(推荐)高中数学二项式定理

合集下载

高中数学二项式定理知识点总结(精选4篇)

高中数学二项式定理知识点总结(精选4篇)

高中数学二项式定理知识点总结(精选4篇)高中数学二项式定理知识点总结(精选4篇)每个人都可以通过不断学习、积累知识来提高自己的竞争力和创造力。

拥有广博的知识储备可以为人生带来更多的选择和机会。

下面就让小编给大家带来高中数学二项式定理知识点总结,希望大家喜欢!高中数学二项式定理知识点总结篇1空间两条直线只有三种位置关系:平行、相交、异面1、按是否共面可分为两类:(1)共面:平行、相交(2)异面:异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。

异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

两异面直线所成的角:范围为(0°,90°)esp.空间向量法两异面直线间距离:公垂线段(有且只有一条)esp.空间向量法2、若从有无公共点的角度看可分为两类:(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面直线和平面的位置关系:直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行①直线在平面内——有无数个公共点②直线和平面相交——有且只有一个公共点直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。

高中数学二项式定理知识点总结篇21、求函数的单调性:利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数。

利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间。

反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,(1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);(2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x值不构成区间);(3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立。

二项式定理

二项式定理

二项式定理二项式定理是高中数学中与排列组合、多项式的概念性质联系比较紧密的内容。

在高考中,二项式定理的命题主要以选择、填空题的形式考查二项展开式的项、系数及其相关问题。

因此,复时要正确理解二项式定理、二项展开式的概念和性质,牢牢掌握二项展开式的通项公式是解答有关问题的关键。

同时,注意把握二项式与定积分及其它知识的联系。

其中,非标准二项式定理求解特殊项的问题是难点问题。

二项式定理的公式为(a+b)^n=C(n,0)*a^n+C(n,1)*a^(n-1)*b+。

+C(n,k)*a^(n-k)*b^k+。

+C(n,n)*b^n,其中n∈N*。

展开式的第k+1项为C(n,k)*a^(n-k)*b^k。

在求二项展开式的特定项问题时,实质上是考查通项T(k+1)=C(n,k)*b的特点。

一般需要建立方程求k,再将k的值代回通项求解。

注意k的取值范围为k=0,1,2,…,n。

特定项的系数问题及相关参数值的求解等都可依据上述方法求解。

二项式系数是二项展开式中各项的系数,记为C(n,k)。

项的系数是该项中非字母因数部分,包括符号等。

二项式系数具有对称性,在二项展开式中与首末两端等距离的两个二项式系数相等,即C(n,k)=C(n,n-k)。

二项式系数的增减性与最大值是:当k(n+1)/2时,二项式系数逐渐减小。

当n是偶数时,中间一项的二项式系数最大;当n是奇数时,中间两项的二项式系数最大。

各二项式系数的和等于2,即C(n,0)+C(n,1)+…+C(n,n)=2.奇数项的二项式系数之和等于偶数项的二项式系数之和,即C(n,0)+C(n,2)+…=C(n,1)+C(n,3)+…=2^(n-1)。

在高考中,常涉及多项式和二项式问题,主要考查学生的化简能力。

常见的命题角度有:(1)几个多项式和的展开式中的特定项(系数)问题;(2)几个多项式积的展开式中的特定项(系数)问题;(3)三项展开式中的特定项(系数)问题。

赋值法是一种重要的方法,适用于恒等式,用于求形如(ax+b)、(ax+bx+c)(a,b∈R)的式子展开式的各项系数之和。

二项式定理高中

二项式定理高中

二项式定理高中
二项式定理是高中数学中的一个重要概念,它是代数学中的一个基本公式,也是组合数学中的一个重要定理。

该定理表明,对于任意实数a和b以及正整数n,有如下公式:
(a+b)^n = C(n,0)*a^n + C(n,1)*a^(n-1)*b + C(n,2)*a^(n-2)*b^2 + ... + C(n,n-1)*a*b^(n-1) + C(n,n)*b^n
其中,C(n,k)表示从n个元素中选取k个元素的组合数,也就是n个元素中取k个元素的方案数,其计算公式为:
C(n,k) = n! / (k!*(n-k)!)
二项式定理的应用非常广泛,它可以用于求解各种代数式的展开式,也可以用于计算组合问题中的方案数。

在高中数学中,二项式定理通常是在数学归纳法的证明中使用,也是学习排列组合的基础。

需要注意的是,二项式定理只适用于整数幂,对于非整数幂的情况,需要使用泰勒公式进行展开。

此外,在计算组合数时,需要注意排列和组合的区别,以及重复元素的情况。

总之,二项式定理是高中数学中的一个重要概念,它不仅具有理论意义,还有广泛的应用价值。

在学习过程中,需要认真理解其定义和应用方法,掌握相关的计算技巧,才能更好地应用于实际问题中。

高中数学必背公式大全

高中数学必背公式大全

高中数学必背公式大全一、代数部分。

1. 二项式定理。

(a+b)ⁿ = Cⁿ₀aⁿb⁰ + Cⁿ₁aⁿ⁻¹b¹ + ... + Cⁿᵢaⁿ⁻ⁱbⁱ + ... + Cⁿₙa⁰bⁿ。

2. 一元二次方程求根公式。

ax²+bx+c=0的解为x= (-b±√(b²-4ac))/2a。

3. 等差数列通项公式。

an = a₁ + (n-1)d。

4. 等比数列通项公式。

an = a₁ q^(n-1)。

5. 两点间距离公式。

两点A(x₁, y₁)和B(x₂, y₂)间的距离为√((x₂-x₁)² + (y₂-y₁)²)。

6. 直线斜率公式。

直线y=kx+b的斜率为k。

7. 二次函数顶点坐标。

二次函数y=ax²+bx+c的顶点坐标为(-b/2a, c-b²/4a)。

二、几何部分。

1. 直角三角形勾股定理。

a² + b² = c²。

2. 直角三角形中正弦、余弦、正切公式。

sinA = a/c, cosA = b/c, tanA = a/b。

3. 三角形面积公式。

三角形面积S=√(p(p-a)(p-b)(p-c)),其中p为半周长。

4. 圆周长和面积公式。

圆周长C=2πr, 圆面积S=πr²。

5. 正多边形内角和公式。

正n边形内角和为(n-2) 180°。

6. 圆锥、圆柱、球体积公式。

圆锥体积V=1/3πr²h, 圆柱体积V=πr²h, 球体积V=4/3πr³。

三、概率与统计部分。

1. 随机事件概率公式。

P(A) = n(A)/n(S)。

2. 期望公式。

E(X) = x₁p₁ + x₂p₂ + ... + xᵢpᵢ。

3. 正态分布概率公式。

P(a < X < b) = ∫(a, b) 1/√(2πσ²) e^(-(x-μ)²/2σ²) dx。

二项式定理知识点

二项式定理知识点

二项式定理知识点二项式定理是高中数学中重要的基础概念之一,通常在代数学中广泛应用。

它的形式是 (a + b)^n,其中 a 和 b 是任意实数,n 是一个非负整数。

在这篇文章中,我将介绍二项式定理的基本概念、应用和一些有趣的性质。

首先,让我们来回顾一下二项式定理的基本表达式:(a + b)^n。

这个表达式展开后,会产生一系列项,每一项都可以表示为 a 和 b 的不同指数的乘积。

例如,当 n = 2 时,(a + b)^2 展开为 a^2 + 2ab + b^2。

当 n = 3 时,(a + b)^3 展开为 a^3 + 3a^2b + 3ab^2 + b^3,以此类推。

二项式定理的一个重要应用是计算组合数。

在组合数学中,把 n 个不同元素分成k(0 ≤ k ≤ n)个不同组合,可以用 C(n, k) 表示。

根据二项式定理,可以知道:C(n, 0) = 1C(n, 1) = nC(n, 2) = n(n-1)/2C(n, 3) = n(n-1)(n-2)/6...C(n, n-1) = nC(n, n) = 1通过二项式定理,我们可以推导出组合数的计算公式,从而在概率论、统计学和离散数学中进行各种计算和推理。

除了计算组合数,二项式定理还可以用于证明其他数学中的定理。

例如,它可以用于证明数学归纳法的原理。

当 n = k+1 时,我们可以利用二项式定理展开 (a + b)^(k+1),得到:(a + b)^(k+1) = (a + b) * (a + b)^k将 (a + b)^k 展开为 a^k + C(k, 1)a^(k-1)b + C(k, 2)a^(k-2)b^2 + ... +C(k, k-2)ab^(k-2) + C(k, k-1)ab^(k-1) + b^k。

然后将每一项与 (a + b) 相乘,我们可以得到:(a + b)^(k+1) = a^(k+1) + C(k, 1)a^kb + C(k, 2)a^(k-1)b^2 + ... + C(k,k-2)a^2b^(k-2) + C(k, k-1)ab^(k-1) + b^(k+1)。

高中数学解题技巧之二项式定理求解

高中数学解题技巧之二项式定理求解

高中数学解题技巧之二项式定理求解在高中数学中,二项式定理是一个非常重要的概念。

它是关于多项式展开的一个定理,可以用来求解各种数学问题。

本文将重点介绍二项式定理的求解方法,并通过具体的例子来说明其应用。

二项式定理的表述如下:$$(a+b)^n = C_n^0 a^n b^0 + C_n^1 a^{n-1} b^1 + C_n^2 a^{n-2} b^2 + \dots +C_n^n a^0 b^n$$其中,$C_n^k$表示从n个元素中选取k个元素的组合数,也称为二项系数。

首先,我们来看一个简单的例子。

假设我们要求解$(x+2)^3$的展开式。

根据二项式定理,展开式为:$$(x+2)^3 = C_3^0 x^3 2^0 + C_3^1 x^2 2^1 + C_3^2 x^1 2^2 + C_3^3 x^0 2^3$$化简后得到:$$(x+2)^3 = x^3 + 3x^2 2 + 3x 4 + 8$$通过二项式定理,我们可以快速求解出展开式的每一项。

接下来,我们来看一个稍微复杂一些的例子。

假设我们要求解$(a+b)^4$的展开式。

根据二项式定理,展开式为:$$(a+b)^4 = C_4^0 a^4 b^0 + C_4^1 a^3 b^1 + C_4^2 a^2 b^2 + C_4^3 a^1 b^3 + C_4^4 a^0 b^4$$化简后得到:$$(a+b)^4 = a^4 + 4a^3 b + 6a^2 b^2 + 4ab^3 + b^4$$通过这个例子,我们可以看到展开式的每一项都是由$a$和$b$的幂次组成的,其中$a$的幂次从$n$开始递减,$b$的幂次从0开始递增。

而系数则由二项系数决定。

除了求解展开式,二项式定理还可以用来求解组合数。

例如,我们要求解$C_5^2$,即从5个元素中选取2个元素的组合数。

根据二项式定理的定义,我们可以得到:$$C_5^2 = \frac{5!}{2!(5-2)!} = \frac{5 \times 4}{2 \times 1} = 10$$通过二项式定理,我们可以快速计算出组合数。

高考数学一轮复习---二项式定理知识点与题型复习

高考数学一轮复习---二项式定理知识点与题型复习

二项式定理知识点与题型复习一、基础知识1.二项式定理(1)二项式定理:(a+b)n=C0n a n+C1n a n-1b+…+C k n a n-k b k+…+C n n b n(n∈N*)(2)通项公式:T k+1=C k n a n-k b k,它表示第k+1项;(3)二项式系数:二项展开式中各项的系数为C0n,C1n,…,C n n.2.二项式系数的性质注:(1)项数为n+1.(2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为n.(3)字母a按降幂排列,从第一项开始,次数由n逐项减1直到零;字母b按升幂排列,从第一项起,次数由零逐项增1直到n.二项式系数与项的系数的区别二项式系数是指C0n,C1n,…,C n n,它只与各项的项数有关,而与a,b的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a,b的值有关.如(a+bx)n的二项展开式中,第k+1项的二项式系数是C k n,而该项的系数是C k n a n-k b k.当然,在某些二项展开式中,各项的系数与二项式系数是相等的.二、考点解析考点一二项展开式中特定项或系数问题考法(一)求解形如(a+b)n(n∈N*)的展开式中与特定项相关的量例1、(1)522⎪⎭⎫⎝⎛+xx的展开式中x4的系数为()A.10B.20C.40D.80(2)若(2x-a)5的二项展开式中x3的系数为720,则a=________.(3)已知5⎪⎭⎫⎝⎛+xax的展开式中x5的系数为A,x2的系数为B,若A+B=11,则a=________.[解题技法]求形如(a+b)n(n∈N*)的展开式中与特定项相关的量(常数项、参数值、特定项等)的步骤第一步,利用二项式定理写出二项展开式的通项公式T r+1=C r n a n-r b r,常把字母和系数分离开来(注意符号不要出错);第二步,根据题目中的相关条件(如常数项要求指数为零,有理项要求指数为整数)先列出相应方程(组)或不等式(组),解出r;第三步,把r代入通项公式中,即可求出T r+1,有时还需要先求n,再求r,才能求出T r+1或者其他量.考法(二)求解形如(a+b)m(c+d)n(m,n∈N*)的展开式中与特定项相关的量例2、(1)(1-x)6(1+x)4的展开式中x的系数是()A.-4B.-3C.3D.4(2)已知(x-1)(ax+1)6的展开式中含x2项的系数为0,则正实数a=________.[解题技法]求形如(a+b)m(c+d)n(m,n∈N*)的展开式中与特定项相关的量的步骤第一步,根据二项式定理把(a+b)m与(c+d)n分别展开,并写出其通项公式;第二步,根据特定项的次数,分析特定项可由(a+b)m与(c+d)n的展开式中的哪些项相乘得到;第三步,把相乘后的项合并即可得到所求特定项或相关量.考法(三)求形如(a+b+c)n(n∈N*)的展开式中与特定项相关的量例3、(1)(x2+x+y)5的展开式中x5y2的系数为()A.10B.20C.30D.60(2)将344⎪⎭⎫⎝⎛-+xx展开后,常数项是________.[解题技法]求形如(a+b+c)n(n∈N*)的展开式中与特定项相关的量的步骤第一步,把三项的和a+b+c看成是(a+b)与c两项的和;第二步,根据二项式定理写出[(a +b )+c ]n 的展开式的通项;第三步,对特定项的次数进行分析,弄清特定项是由(a +b )n -r 的展开式中的哪些项和c r 相乘得到的; 第四步,把相乘后的项合并即可得到所求特定项或相关量. 跟踪训练1.在(1-x 3)(2+x )6的展开式中,x 5的系数是________.(用数字作答)3.5212⎪⎭⎫⎝⎛++x x (x >0)的展开式中的常数项为________.考点二 二项式系数的性质及各项系数和[典例精析](1)若531⎪⎪⎭⎫ ⎝⎛+x x 的展开式中各项系数之和大于8,但小于32,则展开式中系数最大的项是( ) A.63x B.4x C.4x 6x D.4x或4x 6x(2)若nx x ⎪⎭⎫ ⎝⎛-12的展开式中含x 的项为第6项,设(1-3x )n =a 0+a 1x +a 2x 2+…+a n x n ,则a 1+a 2+…+a n的值为________.(3)若(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________.[解题技法] 1.赋值法的应用二项式定理给出的是一个恒等式,对于x ,y 的一切值都成立.因此,可将x ,y 设定为一些特殊的值.在使用赋值法时,令x ,y 等于多少,应视具体情况而定,一般取“1,-1或0”,有时也取其他值.如: (1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子,求其展开式的各项系数之和,只需令x =1即可. (2)形如(ax +by )n (a ,b ∈R )的式子,求其展开式各项系数之和,只需令x =y =1即可. 2.二项展开式各项系数和、奇数项系数和与偶数项系数和的求法 若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )的展开式中 (1)各项系数之和为f (1).(2)奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2.(3)偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.跟踪训练1.已知(2x-1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则|a0|+|a1|+…+|a5|=()A.1B.243C.121D.1222.若(x+2+m)9=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9,且(a0+a2+…+a8)2-(a1+a3+…+a9)2=39,则实数m的值为________.3.已知(1+3x)n的展开式中,后三项的二项式系数的和等于121,则展开式中二项式系数最大的项为____.考点三二项展开式的应用例、设a∈Z,且0≤a<13,若512 018+a能被13整除,则a=()A.0B.1C.11D.12[解题技法]利用二项式定理解决整除问题的思路(1)要证明一个式子能被另一个式子整除,只要证明这个式子按二项式定理展开后的各项均能被另一个式子整除即可.因此,一般要将被除式化为含相关除式的二项式,然后再展开.(2)用二项式定理处理整除问题,通常把底数写成除数(或与除数密切关联的数)与某数的和或差的形式,再用二项式定理展开.但要注意两点:①余数的范围,a=cr+b,其中余数b∈[0,r),r是除数,若利用二项式定理展开变形后,切记余数不能为负;②二项式定理的逆用.跟踪训练]1.使得多项式81x4+108x3+54x2+12x+1能被5整除的最小自然数x为()A.1B.2C.3D.4课后作业1.3422⎪⎪⎭⎫ ⎝⎛+x x 的展开式中的常数项为( ) A.-32 B.32 C.6 D.-6 2.设(2-x )5=a 0+a 1x +a 2x 2+…+a 5x 5,则a 2+a 4a 1+a 3的值为( )A.-6160B.-122121C.-34D.-901213.若二项式72⎪⎭⎫ ⎝⎛+x a x 的展开式的各项系数之和为-1,则含x 2项的系数为( )A.560B.-560C.280D.-2804.已知(1+x )n 的展开式中第5项与第7项的二项式系数相等,则奇数项的二项式系数和为( ) A.29 B.210 C.211 D.2125.二项式9221⎪⎭⎫⎝⎛-x x 的展开式中,除常数项外,各项系数的和为( )A.-671B.671C.672D.673 6.在(1-x )5(2x +1)的展开式中,含x 4项的系数为( )A.-5B.-15C.-25D.257.若(x 2-a )101⎪⎭⎫ ⎝⎛+x x 的展开式中x 6的系数为30,则a 等于( )A.13B.12C.1D.2 8.若(1+mx )6=a 0+a 1x +a 2x 2+…+a 6x 6,且a 1+a 2+…+a 6=63,则实数m 的值为( ) A.1或3 B.-3 C.1 D.1或-3 9.(2x -1)6的展开式中,二项式系数最大的项的系数是________.(用数字作答)10.9⎪⎭⎫ ⎝⎛+x a x 的展开式中x 3的系数为-84,则展开式的各项系数之和为________.11.511⎪⎭⎫ ⎝⎛++x x 展开式中的常数项为________.12.已知nx x ⎪⎪⎭⎫ ⎝⎛+41的展开式中,前三项的系数成等差数列. (1)求n ;(2)求展开式中的有理项;(3)求展开式中系数最大的项.。

【高中数学】秒杀秘诀MS06二项式定理1

【高中数学】秒杀秘诀MS06二项式定理1

二项式定理(一)1.二项式定理:011()()n n n r n r r n nn n n n a b C a C a b C a b C b n N --*+=+++++∈ ,2.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。

②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =⋅⋅⋅.③项数:共(1)r +项,是关于a 与b 的齐次多项式④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。

用1r n rr r n T C ab -+=表示。

3.注意关键点:①项数:展开式中总共有(1)n +项。

②顺序:注意正确选择a ,b ,其顺序不能更改。

()na b +与()nb a +是不同的。

③指数:a 的指数从n 逐项减到0,是降幂排列。

b 的指数从0逐项增到n ,是升幂排列。

各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r nn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。

题型一:利用通项公式求n例1:在二项式3241()n x x+的展开式中倒数第3项的系数为45,求含有3x 的项的系数?解:由条件知245n n C -=,即245n C =,2900n n ∴--=,解得9()10n n =-=舍去或,由2102110343411010()()r r r rrr r T C x x C x--+--+==,由题意1023,643r r r --+==解得,则含有3x 的项是第7项6336110210T C x x +==,系数为210。

例2:求291(2x x-展开式中9x 的系数?解:291821831999111()()()()222rr r r r r r r r r r T C x C x x C x x ----+=-=-=-,令1839r -=,则3r =故9x 的系数为339121()22C -=-。

二项式定理与组合数学

二项式定理与组合数学

二项式定理与组合数学在高中数学中,我们学习了很多数学定理和概念,其中二项式定理和组合数学是我们经常接触到的两个重要知识点。

本文将详细介绍二项式定理和组合数学,并探讨它们在数学领域中的应用。

一、二项式定理的表述二项式定理是一种展开表示二项式幂的公式,它通常用于展开(x + y)^n的形式。

根据二项式定理,我们可以得出以下等式:(x + y)^n = C(n,0) * x^n * y^0 + C(n,1) * x^(n-1) * y^1 + C(n,2) * x^(n-2) * y^2 + ... + C(n,n) * x^0 * y^n其中C(n,k)表示选择k个元素的组合数。

组合数的计算方法可以通过下面的公式得出:C(n,k) = n! / (k! * (n-k)!)二、组合数学的概念组合数学是一门研究选择、排列和组合的数学学科。

在组合数学中,我们关注的是从给定集合中选择或排列对象的方式和数量。

组合数学中的基本概念包括排列、组合和二项式系数等。

排列指的是从给定的n个元素中选择k个元素,并按照一定的顺序进行排列的方式。

排列数可以通过下面的公式进行计算:P(n,k) = n! / (n-k)!组合指的是从给定的n个元素中选择k个元素,但不考虑元素的顺序。

组合数可以通过下面的公式进行计算:C(n,k) = n! / (k! * (n-k)!)二项式系数即为二项式定理中的C(n,k),它表示选择k个元素的组合数。

三、二项式定理与组合数学的应用1. 组合数学在概率论中的应用概率论是研究随机事件发生的可能性的一门学科,而组合数学在计算概率时发挥着重要作用。

例如,在排列组合中,我们可以用组合数计算从一副扑克牌中抽取一手牌的可能性。

2. 二项式定理在代数中的应用二项式定理在代数中常用于展开多项式,研究多项式的性质。

通过二项式定理,我们可以快速计算(x + y)^n的展开式。

这在代数运算中非常有用,特别是在多项式乘法、多项式函数的求导和积分等操作中。

高三数学教案《二项式定理》四篇

高三数学教案《二项式定理》四篇

高三数学教案《二项式定理》四篇教学过程篇一1.情景设置问题1:若今天是星期二,再过30天后的那一天是星期几?怎么算?预期回答:星期四,将问题转化为求“30被7除后算余数”是多少?问题2:若今天是星期二,再过810天后的那一天是星期几?问题3:若今天是星期二,再过天后是星期几?怎么算?预期回答:将问题转化为求“被7除后算余数”是多少?在初中,我们已经学过了(a+b)2=a2+2ab+b2(a+b)3=(a+b)2(a+b)=a3+3a2b+3ab2+b3(提问):对于(a+b)4,(a+b)5如何展开?(利用多项式乘法)(再提问):(a+b)100又怎么办?(a+b)n(n?N+)呢?我们知道,事物之间或多或少存在着规律。

也就是研究(a+b)n(n?N+)的展开式是什么?这就是本节课要学的内容。

这节课,我们就来研究(a+b)n的二项展开式的规律性。

学完本课后,此题就不难求解了。

(设计意图:使学生明确学习目的,用悬念来激发他们的学习动机。

奥苏贝尔认为动机是学习的先决条件,而认知驱力,即学生渴望认知、理解和掌握知识,并能正确陈述问题、顺利解决问题的倾向是学生学习的重要动力。

)2.新授第一步:让学生展开;问题1:以的展开式为例,说出各项字母排列的规律;项数与乘方指数的关系;展开式第二项的系数与乘方指数的关系。

预期回答:①展开式每一项的次数按某一字母降幂、另一字母升幂排列,且两个字母幂指数的和等于乘方指数;②展开式的项数比乘方指数多1;③展开式中第二项的系数等于乘方指数。

第二步:继续设疑如何展开以及呢?(设计意图:让学生感到仅掌握杨辉三角形是不够的,激发学生继续学习新的更简捷的方法的欲望。

)继续新授师:为了寻找规律,我们以中为例问题1:以项为例,有几种情况相乘均可得到项?这里的字母各来自哪个括号?问题2:既然以上的字母分别来自4个不同的括号,项的系数你能用组合数来表示吗?问题3:你能将问题2所述的意思改编成一个排列组合的命题吗?(预期答案:有4个括号,每个括号中有两个字母,一个是、一个是。

二项式定理

二项式定理

二项式定理二项式定理是高中数学中的重要内容。

它表示了一个二元多项式的n次幂的展开式。

其中,二项式系数是展开式中每一项的系数,可以用组合数来表示。

具体来说,二项式定理可以表示为:$(a+b)^n=\sum_{k=0}^n \binom{n}{k} a^{n-k}b^k$。

其中,$\binom{n}{k}$表示从n个元素中选取k个元素的组合数。

二项式定理有很多应用,例如近似计算和估计,证明不等式等。

在使用二项式定理时,我们可以利用它的性质来简化计算。

其中,二项式系数具有对称性、增减性和最大值等性质。

此外,所有二项式系数的和等于$2^n$,奇数项的二项式系数和与偶数项的二项式系数和相等。

需要注意的是,展开式共有n+1项,而二项式系数$\binom{n}{r}$是展开式中第r+1项的系数。

此外,展开式中的通项$T_{r+1}=\binom{n}{r}a^{n-r}b^r$。

在使用二项式定理时,我们可以将一般情况转化为特殊情况,或者使用赋值法等思维方式来简化计算。

1.问题讨论1.1 例1求解C(n)等于(1/n) * [C(n,1) + 3*C(n,2) + 9*C(n,3) +。

+ 3^(n-1)*C(n,n)],以及当n为奇数时,7+C(n,7)+C(n,14)+。

+C(n,7+(n-1)/2)的余数。

解。

1.1.1 求解C(n)设S(n) = C(n)。

则有:S(n) + 3S(n) = 3*C(n,1) + 3*C(n,2) +。

+ 3^n-1*C(n,n)将上式两边相减,得:S(n) = (1/4) * [C(n,1) + 3*C(n,2) + 9*C(n,3) +。

+ 3^(n-1)*C(n,n)]所以,C(n)等于(1/n) * [C(n,1) + 3*C(n,2) + 9*C(n,3) +。

+ 3^(n-1)*C(n,n)]。

1.1.2 求解余数XXX(n,7)+C(n,14)+。

+C(n,7+(n-1)/2)的余数等于8^(n-1)的余数,因为:XXX(n,7)+C(n,14)+。

二项式定理知识点

二项式定理知识点

二项式定理知识点二项式定理是高中数学中的重要知识点,也是进一步学习数学分析、概率论和数学推理的基础。

它是关于多项式的一个重要的数学定理,通过二项式定理,我们可以用简洁的方式表示多项式展开的结果。

在本文中,我们将深入探讨二项式定理的概念、性质以及应用。

首先,让我们来了解什么是二项式。

二项式是指两个单项式之和的代数式,其中包含两个不同的变量,每个变量的指数均为非负整数。

例如,(a + b)就是一个二项式,其中a和b为变量,且指数分别为1和0。

根据二项式定理,我们可以将二项式展开为多项式。

二项式定理的表述如下:对于任意非负整数n和实数a、b,有(a + b)^n = C(n, 0)a^n b^0 + C(n, 1)a^(n-1) b^1 + C(n, 2)a^(n-2) b^2 + ... + C(n, n)a^0 b^n,其中C(n, k)表示组合数,计算公式为C(n, k) = n!/(k!(n-k)!)。

这个定理告诉我们,二项式(a + b)的展开式中的每一项都可以通过组合数进行系数的计算。

二项式定理的证明可以通过数学归纳法进行,但为了保持本文的简洁性,我将不涉及具体的证明过程。

而是着重介绍一些二项式定理的性质以及它的一些重要应用。

首先,二项式定理的性质之一是二项式展开式的系数的和等于2的n次方。

也就是说,展开式中每一项的系数相加,结果等于2的n次方。

这个性质可以通过将展开式中的每一项进行二项式系数的求和来证明。

二项式定理还可以用于计算多项式的平方、立方等高次幂。

通过使用二项式定理展开多项式的高次幂,我们可以更简洁地计算出结果。

另一个重要的应用是二项式定理在概率论中的应用。

在概率论中,我们经常需要计算一些事件的概率,而这些概率通常涉及到组合数的计算。

二项式定理为我们提供了一个快速计算组合数的方法,从而简化了概率计算的过程。

除此之外,二项式定理还在数学推理和数学分析中有重要的应用。

在数学推理中,我们经常需要进行代数式的变形和化简,而二项式定理可以帮助我们将复杂的代数式转化为更简单的形式。

二项式定理知识点总结

二项式定理知识点总结

二项式定理知识点总结一、概念:(a+b)^n=C(n,0)a^nb^0+C(n,1)a^(n-1)b^1+C(n,2)a^(n-2)b^2+...+C(n,n-1)a^1b^(n-1)+C(n,n)a^0b^n其中,C(n,k)表示组合数,即从n个元素中取出k个元素的组合方式数。

二、证明:可以用排列组合的方法证明二项式定理。

考虑对(a+b)^n展开式中每一项的系数,将(a+b)^n表示为n个相加的项,每一项由a和b组成。

可以把这n个项分成若干组,每组的项数k从0到n,且对于固定的k有k个a和n-k个b。

根据组合数的定义,对于每组项数k,其系数为C(n,k),因此可以得到二项式定理。

三、应用:1.计算组合数:二项式定理可以用来计算组合数。

当a=b=1时,二项式展开后的每一项系数即为对应的组合数。

例如,(1+1)^n=2^n,系数为1,n,n(n-1)/2,n(n-1)(n-2)/6,...,依次为组合数C(n,0),C(n,1),C(n,2),...2. 多项式展开:利用二项式定理,可以方便地展开多项式。

例如,(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^33.计算幂数:二项式定理可以用于计算幂,即对于任意整数m,可以使用二项式定理计算(a+b)^m的展开式,将其中的每一项进行计算,得到每一项的幂数。

4.计算二项式系数:二项式定理可以用来计算二项式系数,即对于给定的a,b和n,可以通过二项式定理展开式中的各项系数得到相应的二项式系数。

五、推广:1.负指数:二项式定理不仅适用于非负整数n,也适用于负指数n,即(a+b)^n=C(n,0)a^nb^0+C(n,1)a^(n-1)b^1+C(n,2)a^(n-2)b^2+...+C(n,n-1)a^1b^(n-1)+C(n,n)a^0b^n。

这样可以扩展二项式定理的应用范围。

2. 多变量二项式定理:二项式定理不仅限于两个变量a和b,可以推广到多变量的情况。

高中数学知识点总结---二项式定理5篇

高中数学知识点总结---二项式定理5篇

高中数学知识点总结---二项式定理5篇第一篇:高中数学知识点总结---二项式定理高中数学知识点总结---二项式定理0n01n-1rn-rrn0n1.⑴二项式定理:(a+b)n=Cnab+Cnab+Λ+Cnab+Λ+Cnab.展开式具有以下特点:① 项数:共有n+1项;012rn② 系数:依次为组合数Cn,Cn,Cn,Λ,Cn,Λ,Cn;③ 每一项的次数是一样的,即为n次,展开式依a的降幕排列,b的升幕排列展开.⑵二项展开式的通项.(a+b)n展开式中的第r+1项为:Trn-rrbr+1=Cna(0≤r≤n,r∈Z).⑶二项式系数的性质.①在二项展开式中与首未两项“等距离”的两项的二项式系数相等;②二项展开式的中间项二项式系数最大......I.当n是偶数时,中间项是第n2n+1项,它的二项式系数C2n最大;II.当n是奇数时,中间项为两项,即第最大.③系数和:Cn+Cn+Λ+Cn=2C024n+Cn+Cn+01nn13n+Cn+n+12项和第n+12n-1n+12n+1项,它们的二项式系数C2n=CΛ=CΛ=2n-1 附:一般来说(ax+by)n(a,b为常数)在求系数最大的项或最小的项时均可直接根据性质二求...........⎧Ak≥Ak+1,⎩Ak≥Ak-1⎧Ak≤Ak+1或⎨(Ak为TA≤Ak-1⎩k解.当a≠1或b≠1时,一般采用解不等式组⎨的绝对值)的办法来求解.k+1的系数或系数⑷如何来求(a+b+c)n展开式中含apbqcr的系数呢?其中(a+b+c)=[(a+b)+c]n-rnnp,q,r∈N,且p+q+r=n把rn-rr(a+b)C,另一方面在视为二项式,先找出含有Cr的项Cn(a+b)中含有bq的项为pqrCn-raqn-r-qb=Cn-rabqqpq,故在(a+b+c)n中含apbqcr的项为(n-r)!n!r!q!p!pqrn-pCrCnCn-rabc.其系数为CnCn-r=rqrqn!r!(n-r)!q!(n-r-q)!⋅==CnC.2.近似计算的处理方法.当a 的绝对值与1相比很小且n不大时,常用近似公式(1+a)n≈1+na,因为这时展开式的后面部分Cn2a2+Cn3a3+Λ+Cnnan很小,可以忽略不计。

高三数学二项式定理(知识点和例题)

高三数学二项式定理(知识点和例题)

二项式定理1. 知识精讲:(1)二项式定理:()nn n r r n r n n n n n nb C b a C b a C a C b a +++++=+-- 110(*∈N n )其通项是=+1r T r r n r n b a C - (r=0,1,2,……,n ),知4求1,如:555156b a C T T n n -+== 亦可写成:=+1r T rnr n aba C )(()()()n n n n r r n r n r n n n n n b C b a C b a C a C b a 11110-++-++-=--- (*∈N n ) 特别地:()n n n r n r n n n n nx C x C x C x C x +++++=+- 101(*∈N n )其中,rn C ——二项式系数。

而系数是字母前的常数。

例1.n nn n n n C C C C 1321393-++++ 等于 ( ) A .n4 B 。

n43⋅ C 。

134-n D.314-n 解:设nnn n n n n C C C C S 1321393-++++= ,于是: n n n n n n n C C C C S 3333333221++++= =13333332210-+++++nn n n n n n C C C C C故选D例2.(1)求7(12)x +的展开式的第四项的系数;(2)求91()x x-的展开式中3x 的系数及二项式系数解:(1)7(12)x +的展开式的第四项是333317(2)280T C x x +==,∴7(12)x +的展开式的第四项的系数是280. (2)∵91()x x-的展开式的通项是9921991()(1)r rr r r r r T C xC x x--+=-=-, ∴923r -=,3r =,∴3x 的系数339(1)84C -=-,3x 的二项式系数3984C =.(2)二项展开式系数的性质:①对称性,在二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即 ,,,,2211kn nkn n n n n n n nn n C C C C C C C C ---====②增减性与最大值:在二项式展开式中,二项式系数先增后减,且在中间取得最大值。

二项式定理知识点归纳总结

二项式定理知识点归纳总结

二项式定理知识点归纳总结一、二项式定理公式。

1. 二项式定理。

- 对于(a + b)^n=∑_k = 0^nC_n^ka^n - kb^k,其中n∈ N^*。

- 这里C_n^k=(n!)/(k!(n - k)!),叫做二项式系数。

例如(a + b)^2=a^2 +2ab+b^2,这里n = 2,当k = 0时,C_2^0a^2-0b^0=a^2;当k = 1时,C_2^1a^2 -1b^1=2ab;当k = 2时,C_2^2a^2-2b^2=b^2。

2. 二项展开式的通项公式。

- 二项式(a + b)^n展开式的第k + 1项T_k+1=C_n^ka^n - kb^k(k = 0,1,·s,n)。

例如在(x+2)^5中,其通项公式为T_k + 1=C_5^kx^5 - k2^k。

当k = 2时,T_3=C_5^2x^5-22^2=10× x^3×4 = 40x^3。

二、二项式系数的性质。

1. 对称性。

- 与首末两端“等距离”的两个二项式系数相等,即C_n^k=C_n^n - k。

例如在(a + b)^6中,C_6^2=(6!)/(2!(6 - 2)!)=(6×5)/(2×1)=15,C_6^4=(6!)/(4!(6 -4)!)=(6×5)/(2×1)=15,所以C_6^2 = C_6^4。

2. 增减性与最大值。

- 当n是偶数时,中间一项(第(n)/(2)+1项)的二项式系数C_n^(n)/(2)取得最大值;当n是奇数时,中间两项(第(n + 1)/(2)项和第(n+3)/(2)项)的二项式系数C_n^(n - 1)/(2)=C_n^(n+1)/(2)相等且取得最大值。

- 二项式系数先增大后减小,其增减性由frac{C_n^k}{C_n^k - 1}=(n - k+1)/(k)来判断。

当(n - k + 1)/(k)>1,即k<(n + 1)/(2)时,二项式系数逐渐增大;当(n -k+1)/(k)<1,即k>(n + 1)/(2)时,二项式系数逐渐减小。

高中数学完整讲义——二项式定理1.二项展开式1求展开式中的指定项

高中数学完整讲义——二项式定理1.二项展开式1求展开式中的指定项

求睁开式中的指定项知识内容1.二项式定理⑴二项式定理an0 n 1 n 1 2 n 2 2n nN b C n a C n a b C n a b... C n b n这个公式表示的定理叫做二项式定理.⑵二项式系数、二项式的通项0 n1n 1 2 n 2 2n nrn C n r 0, 1, 2, ..., n叫做二C n a C n a b C n a b ...C n b 叫做 a b的二项睁开式,此中的系数项式系数,式中的C n r a n r b r叫做二项睁开式的通项,用T r 1表示,即通项为睁开式的第r 1 项:T r 1C n r a n r b r.⑶二项式睁开式的各项幂指数二项式 a b nn 1 项,各项的幂指数情况是的睁开式项数为①各项的次数都等于二项式的幂指数n .②字母 a 的按降幂摆列,从第一项开始,次数由n 逐项减 1 直到零,字母b按升幂摆列,从第一项起,次数由零逐项增 1 直到 n .⑷几点注意①通项 T rr n r r是 a bn1 项,这里 r0, 1, 2,..., n .1C n a b的睁开式的第 ran1项和nr a r是有区其他,应用二项式定理时,其②二项式b的 r b a 的睁开式的第r 1项 C n r b n中的 a 和b是不可以随意互换的.③注意二项式系数(C n r)与睁开式中对应项的系数不必定相等,二项式系数必定为正,而项的系数有时可为负.④通项公式是n这个标准形式下而言的,如 a bna b的二项睁开式的通项公式是r r n r rb 当作 b 代入二项式定理)这与T r 1r n r rT r 11C n a b (只须把C n a b 是不一样的,在这里对应项的C n r r二项式系数是相等的都是,但项的系数一个是 1 C n r,一个是 C n r,可看出,二项式系数与项的系思想的挖掘能力的飞腾1数是不一样的观点.⑤设 a 1, b x ,则得公式:n...C n r x r... x n.1 x1 C n1 x C n2 x2⑥通项是 T r 1C n r a n r b r r0, 1, 2, ..., n 中含有 T r 1, a , b , n , r 五个元素,只需知道此中四个即可求第五个元素.⑦当 n 不是很大, x 比较小时能够用睁开式的前几项求(1x)n的近似值.2.二项式系数的性质⑴杨辉三角形:关于 n 是较小的正整数时,能够直接写出各项系数而不去套用二项式定理,二项式系数也能够直接用杨辉三角计算.杨辉三角有以下规律:“左、右两边斜行各数都是 1.其他各数都等于它肩上两个数字的和.”⑵二项式系数的性质:an睁开式的二项式系数是:012n,从函数的角度看r能够当作是r 为自变量的函数b C n, C n , C n , ..., C n C nf r,其定义域是: 0, 1, 2,3, ...,n.当n6时, f r 的图象为下列图:这样我们利用“杨辉三角”和n 6 时f r的图象的直观来帮助我们研究二项式系数的性质.①对称性:与首末两头“等距离”的两个二项式系数相等.事实上,这一性质可直接由公式C n m C n n m获得.②增减性与最大值假如二项式的幂指数是偶数,中间一项的二项式系数最大;假如二项式的幂指数是奇数,中间两项的二项式系数相等而且最大.因为睁开式各项的二项式系数按序是C n01, C n1n, C n2n n 1,1 1 22思想的挖掘能力的飞腾C n3n n1n2,...,1 23C n k 1n n 12n2... n k 2 ,C n k n n 1 n 2 ... n k2n k 1,...,1 3 ....k112 3...k 1 kC n n 1 .此中,后一个二项式系数的分子是前一个二项式系数的分子乘以逐次减小 1 的数(如n, n1, n 2,... ),分母是乘以逐次增大的数(如1, 2, 3,).因为,一个自然数乘以一个大于 1 的数则变大,而乘以一个小于 1 的数则变小,进而当k 挨次取1,2,3,等值时,r的值转变为不递加而递减了.又因为C n与首末两头“等距离”的两项的式系数相等,因此二项式系数增大到某一项时就渐渐减小,且二项式系数最大的项必在中间.当 n 是偶数时,n1是奇数,睁开式共有 n 1 项,因此睁开式有中间一项,而且这一项的二项式系数n最大,最大为C n2.当 n 是奇数时,n 1 是偶数,睁开式共有n 1项,因此有中间两项.n 1n1这两项的二项式系数相等而且最大,最大为C n2C n2.③二项式系数的和为012r...n n.2n,即C n C n C n ...C n C n2④奇数项的二项式系数的和等于偶数项的二项式系数的和,即024135n1C n C n C n ...C n C n C n... 2.常有题型有:求睁开式的某些特定项、项数、系数,二项式定理的逆用,赋值用,简单的组合数式问题.典例剖析16【例1】 2的睁开式中的第四项是.x3x y 6【例 2】的睁开式中,x3的系数等于____.y x35【例 3】 1 2 x13 x 的睁开式中 x 的系数是A .4B .2C. 2 D .4思想的挖掘能力的飞腾3a 9【例 4】若 x的睁开式中 x3的系数是84 ,则a.xa 5【例 5】 x( x R ) 睁开式中 x3的系数为10,则实数 a 等于xA .1B .1C.1D. 2 2【例 6】若 (1 2 x)n a0a1 x a2 x2L a n x n,则 a2的值是()A.84B.84C.280D.280【例 7】862项的系数是()( x2 y) 的睁开式中x yA.56 B .56C.28D.28【例8】若5a4 x4a1x a0,则 a2的值为(3x 1a5 x5)A .270B. 270 x2C. 90D. 90 x2【例 9】(1x )6 (1x)4的睁开式中x 的系数是_______(用数字作答).【例 10】在 (x2 4 x 2)5的睁开式中,x 的系数为_______(用数字作答).4思想的挖掘能力的飞腾【例 11】在 ( x24x 2)5的睁开式中,x2的系数为 _______(用数字作答).【例 12】在 ( x24x 2)5的睁开式中,x3的系数为 _______(用数字作答).294睁开式中含 x2项系数.【例 13】求 ( x3x 1) (2 x1)【例 14】在 (1 x) (1 x)2L(1 x)6的睁开式中,x2项的系数是.(用数字作答)【例 15】 ( x 1) (x 1)2( x 1)3( x 1)4(x 1)5的睁开式中x2的系数等于 ________.(用数字作答)1 )9睁开式中x9的系数是_______(用数字作答).【例 16】 (x22x【例 17】在 ( x 1)(x 1)8的睁开式中x5的系数是()思想的挖掘能力的飞腾5A .-14B. 14C. -28 D . 28【例 18】在 (x1)(x2)( x 3)( x4)( x 5) 的睁开式中,含x4的项的系数是()A .15B.85C.120 D .274【例 19】在 (1 x)5(1 x) 6(1 x)7(1 x)8(1 x)9的睁开式中,含x3 项的系数是(用数字作答)【例 20】求 (1 x x2 ) 6睁开式中x5的系数.【例 21】 (1x )6 (1x)4的睁开式中x 的系数是_______(用数字作答).【例 22】在 (x2 4 x 2)5的睁开式中,x 的系数为_______(用数字作答).【例 23】在 (x2 4 x 2)5的睁开式中,x2的系数为 _______(用数字作答).6思想的挖掘能力的飞腾【例 24】在 ( x 24x 2)5的睁开式中,3的系数为 _______(用数字作答).x【例 25】求 ( x23x 1)9 (2 x 1)4睁开式中含x2项系数.【例 26】在 (1 x) (1 x)2L(1 x)6的睁开式中,x2项的系数是.(用数字作答)【例 27】 ( x 1) (x 1)2( x 1)3( x 1)4(x 1)5的睁开式中x2的系数等于 ________.(用数字作答)【例 28】 (x21)9睁开式中 x9的系数是 _______(用数字作答).2x思想的挖掘能力的飞腾7【例 29】在 (x 1)(x 1)8的睁开式中x5的系数是()A .-14B. 14C. -28 D . 28【例 30】在 (x1)(x2)( x 3)( x 4)( x5) 的睁开式中,含x4的项的系数是()( A )15(B) 85( C)120( D )274【例 31】在 (1 x)5(1 x)6(1 x)7(1 x)8(1 x)9 的睁开式中,含x3项的系数是(用数字作答)【例 32】求 (1 x x2 ) 6睁开式中x5的系数.15【例 33】在二项式 x2的睁开式中,含x4的项的系数是()xA. 10B. 10C. 5 D . 5【例 34】 (1 2 x)3 (1 x)4的睁开式中x 的系数是______,x2的系数为______.8思想的挖掘能力的飞腾【例 35】 11(1x)4的睁开中含 x2的项的系数为()xA .4B . 6C. 10D.1264【例 36】 1x 1x 的睁开式中x的系数是()A .4B . 3C. 3 D . 4【例 37】求 1 x 3 1x 10睁开式中 x5的系数;【例 38】在二项式 x215的睁开式中,含x4的项的系数是()xA. 10B. 10C. 5D. 5【例 39】 (x 2)6的睁开式中x3 的系数是()A. 20B. 40C. 80D. 160【例 40】在 (1x)4的睁开式中,x 的系数为(用数字作答)思想的挖掘能力的飞腾9【例 41】在 (1 x)3313_____ (用数字作答)1x3 x 的睁开式中,x的系数为9【例 42】 x1的二项睁开式中含x3的项的系数为()xA .36B.84C.36D.84【例 43】若 (x216的二项睁开式中3的系数为5.(用数字作答)ax)x, 则a2【例 44】设常数 a2143的系数为3,则 a =_____.0 , (axx)睁开式中 x2【例 45】已知 (1 kx2 )6( k 是正整数)的睁开式中,x8的系数小于120,则 k.10思想的挖掘能力的飞腾【例 46】已知 ( xcos1)5 的睁开式中 x 2 的系数与 ( x 5 )4 的睁开式中 x 3 的系数相等4cos.1 10【例 47】的二项睁开式的第 6 项的系数为()xxA . 210B . 252C . 210D . 252【例 48】若 ( x 21 )6 的二项睁开式中 x 3 的系数为 5 , 则 a __________.(用数字作答)ax2【例 49】 若 ( x 2n 1 与 (mx 2 n0) 的睁开式中含 xn的系数相等,则实数 m 的取值范围m)1) (n N * ,m是()A . 1,22 , C . (,0)D . (0, )(B . [1)2 331 6【例 50】已知 a0πsin x cos x dx ,则二项式 a x睁开式中含 x 2 项的系数是.x【例 51】在 ( ax7的睁开式中,x 3 的系数是 x 2 的系数与 x 4 的系数的等差中项,若实数a 1 ,那么1) a _______ .【例 52】已知 (1 kx2 )6( k 是正整数)的睁开式中,x8的系数小于 120 ,则 k ______.【例 53】 ( x y y x)4的睁开式中x3 y3的系数为.【例 54】若 (1 x)n的睁开式中,x3的系数是x的系数的 7 倍,求n;【例 55】 ( x y)10的睁开式中,x7 y3的系数与x3 y7的系数之和等于__________ .【例 56】已知a为实数, ( x a)10睁开式中 x7的系数是15 ,则a_______.121n【例 57】二项式的睁开式中第三项系数比第二项系数大44,求第4项的系数.x x4x19【例 58】求 x的二项睁开式中含x3的项的二项式系数与系数.x1n【例 59】若 x的睁开式中前三项的系数成等差数列,则睁开式中x4项的系数为 _______.2x【例 60】令 a n为 f n (x)(1 x)n 1的睁开式中含x n 1项的系数,则数列{1} 的前 2009 项和为______.a n【例 61】在 (ax 1)7 (a 1) 的睁开式中,x3的系数是 x2的系数与 x4的系数的等差中项,求 a 的值.【例 62】已知 1 ax 52L a5 x5,则 b.1 10 x bx【例 63】在 1 x n的系数分别为 a ,b ,假如a3 ,那么 b 的值为()睁开式中, x3与 x2bA.70B.60C.55D.40【例 64】若 (ax 1)5的睁开式中x3的系数是80 ,则实数a的值是_______.142143【例 65】设常数 a0 , ax睁开式中 x3 的系数为,则 a.x21n12项的系数与含14项的系数之比为【例 66】若 2x睁开式中含 5 ,则n等于()x x xA . 4B.6C.8D.10【例 67】设 a n为 f n (x) (1 x)n 1的睁开式中含n 1项的系数,则数列1x的前 n 项和为_____a n1n【例 68】已知 x睁开式的第二项与第三项的系数比是1: 2 ,则n ________.2x【例 69】在 (1 x2 ) 20的睁开式中,假如第4r 项和第 r 2 项的二项式系数相等,则第4r 项为 ______【例 70】若在二项式 ( x 1)10的睁开式中任取一项,则该项的系数为奇数的概率是_____ .【例 71】已知 (2 x lg x lg21)n睁开式中最后三项的系数的和是方程lg( y272 y 72) 0 的正数解,它的中间项是 1042lg2,求 x 的值.【例 72】设数列 { a n } 是等比数列,3m1,公比是14的睁开式的第二项.1C2m3 m2q( x2 )aΑ4x⑴用 n,x 表示通项a n与前n项和S n;⑵若 A C1 S C2S L C n S 用n ,x 表示 An n 1n 2n n n 16。

二项式定理的基本公式

二项式定理的基本公式

二项式定理的基本公式二项式定理是高中数学中的重要概念,它能够方便地计算任意两个数的幂次和。

二项式定理的基本公式如下:$$(a+b)^n = C_n^0a^n+b^0 + C_n^1a^{n-1}b^1 + C_n^2a^{n-2}b^2 + \ldots + C_n^ra^{n-r}b^r + \ldots + C_n^na^0b^n$$其中,$C_n^r$表示从$n$个元素中选取$r$个元素的组合数,也叫做二项式系数。

二项式定理可以通过数学归纳法来证明。

下面我们来详细解释一下二项式定理的应用和意义。

二项式定理可以用来展开任意整数次幂的二项式。

例如,如果我们要计算$(a+b)^3$的展开式,根据二项式定理,展开式为:$$(a+b)^3 = C_3^0a^3+b^0 + C_3^1a^2b^1 + C_3^2a^1b^2 + C_3^3a^0b^3$$化简后得到:$$(a+b)^3 = a^3+3a^2b+3ab^2+b^3$$这就是$(a+b)^3$的展开式。

二项式定理可以用来快速计算幂次较大的数。

例如,如果我们要计算$(2+3)^5$,根据二项式定理,展开式为:$$(2+3)^5 = C_5^02^5+3^0 + C_5^12^4\cdot3^1 + C_5^22^3\cdot3^2 + C_5^32^2\cdot3^3 + C_5^42^1\cdot3^4 + C_5^52^0\cdot3^5$$化简后得到:$$(2+3)^5 = 2^5+5\cdot2^4\cdot3+10\cdot2^3\cdot3^2+10\cdot2^2\c dot3^3+5\cdot2\cdot3^4+3^5$$计算后得到$(2+3)^5= 243$。

二项式定理还可以用来推导和证明其他数学定理。

例如,二项式定理可以用来证明组合恒等式:$$C_n^0 + C_n^1 + C_n^2 + \ldots + C_n^n = 2^n$$这个恒等式在概率论和组合数学中有重要的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二项式定理
【2011⋅新课标全国理,8】
5
1()(2)a x x x x +-的展开式中各项系数的和为2,则该展开式中常数项为( ).
A .-40
B .-20
C .20
D .40
【答案】D
【最新考纲解读】
二项式定理
(1)能用计数原理证明二项式定理.
(2)会用二项式定理解决与二项展开式有关的简单问题. 【回归课本整合】 1.二项式定理的展开式
011
()n n n r n r r
n n
n n n n a b C a C a b C a b C b --+=++
++
+,其中组合数r n C 叫做第r +1项的二
项式系数;展开式共有n +1项.
注意:(1)项的系数与二项式系数是不同的两个概念,但当二项式的两个项的系数都为1
时,系数就是二项式系数。

如在()n
ax b +的展开式中,第r+1项的二项式系数为r
n C ,第
3.项的系数和二项式系数的性质
(1)对称性:与首末两端“等距离”的两个二项式系数相等(
m n m
n n
C C-
=
).
【方法技巧提炼】
(2)()()n m
a b c d ++结构:①若n 、m 中一个比较小,可考虑把它展开得到多个;②观察
()()a b c d ++是否可以合并;③分别得到()()n m a b c d ++、
的通项公式,综合考虑.
例2
610
34
(1)(1)x x 展开式中的常数项为( )
A .1
B .46
C .4245
D .4246
答案: D
例3
5
)2
1
2
(+
+
x
x
的展开式中整理后的常数项为 .
答案:
632
例5 若对于任意实数x,有
323
0123
(2)(2)(2)
x a a x a x a x
=+-+-+-
,则2
a的值为()
A.3 B.6 C.9 D.12答案:B
解析:因
3
3)]
2
(
2[-
+
=x
x,则3
13
2(2)
r r r
r
T C x
-
+
=-
,
6
22
3
2
=
=C
a
.选B
解析:对于第二问求系数最大的项,因其展开式系数正负相间,可考虑转化为其系数全部为正时系数最大.然后根据其展开式的奇数项系数为正,偶数项系数为负,确定系数最大项.
(Ⅰ)由题设,得
021
11
C C2C
42
n n n
+⨯=⨯⨯
,即2980
n n
-+=,解得n=8,n=1(舍去).
答案:2187
【考场经验分享】
【新题预测演练】
高三年级第一次模拟考试】 在9
1()x x
的展开式中,常数项为
(A) 36 (B) -36 (C) 84 (D) -84 [答案]D
[解析]939219
9193()
()(1),0,3,2
r
r
r
r r r
r r T C x C x r x --+-=-=-=∴=则常数项为339(1)84.C -=-
【答案】D
【解析】5(1)ax -的展开式中含3x 的项为
232335()(1)10C ax a x -=,由题意得31080a =, 所以2a =.选D.
5.【2011杭西高8月高三数学试题】
已知
727
01271234567 (12),
x a a x a x a x a a a a a a a
-=++++++++++
那么
等于
()
A.2 B.—2 C.1 D.—1
【解析81()x x -的展开式的通项公式为8821881()(1)r r r r r r
r T C x C x x --+=-=-,令822r -=,
得3r =,所以2x 的系数为
338(1)56C -=-.
13.【福州市2012届第一学期期末高三质检】
在243
(1)(1)x x -+的展开式中,x 的系数等于 .(用数字作答)
【答案】-3 【解析】2(1)x +展开式中x 的系数为1,43(1)x +展开式中x 的系数为
344C =,故在243(1)(1)x x +-+的展开式中,x 的系数等于-3.
14.【2012届衡阳市八中高三第一次月考】
4
2()x x -的展开式中的常数项为_ . (用数字作答)
【答案】24
【解析】
(注:文档可能无法思考全面,请浏览后下载,供参考。

可复制、编制,期待你的好评与关注!)。

相关文档
最新文档