苏教版初一上期末数学试卷(含答案)
苏教版七年级数学上册 期末试卷(Word版 含解析)
(1)若 BD 5 , BC 4 ,求线段 EC 、 AC 的长; (2)试说明: AC 2DE . 28.在一条直路上的 A 、 B 、 C 、 D 四个车站的位置如图所示(单位千米),如果小明 家在 A 站旁,他的同学小亮家在 B 站旁,新华书店在 D 站旁,一天小明乘车从 A 站出发 到 D 站下车去新华书店购买一些课外阅读书籍,途径 B 、 C 两站,当小明到达 C 站时发
20.数轴上有 A、B、C 三点,A、B 两点所表示的数如图所示,若 BC=3,则 AC 的中点所表 示的数是_______.
21.已知关于 x 的一元一次方程 2020x 3a 4x 2019 的解为 x 4 ,那么关于 y 的一 元一次方程 2020( y 1) 3a 4( y 1) 2019 的解为 y ___________.
苏教版七年级数学上册 期末试卷(Word 版 含解析)
一、选择题
1.按图中程序计算,若输出的值为 9,则输入的数是( )
A.289
B.2
2.下面计算正确的是(
)
C. 1
D.2 或 1
A. 3x2 x2 3
B. 3a2 2a3 5a5
C. 0.25ab 1 ab 0 4
3.下列比较大小正确的是( )
D. 0.7x 1 20%400
11.下列计算结果正确的是( )
A. 3x2 2x2 1 B. 3x2 2x2 5x4 C. 3x2 y 3yx2 0 D. 4x y 4xy
12.下列语句错误的是( )
A.两点确定一条直线
B.同角的余角相等
C.两点之间线段最短
D.两点之间的距离是指连接这两点的线段
D. 43%x 1 7 2
10.某网店销售一件商品,已知这件商品的进价为每件 400 元,按标价的 7 折销售,仍可
苏教版七年级数学上册 期末试卷测试卷附答案
(1)如图①,以该线段为直径画一个圆,记该圆的周长为C1;如图②,在该线段上任取一点,再分别以两条小线段为直径画两个圆,这两个圆的周长的和为C2,请指出C1和C2的数量关系,并说明理由;
(2)如图③,当a=11时,以该线段为直径画一个大圆,再在大圆内画若千小圆,这些小圆的直径都和大圆的直径在同一条直线上,且小圆的直径的和等于大圆的直径,那么图中所有小圆的周长的和为.(直接填写答案,结果保留π)
(1)①一条线段的中点这条线段的“二倍点”;(填“是”或“不是”)
②若线段 , 是线段 的“二倍点”,则 (写出所有结果)
(深入研究)
如图2,若线段 ,点 从点 的位置开始,以每秒2 的速度向点 运动,当点 到达点 时停止运动,运动的时间为 秒.
(2)问 为何值时,点 是线段 的“二倍点”;
(3)同时点 从点 的位置开始,以每秒1 的速度向点 运动,并与点 同时停止.请直接写出点 是线段 的“二倍点”时 的值.
33.先化简,再求值: ,其中 、 满足 与 互为相反数.
23.如图,一根绳子对折以后用线段 表示,在线段 的三等分点处将绳子剪短,若所得三段绳长的最大长度为 ,则这根绳子原长为________ .
24.若a-2b=1,则3-2a+4b的值是__.
25.定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n) (其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=13,则: 若n=24,则第100次“F”运算的结果是________.
A.2.85×10 B.2.85×10 C.28.5×10 D.2.85×10
12.如图,OA方向是北偏西40°方向,OB平分∠AOC,则∠BOC的度数为()
苏教版七年级数学上册期末考试卷及完整答案
苏教版七年级数学上册期末考试卷及完整答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知=2{=1xy是二元一次方程组+=8{=1mx nynx my-的解,则2m n-的算术平方根为()A.±2 B.2C.2 D.42.对某市某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人3.估计6+1的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间4.已知整式25 2x x-的值为6,则整式2x2-5x+6的值为()A.9 B.12 C.18 D.245.如图,函数y1=﹣2x 与y2=ax+3 的图象相交于点A(m,2),则关于x 的不等式﹣2x>ax+3 的解集是()A.x>2 B.x<2 C.x>﹣1 D.x<﹣16.2019-的倒数是( )A .2019-B .12019-C .12019D .20197.若3a b +=,则226a b b -+的值为( )A .3B .6C .9D .128.1221()()n n x x +-=( )A .4n xB .43n x +C .41n x +D .41n x -9.如图,直线l 1∥l 2 ,且分别与直线l 交于C,D 两点,把一块含30°角的三角尺按如图所示的位置摆放.若∠1=52°,则∠2的度数为( )A .92°B .98°C .102°D .108°10.把代数式244ax ax a -+分解因式,下列结果中正确的是( ).A .()22a x -B .()22a x +C .()24a x -D .()()22a x x +-二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的不等式组5310x a x -≥-⎧⎨-<⎩无解,则a 的取值范围是________. 2.如图,将长方形纸片ABCD 的∠C 沿着GF 折叠(点F 在BC 上,不与B,C 重合),使点C 落在长方形内部的点E 处,若FH 平分∠BFE,则∠GFH 的度数是________.3.如图,有两个正方形夹在AB 与CD 中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)4.若162482m m ⋅⋅=,则m =________.5.如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若17MN cm =,则BD =________cm .6.如果20a b --=,那么代数式122a b +-的值是________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)()()64233x x -+=- (2)2134134x x ---=2.在解方程组2628mx y x ny +=⎧⎨+=⎩时,由于粗心,小军看错了方程组中的n ,得解为7323x y ⎧=⎪⎪⎨⎪=⎪⎩,小红看错了方程组中的m ,得解为24x y =-⎧⎨=⎩ (1)则m ,n 的值分别是多少?(2)正确的解应该是怎样的?3.如图,在△ABC 中,∠B=40°,∠C=80°,AD 是BC 边上的高,AE 平分∠BAC ,(1)求∠BAE 的度数;(2)求∠DAE 的度数.4.已知:如图,直线AB、CD相交于点O,EO⊥CD于O.(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数;(3)在(2)的条件下,请你过点O画直线MN⊥AB,并在直线MN上取一点F (点F与O不重合),然后直接写出∠EOF的度数.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的35,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、B4、C5、D6、B7、C8、A9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、a≥22、90°3、70.4、35、146、5三、解答题(本大题共6小题,共72分)1、()11x=;()24x=-.2、(1) m=2;n=3;(2)方程组正确的解为12. xy=⎧⎨=⎩3、(1) ∠BAE=30 °;(2) ∠EAD=20°.4、(1)54°;(2)120°;(3)∠EOF的度数为30°或150°.5、(1)30;(2)①补图见解析;②120;③70人.6、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.。
苏教版七年级数学上册 期末试卷测试卷附答案
苏教版七年级数学上册 期末试卷测试卷附答案一、选择题1.在有理数2,-1,0,-5中,最大的数是( ) A .2B .C .0D .2.3-的倒数是( ) A .3B .13C .13-D .3-3.已知3x m =,5x n =,用含有m ,n 的代数式表示14x 结果正确的是 A .3mnB .23m nC .3m nD .32m n4.下列运用等式的性质,变形不正确的是: A .若x y =,则55x y +=+ B .若x y =,则ax ay = C .若x y =,则x y a a = D .若a bc c=(c ≠0),则a b = 5.小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是( )A .B .C .D .6.如图,点C 是AB 的中点,点D 是BC 的中点,则下列等式中正确的有( )①CD AC DB =-②CD AD BC =-③2BD AD AB =- ④13CD AB = A .4个 B .3个 C .2个 D .1个7.一个几何体的侧面展开图如图所示,则该几何体的底面是( )A .B .C .D .8.一个正方体的表面展开图可以是下列图形中的( )A .B .C .D .9.下列各式进行的变形中,不正确的是( ) A .若32a b =,则3222a b +=+ B .若32a b =,则3525a b -=- C .若32a b =,则23a b= D .若32a b =,则94a b =10.若关于x 的一元一次方程mx =6的解为x =-2,则m 的值为( ) A .-3B .3C .13D .1611.如图,OA 方向是北偏西40°方向,OB 平分∠AOC ,则∠BOC 的度数为( )A .50°B .55°C .60°D .65° 12.-3的相反数为( )A .-3B .3C .0D .不能确定 13.下列各题中,运算结果正确的是( )A .325a b ab +=B .22422x y xy xy -=C .222532y y y -=D .277a a a +=14.某商品原价为m 元,由于供不应求,先提价30%进行销售,后因供应逐步充足,价格又一次性降价30%,售价为n 元,则m ,n 的大小关系为( ) A .m n =B .0.91n m =C .30%n m =-D .30%n m =-15.如图,直线a ,b 相交于点O ,若1∠等于36︒,则2∠等于( )A .54︒B .64︒C .144︒D .154︒二、填空题16.计算:82-+-=___________.17.在0,1,π,227-这些数中,无理数是___________ . 18.己知多项式1A ay =-,351B ay y =--,且多项式2A B +中不含字母y ,则a 的值为__________.19.计算: x(x-2y) =______________ 20.若代数式2a-b 的值是4,则多项式2-a+12b 的值是_______________ . 21.已知等腰三角形有两条边分别是3和7,则这个三角形的周长是_______.22.如图,在三角形ABC 中,90B ∠=︒,6AB cm =,8BC cm =,点D 是AB 的中点,点P 从C 点出发,先以每秒2cm 的速度运动到B ,然后以每秒1cm 的速度从B 运动到A .当点P 运动时间t = _______秒时,三角形PCD 的面积为26cm .23.计算t 3t t --=________.24.小颖将考试时自勉的话“冷静、细心、规范”写在一个正方体的六个面上,其平面展开图如图所示,那么在正方体中和“规”字相对的字是____.25.已知1x =-是方程23ax a =-的解,则a =__________.三、解答题26.画出如图所示物体的主视图、左视图、俯视图.27.已知:如图,长方形ABCD 中,4AB =,8BC =,点M 是BC 边的中点,点P 从点A 出发,以1m/s 的速度沿着AB 方向运动再过点B 沿BM 方向运动,到点M 停止运动,点Q 以同样的速度从点D 出发沿着DA 方向运动,到点A 停止运动,设点P 运动的路程为x .(1)当2x =时,线段AQ 的长是 ;(2)当点P 在线段AB 上运动时,图中阴影部分的面积会发生改变吗?请你作出判断并说明理由.(3)在点,P Q 的运动过程中,是否存在某一时刻,使得13BP DQ =?若存在,求出点P 的运动路程,若不存在,请说明理由.28.计算(1)48(2)(4)-+÷-⨯-(2)21513146326⎛⎫⎛⎫--+++- ⎪ ⎪⎝⎭⎝⎭29.用5个棱长为1的正方体组成如图所示的几何体.(1)该几何体的体积是 立方单位,表面积是 平方单位(包括底面积); (2)请在方格纸中用实线画出它的三个视图.30.先化简,再求值:()()22224333a b ab aba b ---+.其中 1a =-、 2b =-.31.某小组计划做一批“中国结”如果每人做 5 个,那么比计划多了 9 个;如果每人做 4 个,那么比 计划少了 15 个.该小组共有多少人?计划做多少个“中国结”? 小明和小红在认真思考后,根据题意分别列出了以下两个不同的方程:①59415x x -=+;②91554y y +-= (1)①中的x 表示 ; ②中的y 表示 .(2)请选择其中一种方法,写出完整的解答过程. 32.解方程:(1)5(x ﹣1)+2=3﹣x (2)2121136x x -+=- 33.如图,A ,O ,B 三点在同一直线上,∠BOD 与∠BOC 互补. (1)∠AOC 与∠BOD 的度数相等吗,为什么?(2)已知OM 平分∠AOC ,若射线ON 在∠COD 的内部,且满足∠AOC 与∠MON 互余; ①∠AOC =32°,求∠MON 的度数;②试探究∠AON 与∠DON 之间有怎样的数量关系,请写出结论并说明理由.四、压轴题34.概念学习:规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方.如:222÷÷,()()()()3333-÷-÷-÷-等,类比有理数的乘方,我们把222÷÷记作32,读作“2的3次商”,()()()()3333-÷-÷-÷-记作()43-,读作“3-的4次商”.一般地,我们把n 个()0a a ≠相除记作n a ,读作“a 的n 次商”. (1)直接写出结果:312⎛⎫=⎪⎝⎭______,()42-=______. (2)关于除方,下列说法错误的是( ) A .任何非零数的2次商都等于1 B .对于任何正整数n ,()111n --=-C .除零外的互为相反数的两个数的偶数次商都相等,奇数次商互为相反数 D.负数的奇数次商结果是负数,负数的偶数次商结果是正数. 深入思考:除法运算能转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢? (3)试一试,将下列运算结果直接写成乘方(幂)的形式()43-=______ 615⎛⎫=⎪⎝⎭______(4)想一想,将一个非零有理数a 的n 次商写成乘方(幂)的形式等于______.(5)算一算:201923420201111162366⎛⎫⎛⎫⎛⎫⎛⎫÷-÷---⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭35.如图,数轴上A ,B 两点对应的数分别为4-,-1 (1)求线段AB 长度(2)若点D 在数轴上,且3DA DB =,求点D 对应的数(3)若点A 的速度为7个单位长度/秒,点B 的速度为2个单位长度/秒,点O 的速度为1个单位长度/秒,点A ,B ,O 同时向右运动,几秒后,3?OA OB =36.如图,OC 是AOB ∠的角平分线,OD OB ⊥,OE 是BOD ∠的角平分线,85AOE ∠=(1)求COE ∠;(2)COE ∠绕O 点以每秒5的速度逆时针方向旋转t 秒(013t <<),t 为何值时AOC DOE ∠=∠;(3)射线OC 绕O 点以每秒10的速度逆时针方向旋转,射线OE 绕O 点以每秒5的速度顺时针方向旋转,若射线OC OE 、同时开始旋转m 秒(024.5m <<)后得到45AOC EOB ∠=∠,求m 的值. 37.尺规作图是指用无刻度的直尺和圆规作图。
最新苏教版七年级数学上册期末考试(及参考答案)
最新苏教版七年级数学上册期末考试(及参考答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.用科学记数法表示2350000正确的是()A.235×104B.0.235×107C.23.5×105D.2.35×1062.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是()A.100 B.被抽取的100名学生家长C.被抽取的100名学生家长的意见 D.全校学生家长的意见3.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是( )秒A.2.5 B.3 C.3.5 D.44.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.645.如图,AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数等于()A .122°B .151°C .116°D .97°6.观察下列图形,是中心对称图形的是( )A .B .C .D .7.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是( )A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-28.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.下列各组数值是二元一次方程x ﹣3y =4的解的是( )A .11x y =⎧⎨=-⎩B .21x y =⎧⎨=⎩C .12x y =-⎧⎨=-⎩D .41x y =⎧⎨=-⎩10.已知实数a 、b 、c 满足2111(b)(c)(b-c)0a a 4+++=.则代数式ab+ac 的值是( ).A .-2B .-1C .1D .2二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:3222x x y xy +=﹣__________. 2.珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=__________度.3.分解因式:32x 2x x -+=_________.4.已知15x x +=,则221x x +=________________. 5.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t 时后两车相距50千米,则t 的值为____________.6.化简: 43ππ-+-=________三、解答题(本大题共6小题,共72分)1.解方程:(1)3x ﹣7(x ﹣1)=3﹣2(x +3) (2)131148x x ---=2.解不等式组并求出它所有的非负整数解.3.如图,平面直角坐标系中,ABCD 为长方形,其中点A 、C 坐标分别为(﹣4,2)、(1,﹣4),且AD ∥x 轴,交y 轴于M 点,AB 交x 轴于N .(1)求B 、D 两点坐标和长方形ABCD 的面积;(2)一动点P 从A 出发(不与A 点重合),以12个单位/秒的速度沿AB 向B 点运动,在P 点运动过程中,连接MP 、OP ,请直接写出∠AMP 、∠MPO 、∠PON 之间的数量关系;(3)是否存在某一时刻t ,使三角形AMP 的面积等于长方形面积的13?若存在,求t 的值并求此时点P 的坐标;若不存在请说明理由.4.如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1).△ABD不动,(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC (图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.5.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.6.某车间有27名工人,每人每天可以生产1500个螺钉或2400个螺母.一个螺钉需要配两个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、D4、D5、B6、D7、A8、A9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、()2 x x y-2、203、()2 x x1-.4、235、2或2.56、1三、解答题(本大题共6小题,共72分)1、(1):x=5;(2)x=﹣9.2、0,1,2.3、(1)(﹣4,﹣4),D(1,2),面积为30;(2)∠MPO=∠AMP+∠PON或∠MPO=∠AMP﹣∠PON;(3)存在,t=10, P点坐标为(﹣4,﹣3).4、(1)略;(2)MB=MC.略;(3)MB=MC还成立,略.5、(1)800,240;(2)补图见解析;(3)9.6万人.6、安排12名工人生产螺钉、安排15名工人生产螺母.。
苏教版七年级数学上册期末测试卷及答案【完美版】
苏教版七年级数学上册期末测试卷及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( )A .2a +2b -2cB .2a +2bC .2cD .02.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠=,CFD 40∠=,则E ∠为( )A .102B .112C .122D .923.如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A=60°,∠B=40°,则∠ECD 等于( )A .40°B .45°C .50°D .55°4.如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA+PC =BC ,则下列选项正确的是( )A .B .C .D .5.下列说法,正确的是( )A .若ac bc =,则a b =B .两点之间的所有连线中,线段最短C .相等的角是对顶角D .若AC BC =,则C 是线段AB 的中点6.有理数a ,b 在数轴上的对应点如图所示,则下面式子中正确的是( ) ①b <0<a ; ②|b|<|a|; ③ab >0; ④a ﹣b >a+b .A .①②B .①④C .②③D .③④ 7.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( ) A .m >2 B .m ≥2 C .m ≥2且m ≠3 D .m >2且m ≠38.下列说法:①a -一定是负数;②||a 一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是l ;⑤平方等于它本身的数是1.其中正确的个数是( )A .1个B .2个C .3个D .4个9.设42-的整数部分为a ,小数部分为b ,则1a b-的值为( ) A .2- B .2 C .212+ D .212- 10.如图,已知直线a ∥b ,则∠1、∠2、∠3的关系是( )A .∠1+∠2+∠3=360°B .∠1+∠2﹣∠3=180°C .∠1﹣∠2+∠3=180°D .∠1+∠2+∠3=180°二、填空题(本大题共6小题,每小题3分,共18分)1.若|x|=4,|y|=5,则x -y 的值为____________.2.如图,DA ⊥CE 于点A ,CD ∥AB ,∠1=30°,则∠D=________.3.已知,|a|=﹣a ,b b =﹣1,|c|=c ,化简|a+b|﹣|a ﹣c|﹣|b ﹣c|=_____.5.若不等式组x a 0{12x x 2+≥-->有解,则a 的取值范围是________. 5.对于任意实数a 、b ,定义一种运算:a ※b=ab ﹣a+b ﹣2.例如,2※5=2×5﹣2+5﹣2=ll .请根据上述的定义解决问题:若不等式3※x <2,则不等式的正整数解是________.6.若323m x --21n y - =5是二元一次方程,则m =________,n =________.三、解答题(本大题共6小题,共72分)1.解方程:(1)5(8)6(27)22m m m +--=-+ (2)2(3)7636x x x --+=-2.先化简,再求值:(1)3x 2-[7x -(4x -3)-2x 2],其中x =5 (2)222253[22(2)5]2xy xy xy x y xy x y ----+-,其中21|4|()02x y +++=3.如图,已知∠ABC=180°-∠A ,BD ⊥CD 于D ,EF ⊥CD 于E .(1)求证:AD ∥BC ;(2)若∠ADB=36°,求∠EFC 的度数.4.如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点0;∆≅∆求证:(1)DBC ECB=(2)OB OC5.九年三班的小雨同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生必只能选择一门课程).将获得的数据整理绘制如下两幅不完整的统计图.据统计图提供的信息,解答下列问题:(1)在这次调查中一共抽取了名学生,m的值是.(2)请根据据以上信息直在答题卡上补全条形统计图;(3)扇形统计图中,“数学”所对应的圆心角度数是度;(4)若该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.6.粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、C4、B5、B6、B7、C8、A9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±1,±92、60°3、﹣2c4、a >﹣15、16、2 1三、解答题(本大题共6小题,共72分)1、(1)10m =;(2)5x =2、(1)5x 2-3x -3,原式=107;(2)-xy+2xy 2;原式=-4.3、(1)略;(2)36°.4、(1)略;(2)略.5、(1)50,18;(2)补全的条形统计图见解析;(3)108;(4)该校九年级学生中有300名学生对数学感兴趣.6、(1)明年每辆无人驾驶出租车的预计改装费用是25万元;(2)明年改装的无人驾驶出租车是160辆.。
苏教版七年级上册数学 期末试卷测试卷附答案
苏教版七年级上册数学期末试卷测试卷附答案一、选择题1.如果a+b+c=0,且|a|>|b|>|c|,则下列式子可能成立的是()A.c>0,a<0 B.c<0,b>0 C.c>0,b<0 D.b=02.一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50m2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40m2墙面,每名一级技工比二级技工一天多粉刷10m2墙面,设每个房间需要粉刷的墙面面积为xm2,则下列的方程正确的是()A.3505(10)40810--+=x xB.3505(10)40810+--=x xC.850104035+-=x x+10 D.850104035-+=x x+103.如图是正方体的展开图,则原正方体相对两个面上的数字和最小是()A.8B.7C.6D.44.如图,若将三个含45°的直角三角板的直角顶点重合放置,则∠1的度数为( )A.15°B.20°C.25°D.30°5.小红在计算23202011114444⎛⎫⎛⎫⎛⎫++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭时,拿出 1 张等边三角形纸片按如图所示方式进行操作.①如图1,把 1 个等边三角形等分成 4 个完全相同的等边三角形,完成第 1 次操作;②如图 2,再把①中最上面的三角形等分成 4 个完全相同的等边三角形,完成第 2 次操作;③如图 3,再把②中最上面的三角形等分成 4 个完全相同的等边三角形,······依次重复上述操作.可得23202011114444⎛⎫⎛⎫⎛⎫++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值最接近的数是()A .13B .12C .23D .16.如图所示的几何体的左视图是( )A .B .C .D .7.下列平面图形不能够围成正方体的是( ) A .B .C .D .8.若x ,y 满足等式x 2﹣2x =2y ﹣y 2,且xy =12,则式子x 2+2xy +y 2﹣2(x +y )+2019的值为( ) A .2018B .2019C .2020D .20219.已知下列方程:①22x x -=;②0.3x =1;③512x x =+;④x 2﹣4x =3;⑤x =6;⑥x +2y =0.其中一元一次方程的个数是( ) A .2B .3C .4D .510.一个几何体的侧面展开图如图所示,则该几何体的底面是( )A .B .C .D .11.若关于x 的一元一次方程mx =6的解为x =-2,则m 的值为( ) A .-3 B .3C .13D .1612.单项式24x y 3-的次数是( )A.43-B.1C.2D.313.下列各图中,是四棱柱的侧面展开图的是( )A.B.C.D.14.关于零的叙述,错误的是( )A.零大于一切负数B.零的绝对值和相反数都等于本身C.n为正整数,则00n=D.零没有倒数,也没有相反数.15.在解方程123123x x-+-=时,去分母正确的是( )A.3(x-1)-2(2x+3)=6 B.3(x-1)-2(2x+3)=1C.2(x-1)-3(2x+3)=6 D.3(x-1)-2(2x+3)=3二、填空题16.若∠α=40° 15′,则∠α的余角等于________°.17.地球的半径大约为6400000m,用科学计数法表示地球半径为___________m. 18.下图是计算机某计算程序,若开始输入2x=-,则最后输出的结果是____________.19.一个数的绝对值是2,则这个数是_____.20.在-2 、-3 、4、5 中选取2个数相除,则商的最小值是________.21.如图所示的运算程序中,若开始输入的x值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2020次输出的结果为___________.22.如图,每一幅图中均含有若干个正方形,第1幅图中有2个正方形;第2幅图中有8个正方形;…按这样的规律下去,第7幅图中有___个正方形.23.若代数式M=5x2﹣2x﹣1,N=4x2﹣2x﹣3,则M,N的大小关系是M___N(填“>”“<”或“=”)24.请写出一个系数是-2,次数是3的单项式:________________.25.若a-2b=1,则3-2a+4b的值是__.三、解答题26.如图,已知BD平分∠ABC,点F在AB上,点G在AC上,连接FG、FC,FC与BD相交于点H,如果∠GFH与∠BHC互补,那么∠1=∠2吗?请说明理由.27.(1)计算:2311113222⎛⎫⎛⎫⎛⎫-+-÷-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)化简求值:()()()2214121422x x x x--++-,其中3x=-.28.解不等式组:2(1),312.2x xxx+⎧⎪⎨--≥⎪⎩>并在数轴表示它的解集.29.如图,直线l上有A、B两点,线段10AB cm=.点C在直线l上,且满足4BC cm=,点P为线段AC的中点,求线段BP的长.30.已知方程532x x-=与方程2463k xx+-=的解互为相反数,求5417k⎛⎫-⎪⎝⎭的值. 31.计算(1)48(2)(4)-+÷-⨯-(2)21513146326⎛⎫⎛⎫--+++-⎪ ⎪⎝⎭⎝⎭32.我们经常运用“方程”的思想方法解决问题.已知∠1是∠2的余角,∠2是∠3的补角,若∠1+∠3=130°,求∠2的度数.可以进行如下的解题:(请完成以下解题过程)解:设∠2的度数为x,则∠1=°,∠3=°.根据“”可列方程为:.解方程,得x=.故:∠2的度数为°.33.如图,已知150AOB ∠=,将一个直角三角形纸片(90D ∠=)的一个顶点放在点O 处,现将三角形纸片绕点O 任意转动,OM 平分斜边OC 与OA 的夹角,ON 平分BOD ∠. (1)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若30COD ∠=,则MON ∠=_______;(2)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若射线OD 恰好平分MON ∠,若8MON COD ∠=∠,求COD ∠的度数;(3)将三角形纸片绕点O 从OC 与OA 重合位置逆时针转到OD 与OA 重合的位置,猜想在转动过程中COD ∠和MON ∠的数量关系?并说明理由.四、压轴题34.如图①,点O 为直线AB 上一点,过点O 作射线OC ,将一直角三角板如图摆放(90MON ∠=).(1)若35BOC ∠=,求MOC ∠的大小.(2)将图①中的三角板绕点O 旋转一定的角度得图②,使边OM 恰好平分BOC ∠,问:ON 是否平分AOC ∠?请说明理由.(3)将图①中的三角板绕点O 旋转一定的角度得图③,使边ON 在BOC ∠的内部,如果50BOC ∠=,则BOM ∠与NOC ∠之间存在怎样的数量关系?请说明理由.35.如图,OC 是AOB ∠的角平分线,OD OB ⊥,OE 是BOD ∠的角平分线,85AOE ∠=(1)求COE ∠;(2)COE ∠绕O 点以每秒5的速度逆时针方向旋转t 秒(013t <<),t 为何值时AOC DOE ∠=∠;(3)射线OC 绕O 点以每秒10的速度逆时针方向旋转,射线OE 绕O 点以每秒5的速度顺时针方向旋转,若射线OC OE 、同时开始旋转m 秒(024.5m <<)后得到45AOC EOB ∠=∠,求m 的值. 36.如图,在三角形ABC 中,8AB =,16BC =,12AC =.点P 从点A 出发以2个单位长度/秒的速度沿A B C A →→→的方向运动,点Q 从点B 沿B C A →→的方向与点P 同时出发;当点P 第一次回到A 点时,点P ,Q 同时停止运动;用t (秒)表示运动时间.(1)当t 为多少时,P 是AB 的中点;(2)若点Q 的运动速度是23个单位长度/秒,是否存在t 的值,使得2BP BQ =; (3)若点Q 的运动速度是a 个单位长度/秒,当点P ,Q 是AC 边上的三等分点时,求a的值.37.如图,已知点A 、B 是数轴上两点,O 为原点,12AB =,点B 表示的数为4,点P 、Q 分别从O 、B 同时出发,沿数轴向不同的方向运动,点P 速度为每秒1个单位.点Q 速度为每秒2个单位,设运动时间为t ,当PQ 的长为5时,求t 的值及AP 的长.38.如图,已知150AOB ∠=,将一个直角三角形纸片(90D ∠=)的一个顶点放在点O 处,现将三角形纸片绕点O 任意转动,OM 平分斜边OC 与OA 的夹角,ON 平分BOD ∠. (1)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若30COD ∠=,则MON ∠=_______;(2)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若射线OD 恰好平分MON ∠,若8MON COD ∠=∠,求COD ∠的度数;(3)将三角形纸片绕点O 从OC 与OA 重合位置逆时针转到OD 与OA 重合的位置,猜想在转动过程中COD ∠和MON ∠的数量关系?并说明理由.39.如图∠AOB =120°,把三角板60°的角的顶点放在O 处.转动三角板(其中OC 边始终在∠AOB 内部),OE 始终平分∠AOD .(1)(特殊发现)如图1,若OC 边与OA 边重合时,求出∠COE 与∠BOD 的度数. (2)(类比探究)如图2,当三角板绕O 点旋转的过程中(其中OC 边始终在∠AOB 内部),∠COE 与∠BOD 的度数比是否为定值?若为定值,请求出这个定值;若不为定值,请说明理由.(3)(拓展延伸)如图3,在转动三角板的过程中(其中OC 边始终在∠AOB 内部),若OP 平分∠COB ,请画出图形,直接写出∠EOP 的度数(无须证明).40.如图①,已知线段30cm AB =,4cm CD =,线段CD 在线段AB 上运动,E 、F 分别是AC 、BD 的中点.(1)若8cm AC ,则EF =______cm ;(2)当线段CD 在线段AB 上运动时,试判断EF 的长度是否发生变化?如果不变请求出EF 的长度,如果变化,请说明理由;(3)我们发现角的很多规律和线段一样,如图②已知COD ∠在AOB ∠内部转动,OE 、OF 分别平分AOC ∠和BOD ∠,则EOF ∠、AOB ∠和COD ∠有何数量关系,请直接写出结果不需证明.41.分类讨论是一种非常重要的数学方法,如果一道题提供的已知条件中包含几种情况,我们可以分情况讨论来求解.例如:已知点A ,B ,C 在一条直线上,若AB =8,BC =3则AC 长为多少?通过分析我们发现,满足题意的情况有两种:情况 当点C 在点B 的右侧时,如图1,此时,AC =11;情况②当点C 在点B 的左侧时, 如图2此时,AC =5.仿照上面的解题思路,完成下列问题:问题(1): 如图,数轴上点A 和点B 表示的数分别是-1和2,点C 是数轴上一点,且BC =2AB ,则点C 表示的数是.问题(2): 若2x =,3y =求x y +的值.问题(3): 点O 是直线AB 上一点,以O 为端点作射线OC 、OD ,使060AOC ∠=,OC OD ⊥,求BOD ∠的度数(画出图形,直接写出结果).42.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B 表示的数是________,点P 表示的数是________(用含的代数式表示); (2)若M 为线段AP 的中点,N 为线段BP 的中点,在点P 运动的过程中,线段MN 的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度; (3)动点Q 从点B 处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时与点Q 相距4个单位长度?43.设A 、B 、C 是数轴上的三个点,且点C 在A 、B 之间,它们对应的数分别为x A 、x B 、x C .(1)若AC =CB ,则点C 叫做线段AB 的中点,已知C 是AB 的中点. ①若x A =1,x B =5,则x c = ; ②若x A =﹣1,x B =﹣5,则x C = ;③一般的,将x C 用x A 和x B 表示出来为x C = ;④若x C =1,将点A 向右平移5个单位,恰好与点B 重合,则x A = ; (2)若AC =λCB (其中λ>0). ①当x A =﹣2,x B =4,λ=13时,x C = . ②一般的,将x C 用x A 、x B 和λ表示出来为x C = .【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据题意分类讨论,综合情况解出即可. 【详解】1.假设a 为负数,那么b+c 为正数; (1)b 、c 都为正数;(2)一正一负,因为|b|>|c|,只能b 为正数,c 为负数; 2.假设a 为正数,那么b+c 为负数,b 、c 都为负数;(1)若b 为正数,因为|b|>|c|,所以b+c 为正数,则a+b+c=0不成立; (2)若b 为负数,c 为正数,因为|b|>|c|,则|b+c|<|b|<|a|,则a+b+c=0不成立. 故选A. 【点睛】本题考查绝对值的性质,关键在于分类讨论正负性.2.D解析:D 【解析】由题意易得:每名一级技工每天可粉刷的面积为:8503x -m 2,每名二级技工每天可粉刷的面积为:10405x +m 2,根据每名一级技工比二级技工一天多粉刷10m 2,可得方程: 85010401035x x -+=+. 故选D.3.C解析:C 【解析】 【分析】确定原正方体相对两个面上的数字,即可求出和的最小值. 【详解】解:由题意,2和6是相对的两个面;3和4是相对两个面;1和5是相对的2个面, 因为2+6=8,3+4=7,1+5=6,所以原正方体相对两个面上的数字和最小的是6. 故选:C . 【点睛】本题考查了正方体相对两个面上的文字,解决本题的关键是根据相对的面的特点得到相对的两个面上的数字.4.D解析:D 【解析】 【分析】根据∠1=∠BOD+EOC -∠BOE ,利用等腰直角三角形的性质,求得∠BOD 和∠EOC 的度数,从而求解即可. 【详解】 解:如图,根据题意,有90AOD BOE COF ∠=∠=∠=︒, ∴903555BOD ∠=︒-︒=︒,902565COE ∠=︒-︒=︒, ∴155659030BOD COE BOE ∠=∠+∠-∠=︒+︒-︒=︒; 故选:D. 【点睛】本题考查了角度的计算,正确理解∠1=∠BOD+∠COE -∠BOE 这一关系是解决本题的关键.5.A解析:A 【解析】 【分析】设大三角形的面积为1,先求原算式3倍的值,将其值转化为三角形的面积和,利用面积求解. 【详解】解:设大三角形的面积为1,则第一次操作后每个小三角形的面积为14,第二次操作后每个小三角形的面积为214,第三次操作后每个小三角形面积为314⎛⎫ ⎪⎝⎭,第四次操作后每个小三角形面积为414,……第2020次操作后每个小三角形面积为202014,算式23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭相当于图1中的阴影部分面积和.将这个算式扩大3倍,得232020111133334444⎛⎫⎛⎫⎛⎫⨯+⨯+⨯++⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,此时该算式相当于图2中阴影部分面积和,这个和等于大三角形面积减去1个剩余空白小三角形面积,即2020114,则原算式的值为202011113343. 所以23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值最接近13.故选:A. 【点睛】本题考查借助图形来计算的方法就是数形结合的运用,观察算式特征和图形的关系,将算式值转化为面积值是解答此题的关键.6.A解析:A 【解析】本题考查的是三视图.左视图可以看到图形的排和每排上最多有几层.所以选择A .7.B解析:B 【解析】 【分析】直接利用正方体的表面展开图特点判断即可.根据正方体展开图的特点可判断A 属于“1、3、2”的格式,能围成正方体,D 属于“1,4,1”格式,能围成正方体,C 、属于“2,2,2”的格式也能围成正方体,B 、不能围成正方体. 故选B . 【点睛】本题主要考查展开图折叠成几何体的知识点.能组成正方体的“一,四,一”“三,三”“二,二,二”“一,三,二”的基本形态要记牢.注意只要有“田”字格的展开图都不是正方体的表面展开图.8.C解析:C 【解析】 【分析】由已知条件得到x 2﹣2x +y 2﹣2y =0,2xy =1,化简x 2+2xy +y 2﹣2(x +y )+2019为x 2﹣2x +y 2﹣2y +2xy +2019,然后整体代入即可得到结论. 【详解】解:∵x 2﹣2x =2y ﹣y 2,xy =12, ∴x 2﹣2x +y 2﹣2y =0,2xy =1,∴x 2+2xy +y 2﹣2(x+y )+2019=x 2﹣2x +y 2﹣2y +2xy +2019=0+1+2019=2020, 故选:C . 【点睛】本题考查代数式求值,掌握整体代入法是解题的关键.9.B解析:B 【解析】 【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程. 【详解】 解:①x−2=2x是分式方程,故①错误; ②0.3x=1,即0.3x-1=0,符合一元一次方程的定义.故②正确; ③2x=5x+1,即9x+2=0,符合一元一次方程的定义.故③正确; ④x 2-4x=3的未知数的最高次数是2,它属于一元二次方程.故④错误; ⑤x=6,即x-6=0,符合一元一次方程的定义.故⑤正确; ⑥x+2y=0中含有2个未知数,属于二元一次方程.故⑥错误. 综上所述,一元一次方程的个数是3个. 故选B .本题考查了一元一次方程的一般形式,掌握只含有一个未知数,且未知数的指数是1,一次项系数不是0是关键.10.B解析:B【解析】【分析】根据展开图推出几何体,再得出视图.【详解】根据展开图推出几何体是四棱柱,底面是四边形.故选B【点睛】考核知识点:几何体的三视图.11.A解析:A【解析】【分析】将x=-2代入方程mx=6,得到关于m的一元一次方程,解方程即可求出m的值.【详解】∵关于x的一元一次方程mx=6的解为x=-2,∴﹣2m=6,解得:m=-3.故选:A.【点睛】本题考查了一元一次方程的解的定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.12.D解析:D【解析】【分析】直接利用单项式的次数的定义得出答案.【详解】单项式43x2y的次数是2+1=3.故选D.【点睛】本题考查了单项式的次数,正确把握定义是解题的关键.13.A解析:A【分析】根据棱柱的特点和题意要求的四棱柱的侧面展开图,即可解答.【详解】棱柱:上下地面完全相同,四棱柱:侧棱有4条故选A【点睛】本题考查棱柱的特点以及棱柱的展开图,难度低,熟练掌握棱柱的特点是解题关键. 14.D解析:D【解析】【分析】根据数轴、绝对值、相反数、倒数、乘方的定义依次对各选项进行判断即可.【详解】解:A.零大于所有的负数,说法正确;因为在数轴上,负数都在0的左边,正数都在0的右边,越往右,数越来越大,越往左,数越来越小;B.根据绝对值和相反数的定义,零的绝对值和相反数都等于本身,说法正确;n ,说法正确;C.根据乘方的定义,当n为正整数时,0n代表n个0相乘,故00D.零的相反数是它本身,故本选项说法错误.故选:D.【点睛】本题考查数轴、绝对值、相反数、倒数和乘方,理解这些基本定义是解决此题的关键.15.A解析:A【解析】【分析】去分母的方法是:方程左右两边同时乘以各分母的最小公倍数,这一过程的依据是等式的基本性质,注意去分母时分数线起到括号的作用,容易出现的错误是:漏乘没有分母的项,以及去分母后忘记分数线的括号的作用,符号出现错误.【详解】方程左右两边同时乘以6得:3(x−1)−2(2x+3)=6.故选:A【点睛】考查一元一次方程的解法,熟练掌握分式的基本性质是解题的关键.二、填空题16.75【解析】根据互为余角的两角之和为90°,即可得出答案. 【详解】 ∵∠α=40° 15′,∴∠a 的余角=90°-40° 15′=49° 45′=49.75°. 故答案为:4解析:75 【解析】 【分析】根据互为余角的两角之和为90°,即可得出答案. 【详解】 ∵∠α=40° 15′,∴∠a 的余角=90°-40° 15′=49° 45′=49.75°. 故答案为:49.75. 【点睛】本题考查了余角的知识,属于基础题,解答本题的关键是熟记互为余角的两角之和为90°.17.【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 解析:66.410⨯【解析】 【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】6400000=66.410⨯.故填:66.410⨯. 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.18.【解析】 【分析】把−2按照如图中的程序计算后,若<−5则结束,若不是则把此时的结果再进行计算,直到结果<−5为止.【详解】解:根据题意可知,(−2)×4−(−3)=−8+3=−5,所以再解析:17【解析】【分析】把−2按照如图中的程序计算后,若<−5则结束,若不是则把此时的结果再进行计算,直到结果<−5为止.【详解】解:根据题意可知,(−2)×4−(−3)=−8+3=−5,所以再把−5代入计算:(−5)×4−(−3)=−20+3=−17<−5,即−17为最后结果.故本题答案为:−17【点睛】此题是定义新运算题型.直接把对应的数字代入所给的式子可求出所要的结果.解题关键是对号入座不要找错对应关系.19.±2.【解析】【分析】根据互为相反数的两个数的绝对值相等解答.【详解】解:一个数的绝对值是2,则这个数是±2.故答案为:±2.【点睛】本题考点:绝对值.解析:±2.【解析】【分析】根据互为相反数的两个数的绝对值相等解答.【详解】解:一个数的绝对值是2,则这个数是±2.故答案为:±2.【点睛】本题考点:绝对值.20.【解析】【分析】根据同号两数相除为正数,异号两数相除为负数,将每两个异号的数相除,选出商的最小值.【详解】解:∵,,,,,,,,∴商的最小值为.故答案为:.【点睛】本题考解析:5 2 -【解析】【分析】根据同号两数相除为正数,异号两数相除为负数,将每两个异号的数相除,选出商的最小值.【详解】解:∵1242,422,2255,5522,3344,4433,3355,5533,∴商的最小值为5 2 -.故答案为:5 2 -.【点睛】本题考查有理数的除法,掌握除法法则是解答此题的关键.21.3【解析】【分析】将x=48代入运算程序中计算得到输出结果,以此类推总结出规律即可得到第202 0次输出的结果.【详解】将x=48代入运算程序中,得到输出结果为24,将x=24代入运算程序解析:3【解析】【分析】将x=48代入运算程序中计算得到输出结果,以此类推总结出规律即可得到第2020次输出的结果.【详解】将x=48代入运算程序中,得到输出结果为24,将x=24代入运算程序中,得到输出结果为12,将x=12代入运算程序中,得到输出结果为6,将x=6代入运算程序中,得到输出结果为3,将x=3代入运算程序中,得到输出结果为6.∵(2020-2)÷2=1009,∴第2020次输出结果为3.故答案为:3.【点睛】本题考查了代数式求值,弄清题中的运算程序是解答本题的关键.22.168【解析】【分析】根据已知图形找出每幅图中正方形个数的变化规律,即可计算出第7幅图中正方形的个数.【详解】解:第1幅图中有2=2×1个正方形;第2幅图中有8=(3×2+2×1)个正方解析:168【解析】【分析】根据已知图形找出每幅图中正方形个数的变化规律,即可计算出第7幅图中正方形的个数.【详解】解:第1幅图中有2=2×1个正方形;第2幅图中有8=(3×2+2×1)个正方形;第3幅图中有20=(4×3+3×2+2×1)个正方形;∴第7幅图中有8×7+7×6+6×5+5×4+4×3+3×2+2×1=168个正方形故答案为:168.【点睛】此题考查的是探索规律题,找出正方形个数的变化规律是解决此题的关键.23.>.【解析】【分析】首先计算出、的差,再分析差的正负性可得答案.【详解】M﹣N=5x2﹣2x﹣1﹣(4x2﹣2x﹣3),=5x2﹣2x﹣1﹣4x2+2x+3,=x2+2>0,∴M>N解析:>.【解析】【分析】首先计算出M、N的差,再分析差的正负性可得答案.【详解】M﹣N=5x2﹣2x﹣1﹣(4x2﹣2x﹣3),=5x2﹣2x﹣1﹣4x2+2x+3,=x2+2>0,∴M>N,故答案为:>.【点睛】此题主要考查了整式的加减,关键是注意去括号时符号的变化.24.-2a3(答案不唯一)【解析】【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.依此写出一个系数是-2,次数是3的单项式.【详解析:-2a3(答案不唯一)【解析】【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.依此写出一个系数是-2,次数是3的单项式.【详解】解:系数是-2,次数是3的单项式有:-2a3.(答案不唯一)故答案是:-2a3(答案不唯一).【点睛】考查了单项式的定义,注意确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.25.1【解析】【分析】先把代数式3﹣2a+4b化为3﹣2(a﹣2b),再把已知条件整体代入计算即可. 【详解】根据题意可得:3﹣2a+4b=3﹣2(a﹣2b)=3﹣2=1.故答案为:1.【点解析:1【解析】【分析】先把代数式3﹣2a+4b化为3﹣2(a﹣2b),再把已知条件整体代入计算即可.【详解】根据题意可得:3﹣2a+4b=3﹣2(a﹣2b)=3﹣2=1.故答案为:1.【点睛】本题考查了代数式求值.注意此题要用整体思想.三、解答题26.∠1=∠2;见解析.【解析】【分析】根据题意算出∠GFH+∠FHD=180°,利用同旁内角互补两直线平行,证明FG∥BD,再由角平分线性质判断即可.【详解】解:12∠=∠,理由如下:∵∠BHC=∠FHD,∠GFH+∠BHC=180°,∴∠GFH+∠FHD=180°,∴FG∥BD,∴∠1=∠ABD,∵BD平分∠ABC,∴∠2=∠ABD,∴∠1=∠2;【点睛】本题考查了平行线的判定与性质和角平分线的有关计算,关键在于掌握相关基础知识.27.(1)126-;(2)36x-,-15.【解析】【分析】(1)根据有理数的运算法则即可求解;(2)根据整式的加减运算法则即可化简,再代入x 即可求解.【详解】(1)解:原式111648⎛⎫=-+÷- ⎪⎝⎭126=- (2)解:()()()2214121422x x x x --++- =2244222x x x x ---+-36x =-3x ∴=-时,原式15=-【点睛】此题主要考查有理数与整式的运算,解题的关键是熟知其运算法则.28.-2<x ≤1,在数轴上表示见解析.【解析】【分析】分别解出每个不等式后再求不等式组的解集,最后将解集表示在数轴上即可.【详解】2(1),312.2x x x x +⎧⎪⎨--≥⎪⎩>①② 不等式①的解集为x >-2不等式②的解集为x ≤1∴原不等式组的解集为-2<x ≤1 ,解集在数轴上表示为.【点睛】本题考查一元一次不等式组的解法,解题的关键是熟悉解一元一次不等式组的解法,并会在数轴上表示不等式组得解集.29.线段的BP 的长为7cm 或3cm .【解析】【分析】分两种情况画出图形,即点C 在线段AB 上和点C 在线段AB 的延长线上结合中点的性质求解即可.【详解】①C 在线段AB 上,如图,∵AB=10cm,BC=4cm,∴AC=AB-BC=10-4=6cm, ∵P 是AC 中点,∴116322AP PC AC cm ===⨯= ∴347BP PC BC cm =+=+=②C 在线段AB 外,如图,∵AB=10cm,BC=4cm,∴AC=AB+BC=10+4=14cm,∵P 是AC 中点,∴1114722AP PC AC cm ===⨯= ∴743BP PC BC cm =-=-=答:线段的BP 的长为7cm 或3cm .【点睛】本题考查线段的和差及线段中点的性质,分类讨论画出相应图形是解答此题的关键.30.-1【解析】【分析】先分别求出两方程的解,根据相反数的定义求出k 的值,再代入代数式即可求解.【详解】解:解方程532x x -=,得1x =,根据题意,方程2463k x x +-=的解为1x =-, 把1x =-代入方程2463k x x +-=,得()214163k --⨯-=, 解,得72k =. 所以55447111772k ⎛⎫⎛⎫-=-⨯=- ⎪ ⎪⎝⎭⎝⎭. 【点睛】此题主要考查解方程的应用,解题的关键熟知一元一次方程的解法.31.(1)12;(2)79. 【解析】【分析】 (1)按照整数的运算法则运算即可.(2)按照分数的运算法则运算即可.【详解】(1) ()()48(2)(4)44441612-+÷-⨯-=-+-⨯-=-+=. (2) 2151313104181912874632612121212361236369⎛⎫⎛⎫⎛⎫--+++-=--+++=+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 【点睛】本题考查有理数的运算法则,关键在于掌握基础计算方法.32.(90﹣x );(180﹣x );∠1+∠3=130°;(90﹣x )+(180﹣x )=130;70;70.【解析】【分析】根据余角和补角的定义解答即可.【详解】设∠2的度数为x ,则∠1=(90﹣x )°,∠3=(180﹣x )°.根据“∠1+∠3=130°”可列方程为:(90﹣x )+(180﹣x )=130.解方程,得x =70.故:∠2的度数为70°.【点睛】此题考查了余角和补角的意义,互为余角的两角的和为90︒,互为补角的两角之和为180︒.解此题的关键是能准确的找出角之间的数量关系.33.(1)90︒;(2)COD=10∠︒;(3)1752MON COD ∠=∠+︒,证明见解析 【解析】【分析】(1)利用角平分线定义得出12AOM MOC AOC x ∠=∠=∠=,12BON DON BOD y ∠=∠=∠=,再利用∠AOB 的和差关系进行列方程即可求解; (2)利用8MON COD ∠=∠,表达出∠AOC 、∠BOD ,利用∠AOB 的和差关系进行列方程即可求解;(3)画出图形后利用角的和差关系进行计算求解即可.【详解】解:(1)∵OM 平分斜边OC 与OA 的夹角,ON 平分BOD ∠.∴OM 平分∠AOC, ON 平分∠BOD∴设11,22AOM MOC AOC x BON DON BOD y ∠=∠=∠=∠=∠=∠= ∴2,2AOC x BOD y ∠=∠=,30MON MOC COD DON x y ∠=∠+∠+∠=+︒+ ∵2302150AOB AOC BOD COD x y ∠=∠+∠+∠=+︒+=︒∴60x y +=︒∴3090MON x y ∠=+︒+=︒故答案为: 90︒(2)∵8MON COD ∠=∠∴设=,8COD a MON a ∠∠=∵射线OD 恰好平方MON ∠∴14,2DOM DON MON a ∠=∠=∠= ∴43,COM DOM COD a a a ∠=∠-∠=-= ∵OM 平分斜边OC 与OA 的夹角,ON 平分BOD ∠.∴OM 平分∠AOC, ON 平分∠BOD∴113,422AOM MOC AOC a BON DON BOD a ∠=∠=∠=∠=∠=∠= ∴6,8AOC a BOD a ∠=∠= ∵68150AOB AOC BOD COD a a a ∠=∠+∠+∠=++=︒∴=10a ︒∴COD=10∠︒(3) 1752MON AOC ∠=∠+︒,证明如下: 当OC 与OA 重合时,设∠COD=x,则150150BOD AOB COD COD x ∠=∠-∠=︒-∠=︒-∵ON 平分∠BOD∴117522DON BOD x ∠=∠=︒-∴MON COD DON ∠=∠+∠1752x x =+︒- 1752x =︒+ ∴1752MON COD ∠=︒+∠当OC 在OA 的左侧时设∠AOD=a ,∠AOC=b,则∠BOD=∠AOB -∠AOD=150°-a ,∠COD=∠AOD+∠AOC=a+b ∵ON 平分∠BOD∴117522DON BOD a ∠=∠=︒- ∵OM 平分∠AOC∴1122AOM COM AOC b ∠=∠=∠= ∴∠MON=∠MOA+∠AOD+∠DON117522b a a =++︒- 117522b a =++︒ 1752COD =∠+︒当OD 与OA 重合时∵ON 平分∠AOB∴1752AON AOB ∠=∠=︒ ∵OM 平分∠AOC∴12MON AOC ∠=∠ ∴MON MOD AON ∠=∠+∠ 1752AOC =∠+︒ 综上所述 1752MON AOC ∠=∠+︒ 【点睛】本题考查了角平分线的动态问题,掌握角平分线的性质是解题的关键. 四、压轴题34.(1)125°;(2)ON 平分∠AOC ,理由详见解析;(3)∠BOM=∠NOC+40°,理由详见解析【解析】【分析】(1)根据∠MOC=∠MON+∠BOC 计算即可;(2)由角平分线定义得到角相等的等量关系,再根据等角的余角相等即可得出结论; (3)根据题干已知条件将一个角的度数转换为两个角的度数之和,列出等式即可得出结论.【详解】解: (1) ∵∠MON=90° , ∠BOC=35°,∴∠MOC=∠MON+∠BOC= 90°+35°=125°.(2)ON 平分∠AOC .理由如下:∵∠MON=90°,∴∠BOM+∠AON=90°,∠MOC+∠NOC=90°.又∵OM 平分∠BOC ,∴∠BOM=∠MOC .∴∠AON=∠NOC .∴ON 平分∠AOC .(3)∠BOM=∠NOC+40°.理由如下:∵∠CON+∠NOB=50°,∴∠NOB=50°-∠NOC .∵∠BOM+∠NOB=90°,∴∠BOM=90°-∠NOB =90°-(50°-∠NOC )=∠NOC +40°.【点睛】本题主要考查了角的运算、余角以及角平分线的定义,解题的关键是灵活运用题中等量关系进行角度的运算.35.(1)∠COE =20°;(2)当t =11时,AOC DOE ∠=∠;(3)m=296或10114 【解析】【分析】(1)根据角平分线的定义和垂直定义即可求出∠BOD=90°,∠BOE=∠DOE =45°,即可求出∠AOB ,再根据角平分线的定义即可求出∠BOC ,从而求出∠COE ;(2)先分别求出OC 与OD 重合时、OE 与OD 重合时和OC 与OA 重合时运动时间,再根据t 的取值范围分类讨论,分别画出对应的图形,根据等量关系列出方程求出t 即可; (3)先分别求出OE 与OB 重合时、OC 与OA 重合时、OC 为OA 的反向延长线时运动时、OE 为OB 的反向延长线时运动时间,再根据m 的取值范围分类讨论,分别画出对应的图形,根据等量关系列出方程求出m 即可;【详解】解:(1)∵OD OB ⊥,OE 是BOD ∠的角平分线,∴∠BOD=90°,∠BOE=∠DOE=12∠BOD =45° ∵85AOE ∠=∴∠AOB=∠AOE +∠BOE=130°∵OC 是AOB ∠的角平分线,∴∠AOC=∠BOC=12AOB ∠=65° ∴∠COE=∠BOC -∠BOE=20°(2)由原图可知:∠COD=∠DOE -∠COE=25°,故OC 与OD 重合时运动时间为25°÷5°=5s ;OE 与OD 重合时运动时间为45°÷5°=9s ;OC 与OA 重合时运动时间为65°÷5°=13s ;。
苏教版七年级数学上册期末试卷含答案
苏教版七年级数学上册期末试卷含答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.方程13153520052007x x x x++++=⨯的解是x =( ) A .20062007 B .20072006 C .20071003D .100320072.下列说法中正确的是( ) A .若0a <,则20a < B .x 是实数,且2x a =,则0a > C .x -有意义时,0x ≤D .0.1的平方根是0.01±3.若多项式32281x x x -+-与多项式323253x mx x +-+的差不含二次项,则m 等于( ) A .2B .-2C .4D .-44. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A .523220x y x y +=⎧⎨+=⎩B .522320x y x y +=⎧⎨+=⎩C .202352x y x y +=⎧⎨+=⎩D .203252x y x y +=⎧⎨+=⎩5.如图所示,已知∠AOB=64°,OA 1平分∠AOB ,OA 2平分∠AOA 1,OA 3平分∠AOA 2,OA 4平分∠AOA 3,则∠AOA 4的大小为( )A .1°B .2°C .4°D .8°6.有理数m ,n 在数轴上分别对应的点为M ,N ,则下列式子结果为负数的个数是( )①m n +;②m n -;③m n -;④22m n -;⑤33m n .A .2个B .3个C .4个D .5个7.如图所示,下列说法不正确的是( )A .∠1和∠2是同旁内角B .∠1和∠3是对顶角C .∠3和∠4是同位角D .∠1和∠4是内错角8.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( ) A .1B .2C .3D .89.图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A .l 1B .l 2C .l 3D .l 410.如图,△ABC 中,AD 为△ABC 的角平分线,BE 为△ABC 的高,∠C=70°,∠ABC=48°,那么∠3是( )A .59°B .60°C .56°D .22°二、填空题(本大题共6小题,每小题3分,共18分)1.若△ABC 三条边长为a ,b ,c ,化简:|a -b -c |-|a +c -b |=__________.2.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C 平移的距离CC '=________.3.如图,点E 是AD 延长线上一点,如果添加一个条件,使BC ∥AD ,则可添加的条件为__________.(任意添加一个符合题意的条件即可)4.将命题“同角的余角相等”,改写成“如果…,那么…”的形式_____. 5.若关于x 的方程2x m 2x 22x++=--有增根,则m 的值是________. 6.已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解方程:(1)446x x -=- (2)()()35221x x x --=- (3)142123x x ---= (4)0.20.40.050.20.50.03x x x ---=2.已知x 、y 满足方程组52251x y x y -=-⎧⎨+=-⎩,求代数式()()()222x y x y x y --+-的值.3.在△ABC 中,AB=AC ,点D 是射线CB 上的一个动点(不与点B ,C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD=AE ,∠DAE=∠BAC ,连接CE .(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE=______度.(2)设∠BAC=α,∠DCE=β.①如图2,当点D在线段CB上,∠BAC≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明).4.如图,已知直线EF分别交AB,CD于点E,F,且∠AEF=66°,∠BEF的平分线与∠DFE的平分线相交于点P.(1)求∠PEF的度数;(2)若已知直线AB∥CD,求∠P的度数.5.四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学会生随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:(1)本次接受随机抽样调查的学生人数为,图①中m的值是;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、D4、D5、C6、B7、A8、C9、C 10、A二、填空题(本大题共6小题,每小题3分,共18分)1、2b-2a2、53、∠A +∠ABC =180°或∠C +∠ADC =180°或∠CBD =∠ADB 或∠C =∠CDE4、如果两个角是同一个角的余角,那么这两个角相等5、0.6、5三、解答题(本大题共6小题,共72分)1、(1)2x =;(2)1x =;(3)1x =-;(4)4417x =2、353、(1)90°;(2)①α+β=180°;②α=β.4、(1)∠PEF =57°;(2)∠EPF =90°.5、(1)50; 32;(2)16;10;15;(3)608人.6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。
苏教版初一上册数学期末试卷及答案
苏教版初一上册数学期末试卷及答案一、选择题:(本题共8小题,每小题2分,共16分)1.﹣2的倒数是 ( )A. ﹣B.C. ﹣2D. 22.身份证号码告诉我们很多信息,某人的身份证号码是130503************,其中13、05、03是此人所属的省(市、自治区)、市、县(市、区)的编码,1967、04、01是此人出生的年、月、日,001是顺序码,2为校验码.那么身份证号码是321084************的人的生日是( )A. 8月10日B. 10月12日C. 1月20日D. 12月8日3.将12000000用科学计数法表示是: xKb 1.C om ( )A. 12×106B. 1.2×107C. 0.12×108D. 120×1054.如果整式xn﹣2﹣5x+2是关于x的三次三项式,那么n等于 ( )A. 3B. 4C. 5D. 65.如图是每个面上都有一个汉字的正方体的一种平面展开图,那么在原正方体中和“国”字相对的面是 ( )A. 中B. 钓C. 鱼D. 岛6.下面四个图形中,∠1与∠2是对顶角的图形为 ( )7.下列语句正确的是 ( )A. 画直线AB=10厘米B. 延长射线OAC. 画射线OB=3厘米D. 延长线段AB到点C,使得BC=AB8. 泰兴市新区对曾涛路进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.则原有树苗棵. ( )A.100B.105C.106D.111二、填空题:(本大题共10小题,每小题2分,共20分)9. 单项式-2xy的次数为________.10.已知一个一元一次方程的解是2,则这个一元一次方程是_________ .(只写一个即可)11.若3xm+5y与x3y是同类项,则m= _________ .12.若∠α的余角是38°52′,则∠α的补角为 .13.若x=2是关于x的方程2x+3m﹣1=0的解,则m的值等于_________14. 在数轴上与-3的距离等于4的点表示的数是_________15.如图所给的三视图表示的几何体是_________ .16.在3,-4,5,-6这四个数中,任取两个数相乘,所得的积是 .17. 若∠1+∠2=90°,∠2+∠3=90°,则∠1=∠3.理由是 .18.如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有5个正方形;…按这样的规律下去,第7幅图中有_________ 个正方形.三、解答题(本大题共10小题,共64分,把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19. (1) (本题4分)计算:(-1)3×(-5)÷[(-3)2+2×(-5)].(2) (本题4分)解方程:20.(本题6分)先化简,再求值:2x2+(-x2-2xy+2y2)-3(x2-xy+2y2),其中x=2,y=-12.21.(本题 6分)我们定义一种新运算:a*b=2a-b+ab(等号右边为通常意义的运算):(1) 计算:2*(-3)的值;(2) 解方程:3*x= *x.22.(本题6分)如图,是由若干个完全相同的小正方体组成的一个几何体。
苏教版七年级上册数学期末试卷及答案
苏教版七年级上册数学期末试卷及答案一、选择题(本大题共8小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1. 我国对“一带一路”沿线国家不断加大投资,目前已为有关国家创造了近1100000000美元税收,其中1100000000用科学记数法表示应为( )A. 0.11×108B. 1.1×109C. 1.1×1010D. 11×1082. 下列运算正确的是( )A. x2+x4=x6B. x2+x2=2x4C. −2x2−x2=−x2D. −5x2+x2=−4x23. 中国人最早使用负数,可追溯到两千多年前的秦汉时期,−0.5的相反数是( )A. 0.5B. ±0.5C. −0.5D. 54. 圆圆想了解某地某天的天气情况,在某气象网站查询到该地这天的最低气温为−6℃,最高气温为2℃,则该地这天的温差(最高气温与最低气温的差)为( )A. −8℃B. −4℃C. 4℃D. 8℃5. 如图,在线段PA、PB、PC、PD中,长度最小的是( )A. 线段PAB. 线段PBC. 线段PCD. 线段PD6. 计算3−(−2)的结果是( )A. −5B. −1C. 1D. 57. 若|m−3|+(n+2)2=0,则m+2n的值为( )A. −4B. −1C. 0D. 48. 如图,CA⊥BE于点A,AD⊥BF于点D,则下列说法正确的是( )A. ∠α的余角只有∠BB. ∠α的邻补角是∠DACC. ∠ACF是∠α的余角D. ∠α与∠ACF互补第II卷(非选择题)二、填空题(本大题共6小题,共18.0分)9. −(−2)=______ ;−|−2|=______ .10. 多项式与m2+m−2的和是m2−2m.11. 已知2a−3b=7,则8+6b−4a=______.12. 某商品每件标价为150元,若按标价打八折后,再降价10元销售,仍获利10%,则该商品每件的进价为元.13. 学习委员小明带了200元钱去文具店买学习用品,已知一支笔x元,一个笔记本y元,则代数式200−3x−4y表示的实际意义是______.14. 规定一种新运算:a⊗b=a2−2b,若2⊗[3⊗(−x)]=6,则x的值为.三、计算题(本大题共2小题,共12.0分)15. 解方程:(1)2(2x+1)=1−5(x−2);(2)3−2x−13=4−3x5−x.16. 计算:(1)6÷(−2)−(−12)×6;(2)−12023+2×(−3)2−5÷12.四、解答题(本大题共6小题,共48.0分。
最新苏教版七年级数学上册期末考试题及答案【完美版】
最新苏教版七年级数学上册期末考试题及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+7C.12或7+7D.以上都不对2.如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°3.①如图1,AB∥CD,则∠A +∠E +∠C=180°;②如图2,AB∥CD,则∠E =∠A +∠C;③如图3,AB∥CD,则∠A +∠E-∠1=180°;④如图4,AB∥CD,则∠A=∠C +∠P.以上结论正确的个数是()A.、1个B.2个C.3个D.4个4.如果a与1互为相反数,则|a+2|等于()A.2 B.-2 C.1 D.-15.如图,AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数等于()A.122°B.151°C.116°D.97°6.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数-2017将与圆周上的哪个数字重合( )A .0B .1C .2D .37.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD =8,则点P 到BC 的距离是( )A .8B .6C .4D .28.已知20192019a x =+,20192020b x =+,20192021c x =+,则222a b c ab ac bc ++---的值为( )A .0B .1C .2D .39.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°10.若320,a b -+=则a b +的值是( )A .2B .1C .0D .1-二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:x 3﹣4x=________.2.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.3.因式分解:2218x -=______.4.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.5.分解因式:4ax 2-ay 2=_____________.5.若x 的相反数是3,y =5,则x y +的值为_________.三、解答题(本大题共6小题,共72分)1.解方程组:10216x y x y +=⎧⎨+=⎩2.马虎同学在解方程13123x m m ---=时,不小心把等式左边m 前面的“﹣”当做“+”进行求解,得到的结果为x=1,求代数式m 2﹣2m+1的值.3.如图,正比例函数y =2x 的图象与一次函数y =kx +b 的图象交于点A (m ,2),一次函数图象经过点B (﹣2,﹣1),与y 轴的交点为C ,与x 轴的交点为D .(1)求一次函数解析式;(2)求C 点的坐标;(3)求△AOD的面积.4.如图,∠1=70°,∠2 =70°. 说明:AB∥CD.5.中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对七年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如下所示:(1)统计表中的a=________,b=___________,c=____________;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校七年级共有1200名学生,请你分析该校七年级学生课外阅读7本及以上的人数.6.已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)l辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金200元/次,B型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、C4、C5、B6、B7、C8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、x(x+2)(x﹣2)2、10.3、2(x+3)(x﹣3).4、50°5、a(2x+y)(2x-y)6、2或-8三、解答题(本大题共6小题,共72分)1、64 xy=⎧⎨=⎩2、0.3、(1)y=x+1;(2)C(0,1);(3)14、略.5、(1)a=10,b=0.28,c=50;(2)补图见解析;(3)6.4本;(4)528人.6、(1) A型车、B型车都装满货物一次可以分别运货3吨、4吨;(2) 最省钱的租车方案是方案一:A型车8辆,B型车2辆,最少租车费为2080元.。
苏教版七年级上册数学 期末试卷试卷(word版含答案)
苏教版七年级上册数学期末试卷试卷(word版含答案)一、选择题1.下列各组单项式中,是同类项的一组是()A.3x3y与3xy3B.2ab2与-3a2b C.a2与b2D.2xy与3 yx2.在有理数2,-1,0,-5中,最大的数是()A.2B.C.0D.3.如图,给出下列说法:①∠B和∠1是同位角;②∠1和∠3是对顶角;③∠2和∠4是内错角;④∠A和∠BCD是同旁内角. 其中说法正确的有( )A.0个B.1个C.2个D.3个4.下列说法错误的是()A.同角的补角相等B.对顶角相等C.锐角的2倍是钝角D.过直线外一点有且只有一条直线与已知直线平行5.2019年是中华人民共和国成立70周年,10月1日上午在天安门举行了盛大的阅兵式和群众游行,约有115000名官兵和群众参与,是我们每个中国人的骄傲.将115000用科学计数法表示为()A.115×103B.11.5×104C.1.15×105D.0.115×1066.方程1502x--=的解为()A.4-B.6-C.8-D.10-7.如图,某同学用剪刀沿虚线将三角形剪掉一个角,发现四边形的周长比原三角形的周长要小,能正确解释这一现象的数学知识是()A.两点之间,线段最短B.经过一点,有无数条直线C.垂线段最短D.经过两点,有且只有一条直线8.有理数 a 在数轴上的位置如图所示,下列各数中,可能在 1 到 2 之间的是( )A .-aB .aC .a -1D .1 -a9.下列图形中,能够折叠成一个正方体的是( )A .B .C .D .10.如图,AB ∥CD ,AD 平分∠BAC ,且∠C=80°,则∠D 的度数为( )A .50°B .60°C .70°D .100°11.下列计算结果正确的是( )A .22321x x -=B .224325x x x +=C .22330x y yx -=D .44x y xy +=12.如图,学校(记作A )在蕾蕾家(记作B )南偏西20︒的方向上.若90ABC ∠=︒,则超市(记作C )在蕾蕾家的( )A .北偏东20︒的方向上B .北偏东70︒的方向上C .南偏东20︒的方向上D .南偏东70︒的方向上13.已知下列方程:①22x x -=;②0.3x =1;③512x x =+;④x 2﹣4x =3;⑤x =6;⑥x +2y =0.其中一元一次方程的个数是( ) A .2B .3C .4D .514.下列各题中,运算结果正确的是( )A .325a b ab +=B .22422x y xy xy -=C .222532y y y -=D .277a a a +=15.2020的相反数是( ) A .2020B .﹣2020C .12020D .﹣12020二、填空题16.一组“数值转换机”按下面的程序计算,如果输入的数是10,那么输出的结果为19,要使输出的结果为17,则输入的最小正整数是______.17.有下列三个生活、生产现象: ①用两个钉子就可以把木条固定在干墙上; ②把弯曲的公路改直能缩短路程;③植树时只要定出两颗树的位置,就能确定同一行所在的直线. 其中可用“两点之间,线段最短”来解释的现象有_____(填序号). 18.若∠α=70°,则它的补角是 . 19.2-的结果是_______.20.如图,A 、B 是河l 两侧的两个村庄.现要在河l 上修建一个抽水站P ,使它到两个村庄A 、B 的距离和最小,小丽认为在图中连接AB 与l 的交点就是抽水站P 的位置,你认为这里用到的数学基本事实是_________________________________.21.比较大小:0.4--_________(0.4)--(填“>”“<”或“=”).22.如图,一副三角尺有公共的顶点A ,则 DAB EAC ∠-∠=________.23.有5个面的棱柱是______棱柱. 24.﹣|﹣2|=____.25.小明家的冰箱冷冻室的温度为﹣5℃,调高4℃后的温度是_____℃.三、解答题26.计算:(1)2(2)(3)(4)---⨯-.(2)125(60)236⎛⎫--⨯- ⎪⎝⎭.27.下图是用10块完全相同的小正方体搭成的几何体.(1)请在方格中画出它的三个视图;(2)如果只看三视图,这个几何体还有可能是用 块小正方体搭成的. 28.解方程(组) (1)3(4)12x -= (2)2121136x x -+-= (3) 5616795x y x y +=⎧⎨-=⎩29.如图,点O 在直线AB 上,OC 、OD 是两条射线,OC ⊥OD ,射线OE 平分∠BOC .(1)若∠DOE =150°,求∠AOC 的度数.(2)若∠DOE =α,则∠AOC = .(请用含α的代数式表示) 30.计算:(1)25)(277+-()-(-)-;(2)315(2)()3-⨯÷-.31.解方程:(1)-5x +3=-3x -5; (2)4x -3(1-x )=11.32.如图,已知所有小正方形的边长都为1,点A 、B 、C 都在格点上,借助网格完成下列各题.(1)过点A 画直线BC 的垂线,并标出垂足D ; (2)线段______的长度是点C 到直线AD 的距离;(3)过点C 画直线AB 的平行线交于格点E ,求出四边形ABEC 的面积.33.化简:(1)273a a a -+;(2)22(73)2(2)mn m mn m ---+.四、压轴题34.如图,已知数轴上两点A ,B 表示的数分别为﹣2,6,用符号“AB ”来表示点A 和点B 之间的距离.(1)求AB 的值;(2)若在数轴上存在一点C ,使AC =3BC ,求点C 表示的数;(3)在(2)的条件下,点C 位于A 、B 两点之间.点A 以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C 以2个单位/秒的速度也沿着数轴的正方向运动,到达B 点处立刻返回沿着数轴的负方向运动,直到点A 到达点B ,两个点同时停止运动.设点A 运动的时间为t ,在此过程中存在t 使得AC =3BC 仍成立,求t 的值.35.探索、研究:仪器箱按如图方式堆放(自下而上依次为第1层、第2层、…),受堆放条件限制,堆放时应符合下列条件:每层堆放仪器箱的个数a n 与层数n 之间满足关系式a n =n²−32n+247,1⩽n<16,n 为整数。
苏教版七年级数学上册期末考试测试卷附答案
苏教版七年级数学上册期末考试测试卷初一数学试卷(试卷满分130分,考试时间120分钟)一、选择题(请将下列各题唯一正确的选项代号填在答题卷相应的位置上,本大题共10小题,每小题3 分,共30分)1. 有理数一2的绝对值是A. —22. 下列四个算式中,有一个算式与其他三个算式的计算结果不同,则该算式是3•地球上陆地的而积约为149000000km 2,数1490000∞用科学记数法可表示为A. 一 1.49x10$B. 1.49×109C ・ 14.9×Io HD ・ 14.9×1094. 下列代数式运算正确的是B. 2a÷3b=5abC. 7-3ab=4ab5. 下列立体图形中,有五个面的是 A.四棱锥B.五棱锥C.四棱柱D.五棱柱6. 如图是一块带有圆形空洞和方形空洞的小木板,则下列物体 调整适当的大小后既可以堵住圆形空洞,又可以堵住方形空 ( 洞的是_____7. 如图,AB. CD 交于点6 OE 丄AB,则Zl 与Z2—注满足关系是 c × 1 A.对顶角 D. 互余8. 已知一个多项式与3x 2+9x 的和等于3x 2÷4χ-h 则这个多项式是9•点P 是直线/外一点,A 、B 、C 为直线/上的三点,若PA=4c ιm PB=5cm, PC=2cm,则点P 到直 线/的距离A. 2-3B. — I?C. (-D 3D. (-D 2D ・ a 3÷a 2=a 5B.相等C.互补B. 5x+lC. —13X -1 D. 13x+l10.—块正方体木块的六个而上分别标上数字1〜6,如图是从不同方向所看到的数字情况,则5对面的数二、填空题(本大题共8小题,每小题3分,共24分)11.我市某日的最高气温是6C,最低气温是一2C,则该日的温差是▲°C:12.如果x=2是方程iχ+a= 一 1的解,那么a的值是▲:2 ---------------------------------13.已知一个角的余角等于40° 36;则这个角的补角的度数是▲:14.若有理数a是负数,化简:Il-屮同= ▲:15.若卜-2∣ + (y + 3)'=0,则严= ▲:16.地图上三个地方用A, B, C三点表示,若点A在点B的正东方向,点C在点A的南偏西15°方向, 那么ZCAB = A度;17.若当X=—2时代数式X+bx — 1的值是2,那么当x=2时该代数式的值是一▲:18.如图,要使输出值y大于100,则输入的正整数n最小是_ ▲:三、解答题(本大题共11小题,共76分,应写出必要的计算过程、推理步骤或文字说明)19.(本题满分5分)计算:—2“ + ㊁x∣5-(―3)J20•解方程和不等式:(l)3(χ-2)=9(本题共4小题,每小题4分,满分16分)(2)3(χ-2)>9A.等于2cmB.小于2cmC.不大于2cmD.等于4cm字是A. 3C. 6B. 4D・无法确立=22L (本题满分6分)先化简,后求值:5(3χ2y-χy2)—3(-χy2+4χ2y),其中 x=l, y= — |.乙22. (本题满分6分)按下列要求画图,并解答问题:(1) 如图,在AABC 中,取BC 边的中点D,过点D 画射线AD ; (2) 分别过点B, C 画BE 丄AD 于点E, CF 丄AD 于点F : (3) 通过度量猜想BE 和CF 的数量关系是一 ▲,位置关系是一▲23. (本题满分6分)如图①所示的组合几何体,它的下而是一个长方体,上面是一个圆柱.(1) 图②和图③是它的两个视图,在横线上分别填写两种视图的名称(填“主”、“左”或“俯”): (2) 根据两个视图中的尺寸,计算这个组合几何体的体积.(结果保留兀)5x-3 65x-36≤2 42r-124.------------------------------------- (本题满分6分)设yι = y2=x+l∙⑴若y】比y2大1,求X的值; (2)若y】比y?大,求X的取值范围.25•(本题满分6分)春节临近,许多商场利用打折的优惠措施吸引顾客.若某商品原标价为X元/件,现商场以八折优惠售出.(1)该商品现在售价为▲元/件:(用含X的代数式表示)(2)若打八折后商场从该商品中仍可获利20元/件,但是打6折则要亏损20元/件,求该商品每件的进价是多少元?26.(本题满分6分)探究与发现:你能很快算出10052吗?这是一类个位数为5的自然数计算平方的问题,我们利用'‘从特殊到一般”的方法,计算以下简单情况,然后从中探索规律:(1)计算:152=A : 252=A : 352=A :(2)若个位数为环砧然数id⅞~10n÷5 (Wφ刀为自然数),从第⑴题的讣算结果归纳猜想,发现(IOn+5)2=A_:(3)根据上而的规律,计算10052=A・27.(本题满分7分)如图,点C在射线AB上,点D为线段BC的中点,已知AB=4,以C为端点的所有线段之和为9,求线段BD的长.28.(本题满分12分)如图,已知AB丄CD于点D,点E为平而内一点,且ZBOE=60°・(1)ZCOE=A /$;(2)画 OF 平分ZCOE, OG 平分ZBOE,则ZFQG=A ⅞:⑶在(2)的条件下,若将题目中ZBOE=600改成ZBOE=α° (α<90),英他条件不变,你能求出ZFOG 的度数吗?若能,请你写出求解过程;若不能,请说明理由.C29.(本题满分12分)知识的迁移与应用.问题一:如图⑪甲、乙两人分别从相距30km的A、B两地同时岀发,若甲的速度为80km∕h,乙的速度为60km∕h,设甲追到乙所花时间为xh,则可列方程为:▲:问题二:如图②,若将线段AC弯曲后视作钟表的一部分,线段AB对应钟表上的弧AB(I小时的间隔),易知ZAOB = 30°・(1)分针OC的速度为每分钟转动▲度:时针OD的速度为每分钟转动▲度:(2)若从1: OO起计时,几分钟后分针与时针第一次重合?⑶在(2)的条件下,几分钟后分针与时针互相垂直(在1: 00-2: 00之间)?图①图②4-2013〜2014学年第一学期期末教学调研测试初一数学答案一、选样愿(毎小題3分,满分30分)1 ->—34 5 6 • 78 9 IO I 答条B D A AAB DACB二、填空JS (每小題3斛满分24力)T i 'IU 8 12∙ -2 ∖3r 13O°36' $ 9 16. 75 17. -4 三、解答点(满分7&分〕19•计算题:<τt<B;W 分Q 分)解;原式=・16冷X |$-9| ............................................. 2f=T 6+丄 X 4 ........... ........ (3)2 =-16+2 »1420, 解方程和不耶式:{每坐題3分.滿分(I)X-2≡3 ..................... 2rΛΛ=S .......... . ..... V --^R⑴ 3(v+lH5r-3)=12 —: ....... -I r√Λλ2χ=6・:……五•……V . .................. TI I Λ.^3 .......... . ................... 3∙ 分}・(2)x-2≥3 ........................ 2「(4) 3("I)-(5L 3)≤∏2 (V):2r<6 ....................... 2r化焙一3 (V)21. 化简求值(木鬆満分$分)解; 乐式=I 5XZ 厂SXy?+3形-12丹 ...................................... 2r=3Λ>-2X √ ................................................... V 当 X = I , y = - £ 时,=-2 ............................ 5'22・(木题滿分6分〉】4・I-加4,'E(1)止确找i i∣J⅛D. Iiyi岀射线AD^得丨分—(2)U-^iiuiihR条匝线各得1分:W G) B^CF得 1 分,BE"CF 卷 1 分.23∙(本题满分6分》騎:(i> 后J n ...........................................................(2)底廉氏方律的体积;2x5曲関…・•;............................... S1•上Z/圍柱的体积:πx 1 >6=6π^ ..................................... .................................. 6,组合休的体枳为:8O÷6π, <若;们⑴学将G看JiKa结果为紺你也.<<、 2d∙(本鬆满分6分}・「・Z *徹(1)~l=χ-l +l ...................................................... Γ・3.∖2X~1=3Λ÷6∙ ............................................... 2'•:尸一 7 ................................................. y3Λ2ΛT∙1>3Λ+3 .................................................. y-i∙Λ<-4 .................................................... 6r25.(本题满分6分)解:(∣)0.8r......................................................... 2!(2)由题意得;逬价为畑∙∙20√.0.6A∙+2O-0,Xr-20 ............. ...... ............................. *Λχ=200.............................................................. 5,J该商品的进价为;O.8Λ-20=HO (元/件) ................................. &26.(本题满分6分)(1)225、625、1 225 .......................................... 3'(2)WOm时 1片25 .................................................. 5r⑶ I UwO25“•……•••'■........................................... 6'27.(本题满分7分)解「竟BDTe(I)如图①_j ______________ * J , 丁点D为BC的中点,A BDCl:.CD^BD≈x. 5C=2r・............ I Z图①-CF十Zr. ............ 2'TCHBWT>9, ∙∖(4÷2.r)+∙2v4χ-9. ..................................... 3l/.X=N 即 EZ>-l∙................................................. 4・⑵如图②一—' _______________________4, ΛJC=1 H乂・Cz)B/ TC.W*K9∙ .∙∙(4∙2v)+2r+x=9.—5r图②・*5・.............................. & •4-7 v<2. Λ⅛ C不可能在线段AB上「・一 (7)••2H.(术总湧分9分j........... ............ ............... 2' 解:(1)30。
苏教版七年级数学上册期末测试卷及答案【全面】
苏教版七年级数学上册期末测试卷及答案【全面】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知m,n为常数,代数式2x4y+mx|5-n|y+xy化简之后为单项式,则m n的值共有()A.1个B.2个C.3个D.4个2.对某市某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人3.已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为()A.80°B.70°C.85°D.75°4.如图,已知AB AD=,那么添加下列一个条件后,仍无法判定≌的是()ABC ADC∆∆A .CB CD = B .BAC DAC ∠=∠C .BCA DCA ∠=∠D .90B D ∠=∠=︒5.已知点C 在线段AB 上,则下列条件中,不能确定点C 是线段AB 中点的是( )A .AC =BCB .AB =2AC C .AC +BC =ABD .12BC AB =6.设x y z 234==,则x 2y 3z x y z -+++的值为( ) A .27 B .23 C .89 D .577.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A .-3B .-2C .-1D .18.1221()()n n x x +-=( )A .4n xB .43n x +C .41n x +D .41n x -910+1的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间10.下列等式变形正确的是( )A .若﹣3x =5,则x =35B .若1132x x -+=,则2x+3(x ﹣1)=1 C .若5x ﹣6=2x+8,则5x+2x =8+6D .若3(x+1)﹣2x =1,则3x+3﹣2x =1二、填空题(本大题共6小题,每小题3分,共18分)1.4的算术平方根是________.2.如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是________.3.若点P(2x,x-3)到两坐标轴的距离之和为5,则x的值为____________.4.使分式211xx-+的值为0,这时x=________.5.若一个多边形的内角和等于720度,则这个多边形的边数是________. 6.如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是__________.三、解答题(本大题共6小题,共72分)1.解方程31571 46x x---=2.已知关于x的不等式组523(1)138222x xx x a+>-⎧⎪⎨≤-+⎪⎩有四个整数解,求实数a的取值范围.3.如图,直线CD与直线AB相交于C,根据下列语句画图、解答.(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由4.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.5.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?6.某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A 型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B 型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、A4、C5、C6、C7、A8、A9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、55°3、2或2 -34、15、66、同位角相等,两直线平行.三、解答题(本大题共6小题,共72分)1、x=﹣12、-3≤a<-23、(1)略;(2)略;(3)∠PQC=60°,理由略4、20°5、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.6、(1)A型空调和B型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,案三:采购A型空调12台,B型空调18台;(3)采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.。
苏教版七年级上册数学 期末试卷试卷(word版含答案)
苏教版七年级上册数学 期末试卷试卷(word 版含答案)一、选择题1.﹣3的相反数是( ) A .13-B .13C .3-D .32.按图中程序计算,若输出的值为9,则输入的数是( )A .289B .2C .1-D .2或1-3.有一列数121000,,,a a a ,其中任意三个相邻数的和是4,其中21009004,1,2a a x a x =-=-=,可得 x 的值为( )A .0B .1C .2D .34.下列运算正确的是A .325a b ab +=B .2a a a +=C .22ab ab -=D .22232a b ba a b -=-5.一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50m 2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40m 2墙面,每名一级技工比二级技工一天多粉刷10m 2墙面,设每个房间需要粉刷的墙面面积为xm 2,则下列的方程正确的是( )A .3505(10)40810--+=x x B .3505(10)40810+--=x x C .850104035+-=x x +10 D .850104035-+=x x +10 6.下列四个数中,最小的数是() A .5B .0C .1-D .4-7.有理数a 、b 在数轴上的位置如图所示,则化简|a+b|-|a-b|的结果为( )A .2aB .-2bC .-2aD .2b 8.下列各组代数式中,不是同类项的是( )A .2与-5B .-0.5xy 2与3x 2yC .-3t 与200tD .ab 2与-8b 2a9.如图,将正方体的平面展开图重新折成正方体后,“会”字对面的字是( )A .秦B .淮C .源D .头10.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°11.化简:35xy xy -的结果是( ) A .2B .2-C .2xyD .2xy -12.如图,数轴上有A ,B ,C ,D 四个点,其中所对应的数的绝对值最大的点是( )A .点AB .点BC .点CD .点D13.如图所示的几何体的左视图是( )A .B .C .D .14.下列计算正确的是( ) A .277a a a += B .22232x y yx x y -= C .532y y -= D .325a b ab += 15.若1x =是方程260x m +-=的解,则m 的值是( )A .﹣4B .4C .﹣8D .8二、填空题16.如图,已知数轴上点A 、B 、C 所表示的数分别为a 、b 、c ,点C 是线段AB 的中点,且2AB =,如果原点O 的位置在线段AC 上,那么|1||1|b c -+-=______.17.下午3点30分时,钟面上时针与分针所成的角等于_____°. 18.若x =-1是关于x 的方程2x +a =1的解,则a 的值为_____. 19.正方体切去一块,可得到如图几何体,这个几何体有______条棱.20.在数轴上到-3的距离为4个单位长度的点表示的数是___.21.若单项式12m a b -与212na b 的和仍是单项式,则m n 的值是______. 22.比较大小:-12____23-(填“>”,“<”或“=”) 23.如图,一副三角尺有公共的顶点A ,则 DAB EAC ∠-∠=________.24.计算:3-|-5|=____________.25.如果1x =是方程240x k +-=的解,那么k 的值是_________三、解答题26.将一副直角三角板按如图1摆放在直线AD 上(直角三角板OBC 和直角三角板MON ,OBC 90∠=,BOC 45∠=,MON 90∠=,MNO 30)∠=,保持三角板OBC 不动,将三角板MON 绕点O 以每秒8的速度顺时针方向旋转t 秒45(0t ).4<<()1如图2,NOD ∠=______度(用含t 的式子表示);()2在旋转的过程中,是否存在t 的值,使NOD 4COM ∠∠=?若存在,请求出t 的值;若不存在,请说明理由.()3直线AD 的位置不变,若在三角板MON 开始顺时针旋转的同时,另一个三角板OBC也绕点O 以每秒2的速度顺时针旋转.①当t =______秒时,COM 15∠=;②请直接写出在旋转过程中,NOD ∠与BOM ∠的数量关系(关系式中不能含t).27.解下列方程:(1)3(1)4(21)8x x --+= (2)12123x x-+-= 28.小丽早上会选择乘坐公共汽车上学,时间紧张的时候,她也会选择“滴滴打车”的方式上学.两种不同乘车方式的价格如下表所示:已知小丽12月份早晨上学乘车共计22次,乘车费共计100元,求小丽12月份早上上学乘坐公共汽车的次数和“滴滴打车”的次数各是多少? 乘车方式 公共汽车 “滴滴打车” 价格(元次)21029.先化简,再求值:()()2222222x xy yxxy y +--+-,其中1x =-,2y =.30.如图,A ,O ,B 三点在同一直线上,∠BOD 与∠BOC 互补. (1)∠AOC 与∠BOD 的度数相等吗,为什么?(2)已知OM 平分∠AOC ,若射线ON 在∠COD 的内部,且满足∠AOC 与∠MON 互余; ①∠AOC =32°,求∠MON 的度数;②试探究∠AON 与∠DON 之间有怎样的数量关系,请写出结论并说明理由.31.某商店以每盏20元的价格采购了一批节能灯,运输过程中损坏了2 盏,然后以每盏25元的价格售完,共获得利润150元.该商店共购进了多少盏节能灯?32.给出定义:我们用(a ,b )来表示一对有理数a ,b ,若a ,b 满足a ﹣b =ab +1,就称(a ,b )是“泰兴数”如2﹣11=233⨯+1,则(2,13)是“泰兴数”.(1)数对(﹣2,1),(5,23)中是“泰兴数”的是 . (2)若(m ,n )是“泰兴数”,求6m ﹣2(2m +mn )﹣2n 的值;(3)若(a ,b )是“泰兴数”,则(﹣a ,﹣b ) “泰兴数”(填“是”或“不是”). 33.已知A 、B 在直线l 上,28AB =,点C 线段AB 的中点,点P 是直线l 上的一个动点. (1)若5BP =,求CP 的长;(2)若M 是线段AP 的中点,N 是BP 的中点,求MN 的长.四、压轴题34.阅读下列材料:根据绝对值的定义,|x| 表示数轴上表示数x 的点与原点的距离,那么,如果数轴上两点P 、Q 表示的数为x 1,x 2时,点P 与点Q 之间的距离为PQ=|x 1-x 2|.根据上述材料,解决下列问题:如图,在数轴上,点A 、B 表示的数分别是-4, 8(A 、B 两点的距离用AB 表示),点M 、N 是数轴上两个动点,分别表示数m 、n.(1)AB=_____个单位长度;若点M 在A 、B 之间,则|m+4|+|m-8|=______; (2)若|m+4|+|m-8|=20,求m 的值;(3)若点M 、点N 既满足|m+4|+n=6,也满足|n-8|+m=28,则m= ____ ;n=______. 35.(阅读理解)如果点M ,N 在数轴上分别表示实数m ,n ,在数轴上M ,N 两点之间的距离表示为MN m n(m n)=->或MN n m(n m)=->或m n -.利用数形结合思想解决下列问题:已知数轴上点A 与点B 的距离为12个单位长度,点A 在原点的左侧,到原点的距离为24个单位长度,点B 在点A 的右侧,点C 表示的数与点B 表示的数互为相反数,动点P 从A 出发,以每秒2个单位的速度向终点C 移动,设移动时间为t 秒.()1点A 表示的数为______,点B 表示的数为______.()2用含t 的代数式表示P 到点A 和点C 的距离:PA =______,PC =______.()3当点P 运动到B 点时,点Q 从A 点出发,以每秒4个单位的速度向C 点运动,Q 点到达C 点后,立即以同样的速度返回,运动到终点A ,在点Q 开始运动后,P 、Q 两点之间的距离能否为2个单位?如果能,请求出此时点P 表示的数;如果不能,请说明理由.36.如图,已知∠AOB =120°,射线OP 从OA 位置出发,以每秒2°的速度顺时针向射线OB 旋转;与此同时,射线OQ 以每秒6°的速度,从OB 位置出发逆时针向射线OA 旋转,到达射线OA 后又以同样的速度顺时针返回,当射线OQ 返回并与射线OP 重合时,两条射线同时停止运动. 设旋转时间为t 秒.(1)当t =2时,求∠POQ 的度数; (2)当∠POQ =40°时,求t 的值;(3)在旋转过程中,是否存在t 的值,使得∠POQ =12∠AOQ ?若存在,求出t 的值;若不存在,请说明理由.37.如图①,点O 为直线AB 上一点,过点O 作射线OC ,将一直角三角板如图摆放(90MON ∠=).(1)若35BOC ∠=,求MOC ∠的大小.(2)将图①中的三角板绕点O 旋转一定的角度得图②,使边OM 恰好平分BOC ∠,问:ON 是否平分AOC ∠?请说明理由.(3)将图①中的三角板绕点O 旋转一定的角度得图③,使边ON 在BOC ∠的内部,如果50BOC ∠=,则BOM ∠与NOC ∠之间存在怎样的数量关系?请说明理由.38.(1)如图,已知点C 在线段AB 上,且6AC cm =,4BC cm =,点M 、N 分别是AC 、BC 的中点,求线段MN 的长度;(2)若点C 是线段AB 上任意一点,且AC a =,BC b =,点M 、N 分别是AC 、BC 的中点,请直接写出线段MN 的长度;(结果用含a 、b 的代数式表示)(3)在(2)中,把点C 是线段AB 上任意一点改为:点C 是直线AB 上任意一点,其他条件不变,则线段MN 的长度会变化吗?若有变化,求出结果.39.尺规作图是指用无刻度的直尺和圆规作图。
苏教版数学七年级上册 期末试卷测试卷附答案
苏教版数学七年级上册 期末试卷测试卷附答案一、选择题1.已知实数a ,b 在数轴上的位置如图,则=a b -( )A .+a bB .a b -+C .-a bD .a b --2.2020的相反数是( ) A .2020B .﹣2020C .12020D .﹣120203.3-的倒数是( ) A .3B .13C .13-D .3-4.下列单项式中,与2a b 是同类项的是( ) A .22a b B .22a b C .2abD .3ab 5.下列各式中与a b c --的值不相等的是( ) A .()a b c -+ B .()a b c -- C .()()a b c -+- D .()()c b a --- 6.将7760000用科学记数法表示为( )A .57.7610⨯B .67.7610⨯C .677.610⨯D .77.7610⨯7.如图,数轴上有A ,B ,C ,D 四个点,其中所对应的数的绝对值最大的点是( )A .点AB .点BC .点CD .点D8.27-的倒数是( ) A .72 B .72-C .27D .27-9.如图,学校(记作A )在蕾蕾家(记作B )南偏西20︒的方向上.若90ABC ∠=︒,则超市(记作C )在蕾蕾家的( )A .北偏东20︒的方向上B .北偏东70︒的方向上C .南偏东20︒的方向上D .南偏东70︒的方向上10.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°40′,∠2的大小是( )A .27°40′B .57°40′C .58°20′D .62°20′11.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n 、m 的大矩形,则图中阴影部分的周长是( )A .6(m ﹣n )B .3(m +n )C .4nD .4m 12.下列合并同类项正确的是( ) A .2x +3x =5x 2B .3a +2b =6abC .5ac ﹣2ac =3D .x 2y ﹣yx 2=013.-5的相反数是( ) A .15B .±5C .5D .-1514.下列单项式中,与2a b 是同类项的是( ) A .22a bB .22a bC .2abD .3ab15.如图,直线a ,b 相交于点O ,若1∠等于36︒,则2∠等于( )A .54︒B .64︒C .144︒D .154︒二、填空题16.若221x x -++= 4,则2247x x -+的值是________.17.一个两位数,个位数字比十位数字大4,且个位数字与十位数字的和为10,则这个两位数为_______.18.点A 在数轴上表示的数是2,3AB -=,则点B 表示的数为__________.19.比较大小:π1-+ _________3-(填“<”或“=”或“>”).20.有一数值转换器,其转换原理如图所示,若开始输入x 的值是9,可发现第1次输出的结果是14,第2次输出的结果是7,第3次输出的结果是12,…,依次继续下去,第2020次输出的结果是______.21.如图,一副三角尺有公共的顶点A ,则 DAB EAC ∠-∠=________.22.在墙上固定一根木棒时,至少需要两根钉子,这其中所体现的“基本事实”是______. 23.已知关于x 的一元一次方程2020342019x a x +=+的解为4x =,那么关于y 的一元一次方程2020(1)34(1)2019y a y -+=-+的解为y =___________. 24.已知1x =-是方程23ax a =-的解,则a =__________.25.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC 的度数是________.三、解答题26.我们知道,任意一个正整数n 都可以进行这样的分解:n p q =⨯(p ,q 是正整数,且p q ≤),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p ×q 是n 的完美分解.并规定:()pF n q=. 例如18可以分解成1×18,2×9或3×6,因为18-1>9-2>6-3,所以3×6是18的完美分解,所以F (18)=3162=. (1)F (13)= ,F (24)= ;(2)如果一个两位正整数t ,其个位数字是a ,十位数字为1b -,交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数为“和谐数”,求所有“和谐数”;(3)在(2)所得“和谐数”中,求F (t )的最大值. 27.计算:(1)25)(277+-()-(-)-;(2)315(2)()3-⨯÷-.28.如图,射线OM 上有三点A 、B 、C ,满足20OA cm =,60AB cm =,BC 10cm =,点P 从点O 出发,沿OM 方向以1/cm s 的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动.(1)若点Q 运动速度为2/cm s ,经过多长时间P 、Q 两点相遇?(2)当2PA PB =时,点Q 运动到的位置恰好是线段OB 的中点,求点Q 的运动速度; (3)设运动时间为xs ,当点P 运动到线段AB 上时,分别取OP 和AB 的中点E 、F ,则2OC AP EF --=____________cm .29.如图,C 为线段AB 上一点,D 在线段AC 上,且23AD AC =,E 为BC 的中点,若6AC =,1BE =,求线段DE 的长.30.在如图所示的方格纸中,点P 是∠AOC 的边OA 上一点,仅用无刻度的直尺完成如下操作:(1)过点P 画OC 的垂线,垂足为点H ; (2)过点P 画OA 的垂线,交射线OC 于点B ;(3)分别比较线段PB 与OB 的大小:PB OB (填“>”“<”或“=”),理由是 . 31.某小组计划做一批“中国结”如果每人做 5 个,那么比计划多了 9 个;如果每人做 4个,那么比 计划少了 15 个.该小组共有多少人?计划做多少个“中国结”? 小明和小红在认真思考后,根据题意分别列出了以下两个不同的方程:①59415x x -=+;②91554y y +-= (1)①中的x 表示 ; ②中的y 表示 .(2)请选择其中一种方法,写出完整的解答过程.32.已知:关于x 的方程(3)2m m x x -+=的解与方程372(1)y y +=--的解相等,求m 的值.33.画图题:已知平面上点A B C D 、、、,用刻度尺按下列要求画出图形:(保留画图痕迹,不要求写画法)(1)画直线BD ,射线 C B(2)连结AD 并延长线段AD 至点 F ,使得DF AD =.四、压轴题34.已知M ,N 两点在数轴上所表示的数分别为m ,n ,且m ,n 满足:|m ﹣12|+(n +3)2=0(1)则m = ,n = ;(2)①情境:有一个玩具火车AB 如图所示,放置在数轴上,将火车沿数轴左右水平移动,当点A 移动到点B 时,点B 所对应的数为m ,当点B 移动到点A 时,点A 所对应的数为n .则玩具火车的长为 个单位长度:②应用:一天,小明问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要40年才出生呢;你若是我现在这么大,我已是老寿星,116岁了!”小明心想:奶奶的年龄到底是多少岁呢?聪明的你能帮小明求出来吗?(3)在(2)①的条件下,当火车AB 以每秒2个单位长度的速度向右运动,同时点P 和点Q 从N 、M 出发,分别以每秒1个单位长度和3个单位长度的速度向左和向右运动.记火车AB 运动后对应的位置为A ′B ′.是否存在常数k 使得3PQ ﹣kB ′A 的值与它们的运动时间无关?若存在,请求出k 和这个定值;若不存在,请说明理由.35.如图,点A 、B 是数轴上的两个点,它们分别表示的数是2-和1. 点A 与点B 之间的距离表示为AB . (1)AB= .(2)点P 是数轴上A 点右侧的一个动点,它表示的数是x ,满足217x x ++-=,求x的值.(3)点C 为6. 若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动.请问:BC AB -的值是否随着运动时间t (秒)的变化而改变? 若变化,请说明理由;若不变,请求其值.36.已知x =﹣3是关于x 的方程(k +3)x +2=3x ﹣2k 的解. (1)求k 的值;(2)在(1)的条件下,已知线段AB =6cm ,点C 是线段AB 上一点,且BC =kAC ,若点D 是AC 的中点,求线段CD 的长.(3)在(2)的条件下,已知点A 所表示的数为﹣2,有一动点P 从点A 开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q 从点B 开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD =2QD ?37.尺规作图是指用无刻度的直尺和圆规作图。
苏教版七年级数学上册期末考试卷【带答案】
苏教版七年级数学上册期末考试卷【带答案】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.用科学记数法表示2350000正确的是()A.235×104B.0.235×107C.23.5×105D.2.35×1062.如图,在OAB和OCD中,AC BD交于点M,连OA OB OC OD OA OC AOB COD,连接,,,,40AMB;③OM平分BOC;④MO 接OM.下列结论:①AC BD;②40平分BMC.其中正确的个数为().A.4 B.3 C.2 D.13.已知x+y=﹣5,xy=3,则x2+y2=()A.25 B.﹣25 C.19 D.﹣194.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B. C. D.5.如图所示,已知∠AOB=64°,OA1平分∠AOB,OA2平分∠AOA1,OA3平分∠AOA2,OA4平分∠AOA3,则∠AOA4的大小为()A .1°B .2°C .4°D .8°6.如图,要把河中的水引到水池A 中,应在河岸B 处(AB ⊥CD )开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是()A .两点之间线段最短B .点到直线的距离C .两点确定一条直线D .垂线段最短7.下列各组线段不能组成三角形的是 ( )A .4cm 、4cm 、5cmB .4cm 、6cm 、11cmC .4cm 、5cm 、6cmD .5cm 、12cm 、13cm8.满足方程组35223x y m x ym的x ,y 的值的和等于2,则m 的值为().A .2B .3C .4D .59.已知23a b (a ≠0,b ≠0),下列变形错误的是()A .23abB .2a=3bC .32b aD .3a=2b10.已知正多边形的一个外角为36°,则该正多边形的边数为().A .12B .10C .8D .6二、填空题(本大题共6小题,每小题3分,共18分)1.16的算术平方根是________.2.式子3x在实数范围内有意义,则 x 的取值范围是________.3.已知80AOB,40BOC,射线OM 是AOB 平分线,射线ON 是BOC 平分线,则MON________ .4.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C ,的位置.若65EFB,则AED 等于________.5.64的立方根是___________.6.若关于x,y的二元一次方程组59x y kx y k的解也是二元一次方程236x y的解,则k的值为____________.三、解答题(本大题共6小题,共72分)1.解方程组:25 342 x yx y2.已知关于x,y的方程组54522x yax by与2180x yax by有相同的解,求a,b的值.3.如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,(1)求证:BE=CF ;(2)当四边形ACDE为菱形时,求BD的长.4.某住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA =13米,且AB⊥BC,求这块草坪的面积.5.“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.6.某市环保局决定购买A、B两种型号的扫地车共40辆,对城区所有公路地面进行清扫.已知1辆A型扫地车和2辆B型扫地车每周可以处理地面垃圾100吨,2辆A型扫地车和1辆B型扫地车每周可以处理垃圾110吨.(1)求A、B两种型号的扫地车每辆每周分别可以处理垃圾多少吨?(2)已知A型扫地车每辆价格为25万元,B型扫地车每辆价格为20万元,要想使环保局购买扫地车的资金不超过910万元,但每周处理垃圾的量又不低于1400吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少资金是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、C4、B5、C6、D7、B8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、22、x≥33、60°或20°4、50°5、26、3 4三、解答题(本大题共6小题,共72分)1、21 xy2、12 ab.3、(1)证明见解析(2)2-14、36平方米5、(1)40;(2)72;(3)280.6、(1)40,30;(2)购买方案见解析,方案一所需资金最少,900万元.。
苏教版七年级数学上册期末测试卷(及答案)
苏教版七年级数学上册期末测试卷(及答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.多项式2mx m -与多项式221x x -+的公因式是( ) A .1x -B .1x +C .21x -D .()21x -2.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( )A .AB =DE B .AC =DF C .∠A =∠D D .BF =EC3.如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A=60°,∠B=40°,则∠ECD 等于( )A .40°B .45°C .50°D .55°4.如图,直线a ,b 被直线c 所截,下列条件中,不能判定a ∥b ( )A .∠2=∠4B .∠1+∠4=180°C .∠5=∠4D .∠1=∠35.如果3ab 2m-1与9ab m +1是同类项,那么m 等于( ) A .2B .1C .﹣1D .06.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3()A.70°B.180°C.110°D.80°7.若关于x的一元一次不等式组11(42)423122x axx⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x≤a,且关于y的分式方程24111y a yy y---=--有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.68.如图是一张直角三角形的纸片,两直角边AC=6 cm、BC=8 cm,现将△ABC 折叠,使点B与点A重合,折痕为DE,则BE的长为()A.4 cm B.5 cm C.6 cm D.10 cm9.若关于x的不等式mx- n>0的解集是15x<,则关于x的不等式()m n x n m>-+的解集是()A.23x>-B.23x<-C.23x<D.23x>10.已知2,1=⎧⎨=⎩xy是二元一次方程组7,{1ax byax by+=-=的解,则a b-的值为A.-1 B.1 C.2 D.3 二、填空题(本大题共6小题,每小题3分,共18分)1.已知5a=2b=10,那么aba b+的值为________.2.珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=__________度.3.一般地,如果()40x a a =≥,则称x 为a 的四次方根,一个正数a 的四次方根有两个.它们互为相反数,记为4a ±,若4410m =,则m =________. 4.如图,直线a ∥b ,且∠1=28°,∠2=50°,则∠ABC =_______.5.如图,在△ABC 中,AF 平分∠BAC ,AC 的垂直平分线交BC 于点E ,∠B=70°,∠FAE=19°,则∠C=______度.6.若实数a 、b 满足a 2b 40+-=,则2a b=_______.三、解答题(本大题共6小题,共72分)1.解方程组:(1)53x y y x +=⎧⎨=-⎩ (2)223346a ba b ⎧+=-⎪⎨⎪-=⎩2.解不等式组:()41710853x x x x ⎧+≤+⎪⎨--<⎪⎩,并写出它的所有非负整数解.58.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:△ADC≌△CEB;(2)当直线MN绕点C旋转到图2的位置时,试问DE、AD、BE的等量关系?并说明理由.4.如图,四边形ABCD中,对角线AC、BD交于点O,AB=AC,点E是BD上一点,且AE=AD,∠EAD=∠BAC,(1)求证:∠ABD=∠ACD;(2)若∠ACB=65°,求∠BDC的度数.5.某学校为了增强学生体质,决定开设以下体育课外活动项目:A:篮球 B:乒乓球C:羽毛球 D:足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)甲乙丙丁甲﹣﹣﹣(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)﹣﹣﹣(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)﹣﹣﹣(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)﹣﹣﹣6.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2017年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表.若2017年5月份,该市居民甲用电100千瓦时,交电费60元.(1)上表中,a=________,若居民乙用电200千瓦时,应交电费________元;(2)若某用户某月用电量超过300千瓦时,设用电量为x千瓦时,请你用含x 的代数式表示应交的电费;(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月的平均电价不超过0.62元/千瓦时?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、C4、D5、A6、C7、B8、B9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、12、203、10±4、78°5、246、1三、解答题(本大题共6小题,共72分)1、(1)41xy=⎧⎨=⎩;(2)23ab=-⎧⎨=-⎩2、不等式组的所有非负整数解为:0,1,2,3.3、(1)略;(2)DE=AD-BE,理由略4、(1)略;(2) 50°5、解:(1)200.(2)补全图形,如图所示:(3)列表如下:∵所有等可能的结果为12种,其中符合要求的只有2种,∴恰好选中甲、乙两位同学的概率为21P126==.6、(1)0.6;122.5;(2)(0.9x-82.5)元;(3)250千瓦.。
苏教版七年级数学上册期末测试卷(及答案)
苏教版七年级数学上册期末测试卷(及答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2> B .x 3> C .3x 2< D .x 3<3.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .4 4.一5的绝对值是( )A .5B .15C .15-D .-55.若关于x 的不等式组()2213x x a x x <⎧-⎪⎨-≤⎪⎩恰有3个整数解,则a 的取值范围是( )A .102a ≤<B .01a ≤<C .102a -<≤D .10a -≤<6.下列说法中,错误的是( )A .不等式x <5的整数解有无数多个B .不等式x >-5的负整数解集有有限个C .不等式-2x <8的解集是x <-4D .-40是不等式2x <-8的一个解7.把1a- )A.a-B.a--C.a D.a-8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,9.设42-的整数部分为a,小数部分为b,则1ab-的值为()A.2-B.2C.212+ D.212-10.一个正方形的边长如果增加2cm,面积则增加32cm2,则这个正方形的边长为()A.5cm B.6cm C.7cm D.8cm二、填空题(本大题共6小题,每小题3分,共18分)1.已知a m=3,a n=2,则a2m﹣n的值为________.2.若关于x、y的二元一次方程组3526x myx ny-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩,则关于a、b的二元一次方程组3()()=52()()6a b m a ba b n a b+--⎧⎨++-=⎩的解是________.3.已知x,y都是实数,且y=3x-+3x-+4,则y x=________. 4.将命题“同角的余角相等”,改写成“如果…,那么…”的形式_____.5.如图,已知C为线段AB的中点,D在线段CB上.若DA=6,DB=4,则CD=_____.6.关于x 的分式方程721511x m x x -+=--有增根,则m 的值为__________. 三、解答题(本大题共6小题,共72分)1.解不等式组:3(2)421152x x x x --≥⎧⎪-+⎨<⎪⎩,并将解集在数轴上表示出来.2.先化简,再求值: ()()()()24222x x y x y x y x y -++---,其中2x =-, 12y3.如图,△ABC 与△DCB 中,AC 与BD 交于点E ,且∠A=∠D ,AB=DC(1)求证:△ABE ≌DCE ;(2)当∠AEB=50°,求∠EBC 的度数.4.如图,已知∠A=∠ADE.(1)若∠EDC=3∠C ,求∠C 的度数;(2)若∠C=∠E.求证:BE∥CD.5.某软件科技公司20人负责研发与维护游戏、网购、视频和送餐共4款软件.投入市场后,游戏软件的利润占这4款软件总利润的40%.如图是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.根据以上信息,网答下列问题(1)直接写出图中a,m的值;(2)分别求网购与视频软件的人均利润;(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.6.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、A5、A6、C7、B8、D9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、4.52、3212 ab⎧=⎪⎪⎨⎪=-⎪⎩3、644、如果两个角是同一个角的余角,那么这两个角相等5、16、4.三、解答题(本大题共6小题,共72分)1、-7<x≤1.数轴见解析.2、1 3 23、见解析(2)∠EBC=25°4、(1)45°;(2)详略.5、(1)a=20,m=960;(2)网购软件的人均利润为160元/人,视频软件的人均利润为140元/人;(3)安排9人负责网购、安排1人负责视频可以使总利润增加60万元.6、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年江苏省苏州市七年级(上)期末数学试卷一、选择题:(本大题共8小题,每小题3分,共24分)1.(3分)﹣4的倒数是()A.B.﹣C.4 D.﹣42.(3分)苏州地铁4号线,2017年上半年通车试运营,主线全程长约为42000m,北起相城区荷塘月色公园,南至吴江同津大道站,共设31站.将42000用科学记数法表示应为()A.0.42×105B.4.2×104C.42×103 D.420×1023.(3分)如图是一些完全相同的小正方体搭成的几何体的三视图.这个几何体只能是()A.B.C.D.4.(3分)下列不是同类项的是()A.﹣ab3与b3a B.12与0 C.2xyz与﹣zyx D.3x2y与﹣6xy25.(3分)实数a、b在数轴上的位置如图,则化简|a|+|b|的结果为()A.a﹣b B.a+b C.﹣a+b D.﹣a﹣b6.(3分)下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.7.(3分)下列说法中正确的是()A.过一点有且仅有一条直线与已知直线平行B.若AC=BC,则点C是线段AB的中点C.相等的角是对顶角D.两点之间的所有连线中,线段最短8.(3分)如图,正方形ABCD的边长为1,电子蚂蚁P从点A分别以1个单位/秒的速度顺时针绕正方形运动,电子蚂蚁Q从点A以3个单位/秒的速度逆时针绕正方形运动,则第2018次相遇在()A.点A B.点B C.点C D.点D二、填空题:(本大题共10小题,每空2分,共20分)9.(2分)单项式﹣的系数是,次数是.10.(2分)计算33°52′+21°54′=.11.(2分)下列一组数:﹣8,2.6,﹣|﹣3|,﹣π,﹣,0.101001…(每两个1中逐次增加一个0)中,无理数有个.12.(2分)下午3点30分时,钟面上时针与分针所成的角等于°.13.(2分)|x﹣3|+(y+2)2=0,则y x为.14.(2分)若如图的平面展开图折叠成正方体后,相对面上两个数都互为相反数,则a+b= .15.(4分)若a2﹣3b=4,则6b﹣2a2+2018= .16.(2分)关于x的方程7﹣2k=2(x+3)的解为负数,则k的取值范围是.17.(2分)如图,将矩形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF= °.18.(2分)若关于x的不等式2x﹣a≤0的正整数解是1、2、3,则a的取值范围是.三、解答题(本大题共9小题,共56分)19.(6分)计算:(1)(﹣+﹣)×(﹣24);(2)﹣14+2×(﹣3)2﹣5÷×220.(6分)解方程:(1)2(x+3)=5x;(2)2﹣.21.(6分)解下列不等式(组):(1)2(x+3)>4x﹣(x﹣3)(2)22.(4分)先化简,再求值:﹣2x2y﹣3(2xy﹣x2y)+4xy,其中x=﹣1,y=223.(4分)在如图所示的方格纸中,点A、B、C均在格点上.(1)画线段BC,过点A作BC的平行线AD;(2)过点C作AD的垂线,垂足为E;(3)若BC=3,则点B到直线AD的距离为.24.(6分)汽车从甲地到乙地,若每小时行驶45km,则要比原计划延误半小时到达;若每小时行驶50km,则可以比原计划提前半小时到达.求甲、乙两地的路程及原计划的时间.25.(6分)如图,已知B、C两点把线段AD分成2:4:3的三部分,M是AD的中点,若CD=6,求:(1)线段MC的长.(2)AB:BM的值.26.(8分)已知如图,直线AB、CD相交于点O,∠COE=90°.(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数;(3)在(2)的条件下,过点O作OF⊥AB,请直接写出∠EOF的度数.27.(8分)如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=135°,将一个含45°角的直角三角尺的一个顶点放在点O处,斜边OM与直线AB重合,另外两条直角边都在直线AB的下方.(1)将图1中的三角尺绕着点O逆时针旋转90°,如图2所示,此时∠BOM= ;在图2中,OM是否平分∠CON?请说明理由;(2)紧接着将图2中的三角板绕点O逆时针继续旋转到图3的位置所示,使得ON在∠AOC 的内部,请探究:∠AOM与∠CON之间的数量关系,并说明理由;(3)将图1中的三角板绕点O按每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为(直接写出结果).2017-2018学年江苏省苏州市七年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题共8小题,每小题3分,共24分)1.(3分)﹣4的倒数是()A.B.﹣C.4 D.﹣4【解答】解:﹣4的倒数是﹣.故选:B.2.(3分)苏州地铁4号线,2017年上半年通车试运营,主线全程长约为42000m,北起相城区荷塘月色公园,南至吴江同津大道站,共设31站.将42000用科学记数法表示应为()A.0.42×105B.4.2×104C.42×103 D.420×102【解答】解:将42000用科学记数法表示为:4.2×104.故选:B.3.(3分)如图是一些完全相同的小正方体搭成的几何体的三视图.这个几何体只能是()A.B.C.D.【解答】解:由俯视图易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5个正方体组成,由主视图可知,一共有前后2排,第一排有3个正方体,第二排有2层位于第一排中间的后面;故选A.4.(3分)下列不是同类项的是()A.﹣ab3与b3a B.12与0 C.2xyz与﹣zyx D.3x2y与﹣6xy2【解答】解:A、所含字母相同且相同字母的指数也相同,故A不符合题意;B、常数也是同类项,故B不符合题意;C、所含字母相同且相同字母的指数也相同,故C不符合题意;D、相同字母的指数不同不是同类项,故D符合题意;故选: D.5.(3分)实数a、b在数轴上的位置如图,则化简|a|+|b|的结果为()A.a﹣b B.a+b C.﹣a+b D.﹣a﹣b【解答】解:由图可知,a<0,b>0,所以,|a|+|b|=﹣a+b.故选C.6.(3分)下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.【解答】解:线段AD的长表示点A到直线BC距离的是图D,故选D.7.(3分)下列说法中正确的是()A.过一点有且仅有一条直线与已知直线平行B.若AC=BC,则点C是线段AB的中点C.相等的角是对顶角D.两点之间的所有连线中,线段最短【解答】解:A、过直线外一点有且仅有一条直线与已知直线平行,故此选项错误;B、若AC=BC,则点C是线段AB的中点,说法错误,应是若AC=BC=AB,则点C是线段AB 的中点,故此选项错误;C、相等的角是对顶角,说法错误,应是对顶角相等,故此选项错误;D、两点之间的所有连线中,线段最短,说法正确,故此选项正确;故选:D.8.(3分)如图,正方形ABCD的边长为1,电子蚂蚁P从点A分别以1个单位/秒的速度顺时针绕正方形运动,电子蚂蚁Q从点A以3个单位/秒的速度逆时针绕正方形运动,则第2018次相遇在()A.点A B.点B C.点C D.点D【解答】解:由题意可得,第一次相遇在点D,第二次相遇在点C,第三次相遇在点B,第四次相遇在点A,第五次相遇在点D,……,每四次一个循环,∵2018÷4=504…2,∴第2018次相遇在点C,故选C.二、填空题:(本大题共10小题,每空2分,共20分)9.(2分)单项式﹣的系数是﹣,次数是 3 .【解答】解:单项式﹣的系数是﹣,次数是3.故答案为:﹣,3.10.(2分)计算33°52′+21°54′=55°46′.【解答】解:33°52′+21°54′=54°106′=55°46′.11.(2分)下列一组数:﹣8,2.6,﹣|﹣3|,﹣π,﹣,0.101001…(每两个1中逐次增加一个0)中,无理数有 2 个.【解答】解:﹣8,2.6,﹣|﹣3|,﹣是有理数,﹣π,0.101001…(每两个1中逐次增加一个0)是无理数,故答案为:2.12.(2分)下午3点30分时,钟面上时针与分针所成的角等于75 °.【解答】解;3点30分时,它的时针和分针所成的角是30°×2.5=75°,故答案是:75.13.(2分)|x﹣3|+(y+2)2=0,则y x为﹣8 .【解答】解:根据题意得,x﹣3=0,y+2=0,解得x=3,y=﹣2,所以y x=(﹣2)3=﹣8.故答案为:﹣8.14.(2分)若如图的平面展开图折叠成正方体后,相对面上两个数都互为相反数,则a+b= ﹣4 .【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“a”与面“1”相对,面“b”与面“3”相对,“2”与面“﹣2”相对.因为相对面上两个数都互为相反数,所以a=﹣1,b=﹣3,故a+b=﹣4.15.(4分)若a2﹣3b=4,则6b﹣2a2+2018= 2010 .【解答】解:当a2﹣3b=4时,原式=﹣2(a2﹣3b)+2018=﹣8+2018=2010故答案为:201016.(2分)关于x的方程7﹣2k=2(x+3)的解为负数,则k的取值范围是k>0.5 .【解答】解:解关于x的方程7﹣2k=2(x+3),得:x=,根据题意知<0,解得:k>0.5,故答案为:k>0.5.17.(2分)如图,将矩形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF= 45 °.【解答】解:∵四边形ABCD是矩形,根据折叠可得∠ABE=∠EBD=∠ABD,∠DBF=∠FBC=∠DBC,∵∠ABE+∠EBD+∠DBF+∠FBC=∠ABC=90°,∴∠EBD+∠DBF=45°,即∠EBF=45°,故答案为:45°.18.(2分)若关于x的不等式2x﹣a≤0的正整数解是1、2、3,则a的取值范围是6≤a <8 .【解答】解:解不等式2x﹣a≤0,得:x≤,∵其正整数解是1、2、3,所以3≤<4,解得6≤a<8,故答案为:6≤a<8三、解答题(本大题共9小题,共56分)19.(6分)计算:(1)(﹣+﹣)×(﹣24);(2)﹣14+2×(﹣3)2﹣5÷×2【解答】解:(1)原式=18﹣4+9=23;(2)原式=﹣1+18﹣20=﹣3.20.(6分)解方程:(1)2(x+3)=5x;(2)2﹣.【解答】解:(1)2(x+3)=5x;2x+6=5x2x﹣5x=﹣6﹣3x=﹣6x=2;(2)2﹣.12﹣2(2x+1)=3(1+x)12﹣4x﹣2=3+3x﹣4x﹣3x=3﹣12+2﹣7x=﹣7x=1.21.(6分)解下列不等式(组):(1)2(x+3)>4x﹣(x﹣3)(2)【解答】解:(1)去括号,得:2x+6>4x﹣x+3,移项,得:2x﹣4x+x>3﹣6,合并同类项,得:﹣x>﹣3,系数化为1,得:x<3;[](2),解不等式①,得:x<2,解不等式②,得:x≥﹣1,则不等式组的解集为﹣1≤x<2.22.(4分)先化简,再求值:﹣2x2y﹣3(2xy﹣x2y)+4xy,其中x=﹣1,y=2 【解答】解:原式=﹣2x2y﹣6xy+3x2y+4xy=x2y﹣2xy,当x=﹣1、y=2时,原式=(﹣1)2×2﹣2×(﹣1)×2=2+4[]=6.23.(4分)在如图所示的方格纸中,点A、B、C均在格点上.(1)画线段BC,过点A作BC的平行线AD;(2)过点C作AD的垂线,垂足为E;(3)若BC=3,则点B到直线AD的距离为 3 .【解答】解:(1)画段BC,直线AD如图所示;(2)垂线段CE如图所示(3)若BC=3,则点B到直线AD的距离为3.理由:四边形ABCE是正方形,∴AB=BC=3,∴点B到直线AD的距离为3,故答案为3.24.(6分)汽车从甲地到乙地,若每小时行驶45km,则要比原计划延误半小时到达;若每小时行驶50km,则可以比原计划提前半小时到达.求甲、乙两地的路程及原计划的时间.【解答】解:设原计划x小时到达,根据题意得:45(x+0.5)=50(x﹣0.5),解得:x=9.5,∴45(x+0.5)=45×(9.5+0.5)=450.答:甲、乙两地的路程为450千米,原计划用时9.5小时.25.(6分)如图,已知B、C两点把线段AD分成2:4:3的三部分,M是AD的中点,若CD=6,求:(1)线段MC的长.(2)AB:BM的值.【解答】解:(1)由题意可知:AB:BC:CD=2:4:3∴CD=AD∴AD=18,∵M是AD的中点,∴MD=AD=9,∴MC=MD﹣CD=3(2)AB=AD=4,BC=AD=8,∴BM=BC﹣MC=8﹣3=5,∴AB:BM=4:526.(8分)已知如图,直线AB、CD相交于点O,∠COE=90°.(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数;(3)在(2)的条件下,过点O作OF⊥AB,请直接写出∠EOF的度数.【解答】解:(1)∵∠AOC=36°,∠COE=90°,∴∠BOE=180°﹣∠AOC﹣∠COE=54°;(2)∵∠BOD:∠BOC=1:5,∴∠BOD=180°×=30°,∴∠AOC=30°,∴∠AOE=30°+90°=120°;(3)如图1,∠EOF=120°﹣90°=30°,或如图2,∠EOF=360°﹣120°﹣90°=150°.故∠EOF的度数是30°或150°.27.(8分)如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=135°,将一个含45°角的直角三角尺的一个顶点放在点O处,斜边OM与直线AB重合,另外两条直角边都在直线AB的下方.(1)将图1中的三角尺绕着点O逆时针旋转90°,如图2所示,此时∠BOM= 90°;在图2中,OM是否平分∠CON?请说明理由;(2)紧接着将图2中的三角板绕点O逆时针继续旋转到图3的位置所示,使得ON在∠AOC 的内部,请探究:∠AOM与∠CON之间的数量关系,并说明理由;(3)将图1中的三角板绕点O按每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为 4.5秒或40.5秒(直接写出结果).【解答】解:(1)如图2,∠BOM=90°,OM平分∠CON.理由如下:∵∠BOC=135°,∴∠MOC=135°﹣90°=45°,而∠MON=45°,∴∠MOC=∠MON;故答案为90°;(2)∠AOM=∠CON.理由如下:如图3,∵∠MON=45°,∴∠AOM=45°﹣∠AON,∵∠AOC=45°,∴∠NOC=45°﹣∠AON,∴∠AOM=∠CON;(3)T=×45°÷5°=4.5(秒)或t=(180°+22.5°)÷5°=40.5(秒).故答案为90°;4.5秒或40.5秒.。