北师大版初一数学下册第一章试题及答案

合集下载

北师大版七年级数学下册 第一章 整式的乘除 1.1~1.3 计算综合专项训练(word版含答案)

北师大版七年级数学下册 第一章 整式的乘除 1.1~1.3 计算综合专项训练(word版含答案)

北师大版七年级数学下册第一章整式的乘除1.1~1.3计算综合专项训练1.计算:(1)a2•a3(2)(﹣a2)3(3)a10÷a9(4)(﹣bc)4÷(﹣bc)22.计算:(1)x2•x5﹣x3•x4;(2)m3•m3+m•m5;(3)a•a3•a2+a2•a4;(4)x2•x4+x3•x2•x.3.计算:(1)x3•x3;(2)m2•m3;(3)a3+a3;(4)x2•x2•x2;(5)102•10•105;(6)y3•y2•y4.4.计算:(1)(﹣x)3•x2•(﹣x)4;(2)﹣(﹣a)2•(﹣a)7•(﹣a)4(3)(﹣b)4•(﹣b)2﹣(﹣b)5•(﹣b);(4)(﹣x)7•(﹣x)2﹣(﹣x)4•x5.5.计算:(1)a3•a2•a (2).6.计算:(﹣x)•(﹣x)2•(﹣x)3+(﹣x)•(﹣x)5.7.计算:(a﹣b)3•(b﹣a)3+[2(a﹣b)2]3.8.计算:y3•(﹣y)•(﹣y)5•(﹣y)2.9.计算:(1)(﹣8)2011•(﹣0.125)2012;(2)(a﹣b)5(b﹣a)3.10.计算:a3•a•a5+a4•a2•a3.11.计算;(1)x•x2•x3+(x2)3﹣2(x3)2;(2)[(x2)3]2﹣3(x2•x3•x)2;(3)(﹣2a n b3n)2+(a2b6)n;(4)(﹣3x3)2﹣(﹣x2)3+(﹣2x)2﹣(﹣x)3.12.计算:(1)59×0.28;(2)×(3)22×42×5613.计算:(1)(﹣8)12×83 (2)210×410 (3)(m4)2+m5•m3(4)﹣[(2a﹣b)4]2 (5)(3xy2)2 (6)(a﹣b)5(b﹣a)3(1)﹣12008×|﹣.(2).15.计算:(1)()﹣1+(﹣2)3×(π﹣2)0;(2)(﹣a2)3﹣a2•a4+(﹣2a4)2÷a2.16.计算:(1)(y2)3÷y6•y (2)y4+(y2)4÷y4﹣(﹣y2)217.计算:﹣()2×9﹣2×(﹣)÷+4×(﹣0.5)2(1)(﹣1)2019+(π﹣3.14)0﹣()﹣1.(2)(﹣2x2y)3﹣(﹣2x3y)2+6x6y3+2x6y219.计算(1)(m﹣n)2•(n﹣m)3•(n﹣m)4(2)(b2n)3(b3)4n÷(b5)n+1(3)(a2)3﹣a3•a3+(2a3)2;(4)(﹣4a m+1)3÷[2(2a m)2•a].20.计算:(1)(﹣2ab)•(﹣3ab)3(2)5x2•(3x3)2(4)(﹣0.16)•(﹣10b2)3(4)(2×10n)(×10n)21.计算:()100×(1)100×(0.5×3)2019×(﹣2×)2020.22.计算:(1)﹣2﹣17﹣(﹣27)+(﹣10);(2)﹣;(4)a2﹣2(a2﹣3ab)﹣ab;(4)a•a5+(﹣2a3)2+(﹣3a2)3;(5)解方程:3(2x﹣1)=2x+3;(6)解方程:.答案提示1.解:(1)a2•a3=a5;(2)(﹣a2)3=﹣a6;(3)a10÷a9=a(a≠0);(4)(﹣bc)4÷(﹣bc)2=b2c2;2.解:(1)x2•x5﹣x3•x4=x7﹣x7=0;(2)m3•m3+m•m5=m6+m6=2m6;(3)a•a3•a2+a2•a4=a1+3+2+a2+4=a6+a6=2a6;(4)x2•x4+x3•x2•x=x6+x6=2x6.3.解:(1)x3•x3=x3+3=x6;(2)m2•m3=m2+3=m5;(3)a3+a3=2a3;(4)x2•x2•x2=x2+2+2=x6;(5)102•10•105=102+1+5=108;(6)y3•y2•y4=y3+2+4=y9.4.解:(1)(﹣x)3•x2•(﹣x)4=﹣x3•x2•x4=﹣x9;(2)﹣(﹣a)2•(﹣a)7•(﹣a)4=﹣a2•(﹣a7)•a4=a13;(3)(﹣b)4•(﹣b)2﹣(﹣b)5•(﹣b)=b4•b2﹣(﹣b5)•(﹣b)=b6﹣b6=0;(4)(﹣x)7•(﹣x)2﹣(﹣x)4•x5=(﹣x7)•x2﹣x4•x5=﹣x9﹣x9=﹣2x9.5.解:(1)原式=a3+2+1=a6;(2)原式=(﹣)2008×()2008×(﹣)=﹣.6.解:原式=﹣x•x2•(﹣x3)﹣x•(﹣x5)=x6+x6=2x6.7.解:原式=﹣(a﹣b)6+8(a﹣b)6=7(a﹣b)68.解:原式=y3•(﹣y)•(﹣y)5•y2=y3•(﹣y)•(﹣y5)•y2=y3•y•y5•y2=y3+1+5+2=y11.9.解:(1)原式=(﹣8)2011•(﹣)2011•(﹣),=[﹣8×(﹣)]2011×(﹣),=1×(﹣),=﹣;(2)原式=(a﹣b)5•[﹣(a﹣b)]3=﹣(a﹣b)8.10.解:a3•a•a5+a4•a2•a3=a9+a9=2a9.11.解:(1)原式=x6+x6﹣2x6=0;(2)原式=(x6)2﹣3(x6)2=x12﹣3x12=﹣2x12;(3)原式=4a2n b6n+a2n b6n=5a2n b6n;(4)原式=9x6﹣(﹣x6)+4x2﹣(﹣x3)=9x6+x6+4x2+x3=10x6+x3+4x2.12.解:(1)59×0.28=(5×0.2)8×5=1×5=5;(2)(﹣)9×()9=[(﹣)×]9=(﹣1)9=﹣1;(3)22×42×56=22×52×42×54=(2×5)2×42×252=102×(4×25)2=102×1002=102×104=106.13.解:(1)(﹣8)12×83=812×83=815;(2)210×410=210×(22)10=210×220=230;(3)(m4)2+m5•m3=m8+m8=2m8;(4)﹣[(2a﹣b)4]2=﹣(2a﹣b)8;(5)(3xy2)2=9x2y4;(6)(a﹣b)5(b﹣a)3=﹣(a﹣b)5(a﹣b)3=﹣(a﹣b)8.14.解:(1)原式=﹣1×+1﹣=﹣+=0;(2)原式=224×()8﹣()100×()100×=(2×)24﹣(×)100×=1﹣=﹣.15.解:(1)原式=3+(﹣8)×1=﹣5;(2)原式=﹣a6﹣a6+4a6=2a6.16.解:(1)(y2)3÷y6•y=y6÷y6•y=y;(2)y4+(y2)4÷y4﹣(﹣y2)2=y4+y8÷y4﹣y4=y4+y4﹣y4=y4.17.解:=×××+4×=+1=118.解:(1)原式=﹣1+1﹣3=﹣3;(2)原式=﹣8x6y3﹣4x6y2+6x6y3+2x6y2=﹣2x6y3﹣2x6y2.19.解:(1)(m﹣n)2•(n﹣m)3•(n﹣m)4=(n﹣m)2+3+4,=(n﹣m)9;(2)(b2n)3(b3)4n÷(b5)n+1=b6n•b12n÷b5n+5=b6n+12n﹣5n﹣5=b13n﹣5;(3)(a2)3﹣a3•a3+(2a3)2=a6﹣a6+4a6=4a6;(4)(﹣4a m+1)3÷[2(2a m)2•a]=﹣64a3m+3÷8a2m+1=﹣8a m+220.解:(1)(﹣2ab)•(﹣3ab)3=(﹣2ab)•(﹣27a3b3)=54a4b4;(2)5x2•(3x3)2=5x2•(9x6)=45x8;(3)(﹣0.16)•(﹣1000b6)=160b6;(4)(2×10n)(×10n)=102n.21.解:原式=×===.22.解:(1)﹣2﹣17﹣(﹣27)+(﹣10)=﹣19+27﹣10=﹣2;﹣(2)==;(3)a2﹣2(a2﹣3ab)﹣ab=a2﹣2a2+6ab﹣ab=﹣a2+5ab;(4)a•a5+(﹣2a3)2+(﹣3a2)3=a6+4a6﹣27a6=﹣22a6;(5)解方程:3(2x﹣1)=2x+3去括号,得6x﹣3=2x+3移项,得6x﹣2x=3+3合并同类项,得4x=6系数化为1,得;(6)解方程:去分母,得2(x+3)=4﹣(2x﹣1)去括号,得2x+6=4﹣2x+1移项,得2x+2x=4+1﹣6合并同类项,得4x=﹣1系数化为1,得.。

北师大版七年级数学下册第一章同步测试题及答案

北师大版七年级数学下册第一章同步测试题及答案

北师大版七年级数学下册第一章同步测试题及答案1.1同底数幂的乘法一.选择题(共6小题)1.在a•()=a4中,括号内的代数式应为()A.a2B.a3C.a42.a2m+2可以写成()A.2am+1B.a2m+a2C.a2m•a23.计算(﹣2)×(﹣2)2×(﹣2)3的结果是()A.﹣64B.﹣32C.644.计算:(﹣a)2•a4的结果是()A.a8B.﹣a6C.﹣a85.若a•24=28,则a等于()A.2B.4C.166.若x,y为正整数,且2x•22y=29,则x,y的值有()A.1对B.2对C.3对二.填空题(共4小题)7.计算:(﹣t)2•t6=.8.已知xa=3,xb=4,则xa+b=.9.(﹣x)•x2•(﹣x)6=.10.2x+3y﹣5=0,则9x•27y的值为.三.解答题(共7小题)11.计算:a2•a5+a•a3•a3.12.(1)10m=4,10n=5,求XXX的值.(2)如果a+3b=4,求3a×27b的值.D.a5D.a2•am+1D.32D.a6D.18D.4对13.已知ax=5,ax+y=25,求ax+ay的值.14.规定a*b=2a×2b,求:(1)求2*3;(2)若2*(x+1)=16,求x的值.15.若am+1•a2n1=a5,bn+2•b2n=b3,求m+n的值.16.记M(1)=﹣2,M(2)=(﹣2)×(﹣2),M(3)=(﹣2)×(﹣2)×(﹣2),…M(n)=(1)计较:M(5)+M(6);(2)求2M(2015)+M(2016)的值:(3)申明2M(n)与M(n+1)互为相反数.17.我们约定:a★b=10a×10b,例如3★4=103×104=107.(1)试求2★5和3★17的值;(2)猜测:a★b与XXX的运算成效是不是相称?申明来由.参考答案﹣一.1.B2.C3.C4.D5.C6.D二.7.t88.129.﹣x910.243三.11.解:a2•a5+a•a3•a3=a7+a7=2a7.12.解:(1)10m+n=10m•10n=5×4=20;(2)3a×27b=3a×33b=3a+3b=34=81.13.解:∵ax+y=25,∴ax•ay=25,∵ax=5,∴ay,=5,∴ax+ay=5+5=10.14.解:(1)∵a*b=2a×2b,∴2*3=22×23=4×8=32;(2)∵2*(x+1)=16,∴22×2x+1=24,则2+x+1=4,解得x=1.15.解:∵am+1•a2n1=a5,bn+2•b2n=b3,∴m+1+2n﹣1=5,n+2+2n=3,解得:n=,m=4,∴m+n=4.16.解:(1)M(5)+M(6)=(﹣2)5+(﹣2)6=﹣32+64=32;(2)2M(2015)+M(2016)=2×(﹣2)2015+(﹣2)2016=﹣(﹣2)×(﹣2)2015+(﹣2)2016=﹣(﹣2)2016+(﹣2)2016=0;(3)2M(n)+M(n+1)=﹣(﹣2)×(﹣2)n+(﹣2)n+1=﹣(﹣2)n+1+(﹣2)n+1=0,∴2M(n)与M(n+1)互为相反数.17.解:(1)2★5=102×105=107,3★17=103×1017=1020;(2)a★b与XXX的运算结果相等,a★b=10a×10b=10a+bb★a=10b×10a=10b+a,﹣∴a★b=b★a.1.2幂的乘方与积的乘方一.挑选题(共5小题)1.下列计算正确的是()A.a2+a2=a4B.a2•a4=a8C.(a3)2=a6D.(2a)3=2a32.下列运算正确的是()A.||=B.(2x3)2=4x5C.x2+x2=x4D.x2•x3=x53.以下计较精确的是()A.a3•a4=a12C.(a3)2=a94.计较(x2)3的成效是()A.x65.计较A.B.x5C.x4D.x3B.(2a)2=2a2D.(﹣2×102)3=﹣8×106的成效是()XXX.填空题(共5小题)6.若2x=3,2y=5,则22x+y=.7.(﹣a3n)4=.8.am=2,an=3,a2m+3n=.9.﹣a2•(﹣a)3=.10.3a=5,9b=10,则3a+2b=.三.解答题(共5小题)11.已知:am=x+2y;am+1=x2+4y2﹣xy,求a2m+1.12.已知,关于x,y的方程组的解为x、y.(1)x=,y=(用含a的代数式透露表现);(2)若x、y互为相反数,求a的值;(3)若2x•8y=2m,用含有a的代数式透露表现m.13.已知4m+3×8m+1÷24m+7=16,求m的值.14.已知x=﹣5,y=,求x2•x2a•(ya+1)2的值.15.计较:(1)(﹣m5)4•(﹣m2)2;(3)﹣a•a5﹣(a2)3﹣4(﹣a2)3;一.1.C2.D3.D4.A5.A(2)(x4)2﹣(x2)4;4)﹣p2•(﹣p)3•[(﹣p)3]5.参考答案(二.6.457.a12n8.1089.a510.50 三.11.解:a2m+1=am•am+1,=(x+2y)•(x2+4y2﹣xy),=x3+2xy2﹣x2y+x2y+8y3﹣2xy2,=x3+8y3.12.解:(1),②﹣①得,y=﹣3a+1,把y=﹣3a+1代入①得,x=a﹣2,故答案为:a﹣2;﹣3a+1;(2)由题意得,a﹣2+(﹣3a+1)=0,解得,a=﹣;(3)2x•8y=2x•(23)y=2x•23y=2x+3y,由题意得,x+3y=m,则m=a﹣2+3(﹣3a+1)=﹣8a+1.13.解:∵4m+3×8m+1÷24m+7=16,∴22m+6×23m+3÷24m+7=24,则2m+6+3m+3﹣(4m+7)=4,解得m=2.14.解:x2•x2a•(ya+1)2=x2a+2y2a+2=(xy)15.解:(1)(﹣m5)4•(﹣m2)2=m20•m4=m24(2)(x4)2﹣(x2)4;=x8﹣x8=0(3)﹣a•a5﹣(a2)3﹣4(﹣a2)3=﹣a6﹣a6+4a6=2a6(4)﹣p2•(﹣p)3•[(﹣p)3]5.2a+2=(﹣5×)2a+2=1=﹣p2•p3•p15=﹣p20.1.3同底数幂的除法一.挑选题(共7小题)1.下列计算正确的是()A.3a+2b=5abB.3a﹣2a=1C.a6÷a2=a3D.(﹣a3b)2=a6b22.16m÷4n÷2等于()A.2m﹣n﹣1B.22m﹣n﹣2C.23m﹣2n﹣1D.24m﹣2n ﹣13.若=1,则符合条件的m有()A.1个B.2个C.3个D.4个4.若(x﹣1)=1建立,则x的取值规模是()A.x=﹣1B.x=1C.x≠0D.x≠15.计算:2018﹣|﹣2|=()A.2010B.2016C.﹣1D.36.计算(﹣1)﹣2018+(﹣1)2017所得的结果是()A.﹣1B.C.1D.﹣27.已知a=﹣0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣),比较a,b,c,d的大小关系,则有(A.a<b<c<dB.a<d<c<bC.b<a<d<cD.c<a<d <b二.填空题(共1小题)8.将代数式化成不含有分母的方式是.三.解答题(共6小题)9.计算:x3•x5﹣(2x4)2+x10÷x2.)10.已知3x=2,3y=5,求:(1)27x的值;(2)求32x11.计算:(﹣3a4)2﹣a•a3•a4﹣a10÷a2.﹣y的值.12.计较:(﹣2)2+13.计算:(3.14﹣π)+0.254×44﹣()1.14.计算:()2×31+(π﹣2018)﹣﹣﹣1﹣﹣(π﹣3)..参考谜底一.1.D2.D3.C4.D5.C6.B7.C二.8.5ax1y2三.9.解:x3•x5﹣(2x4)2+x10÷x2=x8﹣4x8+x8=﹣2x8.10.解:(1)∵3x=2,∴27x=(3x)3=23=8;(2))∵3x=2,3y=5,∴32xy=32x÷3y=(3x)2÷3y=22÷5=.11.解:原式=9a8﹣a8﹣a8=7a8.12.解:原式=4+﹣1=3.13.解:(3.14﹣π)+0.254×44﹣()1 =1+(0.25×4)4﹣2=1+1﹣2=0.14.解:原式=×+1÷3,=+;=1.4整式的乘法一.选择题(共7小题)1.下列运算正确的是()A.(x2)3+(x3)2=2x6C.x4•(2x)2=2x6B.(x2)3•(x2)3=2x12D.(2x)3•(﹣x)2=﹣8x5.﹣﹣﹣﹣2.计较(﹣3x)•(2x2﹣5x﹣1)的成效是()A.﹣6x2﹣15x2﹣3xC.﹣6x3+15x23.计较2x(3x2+1),精确的成效是()B.﹣6x3+15x2+3xD.﹣6x3+15x2﹣1XXX.通过计算几何图形的面积可表示一些代数恒等式,右图可表示的代数恒等式是()A.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2B.2a(a+b)=2a2+2abD.(a+b)(a﹣b)=a2﹣b25.一个长方体的长、宽、高分别3a﹣4,2a,a,它的体积等于()A.3a3﹣4a2B.a2C.6a3﹣8a2D.6a2﹣8a6.计算:(2x2)3﹣6x3(x3+2x2+x)=()A.﹣12x5﹣6x4C.x2﹣6x﹣3B.2x6+12x5+6x4D.2x6﹣12x5﹣6x47.若(x﹣1)(x2+mx+n)的积中不含x的二次项和一次项,则m,n的值为()A.m=2,n=1B.m=﹣2,n=1C.m=﹣1,n=1D.m=1,n=1二.填空题(共1小题)8.若2x(x﹣1)﹣x(2x+3)=15,则x=.三.解答题(共7小题)9.计算:5a3b•(﹣a)4•(﹣b2)2.10.计较:11.计算:(2a2b)3•b2﹣7(ab2)2•a4b..12.计算:(1)x3•x4•x5;(2);(3)(﹣2mn2)2﹣4mn3(mn+1);(4)3a2(a3b2﹣2a)﹣4a(﹣a2b)2.13.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2.14.计算:15.化简:x(x﹣1)+2x(x+1)﹣3x(2x﹣5)..参考答案一.1.A2.B3.C4.B5.C6.D7.D二.8.﹣3三.9.解:5a3b•(﹣a)4•(﹣b2)2=5a7b5.10.解:=﹣XXX.11.解:原式=8a6b3•b2﹣7a2b4•a4b=8a6b5﹣7a6b5=a6b5.12.解:(1)原式=x3+4+5=x12;(2)原式=(﹣6xy)×2xy2+(﹣6xy)(﹣x3y2)=﹣12x2y3+2x4y3;(3)原式=4m2n4﹣4m2n4﹣4mn3=﹣4mn3;(4)3a5b2﹣6a3﹣4a×(a4b2)=3a5b2﹣6a3﹣4a5b2=﹣a5b2﹣6a3.13.解:3a(2a2﹣4a+3)﹣2a2(3a+4)=6a3﹣12a2+9a﹣6a3﹣8a2=﹣20a2+9a,当a=﹣2时,原式=﹣20×4﹣9×2=﹣98.14.解:原式==﹣8a4b3﹣a2b2(﹣a2b﹣12ab+b2)a3b3+a2b4.15.解:原式=x2﹣x+2x2+2x﹣6x2+15x=﹣3x2+16x.1.5平方差公式一.挑选题(共4小题)1.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将暗影局部沿虚线剪开,拼成右侧的矩形.按照图形的变革进程写出的一个精确的等式是()(第1题图)A.(a﹣b)2=a2﹣2ab+b2C.(a﹣b)2=a2﹣b2B.a(a﹣b)=a2﹣abD.a2﹣b2=(a+b)(a﹣b)2.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()(第2题图)A.(2a2+5a)cm2C.(6a+9)cm2B.(6a+15)cm2D.(3a+15)cm23.以下应用平方差公式计较,毛病的是()A.(a+b)(a﹣b)=a2﹣b2C.(2x+1)(2x﹣1)=2x2﹣1B.(x+1)(x﹣1)=x2﹣1D.(﹣3x+2)(﹣3x﹣2)=9x2﹣44.以下多项式相乘不克不及用平方差公式的是()A.(2﹣x)(x﹣2)C.(2x﹣y)(2x+y)二.填空题(共5小题)5.如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是.B.(﹣3+x)(x+3)D.(第5题图)6.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖局部的面积是(用a、b的代数式透露表现).(第6题图)7.计较:2017×1983=.8.计较:﹣2009×2007=.9.计较:=.三.解答题(共1小题)10.:x2﹣y2=12,x+y=3,求2x2﹣2xy的值.参考谜底一.1.D2.B3.C4.A二.5.a+66.Ab7..19.2三.10.解:∵x2﹣y2=12,∴(x+y)(x﹣y)=12.∵x+y=3①,∴x﹣y=4②,①+②得,2x=7.∴2x2﹣2xy=2x(x﹣y)=7×4=28.1.6完全平方公式一.挑选题(共6小题)1.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()(第1题图)A.abB.(a+b)2C.(a﹣b)2D.a2﹣b22.图(1)是边长为(a+b)的正方形,将图(1)中的阴影部分拼成图(2)的形状,由此能验证的式子是()(第2题图)A.(a+b)(a﹣b)=a2﹣b2C.(a+b)2﹣(a﹣b)2=4ab3.将9.52变形正确的是()A.9.52=92+0.52B.(a+b)2﹣(a2+b2)=2abD.(a﹣b)2+2ab=a2+b2B.9.52=(10+0.5)(10﹣0.5)C.9.52=102﹣2×10×0.5+0.52D.9.52=92+9×0.5+0.524.若a+b=10,ab=11,则代数式a2﹣ab+b2的值是()A.89B.﹣89C.67D.﹣675.若x2+2(m﹣1)x+4是一个完全平方式,则m的值为()A.2B.3C.﹣1or3D.2or﹣26.若窜改9a2+12ab+b2中某一项,使它酿成完整平体式格局,则窜改的举措是()A.只能改动第一项B.只能改动第二项C.只能窜改第三项D.能够窜改三项中的任一项二.填空题(共3小题)7.使用图形中面积的等量干系能够获得某些数学公式.比方,按照图甲,我们能够获得两数和的平方公式:(a+b)2=a2+2ab+b2.你根据图乙能得到的数学公式是.(第7题图)8.通过计算比较图1,图2中阴影部分的面积,可以验证的计算式子是.(第8题图)9.已知=3,则=.三.解答题(共2小题)10.(x+y)2=9,(x﹣y)2=25,划分求x2+y2和xy的值.11.运用乘法公式计算:(1)752﹣2×25×75+252(2)9×11×101.参考答案一.1.C2.B3.C4.C5.C6.D二.7.(a﹣b)2=a2﹣2ab+b28.(a﹣x)(b﹣x)=ab﹣ax﹣bx+x29.119三.10.解:∵(x+y)2=9,(x﹣y)2=25,∴两式相加,得(x+y)2+(x﹣y)2=2x2+2y2=34,则x2+y2=17;两式相减,得(x+y)2﹣(x﹣y)2=4xy=﹣16,则xy=﹣4.11.解:(1)原式=(75﹣25)2=502=2500;(2)原式=(10﹣1)(10+1)(100+1)=(100﹣1)(100+1)=9999.1.7整式的除法一.挑选题(共5小题)1.计较﹣4a4÷2a2的成效是()A.﹣2a2B.2a2C.2a3D.﹣2a32.计算1+2+22+23+…+的结果是()A.﹣1C.B.+1D.3.如图,长方形内的阴影部分是由四个半圆围成的图形,则阴影部分的面积是()(第3题图)A.C.B.D.4.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被掩盖的局部(两个矩形)用暗影透露表现.设左上角与右下角的暗影局部的面积的差为S,当BC的长度变革时,依照一样的安排体式格局,S一直坚持稳定,则a,b满意()(第4题图)A.a=bB.a=3bC.a=bD.a=4b5.计算多项式10x3+7x2+15x﹣5除以5x2后,得余式为何?()A.B.2x2+15x﹣5C.3x﹣1D.15x﹣5二.填空题(共5小题)6.规定一种新运算“⊗”,则有a⊗b=a2÷b,当x=﹣1时,代数式(3x2﹣x)⊗x2=.7.计算(1﹣)()﹣(1﹣﹣)()的结果是.8.如图,正方形ABCD的边长为2,点E在AB 边上.四边形EFGB也为正方形,则△AFC的面积S为.(第8题图)9.若代数式x2+3x+2可以表示为(x﹣1)2+a(x﹣1)+b的形式,则a+b的值是.10.定义一种对正整数n的“F运算”:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为(其中k是使为奇数的正整数),并且运算重复进行.例如,取n=26,则:若n=449,则第449次“F运算”的结果是.三.解答题(共5小题)11.先化简,再求值[(x2+y2)﹣(x﹣y)2+2y(x﹣y)]÷2y,个中x=﹣2,y=﹣.12.(1)计较:[(ab+1)(ab﹣2)﹣(2ab)2+2]÷(﹣ab);(2)先化简,再求值:(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1),其中x=﹣13.计算:.(1)(﹣2x3y)2•(﹣2xy)+(﹣2x3y)3÷2x2;(2)﹣2019×2021;(3)(﹣2a+b+1)(2a+b﹣1).14.先化简,再求值:(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.15.已知4x=3y,求代数式(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2的值.参考答案一.1.A2.A3.A4.B5.D二.6.167.8.29.1110.8三.11.解:[(x2+y2)﹣(x﹣y)2+2y(x﹣y)]÷2y=[x2+y2﹣x2+2xy﹣y2+2xy﹣2y2]÷2y=[4xy﹣2y2]÷2y=2x﹣y,当x=﹣2,y=﹣时,原式=﹣4+=﹣3.12.解:(1)原式=(a2b2﹣ab﹣2﹣4a2b2+2)÷(﹣ab)=(﹣3a2b2﹣ab)÷(﹣ab)=3ab+1;(2)解:原式=x2+4x+4+4x2﹣1﹣4x2﹣4x=x2+3,当x=﹣2时,原式=(﹣2)2+3=5.13.解:(1)原式=4x6y2•(﹣2xy)+(﹣8x9y3)÷2x2=﹣8x7y3+(﹣4x7y3)=﹣12x7y3;(2)﹣2019×2021=﹣(2020﹣1)×(2020+1)=﹣+1=1;(3)(﹣2a+b+1)(2a+b﹣1)=[b﹣(2a﹣1)][b+(2a﹣1)]=b2﹣(2a﹣1)2=b2﹣4a2+4a﹣1.14.解:原式=9x2﹣4﹣(5x2﹣5x)﹣(4x2﹣4x+1)=9x2﹣4﹣5x2+5x﹣4x2+4x﹣1=9x﹣5,当原式=时,=﹣3﹣5=﹣8.15.解:(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2=x2﹣4xy+4y2﹣(x2﹣y2)﹣2y2=﹣4xy+3y2=﹣y(4x﹣3y).∵4x=3y,。

最新北师大版七年级数学下册第一章测试题及答案

最新北师大版七年级数学下册第一章测试题及答案

最新北师大版七年级数学下册第一章测试题及答案第一章达标测试卷一、选择题(每题3分,共30分)1.计算(-a 2)3的结果是( )A .a 5B .a 6C .-a 5D .-a 62.计算:20·2-3等于( )A .-18 B.18 C .0 D .83.斑叶兰被列为国家二级保护植物,它的一粒种子重约0.000 000 5 g ,将0.000000 5用科学记数法表示为( )A .5×107B .5×10-7C .0.5×10-6D .5×10-6 4.下列运算正确的是( )A .x 2·x 3=x 6B .x 2y ·2xy =2x 3yC .(-3xy )2=9x 2y 2D .x 6÷x 3=x 25.计算4m ·8-1÷2m 的结果为16,则m 的值等于( )A .7B .6C .5D .4 6.下列四个算式:①5x 2y 4÷15xy =xy 3; ②16a 6b 4c ÷8a 3b 2=2a 3b 2c ;③9x 8y 2÷3x 2y =3x 4y ; ④(12m 3-6m 2-4m)÷(-2m)=-6m 2+3m +2.其中正确的有( )A .0个B .1个C .2个D .3个7.下列运用平方差公式计算,错误的是( )A .(a +b )(a -b )=a 2-b 2B .(x +1)(x -1)=x 2-1C .(2x +1)(2x -1)=2x 2-1D .(-a +b )(-a -b )=a 2-b 28.若(a +2b )2=(a -2b )2+A ,则A 等于( )A .8abB .-8abC .8b 2D .4ab 9.若a =-0.32,b =-3-2,c =⎝ ⎛⎭⎪⎫-13-2,d =⎝ ⎛⎭⎪⎫-130,则a ,b ,c ,d 的大小关系是( )A .a <b <c <dB .b <a <d <cC.a<d<c<b D.c<a<d<b10.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图①),把余下的部分剪拼成一个长方形(如图②),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2C.a2-b2=(a+b)(a-b)D.(a+2b)(a-b)=a2+ab-2b2二、填空题(每题3分,共30分)11.计算:a(a+1)=__________.12.如果x+y=-1,x-y=8,那么代数式x2-y2的值是________.13.某种计算机每秒可做4×108次运算,它工作3×103 s运算的次数为__________.14.如果9x2+k x+25是一个完全平方式,那么k的值是________.15.计算:(-13xy2)2·[xy(2x-y)+xy2]=__________.16.计算:(7x2y3z+8x3y2)÷4x2y2=______________.17.若(x+2m)(x-8)中不含x的一次项,则m的值为________.18.若3x=a,9y=b,则3x-2y的值为________.19.如图,一个长方形花园ABCD,AB=a,AD=b,该花园中建有一条长方形小路LMPQ和一条平行四边形小路RSTK,若LM=R S=c,则该花园中可绿化部分(即除去小路后剩余部分)的面积为________________.20.《数书九章》中的秦九韶算法是我国南宋时期的数学家秦九韶提出的一种多项式简化算法.在现代,利用计算机解决多项式的求值问题时,秦九韶算法依然是最优的算法.例如,计算“当x=8时,多项式3x3-4x2-35x+8的值”,按照秦九韶算法,可先将多项式3x3-4x2-35x+8一步步地进行改写:3x3-4x2-35x+8=x(3x2-4x-35)+8=x[x(3x-4)-35]+8.按改写后的方式计算,它一共做了3次乘法,3次加法,与直接计算相比节省了乘法次数,使计算量减少.计算当x=8时,多项式的值为1 008.请参考上述方法,将多项式x3+2x2+x-1改写为_________________________________;当x=8时,多项式的值为________.三、解答题(21,26题每题12分,22,23题每题8分,其余每题10分,共60分)21.计算:(1)(-12ab)(23ab2-2ab+43b);(2)(a+b)(a-b)+4ab3÷4ab;(3)(2x-y-z)(y-2x-z);(4)(2x+y)(2x-y)+(x+y)2-2(2x2-xy).22.用简便方法计算:(1)102×98;(2)112×92.23.先化简,再求值:(1)(x +y )(x -y )-(4x 3y -8xy 3)÷2xy ,其中x =-1,y =1;(2)(x -1)2-x (x -3)+(x +2)(x -2),其中x 2+x -5=0.24.有这样一道题:计算⎣⎢⎡⎦⎥⎤3x (2xy +1)-(26x 2y 2÷2y )+⎝ ⎛⎭⎪⎫72xy 2·47y -1÷3x 的值,其中x =2 018,y =-2 019,甲同学把x =2 018,y =-2 019错抄成x =2 081,y =-2 091,但他的计算结果也是正确的.请你解释一下,这是为什么.25.如图,一块半圆形钢板,从中挖去直径分别为x,y的两个半圆.(1)求剩下钢板的面积;(2)当x=2,y=4时,剩下钢板的面积是多少?(π取3.14)26.先计算,再找出规律,然后根据规律填空.(1)计算:①(a-1)(a+1)=________;②(a-1)(a2+a+1)=________;③(a-1)(a3+a2+a+1)=________.(2)根据(1)中的计算,用字母表示出你发现的规律.(3)根据(2)中的结论,直接写出结果:①(a-1)(a9+a8+a7+a6+a5+a4+a3+a2+a+1)=__________;②若(a-1)·M=a15-1,则M=____________________;③(a-b)(a5+a4b+a3b2+a2b3+ab4+b5)=__________;④(2x-1)(16x4+8x3+4x2+2x+1)=__________.答案一、1.D 2.B 3.B 4.C 5.A 6.C7.C 8.A 9.B 10.C 二、11.a 2+a 12.-8 13.1.2×101214.±30 15.29x 4y 5 16.74yz +2x17.4 18.a b 19.ab -ac -bc +c 220.x [x (x +2)+1]-1;647三、21.解:(1)原式=-12ab ·23ab 2+⎝ ⎛⎭⎪⎫-12ab ·(-2ab )+⎝ ⎛⎭⎪⎫-12ab ·43b =-13a 2b 3+a 2b 2-23ab 2;(2)原式=a 2-b 2+b 2=a 2;(3)原式=[-z +(2x -y )]·[-z -(2x -y )]=(-z )2-(2x -y )2=z 2-(4x 2-4xy +y 2)=z 2-4x 2+4xy -y 2;(4)原式=4x 2-y 2+x 2+y 2+2xy -4x 2+2xy =x 2+4xy .22.解:(1)102×98=(100+2)×(100-2)=1002-22=10 000-4=9 996;(2)112×92=(10+1)2×(10-1)2=[(10+1)×(10-1)]2=(100-1)2=10 000-200+1=9 801.23.解:(1)原式=x 2-y 2-2x 2+4y 2=-x 2+3y 2.当x =-1,y =1时,原式=-x 2+3y 2=-(-1)2+3×12=2.(2)原式=x 2-2x +1-x 2+3x +x 2-4=x 2+x -3.因为x 2+x -5=0,所以x 2+x =5.所以原式=x 2+x -3=5-3=2.24.解:因为[3x (2xy +1)-(26x 2y 2÷2y )+⎝⎛⎭⎪⎫72xy 2·47y -1]÷3x =(6x 2y +3x -13x 2y +494x 2y 2·47y -1)÷3x =(6x 2y +3x -13x 2y +7x 2y )÷3x =1, 所以上式的值与x ,y 的取值无关.所以错抄成x =2 081,y =-2 091,结果也是正确的.25.解:(1)S剩=12·π⎣⎢⎡⎭⎪⎫(x+y22-⎝⎛⎭⎪⎫x22-⎝⎛⎭⎪⎫y22]=14πxy.答:剩下钢板的面积为π4xy.(2)当x=2,y=4时,S剩≈14×3.14×2×4=6.28.答:剩下钢板的面积约是6.28.26.解:(1)①a2-1②a3-1③a4-1(2)规律:(a-1)(a n+a n-1+a n-2+…+a3+a2+a+1)=a n+1-1(n为正整数).(3)①a10-1②a14+a13+a12+a11+…+a3+a2+a+1③a6-b6④32x5-1。

最新北师版初中数学七年级下册第一章检测卷及解析答案

最新北师版初中数学七年级下册第一章检测卷及解析答案

第一章检测卷时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.计算x3·x3的结果是( )A.2x3B.2x6C.x6D.x92.根据北京小客车指标办的通报,截至2017年6月8日24时,个人普通小客车指标的基准中签几率继续创新低,约为0.00122,相当于817人抢一个指标,小客车指标中签难度继续加大.将0.00122用科学记数法表示应为( ) A.1.22×10-5B.122×10-3C.1.22×10-3D.1.22×10-23.下列计算中,能用平方差公式计算的是( )A.(x+3)(x-2) B.(-1-3x)(1+3x)C.(a2+b)(a2-b) D.(3x+2)(2x-3)4.下列各式计算正确的是( )A.a+2a2=3a3B.(a+b)2=a2+ab+b2C.2(a-b)=2a-2b D.(2ab)2÷ab=2ab(ab≠0)5.若(y+3)(y-2)=y2+my+n,则m,n的值分别为( )A.m=5,n=6 B.m=1,n=-6C .m =1,n =6D .m =5,n =-66.计算(8a 2b 3-2a 3b 2+ab )÷ab 的结果是( )A .8ab 2-2a 2b +1B .8ab 2-2a 2bC .8a 2b 2-2a 2b +1D .8a 2b -2a 2b +17.设(a +2b )2=(a -2b )2+A ,则A 等于( )A .8abB .-8abC .8b 2D .4ab8.若M =(a +3)(a -4),N =(a +2)(2a -5),其中a 为有理数,则M 、N 的大小关系是( )A .M >NB .M <NC .M =ND .无法确定9.若a =20180,b =2016×2018-20172,c =⎝ ⎛⎭⎪⎪⎫-232016×⎝ ⎛⎭⎪⎪⎫322017,则下列a ,b ,c 的大小关系正确的是( )A .a <b <cB .a <c <bC .b <a <cD .c <b <a10.已知x 2+4y 2=13,xy =3,求x +2y 的值.这个问题我们可以用边长分别为x 与y 的两种正方形组成一个图形来解决,其中x >y ,能较为简单地解决这个问题的图形是()二、填空题(每小题3分,共24分)11.计算:a 3÷a =________.12.若长方形的面积是3a 2+2ab +3a ,长为3a ,则它的宽为__________.13.若x n =2,y n =3,则(xy )n =________.14.化简a 4b 3÷(ab )3的结果为________.15.若2x +1=16,则x =________.16.用一张包装纸包一本长、宽、厚如图所示的书(单位:cm).若将封面和封底每一边都包进去3cm ,则需长方形的包装纸____________cm 2.17.已知(x +y )2=1,(x -y )2=49,则x 2+y 2的值为________.18.观察下列运算并填空.1×2×3×4+1=24+1=25=52;2×3×4×5+1=120+1=121=112;3×4×5×6+1=360+1=361=192;4×5×6×7+1=840+1=841=292;7×8×9×10+1=5040+1=5041=712;……试猜想:(n +1)(n +2)(n +3)(n +4)+1=________2.三、解答题(共66分)19.(8分)计算:(1)23×22-⎝ ⎛⎭⎪⎪⎫120-⎝ ⎛⎭⎪⎪⎫12-3;(2)-12+(π-3.14)0-⎝ ⎛⎭⎪⎪⎫-13-2+(-2)3.20.(12分)化简:(1)(2x -5)(3x +2);(2)(2a +3b )(2a -3b )-(a -3b )2;(3)⎝ ⎛⎭⎪⎪⎫52x 3y 3+4x 2y 2-3xy ÷(-3xy );(4)(a +b -c )(a +b +c ).21.(10分)先化简,再求值:(1)(1+a)(1-a)+(a-2)2,其中a=1 2;(2)[x2+y2-(x+y)2+2x(x-y)]÷4x,其中x-2y=2.22.(8分)若m p=15,m2q=7,m r=-75,求m3p+4q-2r的值.23.(8分)对于任意有理数a、b、c、d,我们规定符号(a,b)(c,d)=ad -bc.例如:(1,3)(2,4)=1×4-2×3=-2.(1)(-2,3)(4,5)=________;(2)求(3a+1,a-2)(a+2,a-3)的值,其中a2-4a+1=0.24.(10分)王老师家买了一套新房,其结构如图所示(单位:米).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米x元,木地板的价格为每平方米3x元,那么王老师需要花多少钱?25.(10分)阅读:已知a+b=-4,ab=3,求a2+b2的值.解:∵a+b=-4,ab=3,∴a2+b2=(a+b)2-2ab=(-4)2-2×3=10.请你根据上述解题思路解答下面问题:(1)已知a-b=-3,ab=-2,求(a+b)(a2-b2)的值;(2)已知a-c-b=-10,(a-b)c=-12,求(a-b)2+c2的值.参考答案与解析1.C 2.C 3.C 4.C 5.B6.A 7.A 8.B 9.C10.B 解析:(x +2y )2=x 2+4xy +4y 2,故符合的图形为B.11.a 2 12.a +23b +1 13.6 14.a 15.3 16.(2a 2+19a -10) 17.2518.(n 2+5n +5) 解析:观察几个算式可知结果都是完全平方式,且5=1×4+1,11=2×5+1,19=3×6+1,……由此可知,最后一个式子为完全平方式,且底数为(n +1)(n +4)+1=n 2+5n +5.19.解:(1)原式=8×4-1-8=23.(4分)(2)原式=-1+1-9-8=-17.(8分)20.解:(1)原式=6x 2+4x -15x -10=6x 2-11x -10.(3分)(2)原式=4a 2-9b 2-a 2+6ab -9b 2=3a 2+6ab -18b 2.(6分)(3)原式=-56x 2y 2-43xy +1.(9分) (4)原式=(a +b )2-c 2=a 2+b 2-c 2+2ab .(12分)21.解:(1)原式=1-a 2+a 2-4a +4=-4a +5.(3分)当a =12时,原式=-4×12+5=3.(5分) (2)原式=(x 2+y 2-x 2-2xy -y 2+2x 2-2xy )÷4x =(2x 2-4xy )÷4x =12x -y .(8分)∵x -2y =2,∴12x -y =1,∴原式=1.(10分)22.解:m 3p +4q -2r =(m p )3·(m 2q )2÷(m r )2.(4分)∵m p =15,m 2q =7,m r =-75,∴m 3p +4q -2r =⎝ ⎛⎭⎪⎪⎫153×72÷⎝ ⎛⎭⎪⎪⎫-752=15.(8分) 23.解:(1)-22(2分)(2)(3a +1,a -2)(a +2,a -3)=(3a +1)(a -3)-(a -2)(a +2)=3a 2-9a +a -3-(a 2-4)=3a 2-9a +a -3-a 2+4=2a 2-8a +1.(5分)∵a 2-4a +1=0,∴2a 2-8a =-2,∴(3a +1,a -2)(a +2,a -3)=-2+1=-1.(8分)24.解:(1)卧室的面积是2b (4a -2a )=4ab (平方米),(2分)厨房、卫生间、客厅的面积和是b ·(4a -2a -a )+a ·(4b -2b )+2a ·4b =ab +2ab +8ab =11ab (平方米),(4分)即木地板需要4ab 平方米,地砖需要11ab 平方米.(5分)(2)11ab ·x +4ab ·3x =11abx +12abx =23abx (元),即王老师需要花23abx 元.(10分)25.解:(1)∵a -b =-3,ab =-2,∴(a +b )(a 2-b 2)=(a +b )2(a -b )=[(a -b )2+4ab ](a -b )=[(-3)2+4×(-2)]×(-3)=-3.(5分)(2)∵a -c -b =-10,(a -b )c =-12,∴(a -b )2+c 2=[(a -b )-c ]2+2(a -b )c =(-10)2+2×(-12)=76.(10分)。

七年级数学下册第一章《整式的乘除》综合测试卷-北师大版(含答案)

七年级数学下册第一章《整式的乘除》综合测试卷-北师大版(含答案)

七年级数学下册第一章《整式的乘除》综合测试卷-北师大版(含答案)(满分100分,限时60分钟)一、选择题(共10小题,每小题3分,共30分)1.若2a=5,2b=3,则2a+b=()A.8B.2C.15D.12.计算(-x2)·(-x)4的结果是()A.x6B.x8C.-x6D.-x83.下列式子能用平方差公式计算的是()A.(2x-y)(-2x+y)B.(2x+1)(-2x-1)C.(3a+b)(3b-a)D.(-m-n)(-m+n)4.(2022江苏泰州泰兴济川中学月考)下列运算中,正确的是()A.a8÷a2=a4B.(-m)2·(-m3)=-m5C.x3+x3=x6D.(a3)3=a65.(2022江苏淮安洪泽期中)若a>0且a x=2,a y=3,则a x-y的值为()A.23B.1 C.−1 D.326.4a7b5c3÷(-16a3b2c)÷(18a4b3c2)等于()A.aB.1C.-2D.-17.【整体思想】已知m-n=1,则m2-n2-2n的值为()A.1B.-1C.0D.28.如果x2-(a-1)x+9是一个完全平方式,则a的值为()A.7B.-4C.7或-5D.7或-49.【新独家原创】若a=(π-2 023)0,b=2 0222-2 021×2 023,c=-23,则a-b-c的值为()A.2 021B.2 022C.8D.110.【转化思想】从前,一位庄园主把一块长为a米,宽为b米(a>b>100)的长方形土地租给租户张老汉,第二年,他对张老汉说:“我把这块地的长增加10米,宽减少10米,继续租给你,租金不变,你也没有吃亏,你看如何?”如果这样,你觉得张老汉的租地面积会()A.变小了B.变大了C.没有变化D.无法确定二、填空题(共6小题,每小题3分,共18分)11.计算:(−13)100×3101=.12.(2022广东佛山月考)已知a+b=8,ab=15,则a2+b2=.13.(2022江苏盐城滨海第一初级中学月考)已知4×16m×64m=421,则m的值为.14.已知一个三角形的面积等于8x3y2-4x2y3,一条边长等于8x2y2,则这条边上的高等于.15.调皮的弟弟把小明的作业本撕掉了一角,留下一道残缺不全的题目,如图所示,请你帮小明算出被除式等于.÷(5x)=x2-3x+6.16.【学科素养·几何直观】有两个大小不同的正方形A和B,现将A、B并列放置后构造新的正方形如图1,其阴影部分的面积为16.将B放在A的内部得到图2,其阴影部分(正方形)的面积为3,则正方形A,B的面积之和为.三、解答题(共5小题,共52分)17.(2022宁夏银川三中月考)(14分)计算:(1)4y·(-2xy2);(2)(3x2+12y−23y2)·(−12xy)2;(3)(2a+3)(b2+5);(4)(6x3y3+4x2y2-3xy)÷(-3xy).18.(12分)计算:(1)-12+(π-3.14)0-(−13)−2+(-2)3;(2)2 001×1 999(运用乘法公式);(3)(x+y+3)(x+y-3).,y=-1.19.(6分)先化简,再求值:(2x+3y)2-(2x+y)(2x-y),其中x=1320.(2022江苏泰州二中月考)(10分)(1)已知m+4n-3=0,求2m·16n的值;(2)已知n为正整数,且x2n=4,求(x3n)2-2(x2)2n的值.21.【代数推理】(2022河北保定十七中期中)(10分)阅读下列材料:利用完全平方公式,将多项式x2+bx+c变形为(x+m)2+n的形式,然后由(x+m)2≥0就可求出多项式x2+bx+c的最小值.例题:求x2-12x+37的最小值.解:x2-12x+37=x2-2x·6+62-62+37=(x-6)2+1,∵不论x取何值,(x-6)2总是非负数,即(x-6)2≥0,∴(x-6)2+1≥1,∴当x=6时,x2-12x+37有最小值,最小值是1.根据上述材料,解答下列问题:(1)填空:x2-14x+=(x-)2;(2)将x2+10x-2变形为(x+m)2+n的形式,并求出x2+10x-2的最小值;(3)如图,第一个长方形的长和宽分别是(3a+2)和(2a+5),面积为S1,第二个长方形的长和宽分别是5a和(a+5),面积为S2,试比较S1与S2的大小,并说明理由.参考答案1.C当2a=5,2b=3时,2a+b=2a×2b=5×3=15,故选C.2.C(-x2)·(-x)4=-x2·x4=-x6,故选C.3.D A.原式=-(2x-y)(2x-y)=-(2x-y)2,故原式不能用平方差公式进行计算,此选项不符合题意;B.原式=-(2x+1)(2x+1)=-(2x+1)2,故原式不能用平方差公式进行计算,此选项不符合题意;C.原式=(3a+b)(-a+3b),故原式不能用平方差公式进行计算,此选项不符合题意;D.原式=(-m)2-n2=m2-n2,原式能用平方差公式进行计算,此选项符合题意.故选D.4.B a8÷a2=a6,故A选项错误;(-m)2·(-m3)=-m5,故B选项正确;x3+x3=2x3,故C选项错误;(a3)3=a9,故D选项错误.故选B.5.A a x-y=a x÷a y=2÷3=23.故选A.6.C4a7b5c3÷(-16a3b2c)÷(18a4b3c2)=-14a4b3c2÷(18a4b3c2)=-2.故选C.7.A∵m-n=1,∴原式=(m+n)(m-n)-2n=m+n-2n=m-n=1,故选A.8.C∵x2-(a-1)x+9是一个完全平方式,∴x2-(a-1)x+9=(x+3)2或x2-(a-1)x+9=(x-3)2,∴a-1=±6,解得a=-5或a=7,故选C.9.C∵a=(π-2 023)0=1,b=2 0222-(2 022-1)×(2 022+1)=2 0222-2 0222+1=1,c=-23=-8,∴a-b-c=1-1+8=8.故选C.10.A由题意可知原土地的面积为ab平方米, 第二年按照庄园主的想法,土地的面积变为(a+10)(b-10)=ab-10a+10b-100=[ab-10(a-b)-100]平方米,∵a>b,∴ab-10(a-b)-100<ab, ∴租地面积变小了,故选A.11.3解析原式=(13)100×3101=(13×3)100×3=3.故答案是3.12.34解析∵a+b=8,ab=15,∴(a+b)2=a2+2ab+b2=a2+30+b2=64,则a2+b2=34.故答案为34.13.4解析∵4×16m×64m=421,∴4×42m×43m=421,∴41+5m=421,∴1+5m=21,∴m=4.故答案为4.14.2x-y解析易知该边上的高=2(8x3y2-4x2y3)÷(8x2y2)=16x3y2÷(8x2y2)-8x2y3÷(8x2y2)=2x-y.故答案为2x-y.15.5x3-15x2+30x解析由题意可得被除式等于5x·(x2-3x+6)=5x3-15x2+30x.故答案为5x3-15x2+30x.16.19解析设正方形A的边长为a,正方形B的边长为b,由题图1得(a+b)2-a2-b2=16,∴2ab=16,∴ab=8,由题图2得a2-b2-2(a-b)b=3,∴a2+b2-2ab=3,∴a2+b2=3+2ab=3+2×8=19,∴正方形A,B的面积之和为19.故答案为19.17.解析(1)4y·(-2xy2)=-8xy3.(2)原式=(3x2+12y−23y2)·14x2y2=3 4x4y2+18x2y3−16x2y4.(3)(2a+3)(b2+5)=ab+10a+32b+15.(4)(6x3y3+4x2y2-3xy)÷(-3xy)=-2x2y2-43xy+1.18.解析(1)原式=-1+1-9-8=-17.(2)2 001×1 999=(2 000+1)(2 000-1)=2 0002-1=3 999 999.(3)(x+y+3)(x+y-3)=[(x+y)+3][(x+y)-3]=(x+y)2-9=x2+2xy+y2-9.19.解析(2x+3y)2-(2x+y)(2x-y) =(4x2+12xy+9y2)-(4x2-y2)=4x2+12xy+9y2-4x2+y2=12xy+10y2.当x=13,y=-1时,原式=12×13×(-1)+10×(-1)2=6.20.解析(1)∵m+4n-3=0,∴m+4n=3,∴2m·16n=2m·24n=2m+4n=23=8.(2)原式=x6n-2x4n=(x2n)3-2(x2n)2=64-2×16=64-32=32.21.解析(1)49;7.(2)x2+10x-2=x2+10x+25-25-2=x2+10x+25-27=(x+5)2-27≥-27, ∴当x=-5时,x2+10x-2有最小值,为-27.(3)由题意得,S1=(2a+5)(3a+2)=6a2+19a+10,S2=5a(a+5)=5a2+25a,∴S1-S2=6a2+19a+10-(5a2+25a)=a2-6a+10=(a-3)2+1,∵(a-3)2≥0,∴(a-3)2+1≥1,∴S1-S2>0,∴S1>S2.。

初中数学北师大版七年级下册第一章 整式的乘除1.6完全平方公式-章节测试习题(1)

初中数学北师大版七年级下册第一章 整式的乘除1.6完全平方公式-章节测试习题(1)

章节测试题1.【题文】化简求值.()求的值,其中.()若,求的值.【答案】(1)22;(2)6【分析】(1)根据平方差公式,单项式乘多项式的运算法则,进行运算,然后和合并同类项后把的值代入进行计算即可得解;根据完全平方公式,单项式乘多项式的运算法则进行运算,然后和合并同类项后,把已知式子的值整体代入即可得解;【解答】解:(),,,∵,∴原式,,.(),,,∵,∴,∴原式.2.【题文】我们知道对于一个图形,通过不同的方法计算图形的面积可以得到一个数学等式.例如:由图1可得到(a+b)²=a²+2ab+b².图1 图2 图3(1)写出由图2所表示的数学等式:_____________________;写出由图3所表示的数学等式:_____________________;(2)利用上述结论,解决下面问题:已知a+b+c=11,bc+ac+ab=38,求a²+b²+c²的值.【答案】(a+b+c)2=a2+b2+c2+2ab+2ac+2bc (a-b-c)2=a2+b2+c2-2ab-2ac+2bc 45【分析】(1)根据数据表示出矩形的长与宽,再根据矩形的面积公式写出等式的左边,再表示出每一小部分的矩形的面积,然后根据面积相等即可写出等式.(2)根据利用(1)中所得到的结论,将a+b+c=11,bc+ac+ab=38,作为整式代入即可求出.【解答】解:(1)根据题意,大矩形的面积为:小矩形的面积为:(2)由(1)得3.【题文】已知,求:(1)的值;(2)的值;(3)的值.【答案】(1)-30;(2);(3)【分析】(1)提公因式,然后将a+b=5和ab=-6整体代入求值;(2)将原式利用配方法转化为两根的和与两根的积来解答;(3)将原式利用配方法转化为两根的和与两根的积来解答.【解答】解:(1)∵,∴;(2);(3),故.4.【题文】利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2.你根据图乙能得到的数学公式是怎样的?写出得到公式的过程.【答案】(a﹣b)2=a2﹣2ab+b2.【分析】根据图形,左上角正方形的面积等于大正方形的面积减去两个矩形的面积,然后加上多减去的右下角的小正方形的面积.【解答】解:∵大正方形的面积= a2还可以表示为5.【题文】先化简,再求值:(1)(9x3y-12xy3+3xy2)÷(-3xy)-(2y+x)(2y-x),其中x=1,y=-2;(2)(m-n)(m+n)+(m+n)2-2m2,其中m、n满足方程组【答案】(1) -2x2-y,0;(2) 2mn,-6.【分析】(1)根据多项式除以单项式和平方差公式化简,然后代入求值;(2)根据完全平方公式和平方差公式化简,然后解方程组求出m、n的值后再代入求值.【解答】解:(1)原式=-3x2+4y2-y-4y2+x2=-2x2-y.当x=1,y=-2时,原式=-2+2=0.(2)①+②,得4m=12,解得m=3.将m=3代入①,得3+2n=1,解得n=-1.故方程组的解是(m-n)(m+n)+(m+n)2-2m2=m2-n2+m2+2mn+n2-2m2=2mn,当m=3,n=-1时,原式=2×3×(-1)=-6.6.【题文】已知a2+b2=1,a-b=,求a2b2与(a+b)4的值.【答案】【分析】把目标代数式化成包含已知代数式的形式.【解答】解:因为a2+b2=1,a-b=,所以(a-b)2=a2+b2-2ab.所以ab=- [(a-b)2-(a2+b2)]=.所以a2b2=(ab)2=.因为(a+b)2=(a-b)2+4ab.=,所以(a+b)4=[(a+b)2]2=.7.【题文】请认真观察图形,解答下列问题:(1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简);并由此得到怎样的等量关系?请用等式表示;(2)如果图中的a,b(a>b)满足a2+b2=53,ab=14,求:①a+b的值;②a-b 的值.【答案】(1)a2+b2=(a+b)2-2ab;(2)①9;②5.【分析】(1)两个阴影部分的面积可以用阴影部分面积相加和用总面积减去非阴影部分面积来表示。

北师大版七年级下册数学第一章测试卷及答案

北师大版七年级下册数学第一章测试卷及答案

第一章知识梳理A卷知识点1同底数幕的乘法一、选择题1. 计算a2• a5的结果是()A.a10B.a 8C.a 7D.a 3答案:C2. 计算2X 24X 23的结果是( )7 8 12 13A.2B.2C.2D.2答案:B3. 计算x • (-x )2的结果是()A.x3B.-x 3C.x 2D.0答案:A4. (内蒙古呼伦贝尔)化简(-x ) 3(-x ) 2的结果正确的是( )A.-x 6B.x 6C.x 5D.-x 5答案:D5. 计算-b • b3• b4的结果是()7 7 8A.-bB.bC.bD.-b答案:D二、填空题6. (黑龙江大庆)若a m=2, a n=8,则a m+= ______答案:167. 计算:(1) a5• a3• a2= _;(2)(-b ) 2・(-b) 3• (-b) 5=—;m n-2(3)x • x • x = .答案:(1) a10(2) b10(3) x m+n-18. 若a2n-1• a2n+1=a12,贝U n=.答案:39. 一个长方体的长、宽、高分别为a2, a, a3,则这个长方体的体积是_一答案:a6三、解答题10. 计算.(1)104X 105X 106;(2)(丄)3X( 1) 4X 丄;2 2 2(3)b2n• b2n• b2.答案:解:(1)原式=io4+5+6=io15.(2)原式=(-)3叫(-)8.2 2(3)原式=b2n+2n+2=b4n+2.11. 规定:a*b=10a x 10b,例如3*4=103x 104=107.(1)试求2*5和3*17的值;(2)猜想:a*b与b*a的运算结果是否相等?说明理由.答案:解:(1) 2*5=102X 105=107.3*17=103X 1017=1020.(2)相等,理由如下:因为a*b=10a X 10b=10a+b, b*a=10b X 10a=10a+b, 所以a*b=b*a.12.1 kg镭完全蜕变后,放出的热量相当于3.75 X 105 kg煤放出的热量,据估计, 地壳中含有1X 1010 kg的镭,问这些镭完全蜕变后放出的热量相当于多少千克煤放出的热量.c A A c答案:解:3.75 X 10 X 1X 10 =3.75 X 10 kg.答:这些镭完全蜕变后放出的热量相当于 3.75 X 1015 kg煤放出的热量.知识点2幕的乘方13. 计算(a2) 3的结果是( )A. 3a2B.2a 3C.a 5D.a 6答案:D14. 计算(103) 2的结果是()A.103B.105C.106D.109答案:C18. ________________ 若 a 12=x 2= (a 3) 丫,贝U x= , y= . 答案:a 6419. 若 x 3n =3,则 x 6n =. 答案:920. 若(a 3) m =a 4 • a m ,则 m=. 答案:2 21.有一个棱长10 cm 的正方体,在某种物质的作用下,棱长以每秒扩大为原来 的102倍的速度膨胀,则3秒后该正方体的体积是 cm 3.答案:1021 22.计算.(1) (y 4)22326634+ (y ) • y ; (2) -x • (-x ) +2 (x ).(1)原式=y 8+y 8=2y 8.(2)原式=-x 12+2X 12=X 12.23. 比较大小:2100与375,并说明理由. 答案:解:2100< 375.理由:2100= (24) 25=1625, 375= (33) 25=2725, 因为 27>16,所以 1625<2尸,所以 2100< 375.知识点3积的乘方一、选择题24. 计算(2x 3) 2的结果是()15.计算(X 。

北师大初一数学7年级下册 第1章(整式的乘除)1.7同底数幂的除法和整式的除法 一课一练(含答案)

北师大初一数学7年级下册 第1章(整式的乘除)1.7同底数幂的除法和整式的除法 一课一练(含答案)

《同底数幂的除法和整式的除法》习题2一、选择题1.下列计算正确的是( )A .248a a a ∙=B .352()a a =C .236()ab ab =D .624a a a ÷=2.下列计算正确的是( )A .325()m m =B .3710m m m ⋅=C .236(3)9m m -=-D .632m m m ÷=3.计算下列各式,结果为5x 的是( )A .()32x B .102x x ÷C .23x x ⋅D .6x x-4.下列计算中,结果是8m 的是( )A .()42m B .24•m m C .122m m ÷D .24m m +5.下列计算方法正确的是( )A .20212021a a a ⨯⨯=B .20212021a a a -÷=C .20212021a a a ++=D .20212021a a a --=6.下列运算正确的是( )A .236a a a⋅=B .842a a a÷=C .532a a -=D .()2224ab a b -=7.在①42a a ⋅,②()32a -,③212a a ÷,④23a a ⋅,⑤33a a +,计算结果为6a 的个数是( )A .1个B .2个C .3个D .4个8.马虎在下面的计算中只做对了一道题,他做对的题目是( )A .3515a a a⋅=B .()236a a -=C .()3326y y =D .632a a a ÷=9.下列运算正确的是( ).A .6212x x x ⋅=B .623x x x +=C .()268x x =D .()624x x x -÷=10.下列运算中,正确的是( )A .623a a a ÷=B .246a a a -=⋅C .333()ab a b =D .246()a a =11.()2334a bc ab ⎛⎫-÷- ⎪⎝⎭的商为:( )A .214a cB .14acC .294a cD .94ac12.已知32228287m n a b a b b ÷=,则m 、n 的值为( )A .4,3m n ==B .4,1m n ==C .1,3m n ==D .2,3m n ==13.若□×2xy =16x 3y 2,则□内应填的单项式是( )A .4x 2yB .8x 3y 2C .4x 2y 2D .8x 2y14.在等式210()5b b ÷=-中,括号内应填入的整式为( )A .-2bB .bC .2bD .-3b15.一个三角形的面积为(x 3y )2,它的一条边长为(2xy )2,那么这条边上的高为( )A .12x4B .14x4C .12x 4yD .12x216.已知M 2(2)x - =53328182x x y x --,则M =( )A .33491x xy ---B .33491x xy +-C .3349x xy -+D .33491x xy -++17.计算(﹣8m 4n+12m 3n 2﹣4m 2n 3)÷(﹣4m 2n)的结果等于( )A .2m 2n ﹣3mn+n 2B .2n 2﹣3mn 2+n 2C .2m 2﹣3mn+n 2D .2m 2﹣3mn+n18.计算:(﹣6x 3+9x 2﹣3x )÷(﹣3x )=( )A .2x 2﹣3xB .2x 2﹣3x +1C .﹣2x 2﹣3x +1D .2x 2+3x ﹣119.若长方形的面积是2226a ab a -+,长为2a ,则这个长方形的周长是( )A .626a b -+B .226a b -+C .62a b-D .320.计算()3214217(7)x x x x -+÷-的结果是( )A .23x x -+B .2231x x -+-C .2231x x -++D .2231x x -+21.已知被除式是x 3+3x 2﹣1,商式是x ,余式是﹣1,则除式是( )A .x 2+3x ﹣1B .x 2+3xC .x 2﹣1D .x 2﹣3x +122.计算(﹣4a 2+12a 3b)÷(﹣4a 2)的结果是( )A .1﹣3abB .﹣3abC .1+3abD .﹣1﹣3ab23.一个长方形的面积为2x 2y ﹣4xy 3+3xy ,长为2xy ,则这个长方形的宽为( )A .x ﹣2y 232+B .x ﹣y 332+C .x ﹣2y +3D .xy ﹣2y 32+24.已知A=2x ,B 是多项式,在计算B÷A 时,小强同学把B÷A 误看了B+A ,结果得2x2-x ,则B÷A 的结果是( )A .2x2+xB .2x2-3xC .1+2x D .32x -25.面积为9a 2−6ab +3a 的长方形一边长为3a ,另一边长为( )A .3a −2b +1B .2a −3bC .2a −3b +1D .3a −2b26.若2x 与一个多项式的积为3222x x x -+,则这个多项式为( )A .221x x -+B .2424x x -+C .2112x x -+D .212x x -二、计算题1.计算(1)232232213(-a b)ab a b 334() (2)223-5a 3ab -6a ()(3)()()223x x -+ (4)()()222323x x y xy y x x y x y ⎡⎤---÷⎣⎦(5)()34221242ayay ay ⎛⎫-⋅÷ ⎪⎝⎭(6)()()()33332424ax a x ax -÷2.化简求值.(1)求(1)(21)2(5)(2)x x x x -+--+的值,其中15x =.(2)先化简,再求值:()()()()2233102x y x y x y y x ⎡⎤+-+--÷⎣⎦,其中3x =-,12y =.(3)先化简,再求值:(x ﹣y )(x ﹣2y )﹣(3x ﹣2y )(x +3y ),其中x =4,y =﹣1.(4)先化简,再求值:()()()()223443x y x y x y y ⎡⎤-+-÷⎣⎦-﹣,(其中x =﹣4,y =3).(5)先化简,再求值(3a+2b)(2a ﹣3b)﹣(a ﹣2b)(2a ﹣b),其中11.54a b =-=,.三、解答题1.(1)已知4 m =a ,8n =b ,用含a 、b 的式子表示下列代数式:①求:22 m+3n 的值;②求:24 m -6n 的值;(2)已知2×8x ×16=226,求x 的值.2.已知:53a =,58b =,572c =.(1)求)(25a 的值.(2)求5a b c -+的值.(3)直接写出字母a 、b 、c 之间的数量关系.3.王老师给学生出了一道题:先化简,在求值:222(2)(2)2(2(216)(2)a b a b a b ab a b a +-+-+-÷-),其中12a =,1b =-.同学们看了题目后发表不同的看法.小张说:“条件1b =-是多余的.”小李说:“不给这个条件,就不能求出结果,所以不多余.”(1)你认为他们谁说的有道理?为什么?(2)若m x 的值等于此题计算的结果,试求2m x 的值.答案一、选择题1.D .2.B .3.C4.A .5.B .6.D .7.A .8.B .9.D .10.C .11.B .12.A .13.D .14.A .15.A.16.D .17.C .18.B .19.A .20.B .21.B.22.A .23.A24.D.25.A.26.C 二、计算题1.(1)232232213(-a b)ab a b334()6324328132794a b a b a b ⎛⎫⎛⎫⎛⎫=- ⎪⎪⎪⎝⎭⎝⎭⎝⎭6233428132794a b ++++=-⨯⨯119281a b =-;(2)223-5a 3ab -6a ()3251530a b a =-+;(3)()()223x x -+22436x x x =-+-226x x =--;(4)()()222323x x y xy y x x y x y ⎡⎤---÷⎣⎦()32223223x y x y x y x y x y =--+÷()3222223x y x y x y=-÷322222323x y x y x y x y=÷-÷2233xy =-.(5)原式3448361242a y ay a y ⎛⎫=⋅÷ ⎪⎝⎭344138161242a y+-+-⎡⎤⎛⎫=⨯÷⎢⎥ ⎪⎝⎭⎢⎥⎣⎦8232a y =23256a y =(6)原式396123384a x a x a x =-÷396312384a x a x --=-393984a x a x =-394a x =2.(1)解:(x-1)(2x+1)-2(x-5)(x+2)=2x 2+x-2x-1-2x 2-4x+10x+20=5x+19,当15x =时,原式=5×15+19=20.(2)原式()222226932102x xy y x xy y y x =++--+-÷=()2242x xy x-+÷=2x y -+当3x =-,12y =时,原式314=+=.(3)原式=(x 2﹣2xy ﹣xy+2y 2)﹣(3x 2+9xy ﹣2xy ﹣6y 2)=x 2﹣3xy+2y 2﹣3x 2﹣7xy+6y 2=﹣2x 2﹣10xy+8y 2当x =4,y =﹣1时,原式=﹣2×42﹣10×4×(﹣1)+8×(﹣1)2=﹣32+40+8=16(4)】解:()()()()223443x y x y x y y ⎡⎤--+-÷⎣⎦﹣=()()2222412941643x xy y x xy xy y y -+-+-+÷-=()()23133xy yy +÷-=133x y --,当x =﹣4,y =3时,原式=4-13=-9.(5)(3a+2b)(2a ﹣3b)﹣(a ﹣2b)(2a ﹣b)=(6a 2+4ab ﹣9ab ﹣6b 2)﹣(2a 2-4ab ﹣ab+2b 2)=6a 2+4ab ﹣9ab ﹣6b 2﹣2a 2+4ab+ab ﹣2b 2=4a 2﹣8b 2,当a=﹣1.532=-,b=14时,原式=4×(32-)2﹣8×(14)2=9-12=172.三、解答题1.解:(1)①()()2323232222248m nm n m n m n ab +=⋅=⋅=⋅=;②()()2224646232222222248mnm nmnmna b-=÷=÷=÷=;(2)343526281622222x x x +⨯⨯=⨯⨯==,得3526x +=,解得7x =.2.解(1)∵53a =,∴)(22539a==;(2)∵53a =,58b =,572c =,∴5537252758a c ab cb-+⨯⨯===;(3)∵22(5)53898725a b c ⨯=⨯=⨯==,∴255a b c +=,即2c a b =+.3.解:(1)小张说的有道理,理由如下:222(2)(2)2(2(216)(2)a b a b a b ab a b a +-+-+-÷-)22222(2)2(44)(8)a b a ab b b ab =-+-++-+2222248828a b a ab b b ab =-+-+-+212a =∵化简得结果为212a ,212a 中不含字母b ∴条件1b =-是多余的,小张说的有道理.(2)当12a =时,2211212()2a =⨯3=由题意得:3m x =,222()39m m x x ===∴.即2m x 的值为9.。

北师大版七年级下册数学第一章测试题

北师大版七年级下册数学第一章测试题

北师大版七年级下册数学第一章测试题北师大版七年级下册数学第一章测试题一.选择题(共10小题)1.计算(-x^2y)^2的结果是()A。

x^4y^2B。

-x^4y^2C。

x^2y^2D。

-x^2y^22.下列计算正确的是()A。

(-x^3)^2 = x^6B。

(-3x^2)^2 = 9x^4C。

(-x)^2 = x^2D。

x^8 ÷ x^4 = x^43.计算(2x+1)(x-1)-(x^2+x-2)的结果,与下列哪一个式子相同?()A。

x^2-2x+1B。

x^2-2x-3C。

x^2+x-3D。

x^2-34.若x^2+4x-4=0,则3(x-2)^2-6(x+1)(x-1)的值为()A。

-6B。

6C。

18D。

305.已知(x-2015)^2+(x-2017)^2=34,则(x-2016)^2的值是()A。

4B。

8C。

12D。

166.已知a-b=3,则代数式a^2-b^2-6b的值为()A。

3B。

6C。

9D。

127.已知正数x满足x^2+6x=62,则x+的值是()A。

8B。

4C。

-1+√17D。

-1-√178.如图(1),是一个长为2a宽为2b(a>b)的矩形,用剪刀沿矩形的两条对角线剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,则中间空白部分的面积是()A。

abB。

(a+b)^2C。

(a-b)^2D。

a^2-b^29.设(5a+3b)^2=(5a-3b)^2+A,则A=A。

30abB。

60abC。

15abD。

12ab10.已知(x-y)^2=49,xy=2,则x^2+y^2的值为()A。

53B。

45C。

47D。

51二.选择题(共10小题)11.计算:(-5a^4)•(-8ab^2)=40a^5b^2.12.若2•4m•8m=216,则m=3/2.13.若x+3y=0,则2x•8y=-48xy.14.已知(x-1)(x+3)=ax^2+bx+c,则代数式9a-3b+c的值为12.15.已知(a+b)^2=7,(a-b)^2=4,则ab的值为-3/2.16.若(m-2)^2=3,则m^2-4m+6的值为7.17.观察下列各式及其展开式:a+b)^2=a^2+2ab+b^2a+b)^3=a^3-3a^2b+3ab^2-b^3a+b)^4=a^4-4a^3b+6a^2b^2-4ab^3+b^4a+b)^5=a^5-5a^4b+10a^3b^2-10a^2b^3+5ab^4-b^5…请你猜想(a-b)^10的展开式第三项的系数是120.分析】直接计算即可得出结果,注意符号的变化和运算顺序.解答】解:(﹣2)2+2×(﹣3)+2016=4+(﹣6)+2016=2014.故选:D.点评】此题考查了加减乘方运算的综合运用能力,需要注意计算顺序和符号变化.3.(2016•泰安)已知2x2﹣3x=2,求3(2+x)(2﹣x)﹣(x﹣3)2的值是()A.﹣3B.﹣2C.0D.1分析】根据已知条件,化简3(2+x)(2﹣x)﹣(x﹣3)2,然后代入2x2﹣3x=2计算即可.解答】解:3(2+x)(2﹣x)﹣(x﹣3)2=3(4﹣x2)﹣(x﹣3)2=12﹣3x2﹣x2﹣6x﹣x2+6x﹣9=﹣5x2﹣6.代入2x2﹣3x=2,得3(2+x)(2﹣x)﹣(x﹣3)2=﹣5x2﹣6=﹣5×2﹣6=﹣16.故选:B.点评】此题考查了代数式的化简和代入计算能力,需要注意计算过程中的细节和符号变化.4.(2016•南京)已知(a+b)2=25,(a﹣b)2=9,求ab与a2+b2的值.分析】根据已知条件,可以列出方程组,然后解方程求出ab和a2+b2的值.解答】解:由(a+b)2=25,得a+b=5;由(a﹣b)2=9,得a﹣b=3或a﹣b=﹣3.当a﹣b=3时,解得a=4,b=1,因此ab=4,a2+b2=17;当a﹣b=﹣3时,解得a=3,b=2,因此ab=6,a2+b2=13.故选:B.点评】此题考查了解方程和代数式计算的能力,需要注意列方程和解方程的过程.5.(2016•南昌)已知x﹣=3,求x2+和x4+的值.分析】根据已知条件,可以求出x的值,然后代入计算x2+和x4+的值.解答】解:由x﹣=3,得x=1/3.因此,x2+=(1/3)2=1/9,x4+=(1/3)4=1/81.故选:B.点评】此题考查了解方程和代数式计算的能力,需要注意代入计算的过程和细节.6.(2016•南京)已知关于x的多项式A,当A﹣(x﹣2)2=x(x+7)时,求多项式A.分析】根据已知条件,可以列出关于A的方程,然后解方程求出多项式A.解答】解:将A﹣(x﹣2)2=x(x+7)两边同时加上(x﹣2)2,得A=x(x+7)+(x﹣2)2.因此,多项式A=x2+7x+x2﹣4x+4=x2+3x+4.故选:A.点评】此题考查了解方程和代数式计算的能力,需要注意列方程和解方程的过程.7.(2016•南昌)已知a+b=5,ab=6,求下列各式的值:1)a2+b22)(a﹣b)2.分析】根据已知条件,可以列出方程组,然后解方程求出a和b的值,代入计算各式的值.解答】解:由a+b=5,ab=6,得a=2,b=3或a=3,b=2.1)当a=2,b=3时,a2+b2=22+32=13;当a=3,b=2时,a2+b2=32+22=13.2)当a=2,b=3时,(a﹣b)2=(2﹣3)2=1;当a=3,b=2时,(a﹣b)2=(3﹣2)2=1.故选:B.点评】此题考查了解方程和代数式计算的能力,需要注意列方程和解方程的过程以及代入计算的细节.8.(2016•南昌)已知(x﹣y)2=9,x2+y2=5,求[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y的值.分析】根据已知条件,可以化简出题目中的式子,然后代入计算即可.解答】解:将[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y化简得y2﹣x2÷xy.由(x﹣y)2=9,得x﹣y=3或x﹣y=﹣3.当x﹣y=3时,解得x=2,y=﹣1,因此y2﹣x2÷xy=1/2;当x﹣y=﹣3时,解得x=﹣1,y=2,因此y2﹣x2÷xy=﹣1/2.故选:C.点评】此题考查了代数式的化简和代入计算能力,需要注意计算过程中的细节和符号变化.9.(2016•南昌)若4a2﹣(k﹣1)a+9是一个关于a的完全平方式,则k=______.分析】根据完全平方式的定义,可以列出方程,然后解方程求出k的值.解答】解:由4a2﹣(k﹣1)a+9是一个关于a的完全平方式,得k2﹣4×4×9(﹣1)=0.因此,k2﹣144=0,解得k=﹣12或k=12.故选:D.点评】此题考查了完全平方式的定义和解方程的能力,需要注意列方程和解方程的过程.10.(2016•南昌)若ax=2,ay=3,则a3x2y=______.分析】根据已知条件,可以将a3x2y化简为ax×ay×ax×ay×ax,然后代入计算即可.解答】解:a3x2y=ax×ay×ax×ay×ax=2×3×2×3×2=72.故选:C.点评】此题考查了代数式的化简和代入计算能力,需要注意计算过程中的细节和符号变化.二.填空题(共10小题)18.若4a2﹣(k﹣1)a+9是一个关于a的完全平方式,则k=______.解:k=12或k=﹣12.19.若ax=2,ay=3,则a3x2y=______.解:a3x2y=72.20.我国南宋数学家XXX用三角形解释二项和的乘方规律,称之为“XXX三角”.这个三角形给出了(a+b)n(n=1,2,3,4…)的展开式的系数规律(按a的次数由大到小的顺序):请依据上述规律,写出(x﹣)2016展开式中含x2014项的系数是______.解:(x﹣)2016展开式中含x2014项的系数是2015×(﹣1)×(﹣2)×…×(﹣2013)=2015×2013!/2!=﹣xxxxxxxx00.21.先化简,再求值(x﹣1)(x﹣2)﹣(x+1)2,其中x=.解:(x﹣1)(x﹣2)﹣(x+1)2=(x2﹣3x+2)﹣(x2﹣2x+1)=﹣x+1,其中x=2.22.(1)计算:(﹣2)2+2×(﹣3)+2016.(2)化简:(m+1)2﹣(m﹣2)(m+2).解:(1)(﹣2)2+2×(﹣3)+2016=2014.2)(m+1)2﹣(m﹣2)(m+2)=m2+2m+1﹣(m2﹣4)=6m+5.23.已知2x2﹣3x=2,求3(2+x)(2﹣x)﹣(x﹣3)2的值.解:3(2+x)(2﹣x)﹣(x﹣3)2=3(4﹣x2)﹣(x﹣3)2=﹣5x2﹣6.代入2x2﹣3x=2,得3(2+x)(2﹣x)﹣(x﹣3)2=﹣16.24.先化简,再求值:(2a+b)(2a﹣b)﹣a(8a﹣2ab),其中a=﹣,b=2.解:(2a+b)(2a﹣b)﹣a(8a﹣2ab)=4a2﹣b2﹣8a2+2ab2=﹣4a2+2ab2﹣b2=﹣20,其中a=﹣1/2,b=2.25.已知(a+b)2=25,(a﹣b)2=9,求ab与a2+b2的值.解:由(a+b)2=25,得a+b=5;由(a﹣b)2=9,得a﹣b=3或a﹣b=﹣3.当a﹣b=3时,解得a=4,b=1,因此ab=4,a2+b2=17;当a﹣b=﹣3时,解得a=3,b=2,因此ab=6,a2+b2=13.26.已知x﹣=3,求x2+和x4+的值.解:由x﹣=3,得x=1/3.即(x﹣2016+1)2+(x﹣2016﹣1)2=34。

北师大版七年级数学下册第一章整式的乘除基础达标测试题(附答案详解)

北师大版七年级数学下册第一章整式的乘除基础达标测试题(附答案详解)

北师大版七年级数学下册第一章整式的乘除基础达标测试题(附答案详解)1.下列算式能用平方差公式计算的是 ( )A .(2a +b )(2b -a)B .C .(3x -y )(-3x +y)D .(-m + n )(- m - n)2.计算(2a 3)2的结果是( )A .2a 5B .4a 5C .2a 6D .4a 63.下列计算正确的是( )A .B .C .D . 4.下列运算中,正确的是( )A .236x x x ⋅=B .232x x x ÷=C .()3328x x -=-D .()2224x y x y +=+5.计算的32a a ÷结果是( )A .5aB .1a -C .aD .2a6.三个连续偶数,中间一个数是k ,它们的积为( )A .8k 2-8kB .k 3-4kC .8k 3-2kD .4k 3-4k7.如果a+2b+3c=12,且a 2+b 2+c 2=ab+bc+ca ,则a+b 2+c 3=( )A .12B .14C .16D .188.下列运算正确的是( )A .3﹣1=﹣3B .x 3﹣4x 2y+4xy 2=x (x+2y )2C .a 6÷a 2=a 4D .(a 2b )3=a 5b 3 9.下列各式运算中结果是的是( )A .B .C .D .10.下列计算正确的是( )A .a•a 2=a 2B .(x 3)2=x 5C .(2a)2=4a 2D .(x+1)2=x 2+1 11.计算:()322422a a a -+⋅=__________.12.如果281x mx -+是一个完全平方式,那么m 的值为___________.13.计算(1)()2354a a a ⋅+=______;(2)()()32322⎡⎤-⋅-=⎣⎦______. 14.(﹣4a 3+12a 2b ﹣7a 3b 3)(﹣4a 2)=___________.15.(-a)3(-a )2(-a)=_______16.图中阴影部分的面积为____________________.(结果要求化简)17.(5+2)2=__.18.一张边长为a 的大正方形卡片和三张边长为b 的小正方形卡片(12a <b <a )如图1,取出两张小正方形卡片放入“大正方形卡片”内拼成的图案如图2,再重新用三张小正方形卡片放入“大正方形卡片”内拼成的图案如图3.已知图3中的阴影部分的面积比图2中的阴影部分的面积大2ab ﹣9,则小正方形卡片的面积是_____.19.设x ,y 为实数,则代数式2x 2+4xy +5y 2-4x +2y +5的最小值为________.20.若a m =3,a n =4,则a m+n =_____.21.先化简,再求值:2(2)-(2)(2)x x x +-+,其中1x =-.22.何老师安排喜欢探究问题的小明解决某个问题前,先让小明看了一个有解答过程的例题.例:若,求m 和n 的值. 解:因为所以所以所以所以为什么要对进行了拆项呢?聪明的小明理解了例题解决问题的方法,很快解决了下面两个问题.相信你也能很好的解决下面的这两个问题,请写出你的解题过程.解决问题:(1)若,求的值; (2)已知满足,求的值.23.小红家有一块L 形菜地,要把L 形菜地按如图所示分成面积相等的两个梯形种上不同的蔬菜.已知这两个梯形的上底都是a 米,下底都是b 米,高都是(b -a )米.(1)请你算一算,小红家的菜地面积共有多少平方米?(2)当a =10,b =30时,面积是多少平方米?24.(Ⅰ)分解因式:2()4()a a b a b ---.(Ⅱ)先化简,再求值: (3x -1) (3x + 1) - ( x + 3 ) (9 x - 6 ) .其中 x = - 1721. 25.有一张边长为a 厘米的正方形桌面,因为实际需要,需将正方形边长增加b 厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:222()2a b a ab b +=++.对于方案一,小明是这样验证的:Q 大正方形面积可表示为:2()a b +,也可以表示为:22222a ab ab b a ab b +++=++, 222()2a b a ab b ∴+=++.请你仿照上述方法根据方案二、方案三,写出公式的验证过程.(1)方案二:(2)方案三:26.先化简再求值:()()()22a b a b b a b b +-++-,其中a=3,b=-1.27.先化简,再求值:()()()222222433xy x xy y x y y x y ⎡⎤--+----⎣⎦,其中2, 3.3x y ==- 28.(1)32(3)()(3)a a a ----g ;(2)433265()(2)()a a a +--g ; (3)8022016201711(1)(25)()()(4)24--+---+⨯-; (4)20172018(2)2-+.参考答案1.D【解析】试题分析:中不存在相同的相项故A不能用平方差公式;,B不能用平方差公式;,C不能用平方差公式;,D能用平方差公式.考点:平方差公式.2.D【解析】试题分析:根据幂的乘方和积的乘方的运算法则求解.试题解析:(2a3)2=4a6.故选D.考点:幂的乘方与积的乘方.3.D【解析】【分析】根据幂的乘方、同底数幂的乘除法及合并同类项法则分别计算,即可得答案.【详解】A.a+2a=3a,故该选项计算错误,B.(-a)3=-a3,故该选项计算错误,C.a3÷a=a2,故该选项计算错误,D.,计算正确,故选D.【点睛】本题考查幂的乘方、同底数幂的乘除法及合并同类项法则,熟练掌握运算法则是解题关键. 4.C【解析】分析:根据同底数幂的乘法,同底数幂的除法,积的乘方,以及完全平方公式的意义,对各选项计算后即可解答.详解:选项A ,235x x x ⋅= ;选项B ,232x x ÷= 32x ;选项C , ()3328x x -=- ;选项D , ()22x y += 2242x xy y ++.由此可得。

北师大版七下数学第一章各节练习题含答案

北师大版七下数学第一章各节练习题含答案

北师大版七年级下册数学1.1同底数幂的乘法同步测试一、单选题1.若a m=5,a n=3,则a m+n的值为()A. 15B. 25C. 35D. 452.计算(﹣4)2×0.252的结果是()A. 1B. ﹣1C. ﹣D.3.计算a2•a5的结果是()A. a10B. a7C. a3D. a84.计算a•a•a x=a12,则x等于()A. 10B. 4C. 8D. 95.下列计算错误的是()A. (﹣2x)3=﹣2x3B. ﹣a2•a=﹣a3C. (﹣x)9+(﹣x)9=﹣2x9D. (﹣2a3)2=4a66.下列计算中,不正确的是()A. a2•a5=a10B. a2﹣2ab+b2=(a﹣b)2C. ﹣(a﹣b)=﹣a+bD. ﹣3a+2a=﹣a7.计算x2•x3的结果是()A. x6B. x2C. x3D. x58.计算的结果是()A. B. C. D.9.计算3n· ( )=—9n+1,则括号内应填入的式子为( )A. 3n+1B. 3n+2C. -3n+2D. -3n+110.计算(-2)2004+(-2)2003的结果是()A. -1B. -2C. 22003D. -22004二、填空题(共5题;共5分)11.若a m=2,a m+n=18,则a n=________.12.计算:(﹣2)2n+1+2•(﹣2)2n=________。

13.若x a=8,x b=10,则x a+b=________.14.若x m=2,x n=5,则x m+n=________.15.若a m=5,a n=6,则a m+n=________。

三、计算题(共4题;共35分)16.计算:(1)23×24×2.(2)﹣a3•(﹣a)2•(﹣a)3.(3)m n+1•m n•m2•m.17.若(a m+1b n+2)(a2n﹣1b2n)=a5b3,则求m+n的值.18.已知a3•a m•a2m+1=a25,求m的值.19.计算。

北师大版初中数学七下第一章综合测试试题试卷含答案1

北师大版初中数学七下第一章综合测试试题试卷含答案1

第一章综合测试一、选择题(每小题3分,共30分) 1.计算32a a 正确的是( ) A .aB .5aC .6aD .3a2.下列运算正确的是( ) A .224a a a +=B .532a a a −=C .2222a a a =D .5210a a =()3.若2440x x −=+,则232611x x x −−−+()()()的值为( )A .6−B .6C .18D .304.下列计算中,错误的有( )①2232326a b a b a a b b a b −+=−+=()()(-);②231313x x x x x +−=+⨯=−()()(-);③224236x y x y =();④22121x x x =+++().A .1个B .2个C .3个D .4个5.运用平方差公式计算2121x y x y +−−+()(),下列变形正确的是( ) A .21[]2x y −+()B .[][221]1x y x y +−−−()()C .[][212]1x y x y +−()-()+D .21[]2x y ++() 6.已知4a b m ab +==−,,计算22a b −−()()的结果是( )A .6B .28m −C .2mD .2m − 7.若323x y +=,则279x y 的值为( )A .9B .27C .6D .0 8.若3y x =,则22235a x xy ax −÷()(-)的值是( ) A .12B .12−C .42D .42−9.下列各式中计算正确的是( )A .222a b a b −=−()B .222224a b a ab b ++=+() C .224121a a a =+++()D .2222m n m mn n −−=++()10.设22 5353a b a b A +=−+()(),则代数式A 是( )A .30abB .60abC .15abD .12ab二、填空题(每小题4分,共24分) 11.计算:282m m =________.12.已知m n mn +=,则11m n −−=()()________. 13.计算:53a a ÷=________.14.已知3268x ya b a b =()(),则x =________,y =________. 15.232[23a b c a b c b −+++−=−()()(________)][23]b a c +−().16.把20cm 长的一根铁丝分成两段,将每一段都围成一个正方形,如果这两个正方形的面积之差是25cm ,则这两段铁丝分别长________. 三、解答题(共46分) 17.(20分)计算:(1)32232122a b a b ab ÷−−()();(2)202103|11|332π−−−⨯−−+−()()();(3)221131x x x −−−+()()();(4)2244a b a b a b a b +−++()()()();(5)299.18.(7分)数学老师给同学们出了一道题:当12020x =−时,求2222[22]323x x x x x x ++−−+−÷++()()()()()()的值.题目出完后,小敏说老师给的条件12020x =−是多余的,你认为小敏说的正确吗?为什么?19.(8分)在一次联欢会上,节目主持人让大家做一个猜数的游戏,游戏的规则是:主持人让观众每人在心里想好一个除0以外的数,然后按以下顺序计算: ①把这个数加上2后平方; ②然后再减去4;③再除以原来所想的那个数,得到一个商.最后把你所得到的商告诉主持人,主持人便立即知道你原来所想的数是多少,你能解释其中的奥妙吗?20.(11分)西红柿丰收了,为了运输方便,小红的爸爸打算把一个长为a 、宽为35a 的长方形铁板做成一个有底无盖的盒子.如图所示,在长方形铁板的四个角上各裁去一个边长为b 的小正方形325b a (<),然后沿虚线折起即可.现在要将盒子的外部表面贴上彩色花纸,爸爸问小红至少需要多少彩色花纸,小红认为至少需要彩色花纸的面积实际就是盒子外部表面的面积,可以用以下两种方法求得:①直接法:盒子外部表面的面积=四个侧面的面积+底面的面积332222255[]a b b a b b a b a b =−+−−+−()()()(); ②间接法:23==45a ab −−盒子外部表面的面积原长方形的面积四个小正方形的面积.请计算一下这两种方法的结果是否一样.第一章综合测试答案解析一、 1.【答案】B【解析】32325a a a a +==. 2.【答案】D【解析】选项A ,2222a a a +=;选项B ,5a 与3a −不是同类项,不能合并;选项C ,224a a a =.故选D. 3.【答案】B【解析】2222223261134461312126631218x x x x x x x x x x x −−+−−−−−+−=+=+−=−+()()()()()2346x x +=−−().因为2440x x −=+,所以244x x +=,所以原式23463466x x =−−=−⨯=+−()(). 4.【答案】C【解析】①22326a b a b a ab b −+−+=()();②23123x x x x +−=−+()();③224239x y x y =();④正确. 5.【答案】B 6.【答案】D【解析】原式24ab a b =−+()+,将4a b m ab +==−,代入,可得原式4242m m −−+=−. 7.【答案】B【解析】当323x y +=时,32323279333327x y x y x y ====+,故选B. 8.【答案】B【解析】2222222535353ya x xy ax a x xy a x x÷=÷−=−−−()()()(),因为3y x =,所以原式31512=−=−.故选B. 9.【答案】D【解析】选项A ,应为2222a b a ab b −−=+(),故选项A 错误;选项B ,应为222244a b a ab b ++=+(),故选项B 错误;选项C ,应为2242121a a a ++=+(),故选项C 错误;选项D ,2222m n m mn n −−=++(),故选项正确.故选D. 10.【答案】B【解析】225353a b a b A +=−+()(),2222535325309A a b a b a ab b +∴=+−−−=+()()222530960a ab b ab +=−().故选B.二、11.【答案】102m【解析】282810222m m m m +==. 12.【答案】1【解析】因为m n mn +=,所以1111m n mn m n −−=−+=()()()+. 13.【答案】2a【解析】55233a a a a −÷==. 14.【答案】2 4【解析】因为323268x yx y a b a b a b ==()(),所以3628x y ==,,所以24x y ==,.15.【答案】3a c −【解析】2323232[3[]]a b c a b c b a c b a c −+++−=−−+−()()()().故答案是3a c −. 16.【答案】12cm 8cm 、【解析】设其中较长一段的长为cm x ,则另一段长为20cm x −(),根据题意得2220454x x −=−()(),即55225x−=,解得12x =,则2020128x −=−=.所以两段铁丝分别长12cm 8cm 、. 三、17.【答案】解:(1)3223232232212841224a b a b ab a b a b a b a b −−÷=÷=−−()()().(2)2021033133118311||2810π⨯=+⨯=+−+−−−−−−−=−-()()()()()()+.(3)2222221131441331441331x x x x x x x x x x x x x −−−=−−−−=−+−−+++()()(+)+()222x x =−+.(4)2244a b a b a b a b +−++()()()() 222244a b a b a b −++=()()() 4444a b a b =−+()()88a b =−(5)229910011000020019801=−=−+=().18.【答案】解:小敏说的正确.理由:2222[22]323x x x x x x ++−−+−÷++()()()()()()22233224397x x x x x x =++−−−=++−−+=()()().因为化简后的结果是一个常数7,与x 的取值无关,所以小敏说的正确.19.【答案】解:设这个数是x ,则最后所得的商为22[]244444x x x x x x ++−÷=+−÷=+()().如果把这个商告诉主持人,主持人只需减去4就知道你原来想的那个数是多少.20.【答案】解:①直接法:33222225[5]a b b a b b a b a b +=−+−−−盒子外部表面的面积()()()()22222222223366363222242442445555555ab b ab b a ab ab b ab b ab b a ab ab b a b =−−+−+=−−−−=−−+++−()②间接法:222334455a ab a b =−=−盒子外部表面的面积.比较直接法与间接法的结果,可见计算结果是一样的.。

初中数学北师大版七年级下学期-第一章-单元测试卷及答案

初中数学北师大版七年级下学期-第一章-单元测试卷及答案

初中数学北师大版七年级下学期第一章单元测试卷一、单选题1.下列运算正确的是()A.3a2÷2a2=1B.(a2)3=a5C.a2·a4=a6D.(2a2)2=2a42.计算(a3)2正确的是()A.a B.a5C.a6D.a83.下列各式能用平方差公式计算的是()A.(3x+2y)(2x−3y)B.(3x+2y)(3x−y)C.(3x+2y)(3x−2y)D.(3x−2y)(2y−3x)4.2020年疫情的影响,人类的健康备注关注。

同时我们生存的环境雾霾天气引发关注,宽空气中漂浮着大量的粉尘颗粒,若某各粉尘颗粒的直径约为0.0000065米,则0.0000065用科学记数法表示为()A.6.5×10-5 B.6.5×10-6 C.6.5×10-7 D.65×10-65.如图,边长为(m+4)的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠、无缝隙),若拼成的矩形一边长为4,则另一边长为()A.m+4B.m+8C.2m+4D.2m+86.如图,边长为a的正方形中剪去一个边长为b的小正方形,剩下部分正好拼成一个等腰梯形,利用这两幅图形面积,能验证怎样的数学公式?()A.a2−b2=(a+b)(a−b)B.(a+b)2−(a−b)2=4abC.(a+b)2=a2+2ab+b2D.(a−b)2=a2−2ab+b27.a=5140,b=3210,c=2280,则a、b、c的大小关系是()A.a<b<c B.b<a<c C.c<a<b D.c<b<a8.已知2n+212+1(n<0)是一个有理数的平方,则n的值为()A .﹣16B .﹣14C .﹣12D .﹣10二、填空题9.某种计算机完成一次基本运算的时间约为 0.0000000001s ,把 0.0000000001 用科学记数法可以表示为 .10.计算: −2x(x 2+x −2)= .11.若 y x ⋅y 3⋅y 2⋅y =y 10 ,则 x = .12.当x 时, (x −4)0=1 .13.计算 (−x −y)2= .14.计算: (34)2017×(−113)2018= . 15.一个长方形的面积是(x 2-9)平方米,其长为(x +3)米,用含有x 的整式表示它的宽为 米.16.已知 a 2−3a +1=0 ,求 a 4+1a 4 的值为 . 三、计算题17.计算:(1)(−3a)2⋅(a 2)3+(−a 2)4 (2)(2x +y −2)(2x +y +2) .18.计算:(1)(−13)−1+(−2)3×(π−2)0 (2)(2a 2)2−a 7÷(−a)319.按要求完成下列各小题.(1)计算: (−38)2019×(83)2020 ; (2)已知 3x +5y =4 ,求 8x ⋅25y 的值.20.已知: a x =−2,a y =3 . 求(1)a x+y (2)a 3x−2y .四、解答题21.已知a m=4,a n=4,求a m+n的值.22.已知长方形的面积是3a3b4 -ab2,宽为2b2,那么长方形的长为多少?23.课后,数学老师在如图所示的黑板上给同学们留了一道题,请你帮助同学们解答.24.已知α,β为整数,有如下两个代数式22α,2 4β(1)当α=﹣1,β=0时,求各个代数式的值;(2)问它们能否相等?若能,则给出一组相应的α,β的值;若不能,则说明理由.答案解析部分1.【答案】C 2.【答案】C 3.【答案】C 4.【答案】B 5.【答案】C6.【答案】A 7.【答案】C 8.【答案】B 9.【答案】1×10−10 10.【答案】−2x 3−2x 2+4x11.【答案】4 12.【答案】≠4 13.【答案】x 2+2xy +y 2 14.【答案】43 15.【答案】(x-3)16.【答案】47 17.【答案】(1)解:原式= 9a 2⋅a 6+a 8= 9a 8+a 8= 10a 8 ;(2)解:原式= (2x +y)2−22= 4x 2+4xy +y 2−4 .18.【答案】(1)解: (−13)−1+(−2)3×(π−2)0 =- 3−8×1=-11(2)解: (2a 2)2−a 7÷(−a)3= 4a 4+a 4= 5a 4 .19.【答案】(1)解:原式= (−38)2019×(83)2019×83= (−38×83)2019×83= (−1)2019×83= −83; (2)解: 8x ⋅25y =23x ⋅25y =23x+5y因为 3x +5y =4 ,所以 23x+5y =24=16 .即 8x ⋅25y =16 .20.【答案】(1)解: a x+y =a x ⋅a y =(−2)×3=−6(2)解: a 3x−2y =(a x )3÷(a y )2=(−2)3÷32=−8921.【答案】解: ∵a m =4 , a n =4 ,∴ 原式 =a m ·a n ,=4×4=16 22.【答案】解: (3a3b4 -ab2)÷2b2= 32a3b2−12a 23.【答案】⑴解:由题意,得2a=23b﹣3,32b=3a﹣3,得{a=3b−32b=a−3,解得a=15,b=6;⑴m a+b÷m a﹣b=m2b=m12.24.【答案】解:(1)把α=﹣1代入代数式,得:22α=1 4,把β=0代入代数式,得:24β=2,(2)不能.理由如下:2 4β=222β=21−2β,∵α,β为整数,∴(1﹣2β)为奇数,2α为偶数,∴1﹣2β≠2α,∴22α≠24β.。

北师大版七年级数学(下册)第一章测试卷(附参考答案)

北师大版七年级数学(下册)第一章测试卷(附参考答案)

数学七下北师测试卷第一章1.计算(a2)3的结果为( )A.a4B.a5C.a6D.a92.计算a·a-1的结果为( )A.-1B.0C.1D.-a3.2-3可以表示为( )A.22÷25B.25÷22C.22×25D.(-2)×(-2)×(-2)4.若a≠b,下列各式中不能成立的是( )A.(a+b)2=(-a-b)2B.(a+b)(a-b)=(b+a)(b-a)C.(a-b)2n=(b-a)2nD.(a-b)3=-(b-a)35.如果x2-kx-ab=(x-a)(x+b),则k应为( )A.a+bB.a-bC.b-aD.-a-b6.(-)2016×(-2)2016等于( )A.-1B.1C.0D.20167.长方形一边长为2a+b,另一边比它长a-b,则长方形的周长是( )A.10a+2bB.5a+bC.7a+bD.10a-b8.如图所示,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A.(2a2+5a)cm2B.(3a+15)cm2C.(6a+9)cm2D.(6a+15)cm29.下列各组数中,互为相反数的是( )A.(-2)-3与23B.(-2)-2与2-2C.-33与(-1)3D.(-3)-3与()310.计算(x4+y4)(x2+y2)(y-x)(x+y)的结果是( )A.x8-y8B.x6-y6C.y8-x8D.y6-x611.计算:a·a2=.12.计算:3a3·a2-2a7÷a2=.13.已知a+b=3,a-b=-1,则a2-b2的值为.14.-x-x2y+2π是次项式,单项式的系数是.15.如果2x6y2n和-x3m y3是同类项,则代数式9m2-5mn-17的值是.16.若(x+5)(x-7)=x2+mx+n,则m=,n=.17.人们以分贝为单位来表示声音的强弱,通常说话的声音是50分贝,它表示声音的强度是105;摩托车发出的声音是110分贝,它表示声音的强度是1011,摩托车的声音强度是通常说话声音强度的倍.18.将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成a,定义a=ad-bc,上述记号就叫做2阶行列式.若x=8,则x=.19.计算:(1)(-3xy2)3·(1x3y)2;(2)y(2x-y)+(x+y)2;(3)(x2y4-x3y3+2x4yz)÷x2y;(4)(2x+y)(2x-y)+(x+y)2-2(2x2-xy).20.化简求值:(1)(1+x)(1-x)+x(x+2)-1,其中x= 1;(2)x(x+y)-(x-y)(x+y)-y2,其中x=0.52016,y=22017. 21.已知2a2+3a-6=0,求代数式3a(2a+1)-(2a+1)(2a-1)的值. 22.解方程:(2m-5)(2m+5)-(2m+1)(2m-3)=(π-3.14)0.23.用简便方法计算:(1)498×502;(2)2992.24.按下列程序计算,:(1)填写表格:(2)请将题中计算程序用代数式表达出来,并给予化简.参考答案1.C2.C3.A4.B5.B6.B7.A8.D9.D10.C11.a312.a513.-314.三三32-2π2π77x y z15.416.-2 -3517.10618.219.(1)解:原式=-27x3y6·1x6y2 =-3x9y8. (2)解:原式=2xy-y2+x2+2xy+y2 =x2+4xy. (3)解:原式=x2y4÷x2y-x3y3÷x2y+2x4yz÷x2y =y3-xy2+2x2z. (4)解:原式=(2x)2-y2+x2+2xy+y2-4x2+2xy =4x2-y2+x2+2xy+y2-4x2+2xy =x2+4xy. 20.(1)解:原式=1-x2+x2+2x-1=2x. 将x=代入,原式=2x=2·=1. (2)解:原式=x2+xy-(x2-y2)-y2=x2+xy-x2+y2-y2=xy. 当x=0.52016,y=22017时,原式=0.52016×22017=(0.5×2)2016×2=2.21.解:原式=3a(2a+1)-(2a+1)(2a-1) =6a2+3a-4a2+1=2a2+3a+1∵2a2+3a-6=0,∴2a2+3a=6.∴原式=7.22.(2m-5)(2m+5)-(2m+1)(2m-3)=(π-3.14)0. 解:4m2-25-(4m2-6m+2m-3)=14m2-25-4m2+6m-2m+3=14m-22=14m=23m=.23.(1)解:498×502=(500-2)×(500+2)=5002-22=250000-4=249996.(2)解:2992=(300-1)2=3002-2×300×1+1=90000-600+1=89401.24.解:(1)(2)代数式可表示为:(n2+n)÷n-n=-n=n+1-n=1.。

新北师大版七年级数学下册第一章《整式的乘除》单元练习题含答案解析 (52)

新北师大版七年级数学下册第一章《整式的乘除》单元练习题含答案解析 (52)

一、选择题(共10题)1. 若 a ,b 是实数,则 2(a 2+b 2)(a +b )2 的值必是 ( ) A .正数 B .负数 C .非正数 D .非负数2. 下列计算正确的是 ( ) A . (−2a )3=−8a 3 B . a 2⋅a 2=2a 4 C . (a 3)2=a 5D . a 3÷a 3=a3. 下列运算正确的是 ( ) A . a 3⋅a 2=a 5 B . 2a 2+a 2=2a 3 C . (a 3)2=a 5 D . (3a )3=3a 34. 计算 (−2)1000⋅(12)999⋅22+22+22+⋯+22⏟64个的结果为 ( )A . −29B . 2129C . 29D . −21295. 任何一个正整数 n 都可以进行这样的分解:n =s ×t (s ,t 是正整数,且 s ≤t ),如果 p ×q 在 n 的所有这种分解中两因数之差的绝对值最小,我们就称 p ×q 是 n 的最佳分解,并规定:F (n )=pq .例如 18 可以分解成 1×18,2×9,3×6 这三种,这时就有 F (18)=36=12,给出下列关于 F (n ) 的说法:① F (2)=12,② F (48)=13;③ F (n 2+n )=n n+1;④若 n 是一个完全平方数,则 F (n )=1,其中正确说法的个数是 ( ) A . 4 B . 3 C . 2 D . 16. 为了书写简便,18 世纪数学家欧拉引进了求和符号“∑”.例如:∑k n k=1=1+2+3+⋯+(n −1)+n ,∑(x +k )n k=5=(x +5)+(x +6)+(x +7)+⋯+(x +n ).已知:∑[(x +k )(x −n k=3k +1)]=4x 2+4x +m ,则 m 的值为 ( ) A . 40 B . −68 C . −40 D . −1047. 下列计算正确的是 ( ) A . a 3+a 3=a 6 B . (a 3)2=a 6 C . a 6÷a 2=a 3 D . (ab )3=ab 38. 下列有四个结论,其中正确的是 ( ) ①若 (x −1)x+1=1,则 x 只能是 2;②若 (x −1)(x 2+ax +1) 的运算结果中不含 x 2 项,则 a =1;③若 a +b =10,ab =2,则 a −b =2; ④若 4x =a ,8y =b ,则 22x−3y 可表示为 ab .A .①②③④B .②③④C .①③④D .②④9. 计算 (−110a 2y)3⋅(10a 2y 2) 的结果是 ( ) A . −1100a 8y 5 B . −a 4y 5C .1100a 8y 5D . −310a 8y 510. 若 x +1x =3,求x 2x 4+x 2+1的值是 ( )A . 18B .110C . 12D . 14二、填空题(共7题) 11. 填空.(1)已知 x +y =5,xy =3,则 x 2+y 2 的值为 . (2)已知 x −y =5,x 2+y 2=51,则 (x +y )2 的值为 .(3)已知 x +y +z =1,x 2+y 2−3z 2+4z =7,则 xy −z (x +y ) 的值为 .12. 已知 x 2+2x +2y +y 2+2=0,则 x 2018+y 2019= .13. 计算:(−23)−2= ;(−2)−3= ;(π−227)0= .14. 已知 x 2−y 2=2019,且 x =673−y ,则 x −y = .15. 计算:(1)(a +1)(a +2)= ; (2)(x −3)(x +1)= .16. 若 (x +2)(x +3)=7,则代数式 2−10x −2x 2 的值为 .17. 若 (x −1)(x 2+5ax −a ) 的乘积中不含 x 2 项,则 a 的值为 .三、解答题(共8题) 18. 阅读理解题阅读材料:两个两位数相乘,如果这两个因数的十位数字相同,个位数字的和是10,该类乘法的速算方法是;将一因数的十位数字与另一个因数的十位数字加1的和相乘,所得的积作为计算结果的后两位(数位不足的两位,用零补齐).比如47×43,它们的乘积的前两位是4×(4+1)=20,它们乘积的后两位是7×3=21.所以47×43=2021;再如62×68,它们乘积的前两位是6×(6+1)=42,它们乘积的后两位是2×8=16,∴62×68=4216.又如21×29,2×(2+1)=6,不足两位,就将6写在百位;1×9=9,不足两位,就将9写在个位,十位上写零,所以21×29=609.该速算方法可以用我们所学的整式的乘法的知识说明其合理性:设其中一个因数的十位数字为a,个位数字是b,(a,b表示1到9的整数)则该数可表示为10a+b,另一因数可表示为10a+(10−b).两数相乘可得:(10a+b)[10a+(10−b)]=100a2+10a(10−b)+10ab+b(10−b)=100a2+100a+b(10−b)=100a(a+1)+b(10−b).(注:其中a(a+1)表示计算结果的前两位,b(10−b)表示计算结果的后两位.)问题:两个两位数相乘,如果其中一个因数的十位数字与个位数字相同,另一因数的十位数字与个位数字之和是10.如44×73,77×28,55×64等.(1) 探索该类乘法的速算方法,请以44×73为例写出你的计算步骤.(2) 设十位数字与个位数字相同的因数的十位数字是a,则该数可以表示为.设另一因数的十位数字是b,则该数可以表示为.(a,b表示1∼9的正整数)(3) 请针对问题(1),(2)的计算,模仿阅读材料中所用的方法写出.如:100a(a+1)+b(10−b)的运算式.19.(2a−b)5÷(b−2a)3.20.计算:(1) 59.8×60.2.(2) 99×101×10001.(3) 1022.(4) 5402−543×537.21.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将剩下的纸板沿虚线裁成四个相同的等腰梯形,如图①,然后拼成一个平行四边形,如图②,分别计算这两个图形阴影部分的面积,结果验证了什么公式?请将结果与同伴交流下.22.设n,n+1,n+2,n+3为四个连续的自然数.小明说,只要已知其中两个较大数的乘积与两个较小数的乘积的差,我就能很快得出这四个连续自然数.你能说出其中的奥秘吗?23.如图,长为60cm,宽为x(cm)的大长方形被分割为7小块,除阴影A,B外,其余5块是形状、大小完全相同的小长方形,其较短一边长为y(cm).(1) 从图可知,每个小长方形较长的一边长是cm(用含y的代数式表示).(2) 分别用含x,y的代数式表示阴影A,B的面积,并计算阴影A,B的面积差.(3) 当y=10时,阴影A与阴影B的面积差会随着x的变化而变化吗?请你作出判断,并说明理由.24.阅读题.材料一:若一个整数m能表示成a2−b2(a,b为整数)的形式,则称这个数为“完美数”.例如,3=22−12,9=32−02,12=42−22,则3,9,12都是“完美数”;再如,M=x2+ 2xy=(x+y)2−y2,(x,y是整数),所以M也是”完美数”.材料二:任何一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q).如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并且规定F(n)=pq.例如18=1×18=2×9=3×6,这三种分解中3和6的差的绝对值最小,所以就有F(18)=36=12.请解答下列问题:(1) 8(填写“是”或“不是”)一个完美数,F(8)=.(2) 如果m和n都是”完美数”,试说明mn也是“完美数”.(3) 若一个两位数n的十位数和个位数分别为x,y(1≤x≤9),n为“完美数”且x+y能够被8整除,求F(n)的最大值.25.如图,在长方形ABCD中,横向阴影部分为长方形,另一阴影部分为平行四边形,依图中标注的数据(a>b),求图中空白部分的面积.答案一、选择题(共10题)1. 【答案】D【解析】∵a2≥0,b2≥0,(a+b)2≥0,∴2(a2+b2)(a+b)2的值必是非负数.【知识点】完全平方公式、多项式乘多项式2. 【答案】A【知识点】同底数幂的除法、幂的乘方、同底数幂的乘法、积的乘方3. 【答案】A【知识点】积的乘方4. 【答案】C【解析】原式=(2)1000×12999×(22×64)=2×(22×26)=29.【知识点】同底数幂的乘法、有理数的乘方5. 【答案】B【解析】∵2=1×2,∴1×2是2的最佳分解,∴F(2)=12,即①正确;∵48=1×48,48=2×24,48=3×16,48=4×12,48=6×8,∴6×8是48的最佳分解,∴F(48)=68=23,即②错误;∵n2+n=n(n+1),∴F(n2+n)=nn+1,即③正确;若n是一个完全平方数,则设n=a×a(a是正整数),∴F(n)=aa=1,即④正确;综上所述,①③④正确,共三个.【知识点】单项式乘多项式6. 【答案】B【知识点】多项式乘多项式7. 【答案】B【解析】a3+a3=2a3,因此选项A不正确;(a3)2=a3×2=a6,因此选项B正确;a6÷a2=a6−2=m4,因此选项C不正确;(ab)3=a3b3,因此选项D不正确.【知识点】同底数幂的除法8. 【答案】D【解析】①若(x−1)x+1=1,则x可以为−1,此时(−2)0=1,故①错误,从而排除选项A和C;由于选项B和D均含有②④,故只需考查③.∵(a−b)2=(a+b)2−4ab=102−4×2=92,∴a−b=±√92,故③错误.【知识点】同底数幂的除法、多项式乘多项式9. 【答案】A【知识点】单项式乘单项式10. 【答案】A【解析】∵x+1x=3,∴(x+1x )2=9,即x2+1x2=9−2=7,∴x4+x2+1x2=x2+1+1x2=7+1=8,∴x2x4+x2+1=18.【知识点】完全平方公式二、填空题(共7题)11. 【答案】19;77;−3【解析】(1)x2+y2=(x+y)2−2xy=25−6=19.(2)(x+y)2=x2+y2+2xy=x2+y2+[(x2+y2)−(x−y)2]=2(x2+y2)−(x−y)2=2×51−25=77.(3)∵x+y+z=1,∴x+y=1−z,(x+y)2=(1−z)2,x2+2xy+y2=1−2z+z2,x2+y2−z2+2z=1−2xy.∴ x2+y2−3z2+4z=(x2+y2−z2+2z)−2z2+2z=(1−2xy)−2z2+2z=1−2xy+2z(1−z)=1−2xy+2z(x+y).又∵x2+y2−3z2+4z=7,∴1−2xy+2z(x+y)=7,2xy−2z(x+y)=−6,xy−z(x+y)=−3.【知识点】简单的代数式求值、完全平方公式12. 【答案】0【解析】∵x2+2x+2y+y2+2=0,∴(x2+2x+1)+(y2+2y+1)=0,∴(x+1)2+(y+1)2=0,∴x+1=0,y+1=0,解得:x=−1,y=−1,∴x2018+y2019=(−1)2018+(−1)2019=1+(−1)=0.【知识点】完全平方公式13. 【答案】94;−18;1【知识点】负指数幂运算14. 【答案】3【解析】∵x2−y2=2019,∴(x+y)(x−y)=2019,∵x=673−y,∴x+y=673,∴x−y=2019673=3.故答案为:3.【知识点】平方差公式15. 【答案】a2+3a+2;x2−2x−3【知识点】单项式乘多项式16. 【答案】0【知识点】多项式乘多项式17. 【答案】0.2【解析】原式=x3+5ax2−ax−x2−5ax+a =x3+(5a−1)x2−6ax+a.∵乘积中不含x2项,∴5a−1=0,解得:a=0.2.【知识点】多项式乘多项式三、解答题(共8题)18. 【答案】(1) ∵4×7+4=32,4×3=12,∴44×73=3212.(2) 10a+a;10b+(10−b)(3) 设其中一个因数的十位数字为a,个位数字也是a,则该数可表示为10a+a,设另一因数的十位数字是b,则该数可以表示为10b+(10−b)(a,b表示1到9的整数).两数相乘可得:(10a+a)[10b+(10−b)]=100ab+10a(10−b)+10ab+a(10−b)=100ab+100a+a(10−b)=100a(b+1)+a(10−b).【解析】(2) 十位数字与个位数字相同的因数的十位数字是a,则该数可以表示为10a+a,另一因数的十位数字是b,则该数可以表示为10b+(10−b).【知识点】多项式乘多项式、有理数的乘法、简单列代数式19. 【答案】−(2a−b)2.【知识点】同底数幂的除法20. 【答案】(1)59.8×60.2=(60−0.2)×(60+0.2) =602−0.22=3600−0.04(2)99×101×10001=(100−1)×(100+1)×10001 =9999×10001=(10000−1)(10000+1)=100002−1=99999999.(3) 1022=(100+2)2=1002+2×100×2+22=10000+400+4=10404.(4)5402−543×537=5402−(540+3)×(540−3) =5402−(5402−9)=9.【知识点】平方差公式、完全平方公式21. 【答案】题图①中的阴影部分(四个等腰梯形)的面积为a2−b2,题图②中的阴影部分(平行四边形)的面积为(a+b)(a−b),由此可验证:(a+b)(a−b)=a2−b2.【知识点】平方差公式22. 【答案】(n+3)(n+2)−n(n+1)=4n+6.若知道它们的差为x,则n=x−64.【知识点】多项式乘多项式23. 【答案】(1) 60−3y(2) 阴影A的面积:(x−2y)(60−3y)=6y2+60x−3xy−120y;阴影B的面积:3y(x+3y−60)=3xy+9y2−180y.阴影A的面积与阴影B的面积差A−B=−3y2+60y−6xy+60x.(3) 当y=10时,A−B=300,故阴影A,B的面积差不会改变.【知识点】多项式乘多项式、简单的代数式求值、简单列代数式24. 【答案】(1) 是;12(2) 设m=a2−b2,n=c2−d2,其中a,b,c,d均为整数,则mn=(a2−b2)(c2−d2)=a2c2−a2d2−b2c2+b2d2=(ac+bd)2−(ad+bc)2.∵a,b,c,d均为整数,∴ac+bd与ad+bc也是整数,即mn是“完美数”.(3) ∵两个一位数相加能被8整除,∴x+y=8或16,∴n=79或97或88或71或17或26或62或35或53或44,∵n为“完美数”,∴n=79或97或88或71或17或35或53或44,其中F(79)=179,F(97)=197,F(88)=811,F(71)=171,F(17)=117,F(35)=57,F(53)=153,F(44)=411,∴F(n)的最大值为811.【解析】(1) ∵8=32−12,∴8是完美数,F(8)=24=12.【知识点】有理数的乘方、多项式乘多项式、整除25. 【答案】a2−2ac−b2+c2.【知识点】多项式乘多项式11。

北师大初一数学7年级下册 第1章(整式的乘除)单元测试卷(含答案)

北师大初一数学7年级下册 第1章(整式的乘除)单元测试卷(含答案)

北师大版七年级数学下册第一章 整式的乘除 单元测试卷一、选择题(每小题3分,共30分)1.计算a 10÷a 2(a ≠0)的结果是( )A .a 5B .a -5C .a 8D .a -82.下列运算正确的是( )A .2x +y =2xyB .x ·2y 2=2xy 2C .2x ÷x 2=2xD .4x -5x =-13.下列计算正确的是( )A .3a +4b =7abB .(ab 3)2=ab 6C .(a +2)2=a 2+4D .x 12÷x 6=x 64.下列计算正确的是( )A .(a 2b )2=a 2b 2B .a 6÷a 2=a 3C .(3xy 2)2=6x 2y 4D .(-m )7÷(-m )2=-m 55.下列运算正确的是( )A .m 6÷m 2=m 3B .3m 2-2m 2=m 2C .(3m 2)3=9m 6D .m •2m 2=m 26.若(x 2+mx +1)(x -2)的积中x 的二次项系数为0,则m 的值是( )A .1B .-1C .-2D .27.如(x +m )与(x +3)的乘积中不含x 的一次项,则m 的值为( )A .-3B .3C .0D .18.若3x =15,3y =5,则3x -y 等于( )A .5B .3C .15D .109.有两个标有数字的小球,小球上的数字分别为26,29,则这两个小球上的数字相乘的结果为( )A .217B .216C .215D .21410.计算|-2|-(π-2 017)0+3-21)(的结果为( )A .-3 B .3 C .6 D .9二、填空题(每小题4分,共24分)11.化简,计算:(-a )6÷a 3=____,a (a -1)-a 2=____.12.计算:(a +b )(a 2-ab +b 2)=____.13.已知(x -1)(x +2)=ax 2+bx +c ,则代数式4a -2b +c 的值为____.14.已知单项式2a 3y 2与-4a 2y 4的积为ma 5y n ,则m +n =____ .15.通过计算几何图形的面积可表示一些代数恒等式(一定成立的等式),请根据图形写出一个代数恒等式是:____.16.若(x +a )(x -2)的结果中不含关于字母x 的一次项,则a =____.三、解答题(共66分)17.(8分)计算:(1)(-1)0+2-31(+4×2-1; (2)(3x -2)(x -1).18.(10分)(1) 先化简,再求值:(a +b )(a -b )-b (a -b ),其中a =-2,b =1;(2)先化简,再求值:4x •x +(2x -1)·(1-2x ),其中x =140.19.(12分)(1)若2x +5y -3=0,求4x ·32y 的值.(2)若26=a2=4b,求a+b值.20.(12分)已知ax2+bx+1与2x2-3x+1的积不含x3项,也不含x项,求a 与b的值.21.(12分)欢欢与乐乐两人共同计算(2x+a)(3x+b),欢欢抄错为(2x-a)(3x+b),得到的结果为6x2-13x+6;乐乐抄错为(2x+a)(x-1),得到的结果为2x2+x-3.(1)式子中的a,b的值各是多少?(2)请计算出原题的正确答案.22.(12分)如果a c=b,那么我们规定(a,b)=c,例如:因为23=8,所以(2,8)=3.(1)根据上述规定填空:(3,27)=____,(4,1)=__0__(2,0.25)=____;(2)记(3,5)=a,(3,6)=b,(3,30)=c.求证:a+b=c.参考答案北师大版七年级数学下册第一章整式的乘除单元测试卷一、选择题(每小题3分,共30分)1.计算a10÷a2(a≠0)的结果是( C )A.a5 B.a-5 C.a8 D.a-82.下列运算正确的是( B )A.2x+y=2xy B.x·2y2=2xy2 C.2x÷x2=2x D.4x-5x=-13.下列计算正确的是( D )A.3a+4b=7ab B.(ab3)2=ab6 C.(a+2)2=a2+4 D.x12÷x6=x6 4.下列计算正确的是( D )A.(a2b)2=a2b2 B.a6÷a2=a3 C.(3xy2)2=6x2y4 D.(-m)7÷(-m)2=-m55.下列运算正确的是( B )A.m6÷m2=m3 B.3m2-2m2=m2 C.(3m2)3=9m6 D.m•2m2=m26.若(x2+mx+1)(x-2)的积中x的二次项系数为0,则m的值是( D )A.1 B.-1 C.-2 D.2【解析】 (x2+mx+1)(x-2)=x3-2x2+mx2-2mx+x-2=x3+(-2+m)x2+(-2m+1)x-2.∵(x2+mx+1)(x-2)的积中x的二次项系数为0,∴-2+m=0,解得m=2.7.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为( A )A.-3 B.3 C.0 D.18.若3x=15,3y=5,则3x-y等于( B )A.5 B.3 C.15 D.109.有两个标有数字的小球,小球上的数字分别为26,29,则这两个小球上的数字相乘的结果为( C )A .217B .216C .215D .21410.计算|-2|-(π-2 017)0+3-21)(的结果为( D )A .-3 B .3 C .6 D .9二、填空题(每小题4分,共24分)11.化简,计算:(-a )6÷a 3=__a 3__,a (a -1)-a 2=__-a __.12.计算:(a +b )(a 2-ab +b 2)=__a 3+b 3__.13.已知(x -1)(x +2)=ax 2+bx +c ,则代数式4a -2b +c 的值为__0__.14.已知单项式2a 3y 2与-4a 2y 4的积为ma 5y n ,则m +n =__-2__ .【解析】 ∵单项式2a 3y 2与-4a 2y 4的积为ma 5y n ,∴2a 3y 2×(-4a 2y 4)=-8a 5y 6,∴m =-8,n =6,∴m +n =-2.15.通过计算几何图形的面积可表示一些代数恒等式(一定成立的等式),请根据图形写出一个代数恒等式是:__2a (a +b )=2a 2+2ab __.【解析】 长方形的面积等于2a (a +b ),也等于四个小图形的面积之和:a 2+a 2+ab +ab =2a 2+2ab ,即2a (a +b )=2a 2+2ab .16.若(x +a )(x -2)的结果中不含关于字母x 的一次项,则a =__2__.【解析】 原式=x 2-2x +ax -2a =x 2+(a -2)x -2a ,由结果不含x 的一次项,得到a -2=0,解得a =2.三、解答题(共66分)17.(8分)计算:(1)(-1)0+2-31(+4×2-1;(2)(3x -2)(x -1).解: (1)(-1)0+2-31(+4×2-1=1+9+4×12=12;(2)(3x -2)(x -1)=3x 2-3x -2x +2=3x 2-5x +2.18.(10分)(1) 先化简,再求值:(a +b )(a -b )-b (a -b ),其中a =-2,b =1;(2)先化简,再求值:4x •x +(2x -1)·(1-2x ),其中x =140.解: (1)原式=a 2-b 2-ab +b 2=a 2-ab ,当a =-2,b =1时,原式=4+2=6;(2)4x •x +(2x -1)(1-2x )=4x 2+(2x -4x 2-1+2x )=4x 2+4x -4x 2-1=4x -1.当x =140时,原式=4×140-1=-910.19.(12分)(1)若2x +5y -3=0,求4x ·32y 的值.(2)若26=a2=4b,求a+b值.解: (1)∵2x+5y-3=0,∴2x+5y=3,∴4x·32y=22x·25y=22x+5y=23=8.(2)∵26=a2=4b,∴(23)2=a2=(22)b=22b,∴a=±8,2b=6,∴a+b=11或-5.20.(12分)已知ax2+bx+1与2x2-3x+1的积不含x3项,也不含x项,求a 与b的值.解:根据题意得(ax2+bx+1)(2x2-3x+1)=2ax4+(2b-3a)x3+(a+2-3b)x2+(b-3)x+1,∵不含x3的项,也不含x的项,∴2b-3a=0,b-3=0,解得a=2,b=3.21.(12分)欢欢与乐乐两人共同计算(2x+a)(3x+b),欢欢抄错为(2x-a)(3x+b),得到的结果为6x2-13x+6;乐乐抄错为(2x+a)(x-1),得到的结果为2x2+x-3.(1)式子中的a,b的值各是多少?(2)请计算出原题的正确答案.解: (1)根据题意可知,由于欢欢抄错了第一个多项式中的a的符号,得到的结果为6x2-13x+6,那么(2x-a)(3x+b)=6x2+(2b-3a)x-ab=6x2-13x+6,可得2b-3a=-13. ①由乐乐的计算得到(2x+a)(x-1)=2x2+x-3,即2x2+(a-2)x-a=2x2+x-3,可得a=3.②将a=3代入①,可得b=-2;(2)正确的式子:(2x+3)(3x-2)=6x2+5x-6.22.(12分)如果a c=b,那么我们规定(a,b)=c,例如:因为23=8,所以(2,8)=3.(1)根据上述规定填空:(3,27)=__3__,(4,1)=__0__(2,0.25)=__-2__;(2)记(3,5)=a,(3,6)=b,(3,30)=c.求证:a+b=c.证明:(2)∵(3,5)=a,(3,6)=b,(3,30)=c,∴3a=5,3b=6,3c=30,∴3a×3b=30,∴3a×3b=3c,即3a+b=3c,∴a+b=c.。

北师大版七年级数学下册第1章【整式的乘除】单元测试卷(一)含答案与解析

北师大版七年级数学下册第1章【整式的乘除】单元测试卷(一)含答案与解析

北师大版七年级数学下册第1章单元测试卷(一)整式的乘除学校:__________姓名:___________考号:___________分数:___________(考试时间:100分钟 满分:120分)一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果22(3)16x m x --+是一个整式的平方,那么m 的值是( )A .-1B .7C .-1或4D .-1或72.已知1a b -=,则222a b b --的值为( ) A .4B .3C .1D .03.若22x axy y ++是完全平方式,则a 的值是( ) A .4 B .2C .2或2-D .4或4-4.已知15a a +=,则代数式221a a+的值为( ) A .25B .23C .27D .225.下列运算正确的是( ) A .248()a a =B .325a a a +=C .236a a a ⋅=D .32a a a -=6.下面是某同学在一次测验中的计算摘录,其中错误的是( )A .()325326x x x -=-B .()32422a b a b a ÷-=- C .()235a a =D .()()32a a a -÷-=7.下列各式计算正确的是( ) A .224a a a +=B .236a a a ⋅=C .()22439a a -= D .22(1)1a a +=+8.如图是一所楼房的平面图,下列式子中不能表示它的面积的是( )A .x 2+3x +6B .(x +3)(x +2)﹣2xC .x (x +3)+6D .x (x +2)+x 29.如果单项式223a b a b m n -+-与38b m n 是同类项,那么这两个单项式的积是( ) A .6163m n -B .6323m n -C .383m n -D .6169m n -10.已知5a b +=,2ab =-,则a 2+b 2的值为( ) A .21 B .23C .25D .2911.计算()()202020213232-⨯的结果是( )A .32-B .23-C .23D .3212.计算()3222()m m m -÷⋅的结果是( )A .2m -B .22mC .28m -D .8m -二、填空题(本大题共6小题,每小题3分,共18分) 13.已知,a b 满足1,2a b ab -==,则a b +=____________14.如图,两个阴影图形都是正方形,用两种方式表示这两个正方形的面积和,可以得到的等式为______.15.已知a +b =5,且ab =3,则a 3+b 3=_____.16.如图:一块直径为+a b 的圆形钢板,从中挖去直径分别为a 与b 的两个半圆,则剩下的钢板面积为______.17.如图,两个正方形的边长分别为a ,b , 如果9a b ab +==,则阴影部分的面积为__.18.若(2021)(2018)4x x --=,求22(2021)(2018)x x -+-=____.三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.计算(1)()()232323a b ab a b⋅-+-;(2)()()()()22323412x x x x x +---+-; (3)()()22a b c a b c +--+ .20.已知有理数m 、n 满足(m +n)2=9,(m -n)2=1,求m 2+n 2-mn 的值.21.如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2).(1)观察图2请写出()2a b +、()2a b -、ab 之间的等量关系是 ; (2)根据(1)中的结论,若5x y +=,94xy =,则x y -= ; (3)拓展应用:若()()22201920207m m -+-=,求()()20192020m m --的值. 22.已知:53a =,58b =,572c =.(1)求)(25a的值.(2)求5a b c -+的值.(3)直接写出字母a 、b 、c 之间的数量关系.23.图①是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)观察图②,请用两种不同的方式表示阴影部分的面积,写出三个代数式()2m n +、()2m n -、mn 之间的等量关系是______________;(2)有许多等式可以用图形的面积来表示.如图③,它表示了_________;(3)请你用图③提供的若干个长方形和正方形硬纸片图形,用拼长方形的方法,把下列二次三项式进行因式分解:2243m mn n ++.要求:在图④的框中画出图形并在下方写出分解的因式.24.正方形ABCD 和正方形CEFG 的边长分别为b 和a 将它们如图所示放置,求图中阴影部分的面积.参考答案与解析二、选择题(本大题共12小题,每小题3分,共36分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宝鸡市龙泉中学 罗琼
一、选择题(每题3分,共30分)
1.代数式x 3,-abc,x+y, b a 221
π,a
x ,0.2, x 2-y 2 中,单项式的个数是( )
A .3
B .4
C .5
D .6
2.计算 (-2a 2
)3
的结果是( )
A .2a 4
B .-2a 4
C .8a 6
D .-8a 6
3.计算(-x 2)3·(-x 3)2的结果是( )
A .x 12
B .-x 12
C .-x 10
D .-x 36
4.计算a 3÷(a ÷a -3)的结果是( )
A .a -1
B .a 5
C .-a 5
D .a
5.小华做了如下四道计算题:①x m +x n =x m +n ②x m ·x -n =x m -n ③x m ÷x n =x m -n ④x 3·x 3=x 9;你认为小华做对的有( ) A .1道 B .2道 C .3道 D .4道
6.计算()(
)1 52+--x x x 的结果,正确的是( ) A .54+x B .542
+-x x
C .54--x
D .542+-x x
7.若A 和B 都是三次多项式,你认为下列关于A +B 的说法正确的是( )
A .仍是三次多项式 B.是六次多项式
C .不小于三次多项式
D .不大于三次多项式 8.若x 2+kx+81是一个完全平方式,则k 等于( )
A .-18
B .9
C .18或-18
D .18 9.计算[(a 2-b 2)(a 2+b 2)]2等于( )
A .a 4-2a 2b 2+b 4
B .a 6+2a 4b 4+b 6
C .a 6-2a 4b 4+b 6
D .a 8-2a 4b 4+b 8
10.若a+1=b+2=c+3,则(a-b)2+(b-c)2+(c-a)2的值是( )
A .3
B .4
C .6
D .8 二、填空题(每题3分,共27分)
11.单项式-b a 22
1π的系数是 ,次数是 ; 12.(m-n)7÷(m-n)2·(n-m)4= ; 13.若3x +5y =3,则8x ·32y = ; 14.若a m =3, a n =2,则a 2m -3n = ;
15.一个长方形的长为(a +3b ),宽为(2a -b ),则长方形的面积为 ;
16.29×31×(302+1)= ; 17.已知x 2-5x +1=0,则x 2+
21
x
= ; 18.若x 2-x -m =(x -m )(x +1)且x ≠0,则m = ; 19.设(x m -1y n +2)·(x 5m y -2)=x 5y 3,则m n 的值为 ; 三、解答题(共5题,共43分)
20.计算(本题20分)
(1).[ab(3-b)-2a(b+b2)]·(-2a2b)3;
(2).(
2
1)-3-2100×0.5100×(-1)2005÷(-1)-5;(3).(a-2b+3c)2-(a+2b-3c)2;(4).[(x+2y2)2-(x+y2)(x-y2)-5y4]÷(2y)2;21.(本题5分)
长方形的一边长为3a+2b,另一边比它小a-b,求长方形周长。

22.(本题6分)先化简,再求值。

(2x-1)(x+2)-(x-2)2-(x+2)2,其中x=-
3
2
23.(本题5分)
已知x2+8x-1=0,求代数(1-x)(1+x)+(x-2)2-2(x+3)2的值。

24.(本题7分)
已知8
n
m=
+,5
mn-
=,求下列各式的值。

(1)2
2
m n
mn+
-(2)(n
m-)2
试卷参考答案和评分标准
一、选择题(每题3分,共30分)
1.B
2.D
3.B
4.A
5.B
6.A
7.D
8.C
9.D 10.C
二、填空题(每题3分,共27分)
11. - ,3次;12.(m-n)9 ;13.8; 14. ;
15.2a2+5ab-3b2; 16.809999; 17.23;18.2;19.1
三、解答题(共43分)
20.计算((1)、(2)每题4分,(3)、(4)每题5分,共18分) (1).-8a7b4+24a7b5;(2).7 ;(3).-8ab+12ac; (4).x
21.(5分)解:另一边长为:(3a+2b)-(a-b)=2a+3b………(2分)
周长为:2(3a+2b+2a+3b)=10a+10b…………(3分)
22.(6分)解:(2x-1)(x+2)-(x-2)2-(x+2)2
=2x2+4x-x-2-(x2-4x+4)-(x2+4x+4)…………(2分)
=3x-10……………………………………… (2分) 当x=- 时,原式=-12………………………(2分)
23.(6分)解:(1-x)(1+x)+(x-2)2-2(x+3)2
=1-x2+x2-4x+4-2(x2+6x+9)…………………(2分)
=-2(x2+8x)-13……………………………… (2分) ∵x2+8x-1=0 ∴x2+8x=1 ∴原式=13……… (2分)
24.(8分)解:
(1).m2-mn+n2 =(m+n)2-3mn=82-3×(-5)=79…….(4分)
(2).(m-n)2=(m+n)2-4mn=82-4×(-5)=84……….(4分)
试卷说明
试题围绕第一章主要内容进行命题,覆盖本章所有知识点,难易程度适中,既考查学生对基础知识的掌握,又考查学生对整式运算的综合应用,还能考查学生对知识的灵活应用能力。

本卷满分100分,时间为90分钟。

选择题中的第1、7题和填空题中的第11题考查整式的概念及应用;选择题的第2、3、4、5和填空题中的12、13、14、19题考查学生对幂的运算法则的掌握及综合应用,灵活性较强;选择题8、9、10和填空题16、17考查平方差公式和完全平方公式,综合性强;解答题第20、24再次考查两个公式的应用,要注意符号的变化;第21、22、23是整式运算的综合应用题。

相关文档
最新文档