模糊综合评价方法的理论基础
模糊综合评判法(原理)
05
多因素综合评判
根据权重和隶属度,对所有因素进行加权平均,得出 最终的综合评判结果。
02
模糊集合与隶属函数
模糊集合的概念
模糊集合
在经典集合论中,一个对象要么完全 属于某个集合,要么完全不属于该集 合。但在模糊集合中,一个对象可以 部分地属于某个集合。
模糊集合的表示
通常用大括号 {} 表示一个集合,在括 号内用小括号 () 括起来的元素表示该 集合中的成员。例如,A = {(x, y) | y = x^2} 表示一个曲线集合。
隶属函数的定义与分类
隶属函数
用于描述模糊集合中元素属于该集合 的程度。它是一个函数,输入为一个 元素,输出为一个介于0和1之间的实 数,表示该元素属于该集合的隶属度。
分类
根据不同的分类标准,隶属函数可以 分为不同的类型。例如,按照形状可 以分为三角形、梯形、高斯型等;按 照参数化可以分为非参数化、半参数 化、参数化等。
模糊综合评判法(原理)
目
CONTENCT
录
• 模糊综合评判法概述 • 模糊集合与隶属函数 • 模糊矩阵的运算与模糊关系 • 模糊综合评判的步骤与实例 • 模糊综合评判法的改进与发展
01
模糊综合评判法概述
定义与特点
定义
模糊综合评判法是一种基于模糊数学和模糊逻辑的决策方法,用 于解决具有模糊性和不确定性问题的评价和决策。
模糊关系的扩展
将一个普通关系扩展为模糊关系,以便在模糊逻辑中使用。
模糊关系的传递性
模糊关系的传递性定义
如果对于任意三个模糊集合A、B和C,有A∩B=A∩C且A∪B=A∪C,则称A与 B的交集和并集分别等于A与C的交集和并集,即A与B的传递性。
模糊关系传递性的性质
模糊综合评价模型
模糊综合评价模型模糊综合评价模型(FCM)是一种基于模糊数学理论的多准则决策方法,广泛应用于各种评价问题中,如经济、管理、环境、教育等领域。
FCM能够处理多个评价指标同时存在的复杂评价问题,并通过对各个指标的权重进行模糊化处理,最终得到一个综合评价结果。
本文将介绍FCM的基本原理、应用场景以及优缺点。
FCM的基本原理是将评价指标和权重都表示成模糊数值,并进行模糊综合运算。
模糊数值是介于0和1之间的数值,表示一些事物或概念的模糊程度。
在FCM中,评价指标通过模糊隶属函数表示,权重通过模糊权重函数表示。
通过对这些模糊数值进行模糊综合运算,可以得到一个综合评价结果。
FCM的应用场景非常广泛。
在经济领域,FCM可以用于评估企业的综合实力,帮助企业进行战略决策。
在管理领域,FCM可以用于评估员工的绩效,帮助企业进行人力资源管理。
在环境领域,FCM可以用于评估环境影响,帮助政府进行环境保护政策的制定。
在教育领域,FCM可以用于评估学生的学术表现,帮助学校进行教学管理。
FCM的优点主要包括以下几个方面。
首先,FCM能够处理多个评价指标的模糊性和不确定性,使评价结果更加客观和准确。
其次,FCM能够考虑到不同指标的重要性,通过对权重进行模糊化处理,使评价结果更具权威性。
最后,FCM能够处理评价指标之间的相互关系,考虑到评价指标之间的相互作用,使评价结果更具有实际意义。
然而,FCM也存在一些缺点。
首先,FCM的模型建立需要大量的数据和专业知识支持,对于一些复杂的评价问题,模型建立可能会比较困难。
其次,FCM的模糊综合运算需要进行一系列的计算,计算过程比较复杂,需要一定的计算资源支持。
最后,FCM的评价结果具有一定的主观性,依赖于权重的确定和模糊数值的选择,可能会存在一定的不确定性。
综上所述,模糊综合评价模型是一种灵活、有效的多准则决策方法,可广泛应用于各种评价问题中。
通过对评价指标和权重进行模糊化处理,能够得到一个综合评价结果,帮助决策者进行决策。
基于模糊聚类的综合评价方法研究
基于模糊聚类的综合评价方法研究一、理论基础1、综合评价方法综合评价方法是根据事物特征,将多个指标量化并加权,以评估事物在各方面的表现,并给出相应的综合评价结果。
综合评价方法有很多种,常用的有层次分析法、模糊综合评价法、TOPSIS方法等。
综合评价方法的核心是权重的确定,即不同指标对整体评价的重要性。
权重的确定方式有主观权重法和客观权重法。
主观权重法是由评价人员根据其经验和判断,决定不同指标在整体评价中的重要性程度。
客观权重法则是通过数学方法,通过数据分析和计算,确定不同指标的权重。
2、模糊聚类方法模糊聚类方法是一种基于模糊理论的聚类分析方法。
它能够有效的处理数据的不确定性和模糊性,对于没有明显分界线的数据,模糊聚类能够将其归为一类。
模糊聚类的核心是将数据集分为多个模糊类别,使得同一类别内的数据之间的相似度高于不同类别的相似度。
基于模糊聚类的综合评价方法,是将模糊聚类与综合评价相结合,以处理综合评价中的不确定性和主观性问题。
在基于模糊聚类的综合评价方法中,首先需要将多个指标转化为模糊指标,并进行聚类分析,得到模糊类别。
然后,对模糊类别进行模糊综合评价,得到各个模糊类别的综合评价结果。
最后,通过模糊综合评价方法,得到整体评价结果。
在基于模糊聚类的综合评价方法中,需要将多个指标转化为模糊指标。
一般的,对于每个指标可以定义一个评价函数或指标函数,用于将该指标的取值范围映射到一定的隶属度域。
假设有n个指标,第i个指标的评价函数为M_i(X_i),其中X_i表示第i个指标的取值,M_i(X_i)表示X_i对应的隶属度。
假设X = (X_1,X_2,…,X_n),则X_i的隶属度函数可以用下述公式表示:M_i(x) = (x - S_i) / (U_i - S_i)其中,S_i和U_i分别表示第i个指标对应的最小和最大取值范围。
这样,对于每个指标,都可以通过评价函数将其转化为隶属度,得到一个模糊集合。
然后,将所有的模糊集合送入模糊聚类算法中进行聚类分析,得到若干个模糊类别。
模糊综合评价方法研究
模糊综合评价方法研究1.引言近年来,随着社会的不断发展和进步,科学技术日新月异,人们生活水平不断提高,对各种事物的评价标准以及评价方法也在不断完善和更新。
而模糊综合评价方法正是其中的一种,在各行各业都有着广泛的应用。
2.模糊综合评价方法的概述模糊综合评价方法是指将模糊集理论、层次分析法、灰色系统理论等多种评价方法结合起来,通过对多个评价因素进行量化处理,得出最终评价结果的一种方法。
3.模糊综合评价方法的基本原理模糊综合评价方法主要基于模糊数学的理论,采用隶属度函数来描述评价结果的不确定性,使得评价结果更加接近实际情况。
同时,该方法还可以通过建立评价模型,对各种评价因素之间的交互关系进行评估,使得评价结果更加准确和科学。
4.模糊综合评价方法的应用领域模糊综合评价方法在各种领域均有着广泛的应用,如经济、环境、农业、教育等领域。
例如,在农业生产中,可以通过对作物生长环境、土壤质量、气候等多种因素进行评价,来确定最适宜的作物种植方式和施肥量。
在环境评价中,可以通过对空气质量、水质等因素进行评价,来制定相应的环境保护措施。
在教育评价中,可以通过对学生的学习成绩、考试表现、学习态度等因素进行评价,来制定更加合理和科学的教学计划。
5.模糊综合评价方法的优缺点优点:(1)可以综合考虑多种影响因素,得出更加全面和准确的评价结果;(2)可以通过建立评价模型,对各种影响因素之间的交互关系进行评估,使得评价结果更加准确和科学。
(3)可以考虑自然界和人类社会的不确定性因素,使得评价结果更加接近实际情况。
缺点:(1)模型设计和数据处理较为复杂,需要较高的技术和专业知识;(2)模型结果可能会受到评价因素选择、评价结果处理等多种因素的影响,需要更加谨慎和科学的处理才能得出准确的评价结果。
6.结论总之,模糊综合评价方法是一种比较科学和全面的评价方法,具有广泛的应用价值。
在今后的实践中,我们应结合具体的评价对象,针对性的选取适合的评价方法,将评价结果公正、准确的呈现出来,使其在各行各业中得到更加广泛和深入的应用。
模糊综合评价方法及其应用研究
模糊综合评价方法及其应用研究一、本文概述本文旨在探讨模糊综合评价方法及其应用研究。
我们将对模糊综合评价方法进行概述,阐述其基本原理和特点。
接着,我们将深入探讨模糊综合评价方法在各种领域中的应用,包括但不限于企业管理、环境评估、医疗卫生等。
通过对实际案例的分析,我们将展示模糊综合评价方法在解决实际问题中的有效性和实用性。
我们还将对模糊综合评价方法的未来发展进行展望,以期为其在更多领域的应用提供参考和借鉴。
通过本文的研究,我们希望能够为相关领域的研究者和实践者提供有益的启示和帮助。
二、模糊综合评价方法理论基础模糊综合评价方法(Fuzzy Comprehensive Evaluation,简称FCE)是一种基于模糊数学理论的评价方法,旨在解决那些难以用精确数学语言描述的问题。
这种方法最早由我国学者汪培庄于1983年提出,现已在多个领域得到了广泛应用。
模糊综合评价方法理论基础主要包括模糊集合理论、模糊运算规则和模糊关系矩阵。
其中,模糊集合理论是该方法的核心。
它允许在元素对集合的隶属程度不唯不精确的情况下进行定量描述,从而突破了传统集合理论中元素对集合的隶属关系必须明确的限制。
在模糊综合评价中,评价对象通常被视为一个模糊集合,而评价因素则构成该集合的多个子集。
每个子集都有一个隶属函数,该函数描述了评价对象在不同因素下的隶属程度。
通过对隶属函数进行计算和分析,可以得出评价对象在各个因素上的综合评价结果。
模糊运算规则是模糊综合评价方法的另一个重要组成部分。
它定义了模糊集合之间的运算方式,如并、交、补、差等,使得我们能够根据实际需求进行模糊集合的组合和转换。
模糊关系矩阵则用于描述评价对象与评价因素之间的模糊关系。
该矩阵中的元素表示评价对象在不同因素上的隶属度,是进行模糊综合评价的重要依据。
模糊综合评价方法理论基础包括模糊集合理论、模糊运算规则和模糊关系矩阵。
这些理论和方法为我们在复杂系统中进行综合评价提供了有效的工具。
模糊综合评价法讲解
B1=(0.46,0.18,0.12,0.12,0.12) B2=(0.17,0.17,0.42,0.12,0.12) 若规定评价“好”“较好”要占50%以上才可晋升, 则此教师晋升为教学型教授,不可晋升为科研型教
是由一个指标实际值来刻画,因此从这个角度讲,
模糊综合评价要求更多的信息),ri 称为单因素评
价矩阵,可以看作是因素集U和评价集V之间的一种 模糊关系,即影响因素与评价对象之间的“合理关
系”。
在确定隶属关系时,通常是由专家或与评价问题 相关的专业人员依据评判等级对评价对象进行打分
,然后统计打分结果,然后可以根据绝对值减数法
1.80 1.93 0.87 1.12 1.21 0.87 0.89 2.52 0.81 0.82 1.01
A=(0.2,0.3,0.5)
专家评价结果表
由上表,可得甲、乙、丙三个项目各自 的评价矩阵P、Q、R:
0.7 0.2 0.1 P 0.1 0.2 0.7
0.3 0.6 0.1
0.3 0.6 0.1 Q 1 0 0
0.7 0.3 0
0.1 0.4 0.5 R 1 0 0
0.1 0.3 0.6
例3:“晋升”的数学模型,以高校教师晋 升教授为例
因素集:
U={政治表现及工作态度,教学水平,科 研水平,外语水平};
评判集:
V={好,较好,一般,较差,差};
(1)建立模糊综合评判矩阵
当学科评审组的每个成员对评判的对象进 行评价,假定学科评审组由7人组成,用打分 或投票的方法表明各自的评价
模糊综合评价法
模糊综合评价法2篇模糊综合评价法模糊综合评价法是一种综合评价方法,其特点在于能够处理不确定性和模糊性的信息,并给出一个相对比较合理的结论。
在各个领域的研究中,模糊综合评价法被广泛应用,包括经济、环境、管理、工程等领域。
一. 模糊综合评价法的基本原理模糊综合评价法是将模糊集合论和综合评价方法相结合的一种方法。
模糊集合论是一种数学理论,它能够表示不确定性和模糊性的信息,而综合评价方法是用来确定若干个评价指标对某个事物或现象的影响程度,并给出一个综合的评价结果。
在模糊综合评价法中,首先需要确定评价指标,然后对每个评价指标进行模糊化处理,将其转化为模糊数。
模糊数是一个区间,表示评价指标的可能取值范围。
然后需要对评价指标的权重进行确定,这可以通过专家咨询、问卷调查等方法来获取。
最后,根据每个评价指标的权重和模糊数,通过模糊运算得出综合评价的结果。
二. 模糊综合评价法的应用模糊综合评价法可以在各个领域中得到应用。
1. 经济领域:在经济领域中,模糊综合评价法可以用来评价企业的绩效、市场的竞争力等。
通过对各个评价指标的模糊化处理和权重的确定,可以得出一个相对准确的评价结果,为决策提供参考。
2. 环境领域:在环境领域中,模糊综合评价法可以用来评价环境质量、环境影响等。
通过对各个评价指标的模糊化处理和权重的确定,可以对环境状况进行评价,并根据评价结果制定相应的环境保护措施。
3. 管理领域:在管理领域中,模糊综合评价法可以用来评价员工的绩效、项目的执行情况等。
通过对各个评价指标的模糊化处理和权重的确定,可以对员工和项目进行综合评价,为管理决策提供参考。
4. 工程领域:在工程领域中,模糊综合评价法可以用来评价工程的质量、安全性等。
通过对各个评价指标的模糊化处理和权重的确定,可以对工程进行综合评价,并根据评价结果制定相应的改进措施。
三. 模糊综合评价法的优点和不足模糊综合评价法具有以下优点:1. 能够处理不确定性和模糊性的信息,能够对复杂问题进行较好的评价和决策。
AHP——模糊综合评价方法的理论基础
AHP—模糊综合评价方法得理论基础1、层次分析法理论基础1970-1980年期间,著名学者Saaly最先开创性地建立了层次分析法■英文缩写为AHP。
该模型可以较好地处理复杂得决策问题,迅速受到学界得高度巫视。
后被广泛应用到经济计划与管理、教育与行为科学等领域。
AHP建立层次结构模型•充分分析少量得有用得信息■将一个具体得问题进行数理化分析,从而有利于求解现实社会中存在得许多难以解决得复杂问题。
一些定性或定性与定量相结合得决策分析特别适合使用AHPo被广泛应用到城市产业规划、企业管理与企业信用评级等等方面■就是一个有效得科学决策方法。
Diego Falsini^ Federico Fondi Massimiliano M、Schiraldi(2012)运用 AHP 与DEA 得结合研究了物流供应商得选择:Radivojevic s Gordana 'j Gajovic, Vladimir(20⑷研究了供应链得风险因素分析;K、D、Maniya与M、G、Bhatt(2011) 研究了多属性得车辆自动引导机制;朱春生(2013)利用AHP分析了高校后勤HR 配置得风险管理;蔡文飞(2013)运用AHP分析了煤炭管理中得风险应急处理;徐广业(2011)研究了 AHP与DEA得交互武应用;林正奎(2012)研究了城市保险业得社会贵任。
第一■递阶层次结构得建立一般来说■可以将层次分为三种类型:(1)最高层(总U标层):只包含一个元素,表示决策分析得总U标■因此也称为总日标层。
(2)中间层(准则层与子准则层):包含若干层元素,表示实现总U标所涉及得各子U 标■包含各种准则、约束、策略等■因此也称为U标层。
(3)最低层(方案层):表示实现各决策U标得可行方案、描施等,也称为方案层。
典型得递阶层次结构如下图1:一个好得递阶层次结构对解决问题极为重要,因此•在建立递阶层次结构时.应注意到:(1)从上到下顺序地存在支配关系•用直线段(作用线)表示上一层次因素与下一层次因素之间得关系■同一层次及不相邻元素之间不存在支配关系。
模糊综合评价法和层次分析法比较
模糊综合评价法和层次分析法比较综合评价是一种常用的决策方法,可用于对多种方案或对象进行评估、排序和选择。
其中,模糊综合评价法和层次分析法是两种常见的评价方法,本文将对两种方法进行比较分析。
一、模糊综合评价法模糊综合评价法是一种基于模糊集合理论的评价方法。
在该方法中,通过对各指标进行定性或定量描述,并确定各指标之间的权重,构建评价指标集合和隶属函数。
通过模糊综合算子对评价指标进行运算,得到综合评价值,并进行排序和选择。
模糊综合评价法的主要特点如下:1. 避免了对指标的精确度要求:模糊综合评价法允许指标的描述和评价具有模糊性和不确定性,能够更好地应对现实问题中的模糊情况。
2. 考虑了指标之间的相互影响:模糊综合评价法能够通过建立指标间的联系,考虑指标之间的相互关系和相互影响,提高评价结果的准确性。
3. 灵活性较高:模糊综合评价法能够根据实际需求,灵活选择评价指标和权重的确定方法,适应不同问题的评价需求。
二、层次分析法层次分析法是一种基于专家经验和判断的评价方法。
在该方法中,将问题分解为多个层次,包括目标层、准则层和方案层。
通过构建判断矩阵和权重向量,根据专家判断和主观偏好来确定各指标的权重,并进行评价和决策。
层次分析法的主要特点如下:1. 考虑了指标的重要性:层次分析法通过专家的判断和主观偏好,确定各指标的权重,综合考虑了各指标对决策结果的重要性,提高了评价的准确性。
2. 适用于多层次评价:层次分析法通过将问题分解为多个层次,能够对不同层次的指标进行评价和决策,使评价过程更为严谨和全面。
3. 定量化程度较高:层次分析法通过构建判断矩阵和权重向量,将主观的判断和偏好转化为数值,提高了评价结果的可比性和量化程度。
三、比较分析模糊综合评价法和层次分析法在综合评价中都具有一定的优势,但也存在一些差异:1. 理论基础不同:模糊综合评价法基于模糊集合理论,注重对模糊性和不确定性的描述和处理;而层次分析法基于专家经验和主观偏好,注重对指标重要性和相对关系的判断和决策。
模糊综合评价法和层次分析法比较
模糊综合评价法和层次分析法比较在决策分析过程中,我们常常需要利用各种评价方法来确定不同方案的优劣程度。
模糊综合评价法和层次分析法是两种常用的评价方法,它们在实际应用中都具有一定的优势和局限性。
本文将从几个方面比较这两种评价方法,以帮助读者更好地理解它们的特点。
一、理论基础模糊综合评价法是由模糊数学理论发展而来的一种评价方法。
它将评价指标量化成形式化的模糊数,通过模糊集合的运算和模糊关系的建立,得出各方案的评价结果。
而层次分析法则是由运筹学和决策科学理论构建起来的一种多准则决策方法。
它通过构建层次结构和建立判断矩阵,根据各指标之间的相对重要性确定权重,得出方案的综合评价结果。
二、优点和局限性模糊综合评价法的优点在于能够处理评价指标信息不准确、模糊不明确的情况。
它能够将主观评价转化为数学计算,降低了主观因素对评价结果的影响。
同时,模糊综合评价法具有很强的灵活性和适应性,可以用于各种不同的决策问题。
然而,模糊综合评价法也存在一些局限性。
首先,它的运算复杂度较高,需要进行繁琐的模糊数运算和模糊关系的建立。
其次,模糊综合评价结果的解释和应用比较困难,可能给决策者带来困惑。
此外,模糊综合评价法对评价指标的选择和权重的确定较为敏感,可能会导致评价结果的不稳定性。
相比之下,层次分析法具有明确的理论基础和较为简单的计算步骤。
它能够将复杂的决策问题简化为层次结构,通过判断矩阵的运算得出评价结果。
层次分析法的结果较为直观和易于理解,能够帮助决策者做出合理的决策。
然而,层次分析法也存在一些限制。
首先,它对决策问题的结构和层次设置较为敏感,不同的问题可能导致不同的评价结果。
其次,层次分析法的权重确定过程依赖于决策者的主观判断,存在一定的不确定性。
此外,如果问题的层次结构较为复杂,层次分析法可能会产生较大的计算量。
三、应用领域模糊综合评价法和层次分析法都有广泛的应用领域。
模糊综合评价法常用于工程项目评价、经济决策、环境评价等领域。
AHP——模糊综合评价方法的理论基础
AHP——模糊综合评价方法的理论根底1.层次分析法理论根底1970—1980年期间,着名学者Saaty最先开创性地建立了层次分析法,英文缩写为AHP.该模型可以较好地处理复杂的决策问题,迅速受到学界的高度重视.后被广泛应用到经济方案和治理、教育与行为科学等领域.AHP建立层次结构模型,充分分析少量的有用的信息,将一个具体的问题进行数理化分析, 从而有利于求解现实社会中存在的许多难以解决的复杂问题.一些定性或定性与定量相结合的决策分析特别适合使用AHP.被广泛应用到城市产业规划、企业治理和企业信用评级等等方面,是一个有效的科学决策方法.Diego Falsini、Federico Fondi 和Massimiliano M. Schiraldi〔2021〕运用AHP 与DEA的结合研究了物流供给商的选择;Radivojevi、Gordana和Gajovi, Vladimir 〔2021〕研究了供给链的风险因素分析;.Maniya和.Bhatt〔2021〕研究了多属性的车辆自动引导机制;朱春生〔2021〕利用AHP分析了高校后勤HR配置的风险治理;蔡文飞〔2021〕运用AHP分析了煤炭治理中的风险应急处理;徐广业〔2021〕研究了AHP与DEA的交互式应用;林正奎〔2021〕研究了城市保险业的社会责任.第一,递阶层次结构的建立一般来说,可以将层次分为三种类型:〔1〕最高层〔总目标层〕:只包含一个元素,表示决策分析的总目标,因此也称为总目标层.〔2〕中间层〔准那么层和子准那么层〕:包含假设干层元素,表示实现总目标所涉及的各子目标,包含各种准那么、约束、策略等,因此也称为目标层.〔3〕最低层〔方案层〕:表示实现各决策目标的可行方案、举措等,也称为方案层.典型的递阶层次结构如下列图1:一个好的递阶层次结构对解决问题极为重要,因此,在建立递阶层次结构时,应注意到:〔1〕从上到下顺序地存在支配关系,用直线段〔作用线〕表示上一层次因素与下一层次因素之间的关系,同一层次及不相邻元素之间不存在支配关系.〔2〕整个结构不受层次限制.〔3〕最高层只有一个因素,每个因素所支配元素一般不超过9个,元素过多可进一步分层.〔4〕对某些具有子层次结构可引入虚元素,使之成为典型递阶层次结构.第二,构造比拟判断矩阵设有m个目标〔方案或元素〕,根据某一准那么,将这m个目标两两进行比较,把第i个目标.=1,2,…,m〕对第j个目标的相对重要性记为a i「这样构造的m 阶矩阵用于求解各个目标关于某准那么的优先权重,成为权重解析判断矩阵, 简称判断矩阵,记作A =〔a〕.ij m x nSatty于1980年根据一般人的认知习惯和判断水平给出了属性间相对重要性等级表〔见表1〕.利用该表取的a^值,称为1-9标度方法.表1目标重要性判断矩阵A中元素的取值假设决策者能够准确估计a..,那么有:a二-1,a=a *a ,a=1 ,其根本的定1]ij a ij ik kj li理如下:第一,设A=(a ij)mxm,A>0,(即2产0间=12・.・加),如果满足条件(1)a ii =1 (i =12・・・,m);⑵a ij=1/a ji(i,j =1,2,…,m),那么称矩阵A为互反正矩阵.第二,设A=(a ij)mxm,A>0,如果满足条件a j= a ik-a kj(i,j,k=12・・・,m)那么称矩阵A为一致性矩阵.第三,对于任何一个m阶互反正矩阵A,均有X ma x Nm,其中勺曲是矩阵A 的最大特征值.第三,m阶互反正矩阵A为一致性矩阵的充分必要条件是A的最大特征根为m.第三,单准那么下的排序层次分析法的信息根底是比拟判断矩阵.由于每个准那么都支配下一层假设干因素,这样对于每一个准那么及它所支配的因素都可以得到一个比拟判断矩阵. 因此根据比拟判断矩阵如何求得各因素w1,w2,…,w m对于准那么A的相对排序权重的过程称为单准那么下的排序.这里设A=(a ij)mxm,A>0.方法一:本征向量法利用AW=九W求出所有九的值,其中!_为九的最大值,求出X max对应的特征向量W*,然后把特征向量W*规一化为向量W,那么W=[W],w2, ・・.w m]T为各个目标的权重.求九需要解m次方程,当mN3时,计算比拟麻烦,可以利用matlab 来求解.(2)判断矩阵的近似解法判断矩阵是决策者主观判断的定量描述,求解判断矩阵不要求过高的精度. 这里,介绍三种近似计算方法:根法、和法及幂法.幂法适于在计算机上运算.第一,根法①A中每行元素连乘并开m次方,得到向量W* =(狡*,狡*,...,狡*)T其中,12 mw* = 1r m a. ml%「1j j=②对W*作归一化处理,得到权重向量W=(w1,w2,…w )T,其中w = w*/£w* 12m l lll=1③对A中每列元素求和,得到向量S=(s1,s2,…s m),其中s j= E a j l=1④计算入max的值,九max=£s w = SW = -!-£ (AW:l=1l=1l方法二:和法①将A的元素按列作归一化处理,得矩阵QXqJmm.其中,q j = ajZa jk=1②将Q的元素按行相加,得向量a = (a ,a,…,a ).其中,a =£q12 mljjT③对向量a作归一化处理,得权重向量W=(w/w2, ・・.w m)T,其中w^a. /£a kk=1④求出最大特征值九=1£〞乜max m ,w ,方法三:幂法幂法是一种逐步迭代的方法,经过假设干次迭代计算,根据规定的精度,求出判断矩阵A的最大特征值及其对应的特征向量.设矩阵A=(a..)mxm,A>0,那么lim2土= CW,其中,W是A的最大特征值对应的的特征向量,C为常数, e T A k e k-8向量 e=(1,1,…,1)T .幂法的计算步骤是:①任取初始正向量X (0)=(x 1(0), x 2(0),…,X m (0))T ,计算=max { X 〔0〕}, Y 〔0〕= X 〔0〕/ mi②迭代计算,对于k=0,1,2,…计算X 〔 k +i 〕= AY 〔 k 〕, m = |X 〔 k +i 〕I = max { X 〔8i③精度检查.当|m k +1 -m j<£时,转入步骤④;否那么,令卜=卜+1,转入步骤②. ④求最大特征值和对应的特征向量,将Y (k+1)归一化,即: W = Y (k +1) / £ y ( k +1),九 =mi =1第四,单准那么下的一致性检验由于客观事物的复杂性,会使我们的判断带有主观性和片面性,完全要求 每次比拟判断的思维标准一致是不太可能的.因此在我们构造比拟判断矩阵时, 我们并不要求n(n-1)/2次比拟全部一致.但这可能出现甲与乙相比明显重要,乙 与丙相比极端重要,丙与甲相比明显重要,这种比拟判断会出现严重不一致的 情况.我们虽然不要求判断具有一致性,但一个混乱的,经不起推敲的比拟判 断矩阵有可能导致决策的失误,所以我们希望在判断时应大体一致.而上述计 算权重的方法,当判断矩阵过于偏离一致性时,其可靠程度也就值得疑心了. 因此,对于每一层次作单准那么排序时,均需要作一致性的检验.一致性指标〔Consistency Index,CI 〕 : CI =九 maxmm — 1 随机指标〔Random Index,RI 〕一致性比率〔Consistency Rate,CR 〕 :CR=CI/RI当CR 取时,最大特征值为=CI ・〔m-1〕+m=・RI ・〔m-1〕+mmaxm = ||X 〔0〕X 〔k +1〕}, Y 〔k +1〕=X 〔 k +i 〕/ m k +1表2随机指标RI ,九 取值表max表中当n=1,2时,RI=0,这是由于1,2阶判断矩阵总是一致的.当nN3时,假设CR^P X ma x<认为比拟判断矩阵的一致性可以接受,否那么应对判断矩阵作适当的修正,直到X max小于X max通过一致性检验时,求得的W 才有效.第五,层次总排序计算同一层次中所有元素对最高层(总目标)的相对重要性标度(又称权重向量)称为层次总排序.(1)层次总排序的步骤为:第一,计算同一层次所有因素对最高层相对重要性的权重向量,这一过程是自上而下逐层进行;第二,设已计算出第k-i层上有叱1个元素相对总目标的权重向量为K-1W(k-1)=(W1(k-1), W2(k-1),…,W n(k-1)(k-1))T第三,第k层有个n k个元素,他们对于上一层次(第k-1层)的某个元素j 的单准那么权重向量为p j(k)=(w1j(k), W2j(k),…,W nkj)(k))T (对于与k-1层第j个元素无支配关系的对应W j取值为0);第四,第k层相对总目标的权重向量为W k= (p1(k), p2(k),…p k-1(k),)W(k-1)(2)层次总排序的一致性检验人们在对各层元素作比拟时,尽管每一层中所用的比拟尺度根本一致,但各层之间仍可能有所差异,而这种差异将随着层次总排序的逐渐计算而累加起来,因此需要从模型的总体上来检验这种差异尺度的累积是否显着,检验的过程称为层次总排序的一致性检验.第k 层的一致性检验指标CIk=(CI1(k-1), CI2(k-1),・・・, CIn K(k-1))W(k-1)RI k=(RI1(k-1), RI2(k-1),・・・, RIn K(k-1))W(k-1)CR k=CR k-1+CI k/RI k(34k4n)当CR k <,可认为评价模型在第k层水平上整个到达局部满意一致性.第六,递阶层次结构权重解析过程(1)树状结构目标体系目标可分为多个层次,每个下层目标都隶属于一个而且只隶属一个上层目标,下层目标是对上层目标的具体说明.对于树状结构的目标体系,需由上而下逐步确定权重,即由树干向树梢,求树杈各枝相对于树杈的权重.〔2〕网状结构目标体系网状结构的目标也分为多个层次,每个下层目标隶属于某几个上层目标〔至少有一个下层目标隶属于不止一个上层目标〕.AHP方法的根本步骤:层次分析法大体分为以下六个步骤:〔1〕明确问题;〔2〕建立层次结构;〔3〕两两比拟,建立判断矩阵;〔4〕层次单排序及其一致性检验;〔5〕层次总排序及其一致性检验;〔6〕根据分析计算结果,考虑相应的决策.2.模糊综合评价方法理论根底模糊综合评价是以模糊数学为根底.应用模糊关系合成的原理,将一些边界不清,不易定量的因素定量化,进行综合评价的一种方法.在校园环境质量综合评价中,涉及到大量的复杂现象和多种因素的相互作用,而且,评价中存在大量的模糊现象和模糊概念.因此,在综合评价时,常用到模糊综合评价的方法进行定量化处理,评价出校园环境的质量等级,取得了良好的效果.但权重确实定需要专家的知识和经验,具有一定的缺陷,为此,本文采用层次分析法来确定各指标的权系数.使其更有合理性,更符合客观实际并易于定量表示, 从而提升模糊综合评判结果的准确性.此外,模糊综合评价中常取的取大取小算法,信息丧失很多,常常出现结果不易分辨〔即模型失效〕的情况.模糊综合评价方法和步骤的流程如下列图2:模糊综合评价是通过构造等级模糊子集把反映被评事物的模糊指标进行量化〔即确定隶属度〕,然后利用模糊变换原理对各指标综合.流程如下:〔1〕确定评价对象的因素论域P个评价指标,u=k u2,, u}.〔2〕确定评语等级论域v = 11,\,・・・・・・,V p},即等级集合.每一个等级可对应一个模糊子集.〔3〕建立模糊关系矩阵R在构造了等级模糊子集后,要逐个对被评事物从每个因素ui〔i = 1,2, ・・・・・・,p〕上进行量化,即确定从单因素来看被评事物对等级模糊子集的隶属度〔R I u.〕, 进而得到模糊关系矩阵:一u r r• • •r11112 1 mR I u r r• • •rR =2一2122 2 m• •*• • •• • •« • ••rR I u r r• • •p 1 p 2pm」p . m矩阵R 中第i 行第/列元素r j,表示某个被评事物从因素4来看对匕等级模糊子 集的隶属度.一个 被评事物在某个因素4方面的表现,是通过模糊向量 〔R ।匕〕=〔/%,……,0来刻画的,而在其他评价方法中多是由一个指标实际值来刻画的,因此,从这个角度讲模糊综合评价要求更多的信息[10. 〔4〕确定评价因素的权向量在模糊综合评价中,确定评价因素的权向量:A = 〔a ,a ,・・・・・・,a 〕.权向量A12p中的元素a.本质上是因素u 对模糊子{对被评事物重要的因素}的隶属度.本文使 用层次分析法来确定评价指标间的相对重要性次序.从而确定权系数,并且在 合成之前归一化.即寸a .=1,a0 , i = 1,2,・・・・・・,n i =1〔5〕合成模糊综合评价结果向量利用适宜的算子将4与各被评事物的R 进行合成,得到各被评事物的模糊 综合评价结果向量B .即:AoR =C a ,a ,……,a ) p r11 r21• • •r 12 r22 • • •• • • • • • • • •r 1 m r2 m• • •=(b , b , (12)•••, b m )=BL r r• • •rp 1 p 2pm」其中?是由4与R 的第j 列运算得到的,它表示被评事物从整体上看对匕等级模 糊子集的隶属程度.〔6〕对模糊综合评价结果向量进行分析实际中最常用的方法是最大隶属度原那么,但在某些情况下使用会有些很勉 强,损失信息很多,甚至得出不合理的评价结果.提出使用加权平均求隶属等 级的方法,对于多个被评事物并可以依据其等级位置进行排序.多级模糊综合评价方法的步骤如下,以二级模糊评价为例:(1)进行一级因素的综合评价即按某一类中的各个因素进行综合评价.设对第i(1=12,,N)类中的第川=12加)元素进行综合评价,评价对象隶属于评价集合中的第k(k=1,2〃,m)个元素的隶属度为争(i=1,2,,,N;j=1,2,,,n;k=1,2〃,m),那么该综合评价的单因素隶属度矩阵为:Ci11 …RmR=()i C ... C in i inm于是第i类因素的模糊综合评价集合为:C11…C i i mB — W .R —(w , w ,.... w ).()i i ii1i2 in C ... Cin i inm同理确定B i.....B n的单因素模糊评价行向量:B -(,,,,) B;=(,,,,) ...B n -(,,,,)I=1,2,,,N,Bi为B层第i个指标所包含的各下级因素对于它的综合模糊运算结果, b 为B层第i个指标下级各因素相对于它的权重;R为模糊评价矩阵.i(2)进行二级因素的模糊综合评价最底层模糊综合评价仅仅是对某一类中的各个因素进行综合,为了考虑各类因素的综合影响,还必须在类之间进行综合.进行类之间因素的综合评价时, 所进行的评价为单因素评价,而单因素评价矩阵应为最底层模糊综合评价矩阵:B i ii - B i i mA — W .R —(w , w,….w ).()i i ii1 i2 in B ... Bin1inm。
模糊综合评判方法
模糊综合评判方法
模糊综合评判方法是一种以模糊数学为基础的评价方法,主要用于处理评价指标不确定、难以量化的问题。
它将定性指标转化为模糊数,然后通过模糊数的运算,得出评价结果。
模糊综合评判方法的步骤如下:
1. 确定评价指标:根据评价对象的特点和目标,确定具体的评价指标集合。
2. 构建模糊数:将定性指标转化为模糊数,即使用隶属函数来描述指标的模糊程度和不确定性。
3. 设定权重:根据评价指标的重要性,设定各指标的权重。
4. 模糊综合评判:根据权重和模糊数的运算规则,对各指标进行综合评判,得出模糊的评价结果。
5. 解模糊化:将模糊结果转化为确定的评价值,可以采用求平均值、加权平均值等方式。
6. 评价结果的解释和分析:对于得到的评价结果进行解释和分析,提出合理的建议和决策。
模糊综合评判方法适用于多指标、多因素、模糊性较强的评价问题,能够更好地反映实际情况的复杂性和不确定性。
它在决策、投资、工程评估等领域得到广泛应用。
模糊综合评判法(原理)
模糊数学概述
1.确定性现象:物质的汽化、冷凝,运动的速率,这种现
象的规律性靠经典数学去刻画; 2.随机现象:某种事物的分布,故障发生的概率,这种现 象的规律性靠概率统计去刻画; 3.模糊现象:年轻、重、热、美、厚、薄、快、慢、大、 小、高、低、长、短、贵、贱、强、弱,靠模糊数学去刻 画。
r11 r12 r21 r22 R r r m1 m 2 r1n r2 n rmn
其中rij表示某个被评价对象从因素ui来看对 等级模糊子集vj的隶属度。一个被评价对象 在某个因素ui方面的表现是通过模糊矢量ri 来刻画的,ri称为单因素评价矩阵,可以看 作是因素集U和评价集V之间的一种模糊关 系,即影响因素与评价对象之间的“合理 关系”。 ri =(ri, ri,…, ri)归一化处理,即 Σrij=1,目的是消除量纲的影响
三、模糊综合评价方法的优缺点
1、模糊综合评价法的优点 模糊评价通过精确的数字手段处理模糊的评价对象,能对
蕴Leabharlann 信息呈现模糊性的资料作出比较科学、合理、贴近实 际的量化评价; 评价结果是一个矢量,而不是一个点值,包含的信息比较 丰富,既可以比较准确的刻画被评价对象,又可以进一步 加工,得到参考信息。 2、模糊综合评价法的缺点 计算复杂,对指标权重矢量的确定主观性较强; 当指标集U较大,即指标集个数凡较大时,在权矢量和为1 的条件约束下,相对隶属度权系数往往偏小,权矢量与模 糊矩阵R不匹配,结果会出现超模糊现象,分辨率很差, 无法区分谁的隶属度更高,甚至造成评判失败,此时可用 分层模糊评估法加以改进。
评价指标权系数向量: A=(0.2,0.3,0.5)
确定权重的方法:
加权平均法:当专家人数不足30人时,可用此法.首先多位
模糊综合评判法(原理)
M ( , )
b j min1 , ai rij , i 1
m
j 1, 2 , , n
模型M(∧,∨)为主因素突出型的综合评判,其评判结果往
往取决于在总评价中占主要作用的那个因素,此模型比较 适用于单项评判最优就能作为综合评判最优的情况。 模型M(•,∨)也是主因素突出型的综合评判,它与模型 M(∧,∨)相近,但更精细些,不仅突出了主因素,也兼顾 了其他因素,此模型适用于M(∧,∨)失去作用,需要“加 细”的情况。 模型M(∧,⊕)也是属于主因素突出型的综合评判,比模型 M(∧,∨)也精细些,此模型的评价结果也是和ai的取值有 很大的关系。
在确定隶属关系时,通常是由专家或与评价问题相关的专
业人员依据评判等级对评价对象进行打分,然后统计打分 结果,求出各评价等级所占百分比。
5、多指标综合评价(合成模糊综合评价结果矢量)
利用合适的模糊合成算子将模糊权矢量A与模糊关 系矩阵R合成得到各被评价对象的模糊综合评价结果 矢量B。 模糊综合评价的模型为:
综合评价法(层次分析法)概述
层次分析法的基本步骤归纳如下 1.建立层次结构模型 该结构图包括 目标层,准则层,方案层。 2.构造成对比较矩阵 从第二层开始 用成对比较矩阵。 3.计算单排序权向量并做一致性检 验 4.计算总排序权向量并做一致性检 验
确定评价对象
确立指标体系
确定指标权重
确定评价等级
建立数学模型
评价结果分析
二、模糊综合评价法的模型和步骤
20世纪80年代后期,日本将模糊技术 应用于机器人、过程控制、地铁机车、 交通管理、故障诊断、医疗诊断、声 音识别、图像处理、市场预测等众多 领域。模糊理论及模糊法在日本的应 用和巨大的市场前景,给西方企业界 很大震动,在学术界也得到了普遍的 认同。 国内对于模糊数学及模糊综合评价法 的研究起步相对较晚,但在近些年各 个领域(如医学、建筑业、环境质量 监督、水利等)的应用也已初显成效。
基于模糊综合评价的场景应用分析与探讨
基于模糊综合评价的场景应用分析与探讨一、模糊综合评价的基本原理1. 模糊集理论模糊集理论是模糊综合评价方法的理论基础,它是由日本学者庞特(Zadeh, L.A.)于1965年提出的概念。
模糊集理论是对现实世界中不确定性的一种数学描述,它将事物的隶属关系从二元逻辑(是或否)扩展到了连续的数值范围内。
通过模糊集理论,我们可以更加准确地描述事物之间的关系,从而实现对不确定性信息的处理和分析。
2. 模糊综合评价模糊综合评价是基于模糊集理论的一种评价方法,它可以有效地处理多指标、多因素、不确定性和模糊性信息。
在模糊综合评价中,首先需要将各个指标进行模糊化处理,然后通过一定的逻辑运算,得出最终的综合评价结果。
在这个过程中,可以设置不同的权重和置信度,以更好地反映各个指标之间的重要性和可信度。
二、模糊综合评价在实际场景中的应用1. 环境评价在环境评价领域,常常需要对环境质量进行评估。
对于一座城市的环境质量,可以通过模糊综合评价方法,将空气质量、水质质量、噪音污染等多个指标进行综合评估。
通过模糊综合评价,可以得出一个更加客观和全面的评价结果,有利于环境管理部门进行科学决策。
在经济评价领域,模糊综合评价也有着广泛的应用。
在一个项目的投资决策中,需要对风险、收益、市场前景等多个因素进行评估。
通过模糊综合评价,可以将这些因素进行综合分析,得出一个更加客观和准确的投资评价结果,有助于投资者做出明智的决策。
3. 产品质量评价三、模糊综合评价方法的优势与局限1. 优势模糊综合评价方法具有灵活性强、信息利用率高、模型简单等优势。
它可以将多个指标进行综合评价,充分利用各种信息,得出更加全面和客观的评价结果。
模糊综合评价方法的模型相对简单,易于实际应用和推广。
2. 局限模糊综合评价方法也存在一些局限性。
模糊综合评价方法对数据的要求相对较高,需要充分收集和整理各种信息。
模糊综合评价方法在权重确定、置信度设置等方面存在一定的主观性,容易受到评价者的主观影响。
模糊综合评价法和层次分析法比较
模糊综合评价法和层次分析法比较模糊综合评价法和层次分析法是常用的定量决策方法,它们在多个领域中都有广泛应用,比如企业管理、城市规划等。
这两种方法在解决问题的理论基础、流程实现以及适用范围等方面存在差异。
本文将从这些方面进行比较分析。
一、理论基础1.1 模糊综合评价模糊综合评价法来源于模糊数学,其理论基础为模糊集合与模糊逻辑。
该方法将各指标之间的相互影响看成模糊集合,采用信息量的概念对各个指标之间的隶属度进行定量化,并将隶属度转化为权重,进而得到总体评价结果。
模糊综合评价法可以有效克服传统评价方法无法处理模糊和不确定性信息的缺点,在不确定情况下有较好的适用性。
1.2 层次分析法层次分析法是一种多因素决策分析方法,其理论基础为结构层次分析。
该方法通过构建一个层次结构体系,将问题划分为多个层次,确定因素所处的层次,并制定判断矩阵。
利用特征向量法和权重逆法计算出每个因素相对于决策的权重,进而得出最终结果。
层次分析法可以在各种情况下有效地解决多因素决策问题。
二、流程实现2.1 模糊综合评价模糊综合评价方法包括以下步骤:(1) 确定评价对象和评价指标;(2) 建立评估矩阵,由因素之间的摩擦和协调程度决定隶属度;(3) 计算各因素的权重,通过组合隶属函数,把所有因素的影响加权汇总为一个代表性指标;(4) 根据代表性指标进行排序,从而得到最后的评价结果。
2.2 层次分析法层次分析法的具体实现步骤如下:(1) 选择評價對象與建立評價標準及指標體系;(2) 确定評價標準及指標體系之間的層次關係,构建判斷矩陣;(3) 通过特征向量法或者权重逆法确定各级因素的权重;(4) 计算出总得分和一致性综合指标。
三、适用范围3.1 模糊综合评价模糊综合评价法较为适用于以下场景:(1) 评价对象复杂,涉及多种因素,相互之间存在交叉影响且难以量化;(2) 问题涉及不确定性和模糊性因素时;(3) 权重系数程度难以预测时。
3.2 层次分析法层次分析法较为适用于以下场景:(1) 多因素决策问题中,因素的数量少而稳定,且对方案的影响程度相对明确;(2) 可量化问题中,尤其是在两个最终选择之间进行比较和选择时。
模糊综合评价方法及其应用研究
模糊综合评价方法及其应用研究模糊综合评价方法是一种基于模糊数学和模糊逻辑理论的评价方法,它在多个领域都有广泛的应用。
特别是在需要综合考虑多个因素和条件的复杂系统中,模糊综合评价方法能够有效地处理不确定性、不完全性和主观性,为决策提供科学依据。
本文将介绍模糊综合评价方法的基本原理、应用范围和优点,并通过具体应用实例探讨其在不同领域的效果和优势。
模糊综合评价方法的基本原理是利用模糊数学和模糊逻辑理论,将不确定的、复杂的评价对象转化为可量化的数学模型。
该方法通过引入模糊矩阵、模糊运算等概念,将多个因素和条件的评价结果进行集成,得到一个综合的评价结果。
模糊综合评价方法具有处理不确定性、不完全性和主观性的能力,同时能够考虑多种因素和条件,为决策提供更为全面的支持。
在进行模糊综合评价之前,首先需要对评价对象进行关键词识别。
关键词识别是指从输入的文本中提取出与评价对象相关的关键词,并根据这些关键词确定文章的主题和类型。
关键词识别的方法包括基于规则的方法和基于机器学习的方法。
基于规则的方法是根据预先定义的规则和算法,从输入文本中提取出相关关键词;基于机器学习的方法则是利用机器学习算法,对输入文本进行训练和学习,自动识别出相关关键词。
在完成关键词识别后,接下来进行模糊综合评价。
模糊综合评价以识别出的关键词为基础,结合相关规则和算法,对文章进行综合评价。
具体步骤如下:建立评价指标体系:根据评价对象的特点和评价目标,建立相应的评价指标体系。
评价指标体系应包括多个层次和多个指标,用以全面反映评价对象的各个方面。
确定评价因素权重:针对每个评价指标,确定其对应的权重。
权重的确定可以采用层次分析法、熵值法等权重确定方法,也可以根据实际经验和专家意见进行赋值。
建立模糊关系矩阵:根据评价指标体系和权重,建立相应的模糊关系矩阵。
模糊关系矩阵中的元素表示不同指标之间的模糊关系,通常采用三角函数或其他函数进行计算。
进行模糊运算:将模糊关系矩阵与权重向量进行模糊运算,得到综合评价结果。
AHP模糊综合评价方法的分析与研究
AHP模糊综合评价方法的分析与研究一、本文概述本文旨在对层次分析法(Analytic Hierarchy Process,简称AHP)与模糊综合评价方法进行深入的分析与研究。
AHP作为一种多目标决策分析方法,自上世纪70年代由美国运筹学家T.L.Saaty提出以来,已在各个领域得到了广泛应用。
模糊综合评价方法则是以模糊数学为基础,对一些边界不清、不易定量的因素进行定量化处理,从而实现对评价对象的综合评价。
本文将这两种方法相结合,探讨其在复杂系统评价中的应用及优化。
文章首先回顾了AHP和模糊综合评价方法的基本原理和发展历程,分析了它们的优点和局限性。
在此基础上,探讨了将两者结合使用的必要性和可能性,构建了基于AHP的模糊综合评价模型。
该模型能够综合考虑评价对象的多个因素,对评价对象进行更全面、更准确的评价。
接着,文章通过案例分析,验证了该评价模型的有效性和实用性。
案例涵盖了企业管理、城市规划、环境保护等多个领域,展示了AHP模糊综合评价方法在不同场景下的应用。
文章还探讨了该模型在实际应用中可能遇到的问题和解决方案,为该方法的应用提供了有益的参考。
文章对AHP模糊综合评价方法的发展趋势进行了展望,提出了未来研究的方向和建议。
通过本文的研究,期望能够为相关领域的研究者和实践者提供有益的启示和借鉴,推动AHP模糊综合评价方法在实际应用中的不断发展和完善。
二、AHP模糊综合评价方法理论基础层次分析法(Analytic Hierarchy Process,简称AHP)是一种定性与定量相结合的决策分析方法,由美国运筹学家T.L.Saaty教授于20世纪70年代初期提出。
AHP通过将复杂问题分解为若干层次和若干因素,在各因素之间进行简单的比较和计算,得出不同方案的权重,为决策者提供定量化的决策依据。
该方法特别适用于处理那些难以完全用定量方法进行分析的复杂问题。
模糊综合评价方法(Fuzzy Comprehensive Evaluation,简称FCE)则是基于模糊数学的一种综合评价方法。
模糊综合评价方法的理论基础
AHP ――模糊综合评价方法的理论基础1.层次分析法理论基础1970-1980年期间,著名学者Saaty最先开创性地建立了层次分析法,英文缩写为AHP。
该模型可以较好地处理复杂的决策问题,迅速受到学界的高度重视。
后被广泛应用到经济计划和管理、教育与行为科学等领域。
AHP建立层次结构模型,充分分析少量的有用的信息,将一个具体的问题进行数理化分析,从而有利于求解现实社会中存在的许多难以解决的复杂问题。
一些定性或定性与定量相结合的决策分析特别适合使用AHP。
被广泛应用到城市产业规划、企业管理和企业信用评级等等方面,是一个有效的科学决策方法。
Diego Falsini、Federico Fondi 和Massimiliano M. Schiraldi(2012)运用AHP 与DEA的结合研究了物流供应商的选择;Radivojevi?、Gordana和Gajovi?, Vladimir(2014)研究了供应链的风险因素分析;K.D. Maniya 和M.G. Bhatt(2011)研究了多属性的车辆自动引导机制;朱春生(2013)利用AHP分析了高校后勤HR配置的风险管理;蔡文飞(2013)运用AHP分析了煤炭管理中的风险应急处理;徐广业(2011)研究了AHP与DEA的交互式应用;林正奎(2012)研究了城市保险业的社会责任。
第一,递阶层次结构的建立一般来说,可以将层次分为三种类型:(1)最高层(总目标层):只包含一个元素,表示决策分析的总目标,因此也称为总目标层。
(2)中间层(准则层和子准则层):包含若干层元素,表示实现总目标所涉及的各子目标,包含各种准则、约束、策略等,因此也称为目标层。
(3)最低层(方案层):表示实现各决策目标的可行方案、措施等,也称为方案典型的递阶层次结构如下图1:一个好的递阶层次结构对解决问题极为重要,因此,在建立递阶层次结构时,应注意到:(1)从上到下顺序地存在支配关系,用直线段(作用线)表示上一层次因素与下一层次因素之间的关系,同一层次及不相邻元素之间不存在支配关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AHP——模糊综合评价方法的理论基础1. 层次分析法理论基础1970-1980年期间,著名学者Saaty最先开创性地建立了层次分析法,英文缩写为AHP。
该模型可以较好地处理复杂的决策问题,迅速受到学界的高度重视。
后被广泛应用到经济计划和管理、教育与行为科学等领域。
AHP建立层次结构模型,充分分析少量的有用的信息,将一个具体的问题进行数理化分析,从而有利于求解现实社会中存在的许多难以解决的复杂问题。
一些定性或定性与定量相结合的决策分析特别适合使用AHP。
被广泛应用到城市产业规划、企业管理和企业信用评级等等方面,是一个有效的科学决策方法。
Diego Falsini、Federico Fondi 和Massimiliano M. Schiraldi(2012)运用AHP 与DEA的结合研究了物流供应商的选择;Radivojević、Gordana和Gajović, Vladimir(2014)研究了供应链的风险因素分析;K.D. Maniya和M.G. Bhatt(2011)研究了多属性的车辆自动引导机制;朱春生(2013)利用AHP分析了高校后勤HR配置的风险管理;蔡文飞(2013)运用AHP分析了煤炭管理中的风险应急处理;徐广业(2011)研究了AHP与DEA的交互式应用;林正奎(2012)研究了城市保险业的社会责任。
第一,递阶层次结构的建立一般来说,可以将层次分为三种类型:(1)最高层(总目标层):只包含一个元素,表示决策分析的总目标,因此也称为总目标层。
(2)中间层(准则层和子准则层):包含若干层元素,表示实现总目标所涉及的各子目标,包含各种准则、约束、策略等,因此也称为目标层。
(3)最低层(方案层):表示实现各决策目标的可行方案、措施等,也称为方案层。
典型的递阶层次结构如下图1:一个好的递阶层次结构对解决问题极为重要,因此,在建立递阶层次结构时,应注意到:(1)从上到下顺序地存在支配关系,用直线段(作用线)表示上一层次因素与下一层次因素之间的关系,同一层次及不相邻元素之间不存在支配关系。
(2)整个结构不受层次限制。
(3)最高层只有一个因素,每个因素所支配元素一般不超过9个,元素过多可进一步分层。
(4)对某些具有子层次结构可引入虚元素,使之成为典型递阶层次结构。
第二,构造比较判断矩阵设有m 个目标(方案或元素),根据某一准则,将这m 个目标两两进行比较,把第i 个目标(i=1,2,…,m )对第j 个目标的相对重要性记为ij a ,这样构造的m 阶矩阵用于求解各个目标关于某准则的优先权重,成为权重解析判断矩阵,简称判断矩阵,记作ij m m A ⨯=(a )。
Satty 于1980年根据一般人的认知习惯和判断能力给出了属性间相对重要性等级表(见表1)。
利用该表取的ij a 值,称为1-9标度方法。
表1 目标重要性判断矩阵A 中元素的取值若决策者能够准确估计ij a ,则有:1,*,1ij ij ik kj ii jia a a a a a === ,其基本的定理如下:第一,设A=(a ij )m×m ,A>0,(即a ij >0;i,j=1,2,…,m ),如果满足条件(1)a ii =1(i =1,2,…,m );(2)a ij =1/a ji (i,j =1,2,…,m ),则称矩阵A 为互反正矩阵。
第二,设A=(a ij )m×m ,A>0,如果满足条件a ij= a ik ·a kj (i,j,k=1,2,…,m )则称矩阵A 为一致性矩阵。
第三,对于任何一个m 阶互反正矩阵A ,均有m ax λ≥m ,其中m ax λ是矩阵A 的最大特征值。
第三,m 阶互反正矩阵A 为一致性矩阵的充分必要条件是A 的最大特征根为m 。
第三,单准则下的排序层次分析法的信息基础是比较判断矩阵。
由于每个准则都支配下一层若干因素,这样对于每一个准则及它所支配的因素都可以得到一个比较判断矩阵。
因此根据比较判断矩阵如何求得各因素w 1,w 2, …,w m 对于准则A 的相对排序权重的过程称为单准则下的排序。
这里设A=(a ij )m×m ,A>0。
方法一:本征向量法利用AW=λW 求出所有λ的值,其中m ax λ为λ的最大值,求出m ax λ对应的特征向量W *,然后把特征向量W *规一化为向量W ,则W=[w 1,w 2, …w m ]T 为各个目标的权重。
求λ需要解m 次方程,当m≥3时,计算比较麻烦,可以利用matlab 来求解。
(2)判断矩阵的近似解法判断矩阵是决策者主观判断的定量描述,求解判断矩阵不要求过高的精度。
这里,介绍三种近似计算方法:根法、和法及幂法。
幂法适于在计算机上运算。
第一,根法①A 中每行元素连乘并开m 次方,得到向量Tm w w w W ),...,,(**2*1*=其中,m mj ij ia w ∏==1*②对W *作归一化处理,得到权重向量W=(w 1,w 2, …w m )T,其中∑==mi i ii w w w 1**/③对A 中每列元素求和,得到向量S=(s 1,s 2, …s m ),其中s j =∑=mi ij a 1④计算m ax λ的值,SW w s i mi i ==∑=1max λ=∑=m i i iw AW m 1)(1方法二:和法①将A 的元素按列作归一化处理,得矩阵Q=(q ij )m×m 。
其中,∑==mk kj ij ij a a q 1/②将Q 的元素按行相加,得向量Tm ),...,,(21αααα=。
其中,∑==mj ij i q 1α③对向量α作归一化处理,得权重向量W=(w 1,w 2, …w m )T,其中∑==mk k i i w 1/αα④求出最大特征值∑==m i iiw AW m 1max )(1λ方法三:幂法幂法是一种逐步迭代的方法,经过若干次迭代计算,按照规定的精度,求出判断矩阵A 的最大特征值及其对应的特征向量。
设矩阵A=(a ij )m×m ,A>0,则CW e A e eA k T k k =∞→lim ,其中,W 是A 的最大特征值对应的的特征向量,C 为常数,向量e=(1,1,…,1)T 。
幂法的计算步骤是:①任取初始正向量X (0)=(x 1(0), x 2(0), …, x m (0))T ,计算0)0()0()0()0(0/},{max m X Y x X m i i===∞②迭代计算,对于k=0,1,2, …计算1)1()1()1()1(1)()1(/},{,max ++++∞+++====k k k k i ik k k k m X Y x X m AY X③精度检查。
当ε<-+k k m m 1时,转入步骤④;否则,令k=k+1,转入步骤②。
④求最大特征值和对应的特征向量,将Y (k+1)归一化,即:1max 1)1()1(,/+=++==∑k mi k i k m y YW λ第四,单准则下的一致性检验由于客观事物的复杂性,会使我们的判断带有主观性和片面性,完全要求每次比较判断的思维标准一致是不太可能的。
因此在我们构造比较判断矩阵时,我们并不要求n(n-1)/2次比较全部一致。
但这可能出现甲与乙相比明显重要,乙与丙相比极端重要,丙与甲相比明显重要,这种比较判断会出现严重不一致的情况。
我们虽然不要求判断具有一致性,但一个混乱的,经不起推敲的比较判断矩阵有可能导致决策的失误,所以我们希望在判断时应大体一致。
而上述计算权重的方法,当判断矩阵过于偏离一致性时,其可靠程度也就值得怀疑了。
因此,对于每一层次作单准则排序时,均需要作一致性的检验。
一致性指标(Consistency Index,CI ):1max --=m mCI λ随机指标(Random Index,RI )一致性比率(Consistency Rate,CR ):CR=CI/RI当CR 取0.1时,最大特征值'm ax λ=CI·(m-1)+m=0.1·RI·(m-1)+m 表2 随机指标RI ,'m ax λ取值表表中当n=1,2时,RI=0,这是因为1,2阶判断矩阵总是一致的。
当n≥3时,若CR<0.1即m ax λ<'m ax λ,认为比较判断矩阵的一致性可以接受,否则应对判断矩阵作适当的修正,直到m ax λ小于'm ax λ通过一致性检验时,求得的W 才有效。
第五,层次总排序计算同一层次中所有元素对最高层(总目标)的相对重要性标度(又称权重向量)称为层次总排序。
(1)层次总排序的步骤为:第一,计算同一层次所有因素对最高层相对重要性的权重向量,这一过程是自上而下逐层进行;第二,设已计算出第k-1层上有n k-1个元素相对总目标的权重向量为w (k-1)=(w 1(k-1), w 2(k-1),…, w n(k-1)(k-1))T第三,第k 层有个n k 个元素,他们对于上一层次(第k-1层)的某个元素j 的单准则权重向量为p j (k)=(w 1j (k), w 2j (k),…, w nkj)(k))T (对于与k-1层第j 个元素无支配关系的对应w ij 取值为0);第四,第k 层相对总目标的权重向量为w k = (p 1(k), p 2(k),…p k-1(k),)w (k-1) (2)层次总排序的一致性检验人们在对各层元素作比较时,尽管每一层中所用的比较尺度基本一致,但各层之间仍可能有所差异,而这种差异将随着层次总排序的逐渐计算而累加起来,因此需要从模型的总体上来检验这种差异尺度的累积是否显著,检验的过程称为层次总排序的一致性检验。
第k 层的一致性检验指标CIk=(CI 1(k-1), CI 2(k-1),…, CIn K (k-1))w (k-1) RI k =(RI 1(k-1), RI 2(k-1),…, RIn K (k-1))w (k-1) CR k =CR k-1+CI k /RI k (3≤k≤n)当CR k <0.1,可认为评价模型在第k 层水平上整个达到局部满意一致性。
第六,递阶层次结构权重解析过程 (1)树状结构目标体系目标可分为多个层次,每个下层目标都隶属于一个而且只隶属一个上层目标,下层目标是对上层目标的具体说明。
对于树状结构的目标体系,需由上而下逐步确定权重,即由树干向树梢,求树杈各枝相对于树杈的权重。
(2)网状结构目标体系网状结构的目标也分为多个层次,每个下层目标隶属于某几个上层目标(至少有一个下层目标隶属于不止一个上层目标)。
AHP方法的基本步骤:层次分析法大体分为以下六个步骤:(1)明确问题;(2)建立层次结构;(3)两两比较,建立判断矩阵;(4)层次单排序及其一致性检验;(5)层次总排序及其一致性检验;(6)根据分析计算结果,考虑相应的决策。