样的纸条上面分别写着三个数,其中两个正数,一个负数,任意抽取一张,记下数的符号后,放回摇匀,再重复同样的操作一次,试问两次抽到的数字之积是正数的概率为()A.13B.49C.59D.237.现有两组相同的牌,每组三张且大小一样,三张牌的牌面数字分别是1、2、3,从每组牌中各摸出一张牌.两张牌的牌面数字之和等于4的概率是()A.29B.13C.59D.238.某单位进行内部抽奖,共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.若每张抽奖券获奖的可能性相同,则1张抽奖券中奖的概率是()A.0.1 B.0.2 C.0.3 D.0.69.我们要遵守交通规则,文明出行,做到“红灯停,绿灯行”,小刚每天从家到学校需经过三个路口,且每个路口都安装了红绿灯,每个路口红灯和绿灯亮的时间相同,那么小刚从家出发去学校,他遇到两次红灯的概率是()A.18B.38C.58D.1210.如图,电路图上有四个开关A、B、C、D和一个小灯泡,则任意闭合其中两个开关,小灯泡发光的概率是()A.12B.13C.14D.1611.一个密闭不透明的盒子里有若干个白球,在不许将球倒出来数的情况下,为了估计白球数,小刚向其中放入了8个黑球,搅匀后从中随意摸出一个球记下颜色,再把它放回盒中,不断重复这一过程,共摸球400次,其中80次摸到黑球,你估计盒中大约有白球()A.32个B.36个C.40个D.42个12.老师组织学生做分组摸球实验.给每组准备了完全相同的实验材料,一个不透明的袋子,袋子中装有除颜色外都相同的3个黄球和若干个白球.先把袋子中的球搅匀后,从中随意摸出一个球,记下球的颜色再放回,即为一次摸球.统计各组实验的结果如下:一组二组三组四组五组六组七组八组九组十组摸球的次数100100100100100100100100100100摸到白球的次数41394043383946414238请你估计袋子中白球的个数是()A.1个B.2个C.3个D.4个二、填空题13.在一个不透明的布袋中装有52个白球和若干个黑球,除颜色外其他都相同,小强每次摸出一个球记录下颜色后并放回,通过多次试验后发现,摸到黑球的频率稳定在0.2左右,则布袋中黑球的个数可能有________.14.如图,一段长管中放置着三根同样的绳子,小明从左边随机选一根,张华从右边随机选一根,两人恰好选中同一根绳子的概率是__________.15.一个袋子中6个红球,若干白球,它们除颜色外完全相同,现在经过大量重复的摸球试验发现,摸出一个球是白球的频率稳定在0.4附近,则袋子中白球有_____个.16.一个不透明的袋子中装有若干个除颜色外都相同的小球,小明每次从袋子中随机摸出一个球,记录下颜色,然后放回,重复这样的试验3000次,记录结果如下:实验次数n100200300500800100020003000摸到红球次数m6512417830248162012401845摸到红球频率m0.650.620.5930.6040.6010.6200.6200.615n估计从袋子中随机摸出一个球恰好是红球的概率约为_______________.(精确到0.1)17.小玲在一次班会中参加知识抢答活动,现有语文题5道,数学题6道,综合题7道,她从中随机抽取1道,抽中数学题的概率是_________.18.从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知口袋中仅有黑球5个和白球若干个,这些球除颜色外,其他都一样,由此估计口袋中有___个白球.19.在一个不透明的塑料袋中装有红色白色球共40个.除颜色外其他都相同,小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在20%左右,则口袋中红色球可能有________个.20.对一批防PM2.5口罩进行抽检,经统计合格口罩的概率是0.9,若这批口罩共有2000只,则其中合格的大约有__只.三、解答题21.从2名男生和2名女生中随机抽取上海迪斯尼乐园志愿者.(1)抽取1名,恰好是男生的概率是;(2)抽取2名,用列表法或画树状图法求恰好是1名男生和1名女生的概率.22.某校有A,B两个餐厅,甲、乙、丙三名学生各自随机选择其中的一个餐厅用餐,用列表或列树状图的方法解决下列问题:(1)求甲、乙、丙三名学生在同一个餐厅用餐的概率.(2)求甲、乙、丙三名学生中至少有一人在B餐厅用餐的概率.23.为加强素质教育,某学校自主开设了A书法、B阅读、C足球、D器乐四门选修课程供学生选择,每门课程被选到的机会均等.(1)学生小明计划选修两门课程,请写出所有可能的选法;(用树状图或列表法表示选法)(2)若学生小明和小刚各计划选修一门课程,则他们两人恰好同时选修书法或足球的概率是多少?24.小秋打算去某影城看电影.她用手机打开购票页面,座位已选情况如图所示(虚线边框内为黄金区域,其余为普通区域;深色为已售座位,白色为可选座位).求下列事件的概率:(1)小秋独自观影,他选择第4排或第5排的概率是_________;(2)小秋约小叶一同观影,求小秋选择2个同排相邻的座位恰好都在黄金区域的概率.25.如图三张不透明的卡片,正面图案分别是我国著名的古代数学家祖冲之、杨辉和赵爽的头像,卡片除正面图案不同外,其余均相同,将这三张卡片背面向上洗匀从中随机抽出一张,记录图像后放回,重新洗匀后再从中随机抽取一张,请你用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“祖冲之”的概率.26.对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,C,D四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A小区的概率是;(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据统计图可知试验结果的频率在30%—40%之间,然后分别计算出四个选项的概率,概率在30%—40%之间即符合题意.【详解】A、掷一枚骰子,出现4点的概率为16,不符合题意;B、抛一枚硬币,出现反面的概率为12,不符合题意;C、任意写出一个整数,能被3整除的概率为13,符合题意;D、从一副扑克中任取一张,取到“大王”的概率为1 54.故答案为C.【点睛】本题主要考查了利用频率估计概率以及运用概率公式求概率,掌握利用频率估计概率的方法成为解答本题的关键.2.C解析:C【详解】解:∵共有4个球,红球有1个,∴摸出的球是红球的概率是:P=14.故选C.【点睛】本题考查概率公式.3.C解析:C【详解】画树状图得:∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,∴两次抽取的卡片上的数字之积为正偶数的概率是:21=.63故选C.【点睛】本题考查运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.4.C解析:C【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与构成等腰三角形的情况,再利用概率公式即可求得答案.【详解】画树状图得:∵共有27种等可能的结果,构成等腰三角形的有15种情况,∴以a、b、c为边长正好构成等腰三角形的概率是:155=.279故选:C.【点睛】本题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.5.D解析:D【分析】设口袋中红球有x个,用黄球的个数除以球的总个数等于摸到黄球的频率,据此列出关于x的方程,解之可得答案.【详解】解:设口袋中红球有x个,根据题意,得:66x=0.6,解得x=4,经检验:x=4是分式方程的解,所以估计口袋中大约有红球4个,故选:D.【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.6.C解析:C【分析】根据题意画出树状图得出所有等可能的结果与两次抽到的数字之积是正数的情况数,然后利用概率公式求解即可.【详解】解:两个正数分别用a,b表示,一个负数用c表示,画树状图如下:共有9种等情况数,其中两次抽到的数字之积是正数的有5种,则两次抽到的数字之积是正数的概率是59;故选:C.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.7.B解析:B【分析】画树状图列出所有情况,看数字之和等于4的情况数占总情况数的多少即可.【详解】画树状图得:则共有9种等可能的结果,其中两张牌的牌面数字之和等于4的有3种结果, ∴两张牌的牌面数字之和等于4的概率为 39=13, 故选:B . 【点睛】本题考查列表法和树状图法,解题的关键是可以不重复不遗漏的列出所有可能的结果.8.D解析:D 【分析】直接利用概率公式进行求解,即可得到答案. 【详解】解:∵共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个. ∴1张抽奖券中奖的概率是:102030100++=0.6,故选:D . 【点睛】本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.9.B解析:B 【分析】画树状图得出所有情况数和遇到两次红灯的情况数,根据概率公式即可得答案. 【详解】根据题意画树状图如下:共有8种等情况数,其中遇到两次红灯的有3种, 则遇到两次红灯的概率是38,故选:B . 【点睛】本题考查利用列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比;根据树状图得到遇两次红灯的情况数是解题关键.10.A解析:A 【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小灯泡发光的情况,再利用概率公式即可求得答案. 【详解】 解:画树状图得:∵共有12种等可能的结果,现任意闭合其中两个开关,则小灯泡发光的有6种情况, ∴小灯泡发光的概率为612=12. 故选:A . 【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.11.A解析:A 【分析】可根据“黑球数量÷黑白球总数=黑球所占比例”来列等量关系式,其中“黑白球总数=黑球个数+白球个数“,“黑球所占比例=随机摸到的黑球次数÷总共摸球的次数” 【详解】设盒子里有白球x 个, 根据=黑球个数摸到黑球次数小球总数摸球总次数得:8808400x =+ 解得:x=32.经检验得x=32是方程的解. 答:盒中大约有白球32个. 故选;A . 【点睛】此题主要考查了利用频率估计概率,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解,注意分式方程要验根.12.B解析:B 【分析】由表格可知共摸球1000次,其中摸到白球的频率稳定在0.4,由此知袋子中摸出一个球,是白球的概率为0.4,据此根据概率公式可得答案. 【详解】解:由表格可知共摸球1000次,其中摸到白球的频率稳定在0.4, ∴在袋子中摸出一个球,是白球的概率为0.4, 设白球有x 个,则3xx+=0.4, 解得:x=2, 故选:B . 【点睛】本题主要考查利用频率估计概率及概率公式,熟练掌握频率估计概率的前提是在大量重复实验的前提下是解题的关键.二、填空题13.13【分析】在同样条件下大量反复试验时随机事件发生的频率逐渐稳定在概率附近可以从比例关系入手设出未知数列出方程求解【详解】解:设袋中有黑球x 个由题意得:=02解得:x=13经检验x=13是原方程的解解析:13 【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设出未知数列出方程求解. 【详解】解:设袋中有黑球x 个,由题意得:52xx +=0.2, 解得:x=13,经检验x=13是原方程的解, 则布袋中黑球的个数可能有13个. 故答案为:13. 【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.14.【分析】根据题意把所有可能出现的结果用表格表示出来即可求解【详解】解:所有可能出现的结果用表格表示为:共有9种等可能的结果其中两人恰好选中同一根绳子的结果共有3种∴两人恰好选中同一根绳子的概率为:故解析:1 3【分析】根据题意,把所有可能出现的结果用表格表示出来,即可求解.【详解】解:所有可能出现的结果用表格表示为:共有9种等可能的结果,其中两人恰好选中同一根绳子的结果共有3种,∴两人恰好选中同一根绳子的概率为:3193=,故答案为:13.【点睛】本题考查用列表法或画树状图法求概率,解题的关键是根据题意列出所有可能出现的结果.15.4【分析】根据概率的求法找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率【详解】设袋子中白球有x个由题意得=04解得:x=4经检验x=4是原方程的解故袋子中白球有4个故答解析:4【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】设袋子中白球有x个,由题意得,6xx+=0.4,解得:x=4,经检验x=4是原方程的解故袋子中白球有4个, 故答案为:4. 【点睛】此题考查了利用概率的求法估计总体个数,利用如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=mn是解题关键. 16.6【分析】利用表格中摸到红球频率估计随机摸出一个球恰好是红球的概率即可【详解】解:由表格中的数据可得摸到红球频率大约为06则随机摸出一个球恰好是红球的概率约为06故答案为06【点睛】本题主要考查了利解析:6 【分析】利用表格中摸到红球频率估计随机摸出一个球恰好是红球的概率即可. 【详解】解:由表格中的数据可得,摸到红球频率大约为0.6,则随机摸出一个球恰好是红球的概率约为0.6. 故答案为0.6. 【点睛】本题主要考查了利用频数估计概率,明确题意、掌握频率和概率的关系是解答本题的关键.17.【分析】随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数【详解】解:抽中数学题的概率为故答案为:【点睛】本题考查了概率正确利用概率公式计算是解题的关键解析:13【分析】随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数. 【详解】解:抽中数学题的概率为615673=++,故答案为:13. 【点睛】本题考查了概率,正确利用概率公式计算是解题的关键.18.10【分析】先由频率=频数÷数据总数计算出频率再由简单事件的概率公式列出方程求解即可【详解】解:摸了150次其中有50次摸到黑球则摸到黑球的频率是设口袋中大约有x 个白球则解得故答案为:10【点睛】考解析:10【分析】先由“频率=频数÷数据总数”计算出频率,再由简单事件的概率公式列出方程求解即可. 【详解】解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是5011503=, 设口袋中大约有x 个白球,则5153x =+, 解得10x =. 故答案为:10. 【点睛】考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是得到关于黑球的概率的等量关系.19.8【分析】设有红球有x 个利用频率约等于概率进行计算即可【详解】设红球有x 个根据题意得:=20解得:x =8即红色球的个数为8个故答案为:8【点睛】本题考查了由频率估计概率的知识解题的关键是了解大量重复解析:8 【分析】设有红球有x 个,利用频率约等于概率进行计算即可. 【详解】 设红球有x 个, 根据题意得:40x=20%, 解得:x =8,即红色球的个数为8个, 故答案为:8. 【点睛】本题考查了由频率估计概率的知识,解题的关键是了解大量重复实验中事件发生的频率等于事件发生的概率.20.【分析】用这批口罩的只数×合格口罩的概率列式计算即可得到合格的只数【详解】2000×09=2000×09=1800(只)故答案为:1800【点睛】本题主要考查了用样本估计总体生产中遇到的估算产量问题解析:【分析】用这批口罩的只数×合格口罩的概率,列式计算即可得到合格的只数. 【详解】2000×0.9=2000×0.9=1800(只). 故答案为:1800. 【点睛】本题主要考查了用样本估计总体,生产中遇到的估算产量问题,通常采用样本估计总体的方法.三、解答题21.(1)12;(2)图表见解析,P=23【分析】(1)根据题意,抽取1名志愿者总共有4种可能,男生有2人,利用概率公式即可求解抽取1名恰好是男生的概率;(2)根据题意列表,可分别得到总共有多少种等可能的结果与符合条件的结果,根据概率公式即可求解.【详解】(1)抽取1名,恰好是男生的概率为:2142P==,(2)列表得:由表格可知:总共有12种等可能的结果,其中恰好是1名男生和1名女生的结果有8种结果,所以抽取2名,恰好是1名男生和1名女生的概率为:82123P==.【点睛】本题考查了概率的求解,解题关键是准确列出表格,得到所有的等可能结果,再从中选取符合条件的结果,然后利用概率公式计算.22.(1)14;(2)78【分析】(1)画树形图展示所有8种等可能的结果数,再找出甲、乙、丙三名学生在同一个餐厅用餐的结果数,然后根据概率公式求解;(2)从树状图中找出甲、乙、丙三名学生中至少有一人在B餐厅用餐的结果数,然后根据概率公式求解.【详解】解:画树状图如下:甲、乙、丙选择餐厅的所有可能结果有8种,(1)甲、乙、丙三名学生在同一个餐厅用餐的可能结果有2种,∴P(甲、乙、丙三名学生在同一个餐厅用餐)2184==;(2)甲、乙、丙三名学生中至少有一人在B餐厅用餐的可能结果有7种,∴P(甲、乙、丙三名学生中至少有一人在B餐厅用餐)=78.【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.23.(1)树状图见解析,共有6种可能的选法;(2)18.【分析】(1)利用直接列举得到所有6种等可能的结果数;(2)画树状图展示所有16种等可能的结果数,再找出他们两人恰好选修同一门课程的结果数,然后根据概率公式求解.【详解】解:(1)画树状图如下:共有12种等可能的结果数,不重复的选法有6种:AB、AC、AD、BC、BD、CD.(2)画树状图如下:共有16种等可能的结果数,其中他们两人恰好修书法或足球的结果数为2,所以他们两人恰好选修书法或足球的概率为21 168=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.24.(1)12;(2)12【分析】(1)由概率公式求解即可;(2)由概率公式求解即可.【详解】解:(1)由题意知:白色为可选座位,共2+2+1+3=8(个)其中,第4排1个空位,第5排3个空位,共4个空位,小秋独自观影,他选择第4排或第5排的概率是41 82 =,故答案为:12;(2)小秋选择2个同排相邻的座位共有4个结果,其中小秋选择2个同排相邻的座位恰好都在黄金区域的结果有2个,∴小秋选择2个同排相邻的座位恰好都在黄金区域的概率为21 =42.【点睛】.此题考查的是概率的应用与计算.用到的知识点为:概率=所求情况数与总情况数之比.25.1 9【分析】列表得出所有等可能结果,然后根据概率公式列式计算即可得解【详解】解:用A表示祖冲之,用B表示杨辉,用C表示赵爽,列表如下:“祖冲之”的有1种结果,所以抽出的两张卡片上的图案都是“祖冲之”的概率为19.【点睛】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.26.(1)14;(2)甲组抽到A小区,同时乙组抽到C小区的概率为112.【分析】(1)直接根据概率公式求解即可;(2)根据题意画出树状图得出所有等可能的情况数和甲组抽到A小区,同时乙组抽到C 小区的情况数,然后根据概率公式即可得出答案.【详解】解:(1)共有A,B,C,D四个小区甲组抽到A小区的概率是14.答案为:14.(2)根据题意画树状图如下:∵共有12种等可能的结果数,其中甲组抽到A小区,同时乙组抽到C小区的结果数为1,∴甲组抽到A小区,同时乙组抽到C小区的概率为112.【点睛】本题考查了树状图法求概率,树状图法适合两步或两步以上完成的事件,用到的知识点为:概率=所求情况数与总情况数之比.。

北师大版九年级上册数学第三章概率的进一步认识测试题

北师大版九年级上册数学第三章概率的进一步认识测试题
A.3项B.4项C.5项D.6项
二、填空题(共20分)
9.某校有一支由12人组成的篮球队,年龄结构如下表.
年龄(岁)
14
15
16
17
人数(人)
2
6
3
1
从中抽取1人,年龄不小于15岁的概率是.
10.如图表示某班21位同学衣服上口袋的数目.若任选一位同学,则其衣服上口袋数为5的概率是.
11.一个科室有3名男士、2名女士,从中任选2人做一项接待工作,则选到的人都女士的概率为.
(1)判断线段MN与线段BM的位置关系与数量关系,说明理由;
(2)如果CD=5,求NF的长.
23.某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.
(1)求该商品每天的销售量y与销售单价x之间的函数关系式;
(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?
(1)如果花2元摸1个球,那么摸不到奖的概率是多少?
(2)如果花4元同时摸2个球,那么获得10元奖品的概率是多少?
20.一个口袋里有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程.实验中总共摸了200次,其中有50次摸到红球.
A. B. C. D.
7.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为( )
A.(x+1)(x+2)=18B. x2﹣3x+16=0C.(x﹣1)(x﹣2)=18D. x2+3x+16=0

北师大版九年级数学上册《概率的进一步认识》单元测试卷及答案解析

北师大版九年级数学上册《概率的进一步认识》单元测试卷及答案解析

北师大版九年级数学上册《概率的进一步认识》单元测试卷一、选择题1、随机掷一枚均匀的硬币两次,两次都是正面的概率是()A.B.C.D.无法确定2、某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()A.B.C.D.3、外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是A.B.C.D.4、如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.5、要在一只口袋中装入若干个形状与大小都完全相同的球,使得从袋中摸到红球的概率为,四位同学分别采用了下列装法,你认为他们中装错的是()A.口袋中装入10个小球,其中只有两个红球B.装入1个红球,1个白球,1个黄球,1个蓝球,1个黑球C.装入红球5个,白球13个,黑球2个D.装入红球7个,白球13个,黑球2个,黄球13个6、某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100粒黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来有()A.10粒B.160粒C.450粒D.500粒7、下列说法正确的是()A.抛一枚硬币正面朝上的机会与抛一枚图钉钉尖着地的机会一样大;B.为了解汉口火车站某一天中通过的列车车辆数,可采用全面调查的方式进行;C.彩票中奖的机会是1%,买100张一定会中奖;D.中学生小亮,对他所在的那栋住宅楼的家庭进行调查,发现拥有空调的家庭占100%,于是他得出全市拥有空调家庭的百分比为100%的结论.8、盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为()A.90个B.24个C.70个D.32个二、填空题9、学校要从小明、小红与小华三人中随机选取两人作为升旗手,则小明和小红同时入选的概率是_________.10、哥哥与弟弟玩一个游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,将标有数字的一面朝下,哥哥从中任意抽取一张,记下数字后放回洗匀,然后弟弟从中任意抽取一张,计算抽得的两个数字之和,若和为奇数,则弟弟胜;若和为偶数,则哥哥胜,该游戏对双方____.(填“公平”或“不公平”)11、如图,在4×4正方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是______.12、从﹣1,2,3,﹣6这四个数中任选两数,分别记作m,n,那么点(m,n)在函数图象上的概率是____.13、分别从数﹣5,﹣2,1,3中,任取两个不同的数,则所取两数的和为正数的概率为_______.14、要在一只不透明的袋中放入若干个只有颜色不同的乒乓球,搅匀后,使得从袋中任意摸出一个乒乓球是黄色的概率是,可以怎样放球______(只写一种).15、在□4□4的空格中,任意填上“+”或“-”,能构成完全平方式的概率是______.16、小明有三件上衣,五条长裤,则他有_________种不同的穿法.17、从-1、0、、0.3、π、这六个数中任意抽取一个,抽取到无理数的概率为________.18、现有6个质地,大小完全相同的小球上分别标有数字-1,0.5,,1,1,2.先将标有数字-1,0.5,1的小球放在第一个不透明的盒子里,再将其余小球放在第二个不透明的盒子里,现分别从这两个盒子里各随机取出一个小球,则取出的两个小球上的数字互为倒数的概率为__________.三、解答题19、甲、乙两名同学参加1 000米比赛,由于参赛选手较多,将选手随机分A、B、C三组进行比赛.(1)甲同学恰好在A组的概率是________;(2)求甲、乙两人至少有一人在B组的概率.20、一粒木质中国象棋子“兵”,它的正面雕刻一个“兵”字,它的反面是平的.将它从一定高度下掷,落地反弹后可能是“兵”字面朝上,也可能是“兵”字面朝下.由于棋子的两面不均匀,为了估计“兵”字面朝上的概率,某实验小组做了棋子下掷实验,实验数据如下表:(1)请直接写出a,b的值;(2)如果实验继续进行下去,根据上表的数据,这个实验的频率将稳定在它的概率附近,请你估计这个概率是多少;(3)如果做这种实验2 000次,那么“兵”字面朝上的次数大约是多少?21、一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.(1)用树状图或列表等方法列出所有可能出现的结果;(2)求两次摸到的球的颜色不同的概率.22、中华文明,源远流长;中华汉字,寓意深广.为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D 四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.请你根据统计图解答下列问题:(1)参加比赛的学生共有____名;(2)在扇形统计图中,m的值为____,表示“D等级”的扇形的圆心角为____度;(3)组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.参考答案1、A2、B3、A4、C5、C6、C7、B8、B9、10、不公平11、12、.13、14、2个黄球,3个白球(答案不唯一)15、16、1517、.18、19、(1);(2)20、(1)a=18,b=0.55(2)估计概率的大小为0.55(3)“兵”字面朝上的次数大约是1100次21、(1)详见解析;(2).22、(1)20;(2)40,72;(3).【解析】1、随机掷一枚均匀的硬币两次,共4种情况:(正,正),(正,反),(反,正),(反,反);两次都是正面是其中的一种情况;所以两次都是正面的概率是.故选:A.2、画树状图展示所有12种等可能的结果数,再找出恰好抽到1班和2班的结果数,然后根据概率公式求解.解:画树状图为:共有12种等可能的结果数,其中恰好抽到1班和2班的结果数为2,所以恰好抽到1班和2班的概率=.故选B.3、分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两张卡片上的数字恰好都小于3的情况,再利用概率公式即可求得答案.详解:画树状图得:∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,∴两张卡片上的数字恰好都小于3概率==.故选A.点睛:本题考查的是用列表法或树状图法求概率.解题的关键是要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.4、解:画树状图得:∵共有16种等可能的结果,两个数字都是正数的有4种情况,∴两个数字都是正数的概率是:=.故选C.点睛:此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,解题时注意:概率=所求情况数与总情况数之比.5、试题分析:A、摸到红球的概率为=;B、摸到红球的概率为=;C、摸到红球的概率为=;D、摸到红球的概率为=.故选C.6、试题分析:抓出100黄豆,数出其中有10粒黄豆被染色,所以染色黄豆的频率为,因为50粒黄豆染色后与一袋黄豆充分混匀,所以可用频率估计概率为,设原黄豆数为x,则染色黄豆的概率为=,解得x=450.故选C.7、试题分析:A、因为图钉钉尖与钉面重量不同,而硬币两面的重量相同,所以抛一枚硬币正面朝上的机会与抛一枚图钉钉尖着地的机会不同,故A错误;B、因为一个火车站一天通过的列车数量是有限的,所以为了了解汉口火车站某一天中通过的列车车辆数,可采用普查的方式进行,故B正确;C、彩票中奖的机会是1%,买100张可能会中奖,也可能不中奖,故C错误;D、调查的对象少,不能代表全体,故D错误.故选B.点睛:本题考查了概率的意义,理解概率的意义反映的只是这一事件发生的可能性的大小,概率大,只是说明发生的机会大,但不一定发生.8、试题分析:设黄球数为x个,∵重复360次,摸出白色乒乓球90次,∴摸出白球的频率为=,∴估计摸出白球的概率为,∴=,解得x=24.故选B.点睛:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,先求得白球的频率,再利用频率等于原白球数除以总球数进行求解.9、试题分析:根据题意可得所有可能出现的情况有:小明,小红;小明,小华;小红,小华三种情况,则符合题意的只有1种,故概率为.10、列树状图得:共有9种情况,和为偶数的有5种,所以哥哥赢的概率是,那么弟弟赢的概率是,所以该游戏对双方不公平.点睛:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,注意本题是放回实验.解决本题的关键是得到相应的概率,概率相等就公平,否则就不公平.11、根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有12个,而能构成一个轴对称图形的有2个情况(如图所示)∴使图中黑色部分的图形构成一个轴对称图形的概率是.12、试题分析:画树状图得:∵共有12种等可能的结果,点(m,n)恰好在反比例函数图象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴点(m,n)在函数图象上的概率是:=.故答案为:.13、如图所示:由树状图可知,共有12中可能的情况,两个数的和为正数的共有4种情况,所以所取两个数的和为正数的概率为=.故答案为:.点睛:本题主要考查的是列表法与树状图法求概率,熟练掌握概率公式是解题的关键.14、从袋中任意摸出一个乒乓球是黄色的概率是,则黄色球占总球数的,据此放球,故答案为:放入2个黄球,3个白球等.15、此题考查了完全平方式与概率的应用,解题要注意成完全平方式的形式,然后根据概率的概念计算即可.解:能够凑成完全平方式,则4a前面可是“-”,也可以是“-”,但4前面的符号一定是“+”,此题总共有(-,—)、(+,)、(+,—)、(-,+)四种情况,其中可以构成完全平方式占2种,所以可以构成完全平方式的概率=.故答案为:.16、画树状图:有15中穿法.故答案为15.点睛:掌握画树状图解决问题的方法.17、由从﹣1、0、、0.3、π、这六个数中任意抽取一个,抽取到无理数的有2种情况,直接利用概率公式求解即可求得答案.解:∵从﹣1、0、、0.3、π、这六个数中任意抽取一个,抽取到无理数的有2种情况,即:、π;∴抽取到无理数的概率为:.故答案为:.18、由题意可得,所有的可能性为:(−1,)、(−1,1)、(−1,2)、(0.5,)、(0.5,1)、(0.5,2)、(1,)、(1,1)、(1,2),故取出的两个小球上的数字互为倒数的概率为:,故答案为:.19、分析:(1)可从甲入手分析,甲可能被分到A,B,C三个组中的任一组,而当甲分到A 组时,此时乙可能被分到3组中的任一组;(2)同理,分析出当甲分到B组或C组时乙的分组情况,接下来即可得出总情况数,再根据所列树状图找出甲、乙两人至少有一人在B组的的情况数,再根据概率公式解答即可.详解:(1);(2)(2)所有可能出现的结果有:(A,A),(A,B),(A,C),(B,A),(B,B),(B,C),(C,A),(C,B),(C,C)共有9种,它们出现的可能性相同,所有的结果中,满足“至少有一人抽到B项目”(记为事件A)的结果有5种,所以P(A)=.点睛:如果事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.20、试题分析:(1)根据图中信息,用频数除以实验次数,得到频率,由于试验次数较多,可以用频率估计概率;(2)根据表中数据,试验频率为0.7,0.45,0.63,0.59,0.52,0.55,0.56,0.55稳定在0.55左右,即可估计概率的大小.(3)根据利用频率估计概率可以得出出现“兵”字概率会接近于0.55,故可以得出游戏规则.试题解析:(1)a=18,b=0.55.(2)根据表中数据,试验频率为0.7,0.45,0.63,0.59,0.52,0.55,0.56,0.55,稳定在0.55左右,故估计概率的大小为0.55.(3)2000×0.55=1100(次).∴“兵”字面朝上的次数大约是1100次.21、试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)中树状图可求得两次摸到的球的颜色不同的情况有4种,再利用概率公式求解即可求得答案.试题解析:(1)如图:,所有可能的结果为(白1,白2)、(白1,红)、(白2,白1)、(白2,红)、(红,白1)、(红,白2);(2)共有6种情况,两次摸到的球的颜色不同的情况有4种,概率为.22、试题分析:(1)根据等级为A的人数除以所占的百分比求出总人数;(2)根据D级的人数求得D等级扇形圆心角的度数和m的值;(3)列表得出所有等可能的情况数,找出一男一女的情况数,即可求出所求的概率.试题解析:解:(1)根据题意得:3÷15%=20(人),故答案为:20;(2)C级所占的百分比为×100%=40%,表示“D等级”的扇形的圆心角为×360°=72°;故答案为:40、72.(3)列表如下:所有等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种,则P恰好是一名男生和一名女生==.。

度第一学期北师大版九年级数学_第三章_概率的进一步认识_单元过关检测试题(有答案)

度第一学期北师大版九年级数学_第三章_概率的进一步认识_单元过关检测试题(有答案)

2019-2019学年度第一学期北师大版九年级数学第三章概率的进一步认识单元过关检测试题考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 9 小题,每小题 3 分,共 27 分)1.甲、乙两盒中各放入分别写有数字,,的三张卡片,每张卡片除数字外其他完全相同.从甲盒中随机抽出一张卡片,再从乙盒中随机摸出一张卡片,摸出的两张卡片上的数字之和是的概率是()A. B. C. D.2.一个不透明的布袋中,装有红、黄、白三种只有颜色不同的小球,其中红色小球有个,黄、白色小球的数目相同、为估计袋中黄色小球的数目,每次将袋中小球搅匀后摸出一个小球记下颜色,再次搅匀…多次试验发现摸到红球的频率是,则估计黄色小球的数目是()A.个B.个C.个D.个3.如图所示的两个圆盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是()A. B. C. D.4.某人在做抛掷硬币试验中,抛掷次,正向朝上有次(正面朝上的频率是),则下列说法正确的是()A.(正面朝上)一定等于B.(正面朝上)一定不等于C.多投一次,(正面朝上)更接近D.投掷次数逐渐增加,(正面朝上)稳定在附近5.连续两次抛掷一枚硬币,第一次正面朝上,第二次反面朝上的概率是()A. B. C. D.6.假定鸡蛋孵化后,鸡雏为雌或雄的羝概率相同,如果两个鸡蛋全部成功孵化,则两只鸡雏均为雄鸡的槪率是()A. B. C. D.7.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球次,其中次摸到黑球,估计盒中大约有白球()A.个B.个C.个D.个8.如图,两个转盘分别被分成等份和等份,分别标有数字、、和、、、,转动两个转盘各一次(假定每次都能确定指针所指的数字),两次指针所指的数字之和为或的概率是()A. B. C. D.9.小王家新锁的密码是位数,他记得前两位数是,后两位数是,中间两位数忘了,那么他一次按对的概率是()A. B. C. D.二、填空题(共 10 小题,每小题 3 分,共 30 分)10.在一个不透明的口袋中有个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在左右,则口袋中的白球大约有________个.11.一个不透明的文具袋装有型号完全相同的支红笔和支黑笔,小明、小红两人先后从袋中随机取出一支笔(不放回),两人所取笔的颜色相同的概率是________.12.两个装有乒乓球的盒子,其中一个装有个白球个黄球,另一个装有个白球个黄球.现从这两个盒中随机各取出一个球,则取出的两个球一个是白球一个是黄球的概率为________;至少有一个是白球的概率为________.13.一水塘里有鲤鱼、鲢鱼共尾,一渔民通过多次捕捞实验后发现,鲤鱼出现的频率为,则水塘有鲢鱼________尾.14.在一个不透明的盒子中装有个小球,他们只有颜色上的区别,其中有个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复实验后发现,摸到红球的频率稳定于,那么可以推算出大约是________.15.一个布袋里装有只有颜色不同的个球,其中个红球,个白球.从中任意摸出个球,记下颜色后放回,搅匀,再任意摸出个球,摸出的个球都是红球的概率是________.16.分别从、、、四个数中随机取两个数,第一个作为十位数字,第二个作为个位数字,组成一个两位数,则这个两位数是的倍数的概率是________.17.一个口袋里有个球,其中红球、黑球、黄球若干个,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验次,其中有次摸到黄球,由此估计袋中的黄球有________个.18.从下面的张牌中,任意抽取两张.其点数和是奇数的概率是________.第 1 页19.小红、小明、小芳在一起做游戏时,需要确定做游戏的先后顺序,他们约定用“剪刀、布、锤子”的方式确定,则在一回合中三个人都出“剪刀”的概率是________. 三、解答题(共 7 小题 ,每小题 10 分 ,共 70 分 )20.把 张形状、大小相同但画面不同的风景图片全部从中间剪断,然后将四张形状相同的小图片混合在一起.现从这四张图片中随机的一次抽出 张.请用列表或画树状图的方法表示出上述实验所有可能结果. 求这 张图片恰好组成一张完整风景图概率. 21.对一批西装质量的抽检情况如下:从这批西装中任选一套是正品的概率是多少? 若要销售这批西装 件,为了方便购买次品西装的顾客前来调换,至少应该进多少件西装? 22.小华有 张卡片,小明有 张卡片,卡片上的数字如图所示.小华和小明分别从自己的卡片中随机抽取一张.请用画树状图(或列表)的方法,求抽取的两张卡片上的数字和为 的概率. 23.在一个袋子中装有大小相同的 个小球,其中 个蓝色, 个红色. 从袋中随机摸出 个,求摸到的是蓝色小球的概率; 从袋中随机摸出 个,用列表法或树状图法求摸到的都是红色小球的概率; 在这个袋中加入 个红色小球,进行如下试验:随机摸出 个,然后放回,多次重复这个试验,通过大量重复试验后发现,摸到红色小球的频率稳定在 ,则可以推算出 的值大约是多少? 24.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共 只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:“摸到白球”的概率的估计值是________(精确到 );试估算口袋中黑、白两种颜色的球各有多少只?25.小颖和小红两位同学在学习“概率”时,做掷骰子(质地均匀的正方体)实验. 他们在一次实验中共掷骰子 次,试验的结果如下: ②小红说:“根据实验,出现 点朝上的概率最大.”她的说法正确吗?为什么?小颖和小红在实验中如果各掷一枚骰子,那么两枚骰子朝上的点数之和为多少时的概率最大?试用列表或画树状图的方法加以说明,并求出其最大概率.26.甲乙两人玩数字游戏,先由甲写一个数,再由乙猜甲写的数:要求:他们写和猜的数字只在 , 、 、 , 这五个数字中:请用列表法或树状图表示出他们写和猜的所有情况;如果他们写和猜的数字相同,则称他们“心灵相通”:求他们“心灵相通”的概率; 如果甲写的数字记为 ,把乙猜的数字记为 ,当他们写和猜的数字满足 ,则称他们“心有灵犀”,求他们“心有灵犀”的概率. 答案 1.B 2.B 3.C 4.D 5.D 6.C 7.A 8.C 9.D 10. 11.12.13. 14.15.16.17.18.19.20.解:用、表示一张风景图片被剪成的两半,用、表示另一张风景图片被剪成的两半,画树状图为:共有种等可能的结果数,其中张图片恰好组成一张完整风景图的结果数为,所以张图片恰好组成一张完整风景图的概率.21.解:答案为:;;;;;;从这批西装中任选一套是正品的概率是;为了方便购买次品西装的顾客前来调换,所进西装的件数(件).22.解:或∴ (抽取的两张卡片上的数字和为).23.解: ∵ 个小球中,有个蓝色小球,∴ (蓝色小球);画树状图如下:共有种情况,摸到的都是红色小球的情况有种,(摸到的都是红色小球); ∵大量重复试验后发现,摸到红色小球的频率稳定在,∴摸到红色小球的概率等于,∴,解得:.24.由摸到白球的概率为,所以可估计口袋中白种颜色的球的个数(个),黑球(个).答:黑球个,白球个.25.解: ① ;②说法是错误的.在这次试验中,“ 点朝上”的频率最大并不能说明“ 点朝上”这一事件发生的概率最大.因为当试验的次数较大时,频率稳定于概率,但并不完全等于概率..26.解:如图所示:则他们“心灵相通”的概率为:.根据甲写的数字记为,把乙猜的数字记为,当他们写和猜的数字满足,则称他们“心有灵犀”,满足条件的事件是,可以列举出所有的满足条件的事件,第 3 页①若,则,;②若,则,,;③若,则,,;④若,则,,;⑤若,则,;总上可知共有种结果,∴他们“心有灵犀”的概率为:.。

北师大版九年级数学上册第三章《概率的进一步认识》测试题

北师大版九年级数学上册第三章《概率的进一步认识》测试题

不要慌张,要仔细做题 呦!《概率的进一步认识》检测题黑神庙中学九年级( )班 姓名 学号 得分 一.选择题(每小题3分,共30分)1.“任意买一张电影票,座位号是3的倍数”,此事件是( ) A.不可能事件 B.不确定事件 C.必然事件 D.以上都不是2.下列说法中正确的是 ( )A.可能性很小的事件在一次实验中一定不会发生B.可能性很小的事件在一次实验中一定会发生C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生3.下列事件为确定事件的是( )A.掷一枚质地均匀的骰子,骰子停止转动后偶数点朝上B.从一副扑克牌中任意抽取一张牌,抽到的牌是红桃C.任意选择电视的某一频道,正在播放动画片D.在同一年出生的367名学生中,至少有两人的生日在同一天4.一个袋子中有4个珠子,其中2个是红色,2个蓝色,除颜色外其余特征均相同,若在这个袋中任取2个珠子,都是红色的概率是 ( ) A . B . C . D .5.掷两枚硬币,正面都朝上的概率为( )A.21 B.31 C.41 D.51213141616.有木条4根,分别为10cm ,8cm ,4cm ,2cm,从中任取三根能组成三角形的概率是( )A.21B.31C.41D.51 7.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同。

小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是( ) A.6 B.16 C.18 D.248.如图是从一副扑克牌中取出的两组牌,分别是黑桃1、2、3、4和方块1、2、3、4,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,则摸出的两张牌的牌面数字之和等于5的概率是( ) A.21 B.31 C.41 D.53 9.如图,图中的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是( )A. 25B. 310C.320D.1510.一个均匀的立方体六个面上分别标有1,2,3,4,5,6,如图是这个立方体表面的展开图,抛掷这个立方体,则朝上一面的数恰好等于朝下一面的数的2倍的概率是( )A .61B .C .D .312132二.填空题(每题4分,共20分)11.如果当一次试验要涉与两个因素(例如掷两骰子)并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,我们通常采用 求概率;当一次试验要涉与3个或3个以上的因素(例如从3个口袋中取球)时,为了不重不漏地列出所有可能结果,通常采用 求概率.12.不透明的袋子中有五个球,三红二白,从中摸一个球,记下颜色,放回去再摸一个球,则摸到二红的机会是 .13.小王手里拿着黑桃1和黑桃2两张牌,小亮手里拿着梅花1和梅花2两张牌,他们各出一张,共有 种不同的出牌方式,其中牌面数之和为4的概率是 .14.密码锁的密码是一个5位密码,每个密码的数字都可以从0到9的任何一个.某人忘了后2位号码,随意拨动后2位号码正好能开锁的概率是 .15.为了估计湖里有多少条鱼,有如下方案:从湖里捕上100条做上标记,然后放回湖里,经过一段时间,第二次再捕上200条,若其中有标记的鱼有32条,则估计湖里大约有 条鱼. 三.解答题(共50分)12345348916.(6分)小明和小亮用如图的同一个转盘进行“配紫色”游戏.游戏规则如下:连续转动两次转盘,如果两次转盘转出的颜色相同或配成紫色(若其中一次转盘转出蓝色,另一次转出红色,则可配成紫色),则小明胜,否则小亮胜.你认为这个游戏对双方公平吗?请说明理由.17.(6分)某人有红、白、蓝三件衬衫,红、白、蓝三条长裤,该人任意拿一件衬衫和一条长裤,正好是一套白的概率为多少?18.(8分)不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球2个,黄球1个,蓝球1个,第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.19.(10分)分别把带有指针的圆形转盘A、B分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.20.(10分)掷两枚质地均匀的骰子,用列表法求下列事件的概率:(1)两枚骰子点数和不小于9的概率;(2)两枚骰子点数和是4的倍数的概率.21.(10分)我校安排两辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小明、小强与小军都可以从这两辆车中任选一辆搭乘,用画树状图求小明与小强同车的概率.。

北师大九年级上《第三章概率的进一步认识》单元测试题(含答案)

北师大九年级上《第三章概率的进一步认识》单元测试题(含答案)

第三章 概率的进一步认识 第Ⅰ卷 (选择题 共30分)一、选择题(每小题3分,共30分)1.三张外观相同的卡片上分别标有数字1,2,3,从中随机一次性抽出两张,这两张卡片上的数字恰好都小于3的概率是( )A.13B.23C.16D.192.某学校在八年级开设了数学史、诗词赏析、陶艺三门课程,若小波和小睿两名同学每人随机选择其中一门课程,则小波和小睿选到同一门课程的概率是( )A.12B.13C.16D.193.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时得到的两个球的颜色中有“一红一黄”的概率是( )A.16B.29C.13D.234.有3个整式x ,x +1,2,先随机取一个整式作为分子,再从余下的整式中随机取一个作为分母,恰能组成分式的概率是( )A.13B.12C.23D.565.在物理课上,某实验的电路图如图1所示,其中S 1,S 2,S 3表示电路的开关,L 表示小灯泡,R 为保护电阻.若闭合开关S 1,S 2,S 3中的任意两个,则小灯泡L 发光的概率为( )图1A.16B.13C.12D.236.如图2,两个转盘分别自由转动一次,当它们都停止转动时,两个转盘的指针都指向2的概率为( )图2A.12B.14C.18D.1167.在一个不透明的口袋里装了只有颜色不同的黄球、白球若干只.某小组做摸球试验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不断重复这一过程.下表是活动中的一组数据,则摸到黄球的概率约是( ) 摸球的次数n100 150 200 500 8001000摸到黄球的次数m 52 69 96 266 393 507摸到黄球的频率m n0.520.460.480.530.490.51A.0.4 B .0.5 C .0.6 D .0.78.某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下表格,则符合这一结果的试验最有可能的是( )试验次数100200300500800 1000 2000频率0.3650.3280.330.3340.3360.3320.333A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C .抛一个质地均匀的正六面体骰子,向上的面点数是5D .抛一枚硬币,出现反面的概率9.为了估计不透明的袋子里装有多少个球,先从袋中摸出10个球都做上标记,然后放回袋中去,充分摇匀后再摸出10个球,发现其中有一个球有标记,那么你估计袋中大约有球( )A .10个B .20个C .100个D .121个10.有A ,B 两粒质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6),小王掷骰子A ,朝上的数字记作x ;小张掷骰子B ,朝上的数字记作y .在平面直角坐标系中有一矩形,四个点的坐标分别为(0,0),(6,0),(6,4)和(0,4),小王、小张各掷一次所确定的点P (x ,y )落在矩形内(不含矩形的边)的概率是( )A.23B.512C.12D.712 请将选择题答案填入下表:题号 1 2 3 4 5 6 7 8 9 10 总分 答案第Ⅱ卷 (非选择题 共90分)二、填空题(每小题3分,共18分)11.一个不透明的袋子中装有2个红球,1个绿球,这些球除颜色不同外其余都相同,从袋子中随机摸出一个小球记下颜色后放回,再随机摸出一个小球,则一次摸到红球一次摸到绿球的概率为________.12.从-1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为________.13.小明和小亮做游戏,先是各自背着对方在纸上写一个自然数,然后同时呈现出来.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;否则,小亮获胜.这个游戏对双方________.(填“公平”或“不公平”).14.点P 的坐标是(a ,b),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P(a ,b)在平面直角坐标系中第二象限内的概率是________.15.在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取到白色棋子的概率是25.若再往盒中放进3颗黑色棋子,则取到白色棋子的概率变为14,原来围棋盒中有白色棋子______颗.16.如果任意选择一对有序整数(m ,n),其中|m|≤1,|n|≤3,每一对这样的有序整数被选择的可能性是相等的,那么关于x 的方程x 2+nx +m =0有两个相等实数根的概率是________.三、解答题(共72分)17.(6分)不透明的文具袋中装有规格相同的红、黑两种颜色的通用中性笔芯,其中红色的有3支,黑色的有2支.(1)从文具袋中随机抽取1支笔芯,求恰好抽到的是红色笔芯的概率;(2)从文具袋中随机抽取2支笔芯,求恰好抽到的都是黑色笔芯的概率.(请用画树状图法或列表法求解)18.(6分)研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球和黄球.怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验.摸球试验的要求:先搅拌均匀,每次摸出1个球,放回盒中再继续.活动结果:摸球试验活动一共做了50次,统计结果如下表:无记号有记号球的颜色黄红色黄色红色色摸到的次18 28 2 2数由上述摸球试验可推算:(1)盒中红球、黄球占总球数的百分比分别是多少?(2)盒中有红球多少个?19.(8分)甲、乙、丙三名同学站成一排进行毕业合影留念,请用列表或画树状图的方法列出所有可能的情形,并求出甲、乙两人相邻的概率是多少.20.(8分)九年级某班组织全班活动,班委会准备买一些奖品.班长王倩拿15元钱去商店全部用来购买圆珠笔和铅笔两种奖品,已知圆珠笔的价格为2元/支,铅笔的价格为1元/支,且每种笔至少买一支.(1)有多少种购买方案?请列举所有可能的结果;(2)从上述方案中任选一种方案购买,求买到的圆珠笔与铅笔数量相等的概率.21.(10分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是________;(2)如果小明将“求助”留在第二题使用,请用画树状图或者列表的方法来分析小明顺利通关的概率;(3)从概率的角度分析,你建议小明在第几题使用“求助”?22.(10分)小明、小芳做一个“配色”的游戏.如图3是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,或者转盘A转出了蓝色,转盘B转出了红色,则红色和蓝色在一起配成紫色,这种情况下小芳获胜;同样,蓝色和黄色在一起配成绿色,这种情况下小明获胜;在其他情况下不分胜负.(1)利用列表或画树状图的方法表示此游戏所有可能出现的结果;(2)此游戏规则对小明、小芳公平吗?试说明理由.图323.(12分)一个暗箱中有大小相同的1个黑球和n个白球(记为白1、白2、…、白n),每次从中取出一个球,取到白球得1分,取到黑球得2分,甲从暗箱中有放回地依次取出2个球,而乙从暗箱中一次性取出2个球.(1)若n=2,分别求甲取得3分的概率和乙取得3分的概率;(请用“画树状图”或“列表”等方式给出分析过程)(2)若乙取得3分的概率小于120,则白球至少有多少个?(请直接写出结果)24.(12分)五一假期,某公司组织部分员工分别到A,B,C,D 四地旅游,公司按定额购买了前往各地的车票.图4是未制作完的车票种类和数量的条形统计图,根据统计图回答下列问题:(1)若去D地的车票占全部车票的10%,求去D地车票的数量,并补全条形统计图;(2)若公司采用随机抽取的方式分发车票,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),则员工小胡抽到去A 地的车票的概率是多少?(3)若有一张车票,小王、小李都想要,最后决定采取抛掷一枚各面分别标有数字1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小王掷得着地一面的数字比小李掷得着地一面的数字小,车票给小王,否则给小李”.试用列表或画树状图的方法分析这个规则对双方是否公平.图4详解详析1.A [解析] 列表如下:第一张结果 第二张 1231 2,1 3,12 1,23,2 31,3 2,3卡片上的数字都小于3的情况有2种,∴P(两张卡片上的数字都小于3)=26=13.解题突破从m(m >2)张卡片中一次性抽出两张卡片,可以理解为先抽出一张,再从剩下的里面抽出一张,即属于“抽出不放回”试验问题,可见为两步试验问题,可用列表法求解.2.B [解析] 列表如下:小睿小波 数诗陶数 数,数 数,诗 数,陶 诗 诗,数 诗,诗 诗,陶 陶陶,数 陶,诗 陶,陶共有9有3种,所以其概率为39=13.故选B .3.C [解析] 画树状图如下:一共有6种情况,“一红一黄”的情况有2种, ∴P(一红一黄)=26=13.故选C .4.C [解析] 画树状图如下:共有6种等可能的结果,其中恰能组成分式的结果数为4种, 所以恰能组成分式的概率为46=23.5.B [解析] 列表如下:S 1 S 2S 3S 1(S 1,S 2)(S 1,S 3) S 2 (S 2,S 1)(S 2,S 3)S 3 (S 3,S 1)(S 3,S 2)共有613L 才发光,即小灯泡L 发光的概率是26=13.故选B .6.D [解析] 列表如下:1 2 3 4 1 (1,1) (2,1) (3,1) (4,1) 2 (1,2) (2,2) (3,2) (4,2) 3 (1,3) (2,3) (3,3) (4,3) 4(1,4)(2,4)(3,4)(4,4)的只有1种结果,∴两个转盘的指针都指向2的概率为116.故选D .7.B [解析] 观察表格得:通过多次摸球试验后发现摸到黄球的频率稳定在0.5左右,则P(摸到黄球)=0.5.8.B [解析] A .一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为14,不符合题意;B .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率是13,符合题意;C .抛一个质地均匀的正六面体骰子,向上的面点数是5的概率为16,不符合题意;D .抛一枚硬币,出现反面的概率为12,不符合题意.故选B .9.C10.B [解析] 画树状图如下:∵共有36种等可能的结果,小王、小张各掷一次所确定的点P(x ,y)落在矩形内(不含矩形的边)的有15种情况,∴小王、小张各掷一次所确定的点P(x ,y)落在矩形内(不含矩形的边)的概率是1536=512.故选B .11.49[解析] 画树状图如下:∵共有9种等可能的结果,一次摸到红球一次摸到绿球的有4种情况,∴一次摸到红球一次摸到绿球的概率是49.12.16[解析] 画树状图如下: ∵共有12种等可能的结果,点落在第一象限的可能是(1,2),(2,1)两种情形,∴该点在第一象限的概率为212=16.13.公平 [解析] 两人写的数共有奇偶、偶奇、偶偶、奇奇四种情况,因此同为奇数或同为偶数的概率为24=12,一奇一偶的概率也为24=12,所以这个游戏对双方公平. 14.15[解析] 画树状图如下:共有20种等可能的结果,其中点P(a ,b)在平面直角坐标系中第二象限内的结果数为4,所以点P(a ,b)在平面直角坐标系中第二象限内的概率=420=15.15.216.17 [解析] 依题意知m =0,±1,n =0,±1,±2,±3,∴有序整数(m ,n)共有3×7=21(种).∵方程x 2+nx +m =0有两个相等的实数根,∴Δ=n 2-4m =0,有(0,0),(1,2),(1,-2)三种可能,∴关于x 的方程x 2+nx +m =0有两个相等实数根的概率是321=17. 17.[解析] (1)由不透明的文具袋中装有规格相同的红、黑两种颜色的通用中性笔芯,其中红色的有3支,黑色的有2支,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到的都是黑色笔芯的情况,再利用概率公式即可求得答案.解:(1)∵不透明的文具袋中装有规格相同的红、黑两种颜色的通用中性笔芯,其中红色的有3支,黑色的有2支,∴恰好抽到的是红色笔芯的概率为33+2=35.(2)画树状图如下:∵共有20种等可能的结果,恰好抽到的都是黑色笔芯的只有2种情况,∴恰好抽到的都是黑色笔芯的概率为220=110.18.解:(1)由题意可知,50次摸球试验活动中,出现红球20次,黄球30次,所以红球所占百分比为20÷50×100%=40%,黄球所占百分比为30÷50×100%=60%.答:盒中红球占总球数的40%,黄球占总球数的60%.(2)由题意可知,50次摸球试验活动中,出现有记号的球4次,所以总球数为8÷450=100,所以红球有40%×100=40(个).答:盒中有红球40个. 19.解:用树状图分析如下:∵一共有6种等可能的情况,甲、乙两人相邻的有4种情况, ∴甲、乙两人相邻的概率是46=23.20.解:(1)设买圆珠笔x 支,铅笔y 支, 则2x +y =15,所以y =15-2x.当x =1时,y =13; 当x =2时,y =11; 当x =3时,y =9; 当x =4时,y =7; 当x =5时,y =5; 当x =6时,y =3; 当x =7时,y =1. 所以共有7种购买方案.(2)在这7种方案中,买到的圆珠笔与铅笔数量相等的只有1种,所以P(买到的圆珠笔与铅笔数量相等)=17.21.解:(1)∵第一道单选题有3个选项,∴如果小明第一题不使用“求助”,那么小明答对第一道题的概率是13.故答案为:13.(2)分别用A ,B ,C 表示第一道单选题的3个选项,a ,b ,c 表示第二道单选题剩下的3个选项.画树状图如下:∵共有9种等可能的结果,小明顺利通关的只有1种情况, ∴小明顺利通关的概率为19.(3)∵如果在第一题使用“求助”,小明顺利通关的概率为18,如果在第二题使用“求助”,小明顺利通关的概率为19,∴建议小明在第一题使用“求助”. 解题突破(1)直接利用概率公式求解;(2)此问属于两次试验概率问题,注意第二次试验时只有三种可能;(3)比较第一题使用“求助”小明顺利通关的概率与第二题使用“求助”小明顺利通关的概率的大小,把“求助”用在通关概率大的那一次上.22.解:(1)用列表法将所有可能出现的结果表示如下:转盘B转盘A 红蓝黄红 (红,红) (红,蓝) (红,黄) 蓝 (蓝,红) (蓝,蓝) (蓝,黄) 红 (红,红) (红,蓝) (红,黄) 黄(黄,红) (黄,蓝) (黄,黄)(2)不公平.理由:上面等可能出现的12种结果中,有3种情况能配成紫色,故配成紫色的概率是312,即小芳获胜的概率是14;但只有2种情况能配成绿色,故配成绿色的概率是212,即小明获胜的概率是16.而14>16,故小芳获胜的可能性大,这个“配色”游戏规则对双方是不公平的.23.解:(1)得3分,即为取到黑球、白球各1个.甲从暗箱中有放回地依次取出2个球,画树状图如下:∴甲取得3分的概率为49;乙从暗箱中一次性取出2个球,画树状图如下:∴乙取得3分的概率=46=23.(2)若乙取得3分的概率小于120,则2n +1<120,∴n >39,∴白球至少有40个.24.解:(1)设去D 地的车票有x 张,则x =(x +20+40+30)×10%,解得x =10.答:去D 地的车票有10张. 补全条形统计图如图所示.(2)小胡抽到去A 地的车票的概率为2020+40+30+10=15.答:员工小胡抽到去A 地的车票的概率是15.(3)列表如下: 小李掷得的数字小王掷得的数字1 2 3 41 (1,1) (1,2) (1,3) (1,4)2 (2,1) (2,2) (2,3) (2,4)3 (3,1) (3,2) (3,3) (3,4) 4(4,1)(4,2)(4,3)(4,4)李掷得着地一面的数字小的有6种:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),∴小王掷得着地一面的数字比小李掷得的着地一面数字小的概率为616=38.则小王掷得着地一面的数字不小于小李掷得的着地一面数字的概率为1-38=58.∵58≠38,∴这个规则对双方不公平.。

北师大版九年级数学上册数学_第三章_概率的进一步认识_单元检测试题【有答案】

北师大版九年级数学上册数学_第三章_概率的进一步认识_单元检测试题【有答案】

北师大版九年级数学上册数学第三章概率的进一步认识单元检测试题考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.将分别写有数字,,的三张卡片(除数字外,其余均相同)洗匀后背面朝上摆放,然后从中任意抽取两张,则抽到的两张卡片上的数字之和为偶数的概率是()A. B. C. D.2.在一个不透明的纸箱中放入个除颜色外其他都完全相同的球,这些球中有个红球,每次将球摇匀后任意摸出一个球,记下颜色再放回纸箱中,通过大量的重复摸球实验后发现摸到红球的频率稳定在,因此可以估算出的值大约是()A. B. C. D.3.在一个不透明的布袋中,红色、黑色的球共有个,它们除颜色外其他完全相同.张宏通过多次摸球试验后发现其中摸到红球的频率稳定在附近,则口袋中红球的个数很可能是()A.个B.个C.个D.个4.一个不透明的口袋里装有除颜色外都相同的个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了次,其中有次摸到白球,因此小亮估计口袋中的红球大约为()A.个B.个C.个D.个5.某一部三册的小说,任意排放在书架的同一层上,则各册自左到右或自右到左的顺序恰好为第,,册的概率为()A. B. C. D.6.在一个不透明的口袋里装着只有颜色不同的黑、白两种颜色的球共只,某学习小组作摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回A. B. C. D.7.同时掷两个质地均匀的正方体骰子,骰子的六个面上分别刻有到的点数,则两个骰子向上的一面的点数和为的概率为()A. B. C. D.8.一个口袋中有个黑球和若干个白球,从口袋中随机摸出一球,记下颜色,再放回口袋,不断重复上述过程,共做了次,其中有次摸到黑球,因此估计袋中白球有()A.个B.个C.个D.个9.从、、三个数中随机取一个数为,再随机取一个数(可重复)为,则直线与轴的交点在轴正半轴的概率是()A. B. C. D.10.图示的两个圆盘中,指针落在每一个数字所在的扇形区域上的机会是相等的,那么两个指针同时落在偶数所在的扇形区域上的概率是()A. B. C. D.二、填空题(共 10 小题,每小题 3 分,共 30 分)11.李老师想从小明、小红、小丽和小亮四个人中用抽签的方式抽取两个人做流动值周生,则小红和小丽同时被抽中的概率是________.12.如图所示,一只蚂蚁从点出发到,,处寻觅食物.假定蚂蚁在每个岔路口都可能的随机选择一条向左下或右下的路径(比如岔路口可以向左下到达处,也可以向右下到达处,其中,,都是岔路口).那么,蚂蚁从出发到达处的概率是________.13.口袋中有红色、黄色、蓝色的玻璃球共个,小华通过多次试验后,发现摸到红球、黄球的频率依次是、,则估计口袋中篮球的个数约为________个.14.小李和小王准备到古隆中、水镜庄、黄家湾三个景点去游玩,如果他们各自在这三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选古隆中为第一站的概率是________.15.分别从数,,,中,任取两个不同的数,则所取两数的和为正数的概率为________.16.一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是________.17.一个袋子中装有个球,其中个黑球个白球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出两个球为白球的概率是________.18.一水塘里有鲤鱼、鲫鱼、鲢鱼共尾,一渔民通过多次捕捞实验后发现,鲤鱼、鲫鱼出现的频率分别是和,则这个水塘里大约有鲢鱼________尾. 19.有红黄蓝三种颜色的小球各一个,它们除颜色外完全相同,将这三个小球随机放入编号为①②③的盒子中,若每个盒子放入一个小球,且只放入一个小球,则黄球恰好被放入③号盒子的概率为________.20.两个不透明的袋子,一个装有两个球(个白球,一个红球),另一个装有个球(个白球,个红球,个绿球),小球除颜色不同外,其余完全相同.现从两个袋子中各随机摸出个小球,两球颜色恰好相同的概率是________.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.在四张背面完全相同的纸牌、、、,其中正面分别画有四个不同的几何图形(如图),小华将这张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用、、、表示);求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.22.甲、乙两人用如图所示的两个分格均匀的转盘做游戏:分别转动两个转盘,若转盘停止后,指针指向一个数字(若指针恰好停在分格线上,则重转一次),用所指的两个数字作乘积,如果积大于,那么甲获胜;如果积不大于,那么乙获胜.请你解决下列问题:利用树状图(或列表)的方法表示游戏所有可能出现的结果;求甲、乙两人获胜的概率.“学雷锋活动日”这天,阳光中学安排七、八、九年级部分学生代表走出校园参与活动,活动内容有:.打扫街道卫生;.慰问孤寡老人;.到社区进行义务文艺演出.学校要求一个年级的学生代表只负责一项活动内容.若随机选一个年级的学生代表和一项活动内容,请你用列表法(或画树状图)表示所有可能出现的结果;求九年级学生代表到社区进行义务文艺演出的概率.24.一个不透明的盒中装有若干个只有颜色不同的红球与白球.若盒中有个红球和个白球,从中任意摸出两个球恰好是一红一白的概率是多少?请用画树状图或列表的方式说明;若先从盒中摸出个球,画上记号放回盒中,再进行摸球实验.摸球实验的要求:每次摸球前先搅拌均匀,摸出一个球,记录颜色后放回盒中,再继续,在的条件下估算盒中红球的个数.“端午”节前,第一次爸爸去超市购买了大小、质量都相同的火腿粽子和豆沙粽子若干,放入不透明的盒中,此时随机取出火腿粽子的概率为;妈妈发现小亮喜欢吃的火腿粽子偏少,第二次妈妈又去买了同样的只火腿粽子和只豆沙粽子放入同一盒中,这时随机取出火腿粽子的概率为.请计算出第一次爸爸买的火腿粽子和豆沙粽子各有多少只?若妈妈从盒中取出火腿粽子只、豆沙粽子只送爷爷和奶奶后,再让小亮从盒中不放回地任取只,问恰有火腿粽子、豆沙粽子各只的概率是多少?(用字母和数字表示豆沙粽子和火腿粽子,用列清法计算)26.某校数学兴趣小组成员小华对本班上学期期末考试数学成绩(成绩取整数,满分为分)作了统计分析,请你根据图表提供的信息,解答下列问题:根据学校规定将有的学生参加校级数学冬令营活动,试确定参赛学生的最低资格线?数学老师准备从不低于分的学生中选人介绍学习经验,其中符合条件的小华、小丽同时被选中的概率是多少?答案1.B2.D3.A4.C5.A6.C7.B8.B9.A10.B11.12.13.14.15.16.17.18.19.20.21.解画树状图得:则共有种等可能的结果; ∵既是中心对称又是轴对称图形的只有、,∴既是轴对称图形又是中心对称图形的有种情况,∴既是轴对称图形又是中心对称图形的概率为:.22.解:树状图法:或列表法:根据列出的表,甲,乙.23.解:由题意可画出树状图:由树状图可知共有种可能,九年级学生代表到社区进行义务文艺演出的有种,所以概率是九年级学生代表到社区进行义务文艺演出的概率为.24.红球占,白球占;由题意可知,次摸球实验活动中,出现有记号的球次,∴总球数为,∴红球数为,答:盒中红球有个.25.第一次爸爸买了只火腿粽子,只豆沙粽子.现在有火腿粽子只,豆沙粽子只,送给爷爷,奶奶后,还有火腿粽子只,豆沙粽子只.记豆沙粽子,,;火腿粽子,,,,.恰好火腿粽子、豆沙粽子各只的概率为.分;设四人分别为甲(小华)、乙(小丽)、丙、丁,根据题意,列表可得,∴小华、小丽两同学同时被选中的概率.。

北师大版九年级数学上册第三章概率的进一步认识测试卷(全章)

北师大版九年级数学上册第三章概率的进一步认识测试卷(全章)

北师大版九年级数学测试卷(考试题)第三章概率的进一步认识周周测6一、选择题1. 下列说法正确的是()①试验条件不会影响某事件出现的频率;②在相同的条件下实验次数越多,就越有可能得到较精确的估计值,但各人所得的值不一定相同;③如果一枚骰子的质量分布均匀,那么抛掷后每个点数出现的机会均等;④抛掷两枚质量分布均匀的相同的硬币,出现“两个正面”、“两个反面”、“一正一反”的机会相同.A.①②B.②③C.③④D.①③2、袋中装有一个红球和一个黄球,它们除了颜色外其余均相同,随机从中摸出一球,记录下颜色放回袋中,充分摇匀后,再随机从中摸出一球,两次都摸到黄球的概率是()A.13B.12C.14D.343、小明和小亮做游戏,先是各自背着对方在纸上写一个正整数,然后都拿给对方看.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;若两个人所写的数一个是奇数,另一个是偶数,则小亮获胜.这个游戏()A.对小明有利B.对小亮有利C.游戏公平D.无法确定对谁有利4、从分别标有1到9数字的9张卡片中任意抽取一张,抽到所标数字是3的倍数的概率为()A.19B.18C.29D.135、在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率6、一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于4的概率是()A.B.C.D.7、从标有号码1到100的100张卡片中,随意地抽出一张,其号码是3的倍数的概率是()A.33100B.34100C.310D.不确定8、随机从三男一女四名学生的学号中抽取两人的学号,被抽中的两人性别不同的概率为()A.14B.13C.12D.34二. 填空题9、 用下面的两个圆盘进行“配紫色”游戏,则配得紫色的概率为___________.10、甲、乙两人玩游戏,把一个均匀的小正方体的每个面上分别标上数字1,2,3,4,5,6,任意掷出小正方体后,若朝上的数字比3大,则甲胜;若朝上的数字比3小,则乙胜,你认为这个游戏对甲、乙双方公平吗? .11、从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下: 根据以上数据可以估计,该玉米种子发芽的概率约为 (精确到0.1).12、现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为 .13、在一个不透明的盒子中装有2个白球,个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为13,则___________.14、为了估计新疆巴音布鲁克草原天鹅湖中天鹅的数量,先捕捉10只,分别作上记号后放飞;待它们完全混合于天鹅群后,重新捕捉40只天鹅,发现其中有2只有标记,据此可估算出该地区大约有天鹅 只。

北师大版九年级数学上册 第3章 《概率的进一步认识》 单元测试卷 含答案

北师大版九年级数学上册  第3章 《概率的进一步认识》 单元测试卷 含答案

北师版数学九年级上册第三章概率的进一步认识 单元测试卷(时间90分钟,满分120分)第Ⅰ卷(选择题)一.选择题(本大题共10小题,每小题3分,共30分)1. 某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( ) A.19 B.16 C.13 D.232. 如图,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且两个棋子不在同一条网格线上,其中,恰好摆放成如图所示位置的概率是( ) A.112 B.110 C.16 D.253. 如图所示的两个转盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是( )A.1925B.1025C.625D.5254. 小明有2件上衣,分别为红色和蓝色;有3条裤子,其中2条为蓝色,1条为棕色.小明任意拿出1件上衣和1条裤子穿上,则小明穿的上衣和裤子恰好都是蓝色的概率是( ) A.13 B.12 C.23 D.345. 三张背面完全相同的数字牌,它们的正面分别印有数字“1”“2”“3”,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a ,b ,c ,则以a ,b ,c 为边长正好构成等边三角形的概率是( ) A.19 B.127 C.59 D.136. 用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是( ) A.12 B.13 C.59 D.497. 如图,在平面直角坐标系中,点A 1,A 2在x 轴上,点B 1,B 2在y 轴上,其坐标分别为A 1(1,0),A 2(2,0),B 1(0,1),B 2(0,2),分别以A 1,A 2,B 1,B 2其中的任意两点与点O 为顶点作三角形,所作三角形是等腰三角形的概率是( ) A.34 B.13 C.23 D.128.一个盒子里有完全相同的三个小球,球上分别标有数-1,1,2.随机摸出一个小球(不放回),其数记为p ,再随机摸出另一个小球,其数记为q ,则满足关于x 的方程x 2-px +q =0有实数根的概率是( )A.12B.13C.23D.569.小兰和小潭分别用掷A ,B 两枚正六面体骰子的方法来确定P(x ,y)的位置,她们规定:小兰掷得的点数为x ,小潭掷得的点数为y ,那么,她们各掷一次所确定的点落在已知直线y =-2x +6上的概率为( )A.16B.118C.112D.1910. 如图是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘停止后,指针所指区域内的数字之和为4的概率是( ) A.12 B.13 C.14 D.15第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是________.12. 有两个不透明的盒子,第一个盒子中有3张卡片,上面的数字分别为1,2,2;第二个盒子中有5张卡片,上面的数字分别为1,2,2,3,3.这些卡片除了数字不同外,其它都相同,从每个盒子中各抽出一张,都抽到卡片数字是2的概率为________.13. 如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”,“2”,“3”三个数字,指针的位置固定不动,让转盘自由转动两次,当每次转盘停止后,记录指针指向的数(当指针指向分割线时,视其指向分割线左边的区域),则两次指针指向的数都是奇数的概率为_________.14. 在一个不透明的盒子中装有n个球,它们除了颜色之外其他都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是_______.15.2018年10月14日,韵动中国·2018广安国际红色马拉松赛激情开跑.上万名跑友在小平故里展开激烈的角逐.某校从两名男生和三名女生中选出两名同学作为红色马拉松赛的志愿者,则选出一男一女的概率是_______.16.从如图所示的四个带圆圈的数字中,任取两个数字(既可以是相邻也可以是相对的两个数字)相互交换它们的位置,交换一次后能使①,②两数在相对位置上的概率是_______.17.如图所示的两个圆盘中,指针落在每一个数所在的区域上的机会均等,则两个指针同时落在数“1”所在的区域上的概率是_________18.小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种球各1个,这些球除颜色外无其他差别,从箱子中随机摸出1个球,然后放回箱子中,轮到下一个人摸球,三人摸到球的颜色都不相同的概率是________三.解答题(共8小题,66分)19.(6分) 一个不透明的口袋中有一个小球,上面分别标有字母a,b,c,每个小球除字母不同外其余均相同,小园同学从口袋中随机摸出一个小球,记下字母后放回且搅匀,再从口袋中随机摸出一个小球记下字母.用画树状图(或列表)的方法,求小园同学两次摸出的小球上的字母相同的概率.20.(6分) 某校组织一项公益知识竞赛,比赛规定:每个班级由2名男生、2名女生及1名班主任老师组成代表队.但参赛时,每班只能有3名队员上场参赛,班主任老师必须参加,另外2名队员分别在2名男生和2名女生中各随机抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任组成了代表队,求恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率.(请用画树状图或列表的方法给出分析过程)21.(8分)在学习概率的课堂上,老师提出问题:只有一张电影票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小明和小刚都公平的方案.甲同学的方案:将红桃2,3,4,5四张牌背面向上,小明先抽一张,小刚从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小明看电影,否则小刚看电影.(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;(2)乙同学将甲的方案修改为只用红桃2、3、4三张牌,抽取方式及规则不变,乙同学的方案公平吗?(只回答,不用说明理由).22.(8分)有2部不同的电影A ,B ,甲、乙、丙3人分别从中任意选择1部观看. (1)求甲选择A 部电影的概率;(2)求甲、乙、丙3人选择同1部电影的概率(请用画树状图的方法给出分析过程,并求出结果).23.(8分) 随机抛掷图中均匀的正四面体(正四面体的各面依次标有1,2,3,4四个数字),并且自由转动图中的转盘(转盘被分成面积相等的五个扇形区域).(1)求正四面体着地的数字与转盘指针所指区域的数字之积为4的概率;(2)设正四面体着地的数字为a ,转盘指针所指区域内的数字为b ,求关于x 的方程ax 2+3x +b4=0有实数根的概率.24.(8分) 在四张背面完全相同的纸牌A ,B ,C ,D 中,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张(不放回),再从余下的3张纸牌中摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A,B,C,D表示);(2)求摸出两张纸牌牌面上所画几何图形既是轴对称图形又是中心对称图形的概率.25.(10分) 甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;③游戏结束前双方均不知道对方“点数”;④判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为________;(2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌.请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.26.(12分) 小明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,它是蓝球的概率为14.(1)求袋中黄球的个数;(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率;(3)若规定摸到红球得5分,摸到黄球得3分,摸到蓝球得1分,小明共摸6次小球(每次摸1个球,摸后放回)得20分,问小明有哪几种摸法?参考答案:1-5CACAA 6-10DDABB11. 2312.41513. 4914. 100 15. 3516. 1317.12518. 2919. 解:列表如下:所有等可能的情况有9种,其中两次摸出的小球的标号相同的情况有3种,则P =39=1320. 解:列表如下:由表可知共有4种等可能的结果,其中恰好抽到由男生甲、女生丙和这位班主任一起上场比赛的情况只有1种,∴其概率为1421. 解:(1)甲同学的方案不公平.理由:列表如下:所有出现的等可能结果共有12种,其中抽出的牌面上的数字之和为奇数的有8种,故小明获胜的概率为812=23,则小刚获胜的概率为13,故此游戏两人获胜的概率不相同,即甲同学的方案不公平(2)不公平22. 解:(1)甲选择A 部电影的概率=12(2)画树状图为:共有8种等可能的结果,其中甲、乙、丙3人选择同1部电影的结果有2种,所以甲、乙、丙3人选择同1部电影的概率为28=1423. 解:(1)画树状图略,总共有20种结果,每种结果出现的可能性相同,正四面体着地的数字与转盘指针所指区域的数字之积为4的有3种情况,故正四面体着地的数字与转盘指针所指区域的数字之积为4的概率为:320(2)∵方程ax 2+3x +b4=0有实数根的条件为:9-ab≥0,∴满足ab≤9的结果共有14种:(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(4,1),(4,2),∴关于x 的方程ax 2+3x +b4=0有实数根的概率为:1420=71024. 解:(1)画树状图如图所示:则共有12种等可能的结果(2)∵既是轴对称图形又是中心对称图形的只有B ,C ,∴既是轴对称图形又是中心对称图形的有2种情况,∴既是轴对称图形又是中心对称图形的概率为212=1625. 解:(1)12(2)画树状图得:则共有12种等可能的结果.列表得:∴乙获胜的概率为51226. 解:(1)1个(2)画树状图如图,所以两次摸到不同颜色球的概率为:P =1012=56(3)设小明摸到红球x 次,摸到黄球y 次,则摸到红球有(6-x -y)次,由题意得5x +3y +(6-x -y)=20,即2x +y =7,y =7-2x.因为x 、y 、(6-x -y)均为自然数,所以当x =1时,y =5,6-x -y =0;当x =2时,y =3,6-x -y =1;当x =3时,y =1,6-x -y =2;综上:小明共有三种摸法:摸到红、黄、蓝三种球分别为1次、5次、0次;或2次、2次、1次;或3次、1次、2次。

九年级数学上册第三章《概率的进一步认识》测试卷-北师大版(含答案)

九年级数学上册第三章《概率的进一步认识》测试卷-北师大版(含答案)

九年级数学上册第三章《概率的进一步认识》测试卷-北师大版(含答案)(满分120分)一、选择题(每题3分,共30分)1.在一个不透明的盒子中装有12个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球是白球的概率是13,则黄球的个数为()A.18B.20C.24D.282.在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④.随机摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是()A.116B.316C.14D.5163.如图,是一个可以自由转动的转盘,它被分成三个面积相等的扇形,任意转动转盘两次,当转盘停止后,指针所指颜色相同的概率为()A. 13B.23C.19D.164.绿豆在相同条件下的发芽试验,结果如下表所示:每批粒数n则绿豆发芽的概率估计值是()A. 0.96B. O.95C. 0.94D. 0.905.从1,2,3 ,4中任取两个不同的数,其乘积大于4的概率是()A. 16B.13C.12D.236.如图,直线a//b,直线C与直线a、b都相交,从所标识的∠1、∠2、∠3、∠4、∠5这五个角中任意选取两个角,则所选取的两个角互为补角的概率是()A. 35B.25C.15D.237.某超市为了吸引顾客,设计了一种促销活动:在- -个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”、“30元”的字样规定:顾客在本超市一次性消费满200元,就可以在箱子里先后摸出两个小球(每一次摸出后不放回).某顾客刚好消费200元,则该顾客所获得购物券的金额不低于30元的概率为()A. 13B.12C.23D.348.从长度分别为1、3、5、7的四条线段中任选三条作边,能构成三角形的概率为()A. 12B.13C.14D.159.掷两枚普通正六面体骰子,所得点数之和为11的概率为()A.118B.136C.112D.11510.一个盒子里有完全相同的三个小球,球上分别标有数字-2,1 ,4.随机摸出一个小球(不放回),其数字为p,随机摸出另一个小球,其数字记为q,则满足关于x的方程x2 +p x+q=0有实数根的概率是()A. 14B.12C.13D.23二、填空题(每题4分,共28分)11.一个盒子内装有大小、形状相同的四个球,其中红球1个,绿球1个,白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是_____________.12.在一个不透明的袋子里装有黄色、白色乒乓球共40个,除颜色外其他完全相同.小明从这个袋子中随机模出一球,放回.通过多次摸球实验后发现,摸到黄色球的概率稳定在15%附近,则袋中黄色球可能有_____个.13.甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5、6、7的三张扑克牌中,随机抽取-张,放回后,再随机抽取--张若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽的两张牌面数字的积为偶数,则乙获胜,这个游戏______ (选填“公平”或“不公平”).14.在x² 2xy□y²的空格□中,分别填上“+”或“-" ,在所得的代数式中,能构成完全平方式的概率是_______.15.从-2,-1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是___________.16.三名同学同一天生日,她们做了一个游戏:买来3张相同的贺卡,各自在其中一张内写上祝福的话,然后放在一起,每人随机拿一张,则她们拿到的贺卡都不是自己所写的概率是_____________.17.一口袋中装有四根长度分别为1c m,3c m,4c m和5c m的细木棒,小明手中有一根长度为3c m的细木棒,现随机从袋内取出两根细木棒与小明手中的细木棒放在一起,则这三根细木棒能构成等腰三角形的概率为___________.三解答题(一)(每题6分,共18分)18.甲、乙、丙、丁4名同学进行一次羽毛球单打比赛,要从中选2名同学打第一场比赛,求下列事件的概率.(1)已确定甲打第一场,再从其余3名同学随机选取1名,恰好选中乙同学;(2)随机选取2名同学,其中有乙同学.19. 一个不透明的布袋里装有2个白球、1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为1 2 .(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表或画树状图等方法求出两次摸到的球都是白球的概率。

北师大版九年级数学上册第三单元概率的进一步认识 检测试题 含答案

北师大版九年级数学上册第三单元概率的进一步认识 检测试题  含答案

单元测试(三) 概率的进一步认识(满分:150分,考试用时120分钟)一、选择题(本大题共15个小题,每小题3分,共45分)1.将一枚质地均匀的硬币抛掷两次,则两次都是正面向上的概率为( )A.12B.13C.23D.142.在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④.随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是( )A.116B.316C.14D.5163.中考体育男生抽测项目规则是:从立定跳远、实心球、引体向上中随机抽一项,从50米、50×2米、100米中随机抽一项,恰好抽中实心球和50米的概率是( )A.13B.16C.23D.194.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )A.12B.14C.16D.1125.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值大约为( )A.12 B.15 C.18 D.216.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是( )A.14B.34C.13D.127.假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,那么三只雏鸟中有两只雌鸟的概率是( )A.16B.38C.58D.238.一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( )A.49B.13C.16D.199.学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是( )A.19B.16C.13D.1210.有一箱子装有3张分别标示为4,5,6的号码牌,已知小武以每次取一张且取后不放回的方式,先后取出2张牌,组成一个两位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,若先后取出2张牌组成两位数的每一种结果发生的机会都相同,则组成的两位数为6的倍数的概率为( )A.16B.14C.13D.1211.小明和小亮做游戏,先是各自背着对方在纸上写一个不大于100的正整数,然后都拿给对方看.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;若两个人所写的数一个是奇数,另一个是偶数,则小亮获胜.这个游戏( )A.对小明有利 B.对小亮有利C.是公平的D.无法确定对谁有利12.如图,随机闭合开关S1,S2,S3中的两个,则灯泡发光的概率是( )A.34B.23C.13D.1213.从1,2,3,4中任取两个不同的数,其乘积大于4的概率是( )A.16B.13C.12D.2314.如图,直线a∥b,直线c与直线a、b都相交,从所标识的∠1、∠2、∠3、∠4、∠5这五个角中任意选取两个角,则所选取的两个角互为补角的概率是( )A.35B.25C.15D.2315.某口袋中有20个球,其中白球x个,绿球2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球则甲获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则乙获胜.则当x=________时,游戏对甲、乙双方公平( ) A.3 B.4 C.5 D.6二、填空题(本大题共5小题,每小题5分,共25分)16.学校要从小明、小红与小华三人中随机选取两人作为升旗手,则小明和小红同时入选的概率是________.17.小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球共3 000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是________.18.从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是________.19.“服务社会,提升自我”凉山州某学校积极开展志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队.若从该小分队任选两名同学进行交通秩序维护,则恰是一男一女的概率是________.20.让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则这两个数的和是2的倍数或是3的倍数的概率等于________.三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(8分)一只不透明的袋子中,装有分别标有数字1,2,3的三个球,这些球除所标的数字外都相同,搅匀后从中摸出1个球,记录下数字后放回袋中并搅匀,再从中任意摸出1个球,记录下数字,请用列表方法,求出两次摸出的球上的数字之和为偶数的概率.22.(8分)如图的方格地面上,标有编号A、B、C的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同.(1)一只自由飞行的鸟,将随意地落在图中的方格地面上,则小鸟落在草坪上的概率是________;(2)现从3个小方格空地中任意选取2个种植草坪,则刚好选取A和B的2个小方格空地种植草坪的概率是多少?(用树形图或列表法求解)23.(10分)在四边形ABCD中,①AB∥CD;②AD∥BC;③AB=CD;④AD=BC,在这四个条件中任选两个作为已知条件,能判定四边形ABCD是平行四边形的概率是多少?24.(12分)“石头、剪子、布”是小朋友都熟悉的游戏,游戏时小聪、小明两人同时做“石头、剪子、布”三种手势中的一种,规定“石头”(记为A)胜“剪子”,“剪子”(记为B)胜“布”,“布”(记为C)胜“石头”,同种手势不分胜负,继续比赛.(1)请用树状图或表格列举出同一回合中所有可能的对阵情况;(2)假定小聪、小明两人每次都等可能地做这三种手势,那么同一回合中两人“不谋而合”(即同种手势)的概率是多少?25.(12分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3、4、5、x,甲、乙两人每次同时从袋中各随机摸出1个小球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验,试验数据如表:摸球总10 20 30 60 90 120 180 240 330 450(1)如果试验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x 的值可以取7吗?请用列表法或画树状图说明理由;如果x 的值不可以取7,请写出一个符合要求的x 值.26.(14分)某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1、2、3、4、5、6个小圆点的小正方体)27.(16分)为决定谁获得仅有的一张电影票,甲和乙设计了如下游戏:在三张完全相同的卡片上,分别写上字母A,B,B,背面朝上,每次活动洗均匀.甲说:我随机抽取一张,若抽到字母B,电影票归我;乙说:我随机抽取一张后放回,再随机抽取一张,若两次抽取的字母相同电影票归我.(1)求甲获得电影票的概率;(2)求乙获得电影票的概率;(3)此游戏对谁有利?参考答案1.D 2.C 3.D 4.C 5.B 6.D 7.B 8.D 9.C10.A 11.C 12.B 13.C 14.A 15.B 16.13 17.2 100个 18.12 19.35 20.5821.1 2 3 1 2 3 4 2 3 4 5 3456∴两次摸出的球上的数字之和为偶数的概率为59. 22.(1)23(2)P(编号为A 、B 的2个小方格空地种植草坪)=26=13.23.画树状图如下:由树状图可知,所有等可能的结果共12种,满足条件的结果有8种.所以能判定四边形ABCD 是平行四边形的概率是812=23. 24.(1)略.(2)P(不谋而合)=13.,3,4,5,7 3,,7,8,10 4,7,,9,11 5,8,9,,12 7,10,11,12, 25.(1)0.33 (2)不可以取7.∵当x =7时,列表如下(也可以画树状图):∴两个小球上数字之和为9的概率是212=16≠13,当x =5时,两个小球上数字之和为9的概率是13.(答案不唯一,也可以是4). 26.(1)P =36=12.(2)游戏公平.理由如下:小亮 小丽1 2 3 4 5 6 1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)5 (5,1) (5,2) (5,3) (5,4) (5,5)(5,6) 6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果. ∴P(小亮胜)=936=14,P(小丽胜)=936=14.∴该游戏是公平的. 27.(1)P(甲获得电影票)=23.(2)可能出现的结果如下(列表 A B B A (A ,A) (A ,B) (A ,B) B (B ,A) (B ,B) (B ,B) B(B ,A)(B ,B)(B ,B)共有9种等可能结果,其中两次抽取字母相同的结果有5种.∴P(乙获得电影票)=59.(3) ∵23>59, ∴此游戏对甲更有利.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专业 文档 可修改 欢迎下载 1
九年级数学概率的进一步认识章节检测
一、选择题
1. 在一张边长为4cm 的正方形纸上做扎针随机试验,纸上有一个半径为1cm 的圆形阴影区域,则针头扎在阴影区域内的概率为( ) A.161 B.41 C.16π D.4π
2.下列事件是必然事件的( ) A .抛掷一枚硬币,四次中有两次正面朝上 B.打开电视体育频道,正在播放NBA 球赛
C.射击运动员射击一次,命中十环
D.若a 是实数,则0a ≥
3.同时抛掷两枚质地均匀的骰子,骰子的六个面分别刻有1到6的点数,朝上的面的点数中,一个点数能被另一个点数整除的概率是( )
A.718
B.34
C.1118
D.2336
4.一次抽奖活动中,印发的奖券有10 000张,其中特等奖2张,一等奖20张,•二等奖98张,三等奖200张,鼓励奖680张,那么第一位抽奖者(仅买一张奖券)•中奖的概率为( )
A .110
B .150
C .1500
D .15000 5.下列说法中,正确的是( )
A .“明天降雨的概率是80%”表示明天有80%的时间降雨
B .“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上
C .“彩票中奖的概率是1%”表示买100张彩票一定有1张会中奖
D .在同一年出生的367名学生中,至少有两人的生日是同一天
6.袋中放有一套(五枚)北京2008年奥运会吉祥物福娃纪念币,有放回的取出两枚纪念币,恰好能够组成“欢迎”的概率是( )
A .251
B .25
2C .101 D .51 二、填空题
7. “五一”节期间,某商场开展购物抽奖活动.抽奖箱内有标号分别为1、2、3、4四个质
地、大小相同的小球,顾客从中任意摸出一个球,然后放回,摇匀后再摸出一个球.如果两次摸出的球的标号之和为“8”得一等奖,那么顾客抽出一等奖概率是 .
8.袋中装有除颜色外其他完全相同的4个小球,其中3个红色,1个白色.从袋中任意地摸出两个球,这两个球颜色相同的概率是_________.
9.四张完全相同的卡片上,分别画上圆、矩形、等边三角形、等腰三角形。

现从中随机抽取
2张,全部是中心对称图形的概率是_________.
10.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上记号然后放还,带有标记的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中有2只有标记.从而估计这个地区有黄羊 只.
11.一个口袋中有12个白球和若干个黑球,在不允许将球倒出数的前提下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球的数与10的比值 ,再把球放回口袋中搅匀,不断重复上述过程5次,得到的白球数于10的比值分别贝贝 晶晶 欢欢 迎迎 妮妮
专业 文档 可修改 欢迎下载
1
香肠 什锦 什锦 红枣 为:0.4,0.1,0.2,0.1,0.2。

根据上述数据,小亮可估计口袋中大约有 个黑球.
三、解答题
1.有一个可以自由转动的转盘,被分成了4个相同的扇形,分别标有数1、2、3、4(如图所示),另有一个不透明的口袋装有分别标有数0、1、3的三个小球(除数不同外,其余都相同)。

小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球,小球上的数是小红的吉祥数,然后计算这两个数的积。

(1)请你用画树状图或列表的方法,求这两个数的积为0的概率;
(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;
否则,小红赢。

你认为该游戏公平吗?为什么?
2. 端午节吃粽子是中华民族的传统习俗.五月初五早晨,妈妈为洋洋准备 了四只粽子:一只香肠馅,一只红枣馅,两只什锦馅,四只粽子除内部馅料不同外,其他 均一切相同.洋洋喜欢吃什锦馅的粽子.
(1)请你用树状图或列表法为洋洋预测一下吃两只粽子刚好都是什锦馅的概率;
(2)在吃粽子之前,洋洋准备用如图所示的转盘进行吃粽子的模拟试验(此转盘被等分成 四个扇形区域,指针的位置是固定的,转动转盘后任其自由停止,其
中的某个扇形会恰好停在指针所指的位置.若指针指向两个扇形的交线时,重新转动转盘),规定:连续转动
两次转盘表示随机吃两只粽子,从而估计吃两只粽子刚好都是什锦馅的概率.你认为这种模拟试验的方法正确吗?试说明理由.
3、小明和小刚用如图所示的两个转盘做配紫色游戏,游戏规则是:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可以配成紫色.此时小刚得1分,否则小明得1分.这个游戏对双方公平吗?请说明理由.
4321
红 黄 蓝 红 白 蓝
4.将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是;
(2)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.
5.如图,A,B,C,D四张卡片上分别写有
5
23π
7
,,,四个实数,从中任取两张卡片.
A B C D
(1)请列举出所有可能的结果(用字母A,B,C,D表示);
(2)求取到的两个数都是无理数的概率.
(第4题图)
专业文档可修改欢迎下载 1。

相关文档
最新文档