工程数学习题集 复变函数 积分变换

合集下载

复变函数积分变换复习题

复变函数积分变换复习题

复变函数及拉普拉斯变换复习题一、选择题 1.复数z=1625825-i 的辐角为( )02-4 A.arctan 12B.-arctan12 C.π-arctan 12D. π+arctan122.方程Rez 2=1所表示的平面曲线为( ) A.圆 B.直线C.椭圆D.双曲线3.复数z=--355(cossin )ππi 的三角表示式为( ) A.-+34545(cos sin )ππiB.34545(cos sin )ππ-iC. 34545(cos sin )ππ+iD.--34545(cos sin )ππi4.设z=cosi ,则( )A.Imz=0B.Rez=πC.|z|=0D.argz=π 5.复数e 3+i 所对应的点在( ) A.第一象限 B.第二象限 C.第三象限D.第四象限6.设w=Ln(1-i),则Imw 等于( ) A.-π4B.2401k k ππ-=±⋅⋅⋅,,, C.π4D.2401k k ππ+=±⋅⋅⋅,,, 7.函数w=z 2把Z 平面上的扇形区域:0<argz<π3,0<|z|<2映射成W 平面上的区域( ) A.0<argw<23π,0<|w|<4 B.0<argw<π3,0<|w|<4 C.0<argw<23π,0<|w|<2D.0<argw<π3,0<|w|<2 8.若函数f(z)在正向简单闭曲线C 所包围的区域D 内解析,在C 上连续,且z=a 为D 内任一点,n 为正整数,则积分f z z a dz n C ()()-+⎰1等于( )A.211πin f a n ()!()()++B.2πi n f a !()C.2πif a n ()()D.2πi n f a n !()()9.设C 为正向圆周|z+1|=2,n 为正整数,则积分dz z i n C()-+⎰1等于( )A.1B.2πiC.0D.12πi10.设C 为正向圆周|z|=1,则积分dzz C ||⎰等于( ) A.0 B.2πi C.2πD.-2π11.设函数f z e d z()=⎰ξξξ0,则f(z)等于( )A.ze z +e z +1B.ze z +e z -1C.-ze z +e z -1D.ze z -e z +112.设积分路线C 是由点z=-1到z=1的上半单位圆周,则z z dz C +⎰12等于( )A.2+πiB.2-πiC.--2πiD.-+2πi13.下列积分中,积分值不为零的是( ) A.()z z dz C323++⎰,其中C 为正向圆周|z -1|=2B.e dz z C ⎰,其中C 为正向圆周|z|=5C.zzdz C sin ⎰,其中C 为正向圆周|z|=1 D.cos zz dz C -⎰1,其中C 为正向圆周|z|=2 14.复数方程z=2+θi e (θ为实参数,0≤θ<2π)所表示的曲线为( )04-4 A .直线 B .圆周 C .椭圆D .抛物线15.已知4z arg 2π=,则argz=( ) A .8πB .4π C .2πD .π16.Re(cosi)= ( ) A .2e e 1-+B .2e e 1--C .2e e 1+--D .2e e 1--17.设f(z)=(1-z)e -z ,则)z (f '=( )A .(1-z)e -zB .(z -1)e -zC .(2-z)e -zD .(z -2)e -z18.设e z =i 31+,则Imz 为( )A .ln2B .32π C .2k π,k=1,0±…D .3π+2k π,k=0, 1±… 19.设C 为正向圆周|z|=1,则⎰=C dz z zcos ( ) A .i πB .2i πC .0D .120.设C 为正向圆周|z -1|=1,则积分dz )1z (2z 3z 5C32⎰-+-等于( )A .5i πB .7i πC .10i πD .20i π21.设C 为正向圆周|ξ|=1.则当|z|>1时,f(z)==-ξ-ξξπ⎰C3)z )(2(d i21( )A .0B .1C .3)2z (2-D .3)2z (2--22.设z=3+4i,,则Re z 2=( )05-4 A .-7B .9C .16D .2523.下列复数中,使等式z1=-z 成立的是( ) A .z=e 2πiB .z=e πiC .z=i2e π-D .z=i 43e π24.设0<t ≤2π,则下列方程中表示圆周的是( ) A .z=(1+i)tB .z=e it +2iC .z=t+tiD .z=2cost+i3sint25.下列区域为有界单连通区域的是( ) A .0<|z-i|<1B .0<Imz<πC .|z-3|+|z+3|<12D .0<argz<43π26.若f(z)=u+iv 是复平面上的解析函数,则f '(z)=( )A .y u i x u ∂∂+∂∂B .x v i y v ∂∂+∂∂C .xv i x u ∂∂-∂∂ D .xvi y v ∂∂-∂∂ 27.设f(z)=⎪⎩⎪⎨⎧≠=-0z ,ze 0z ,A 1z 在整个复平面上解析,则常数A=( )A .0B .e -1C .1D .e28.设f(z)=ax+y+i(bx+y)是解析函数,则实常数a,b 为( ) A .a=-1,b=1 B .a=1, b=1 C .a=-1,b=-1D .a=1,b=-129.设z 为复数,则e -iz =( ) A .cosz+isinzB .sinz+icoszC .cosz-isinzD .sinz-icosz 30.设f(z)和g(z)在有向光滑曲线C 上连续,则下列式子错误..的是( ) A .⎰⎰=zCdz )z (f )z (g dz )z (f )z (gB .⎰⎰--=CC ,dz )z (f dz )z (f 其中C -为C 的反向曲线C .⎰⎰⎰±=±CCCdz )z (g dz )z (f dz ))z (g )z (f (D .⎰⎰=CCdz )z (f 3dz )z (f 331.设C 为从-I 到I 的左半单位圆周,则⎰=Cdz |z |( )A .iB .2iC .-iD .-2i 32. 设C 为正向圆周|z|=2, 则下列积分值不为..0的是( ) A .⎰-C dz 1z zB .⎰C 3zdz cos zC .⎰C dz zz sinD .⎰-C zdz 3z e 33.设D 是单连通区域,C 是D 内的正向简单闭曲线,则对D 内的任意解析函数f(z)恒有( )A .f(z)=⎰ζ-ζζπC d z )(f i 21, z 在C 的外部 B .f (n)(z)=⎰ζ-ζζπ+C 1n d )z ()(f i 21,z 在C 的内部,n ≥2 C .f (n)(z)=⎰ζ-ζζπC n d )z ()(f i 2!n ,z 在C 的内部,n ≥2 D .f (n)(z)=⎰ζ-ζζπ+C 1n d )z ()(f i 2!n ,z 在C 的内部,n ≥2 34.设z 为非零复数,a ,b 为实数,若ib a zz+=_,则a 2+b 2的值( )08-4 A .等于0 B .等于1 C .小于1D .大于135.设2,3z w i z =+=,则( ) A .3arg π=w B .6arg π=wC .6arg π-=wD .3arg π-=w36.=i 2ln ( ) A .2ln B .i 22ln π+C .i 22ln π-D .i i 2Arg 2ln +37.设C 为正向圆周|z |=1,则dz z C⎰=( )A .i π6B .i π4C .i π2D .038.设C 为正向圆周|z -1|=2,则dz z e zC2-⎰=( ) A .e 2 B .i e 22π C .i e 2πD .i e 22π-39.设C 为正向圆周|z |=2,则dz z e z zC4)1(++⎰=( ) A .i e3π B .e6πC .ei π2D .i e 3π 40.设z =1-i ,则Im(21z)=( )09-4 A .-1 B .-21 C .21 D .141.复数z =ii-+23的幅角主值是( ) A .0 B .4π C .2π D .43π 42.设n 为整数,则Ln (-ie )=( )A .1-2πiB .)22(πn π-iC .1+)i π(n π22-D .1+i π(n π)22+43.设z =x +iy .若f (z )=my 3+nx 2y +i (x 3-3xy 2)为解析函数,则( ) A .m =-3,n =-3 B .m =-3,n =1 C .m =1,n =-3 D .m =1,n =144.积分⎰=2i iπz dz e ( )A .)1(1i +πB .1+iC .πi2D .π245.设C 是正向圆周,11=-z 则⎰-C dz z z 1)3/sin(2π=( ) A .i π23- B .i π3- C .i π43 D .i π2346.设C 是正向圆周3=z ,则⎰-Cdz z z 3)2(sin π=( ) A .i π2- B .i π- C .i πD .2i π47.拉普拉斯变换()[]()dt e t f t f L st ⎰=+∞-0中的f(t)的自变量的范围是 ( )(A )()+∞,0 (B )[)+∞,0 (C )()+∞∞-, (D )()0,∞-48.拉普拉斯变换()()dt e t f s F st ⎰=+∞-0中的参数s 是 ( )(A ) 实变数 (B )虚变数 (C )复变数 (D )有理数49.若()[]()s F t f L =,那么()[]=-t f e L at ( )(A )()a s F - (B)()a s F + (C)()e s F as - (D)()a s F s+150.若t ≥0时函数f(t)有拉氏变换()[]1=t f L ,则 ( )(A )()()t u t f = (B )()t t f = (C )()()t t f δ= (D )()1=t f 51.若()[]()s F t f L =,那么()[]=+a t f L ( )(A )()s F e as - (B )()s F e as (C )()a s F e as -- (D )()a s F e as +52.若()[]()s F t f L =,那么()=⎥⎦⎤⎢⎣⎡t f t L 1( )(A )()s F '- (B )()s F s 1(C )()ds s F s ⎰+∞ (D )()ds s F s ⎰053.若()[]()s F t f L =,那么()[]='t f L ( )(A )()s F ' (B )()s sF (C )()s F s ' (D )()()0f s sF -54.若()[]()s F t f L =,那么()=⎥⎦⎤⎢⎣⎡⎰dt t f L t 0 ( ) (A )()s F s 1(B )()ds s F s ⎰+∞ (C )()ds s F s ⎰0(D )()s F s e -55.若()[]()s F t f L =,当0>a 时,那么()[]=at f L ( )(A )()s F a 1 (B )⎪⎭⎫ ⎝⎛a s F a 1 (C )⎪⎭⎫⎝⎛a s aF (D )()a s F - 56.若()[]()s F t f L =,且()()000='=f f ,那么()[]=''t f L ( )(A )()s F s ' (B )()s F '' (C )()s F s 2 (D )()s F s '2 二、填空题1.复数z=4+48i 的模|z|= .2.设z=(1+i)100,则Imz= .3.设z=e 2+i ,则argz= .4.f(z)=z 2的可导处为 . 5.方程lnz=π3i 的解为 . 6.设C 为正向圆周|z|=1,则()1zz dz C +=⎰. 7.设C 为正向圆周|z -i|=12,则积分e z z i dz z Cπ()-=⎰2.8.设C 为正向圆周|ξ|=2,f(z)=sinπζζζ3-⎰zd C,其中|z|<2,则'=f ()1 . 9.设i z 101103+-=,则=_z ____________.10.方程i z 31ln π+=的解为____________.11.设C 为从i 到1+i 的直线段,则=⎰zdz CRe ____________.12.设C 为正向单位圆周在第一象限的部分,则积分=⎰dz z z C 3_)(____________.13.设C 为正向圆周|z |=2,则⎰=-Cdz z z 32)2(cos π____________.14.复数1i --的指数形式为__________.15.设z =x +iy 满足x -1+i (y +2)=(1+i )(1-i ),则z =__________. 16.区域0<arg z<4π在映射w =z 3下的像为__________.17.设C 为正向圆周,2=z 则⎰=-C zdz z e 12__________. 18.若z 1=e 1+i π,z 2=3+i ,则z 1·z 2=________.19.若cosz=0,则z=________.20.设f ′(z)=⎰==ζ<-ζζζL )z (f L )|z (|,则|:|, 55d ζz)( cos e 2________. 21.在复数域内,方程cosz=0的全部解为 。

2019年4月自考工程数学—复变函数与积分变换考前试题和答案02199

2019年4月自考工程数学—复变函数与积分变换考前试题和答案02199

2019年4月自考《工程数学—复变函数与积分变换》考前试题和答案02199一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

第1题【正确答案】 B【你的答案】本题分数2分第2题【正确答案】 C【你的答案】本题分数2分第3题A. 解析的B. 可导的C. 不可导的D. 即不解析也不可导【正确答案】 B【你的答案】本题分数2分第4题复数-1+i的模是()【正确答案】 D【你的答案】本题分数2分第5题【正确答案】 D【你的答案】本题分数2分第6题【正确答案】 D【你的答案】本题分数2分第7题函数f(t)=tcoskt的拉氏变换为()【正确答案】 B【你的答案】本题分数2分第8题 2-i的模是()【正确答案】 D【你的答案】本题分数2分第9题A. 等于0B. 等于1C. 等于iD. 不存在【正确答案】 C【你的答案】本题分数2分第10题【正确答案】 B二、填空题(本大题共6小题,每小题2分,共12分)请在每小题的空格中填上正确答案。

错填、不填均无分。

___第1题题中横线处答案为:【正确答案】【你的答案】修改分数本题分数2分你的得分___第2题题中横线处答案为:【正确答案】 1/asinat【你的答案】本题分数2分修改分数你的得分第3题 |z-2i|=|z+2|所表示的曲线的直角坐标方程是___.【正确答案】 x=-y【你的答案】修改分数本题分数2分你的得分___第4题题中横线处答案为:【正确答案】【你的答案】修改分数本题分数2分你的得分第5题题中横线处答案为:___【正确答案】 -4πi【你的答案】修改分数本题分数2分你的得分___第6题题中横线处答案为:【正确答案】三、计算题(本大题共8小题,共52分)第1题【正确答案】【你的答案】本题分数6分你的得分修改分数第2题【正确答案】【你的答案】本题分数6分你的得分修改分数第3题【正确答案】【你的答案】本题分数6分你的得分修改分数第4题【正确答案】【你的答案】本题分数6分你的得分修改分数第5题【正确答案】【你的答案】本题分数6分你的得分修改分数第6题【正确答案】【你的答案】本题分数6分你的得分修改分数第7题【正确答案】【你的答案】本题分数6分你的得分修改分数第8题【正确答案】【你的答案】四、综合题(下列3个小题中,第1题必做,第2、3题中只选做一题。

工程数学习题集复变函数积分变换

工程数学习题集复变函数积分变换

⼯程数学习题集复变函数积分变换第1次复变函数(1)⼀、填空题。

1. 设(1)(2)(3)(3)(2)i i i z i i +--=++,则z =__________2.设z =3arg()4z i π-=,则z=________________ 3. 不等式522<++-z z 所表⽰的区域是曲线_______________的内部。

4. 复数i 31-的三⾓表达式为⼆、请计算i +1的值。

三、已知21z z 和是两个复数,证明)Re(2212221221z z z z z z ++=+四、下列坐标变换公式写成复数形式; 1)平移公式:1111x x a y y b =+??=+?,2)旋转公式:1111cos sin sin cos x x y y x y αααα=-??=+?五、指出下列各题中点z 的轨迹或所在范围,并作图。

1)56z -=; 2)21z i +≥;3)314z z +++=; 4)312z z -≥-六、将下列⽅程(t 为实参数)给出的曲线⽤⼀个实直⾓坐标⽅程表出: 1)(1)z t i =+; 2)t ib t a z sin cos += (b a ,为实常数)3)22i z t t=+; 4) it it z ae be -=+第2次复变函数(2)⼀、填空题1. 241lim (12)z iz z →+++=________________2. 由映射2)(z z f =得到的两个⼆元实函数=),(y x u =),(y x v .3. 函数zzz f =)( 在0→z 时极限为 4. 已知映射3z =ω, 则点i z =在该映射下在ω平⾯的象为⼆、对于映射11()2w z z=+,求出圆周|z|=4的像。

三、函数1w z=把下列z 平⾯上的曲线映射成w 平⾯上怎样的曲线? 1)224x y +=; 2) y x =;3) 1x =; 4) 22(1)1x y -+=.四、设函数()f z 在0z 连续且0()0f z ≠,那么可找到0z 的⼩邻域,在这邻域内()0f z ≠。

复变函数与积分变换五套试题及答案

复变函数与积分变换五套试题及答案

复变函数与积分变换试题(一)一、填空(3分×10)1.的模 ,幅角 。

)31ln(i --2.-8i 的三个单根分别为: ,,。

3.Ln z 在 的区域内连续。

4.的解极域为:。

z z f =)(5.的导数。

xyi y x z f 2)(22+-==')(z f 6.。

=⎥⎦⎤⎢⎣⎡0,sin Re 3z z s 7.指数函数的映照特点是:。

8.幂函数的映照特点是:。

9.若=F [f (t )],则= F 。

)(ωF )(t f )][(1ω-f 10.若f (t )满足拉氏积分存在条件,则L [f (t )]=。

二、(10分)已知,求函数使函数为解析函222121),(y x y x v +-=),(y x u ),(),()(y x iv y x u z f +=数,且f (0)=0。

三、(10分)应用留数的相关定理计算⎰=--2||6)3)(1(z z z z dz四、计算积分(5分×2)1.⎰=-2||)1(z z z dz2. C :绕点i 一周正向任意简单闭曲线。

⎰-c i z z3)(cos 五、(10分)求函数在以下各圆环内的罗朗展式。

)(1)(i z z z f -=1.1||0<-<i z 2.+∞<-<||1i z 六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。

)(0t t -δo iwt e -(2))(2ωπδ=⎰∞+∞-ω-dt e t i 七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0的解y (t )。

⎪⎩⎪⎨⎧='+=+'+='++'0401z y z y x z y x 八、(10分)就书中内容,函数在某区域内解析的具体判别方法有哪几种。

复变函数与积分变换试题答案(一)一、1., 2.-i 2i -i22942ln π+ππk arctg 22ln 32+-333.Z 不取原点和负实轴 4. 空集5.2z 6.07.将常形域映为角形域8.角形域映为角形域9.10.⎰∞+∞-ωωπωωd e F i )(21⎰∞+-0)(dte tf st 二、解:∵∴(5分)yu x x v ∂∂-=-=∂∂xuy y v ∂∂==∂∂c xy u +=cxy y x i z f ++⎪⎭⎫ ⎝⎛+-=222121)(∵f (0)=0c =0(3分)∴(2分)222222)2(2)(2)(z ixyi y x i y x i xy z f -=+--=--=三、解:原式=(2分)⎥⎦⎤⎢⎣⎡--∑=k k z z z z s i ,)3)(1(1Re 2621π01=z 12=z (2分)⎥⎦⎤⎢⎣⎡---=∑=k k z z z z s i ,)3)(1(1Re 2643π33=z ∞=4z 2312(3,)3)(1(1Re 66⨯=⎥⎦⎤⎢⎣⎡--分)z z z s =0⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(∴原式=(2分) =23126⨯⨯i πi 63π-四、1.解:原式(3分)z 1=0z 2=1⎥⎦⎤⎢⎣⎡-π=∑=k k z z z s i ,)1(1Re 221=0(2分)]11[2+-=i π2.解:原式=iz z i=''=s co !22πi z z i =-π=)(cos i i cos π-=1ich π-五、1.解:ni z z f ∑∞⎪⎫⎛--⋅=⋅⋅=⋅=1111111111)(分)(分)(分)((2分)11)(--∞=-=∑n n n i z in nn i z i )(1-=∑∞-=2.解:⎪⎭⎫⎝⎛-+⋅-=-+⋅-=i z i i z i z i i z z f 11)(11)(1)(11)(2分)(分)((1分)(2分)nn i z i i z ∑∞=⎪⎭⎫ ⎝⎛---=02)(120)(11+∞=-=∑n n n i z i 20)(--∞=-=∑n n n i z i 六、1.解:∵(3分)∴结论成立0)(0t i e t t ti t i e dt e t t ωωωδ-==--∞+∞-=-⎰(2)解:∵(2分)1)(2210==ωπδπ=ωω-ω-∞+∞-⎰t i t i e dw e ∴与1构成傅氏对)(2w πδ∴(2分))(2ωπδω=-∞+∞-⎰dt e t i 七、解:∵(3分)⎪⎪⎩⎪⎪⎨⎧=+=++=++)3(0)(4)()2(0)()()()1(1)()()(s sZ s Y s Z s sY s X S s sZ s Y s sX S (2)-(1):∴(3分)⎪⎭⎫ ⎝⎛-⋅-=s s s Y 111)(2⎪⎭⎫ ⎝⎛++--=--=1111211112s s s s s s ∴cht e e t Y t t -=--=-121211)(八、解:①定义;②C-R 充要条件Th ;③v 为u 的共扼函数10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导是f (z )在D 内解析的()条件。

《复变函数与积分变换》习题册

《复变函数与积分变换》习题册

《复变函数与积分变换》习题册合肥工业大学《复变函数与积分变换》校定平台课程建设项目资助2018年9月《复变函数与积分变换》第一章习题1.求下列各复数的实部、虚部、模、辐角和辐角主值:(1)122345i i i i +---; (2)312⎛⎫+ ⎪ ⎪⎝⎭.2. 将下列复数写成三角表达式和指数形式:(1)1; (2)21i i+.3. 利用复数的三角表示计算下列各式:(1; (2)103⎛⎫4. 解方程310z +=.5. 设12cos z zθ-+=(0,z θ≠是z 的辐角),求证:2cos n n z z n θ-+=.6.指出满足下列各式的点z 的轨迹或所在范围.(1)arg()4z i π-=;(2)0zz az az b +++=,其中a 为复数,b 为实常数. (选做)7.用复参数方程表示曲线:连接1i +与i 41--的直线段.8.画出下列不等式所确定的图形,指出它们是否为区域、闭区域,并指明它是有界的还是无界的?是单连通区域还是多连通区域?并标出区域边界的方向.(1) 11,Re 2z z <≤;(2) 0Re 1z <<;9.函数z w 1=把下列z 平面上的曲线映射成w 平面上怎么样的曲线? (1)224x y +=; (2)x y =; (3)1=x .10.试证:0Re limz z z→不存在.《复变函数与积分变换》第二章习题1.用导数定义求z z f Re )(=的导数.2.下列函数在何处可导,何处不可导?何处解析,何处不解析?(1)z z f 1)(=; (2))32233(3)(y y x i xy x z f -+-=;3.试讨论y ix xy z f 22)(+=的解析性,并由此回答:若复变函数),(),()(y x iv y x u z f +=中的),(y x u 和),(y x v 均可微,那么iv u z f +=)(一定可导吗?4.设3232()(f z my nx y i x lxy =+++)为解析函数,试确定,,l m n 的值.5.设()f z 在区域D 内解析,试证明在D 内下列条件是彼此等价的:(1)()f z =常数; (2)Re ()f z =常数; (3)()f z 解析.6.试解下列方程:(1)1ze =+; (2)0cos =z ; (3)0cos sin =+z z .7.求下列各式的值:(1)Ln(34)i -+; (2)i -33; (3)i e +2.8.等式33Ln 3Ln z z =是否正确?请给出理由.《复变函数与积分变换》第三章习题3.1复积分的概念与基本计算公式1. 计算积分dz ix y x C )(2⎰+-,其中C 为从原点到点1+i 的直线段.2.计算积分dz z zC ⎰的值,其中C 为2=z3.当积分路径是自i -沿虚轴到i ,利用积分性质证明:2)(22≤+⎰-dz iy x i i3.2柯西古萨基本定理1.计算积分dz z C ⎰1,其中C 为2=z2. 计算积分dz z e z C z)sin (⎰⋅-,其中C 为a z =.3.3基本定理的推广1. 计算积分dz z e Cz⎰,其中C 为正向圆周2=z 与负向圆周1=z 所组成。

复变函数与积分变换习题册(含答案)

复变函数与积分变换习题册(含答案)

第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。

2、k 为任意整数,则34+k 的值为 。

3、复数i i (1)-的指数形式为 。

4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。

(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。

工程数学(复变函数 积分变换 场论).pdf

工程数学(复变函数 积分变换 场论).pdf

积 分
为正向的有向曲线称为 C 反向曲线,记为 C 。 除特
别声明外,有向曲线C 的正向总是指起点到终点的方 向,对一简单闭曲线总是指逆时针方向。
吴新民
-3-
第一节 复变函数积分的概念
定义 设函数 w f (z) 在区域 D 有定义,C 为
D内一条以 A 为起点 B 为终点的光滑的有向曲线,
复 变
k 1
由线积分存在定理得,当 0 上面的两个和式的极

数 限都是存在的,且有

积 分
f (z)dz udx vdy i vdx udy (3.1.2)
C
C
C
(3.1.2) 表明:
1)当 f (z) 是连续函数,C 是光滑曲线,则 f (z)dz
一定存在;
C (z z0 )n 0

章 复

r
i
n1
2 (cos(n 1) i sin(n 1) )d
0
0


函 数 的 积
C
(z
1 z0 )n
dz

2i
0
n1 n1
(3.1.5)

吴新民
- 15 -
第一节
三 积分的性质
复变函数积分的概念
1) f (z)dz f (z)dz
(3.1.6)

C
C
三 章
2) f (z)dz f (z)dz, ( 为常数) (3.1.7)
C
C
复 变
3) ( f (z) g(z))dz f (z)dz g(z)dz (3.1.8)

C

《工程数学-复变函数与积分变换》吉林大学数学学院 习题详解

《工程数学-复变函数与积分变换》吉林大学数学学院 习题详解

《工程数学-复变函数与积分变换》课后习题详解 吉林大学数学学院 (主编:王忠仁 张静)高等教育出版社 习题一(P12)1.1 对任何z ,22z z =是否成立?如果是,就给出证明。

如果不是,对哪些z 值才成立?解:设z x iy =+,则2222z x y xyi =-+,222z x y =+;若22z z =成立,则有22222x y xyi x y -+=+,即222220x y x yxy ⎧-=+⎨=⎩,解得0y =,即z x =。

所以,对任何z ,22z z =不成立,只对z 为实数时才成立。

1.2 求下列各式的值:(1)5(3)i -; (2)6(1)i +; (3)61- ; (4)13(1)i -。

解:(1)因为632ii eπ--=,所以5555566631(3)223232()16(3)22i i i i e e e i i πππ--⨯-⎛⎫-====--=-+ ⎪⎝⎭(2)因为412ii e π+=,所以63663442(1)2288i i i e e e i πππ⨯⎛⎫+====- ⎪⎝⎭(3)因为1cos sin i ππ-=+,所以()166221cos sin cossin66k k k w i i ππππππ++=-=+=+,其中0,1k =;即031cossin6622w i i ππ=+=+,1cos sin 22w i i ππ=+=, 25531cossin 6622w i i ππ=+=-+,37731cos sin 6622w i i ππ=+=--,433cossin 22w i i ππ=+=-,5111131cos sin 6622w i i ππ=+=-。

(4)因为12cos()sin()44i i ππ⎡⎤-=-+-⎢⎥⎣⎦,所以11362244(1)2cos sin 33k k k w i i ππππ⎡⎤-+-+⎢⎥=-=+⎢⎥⎢⎥⎣⎦,其中0,1,2k =;即1602cos()sin()1212w i ππ⎡⎤=-+-⎢⎥⎣⎦,161772cos sin1212w i ππ⎡⎤=+⎢⎥⎣⎦,162552cos sin 44w i ππ⎡⎤=+⎢⎥⎣⎦。

工程数学-复变函数与积分变换吉林大学数学学院习题详解

工程数学-复变函数与积分变换吉林大学数学学院习题详解

《工程数学-复变函数与积分变换》课后习题详解 吉林大学数学学院 (主编:王忠仁 张静)高等教育出版社 习题一(P12)对任何z ,22z z =是否成立如果是,就给出证明。

如果不是,对哪些z 值才成立解:设z x iy =+,则2222z x y xyi =-+,222z x y =+;若22z z =成立,则有22222x y xyi x y -+=+,即222220x y x yxy ⎧-=+⎨=⎩,解得0y =,即z x =。

所以,对任何z ,22z z =不成立,只对z 为实数时才成立。

求下列各式的值:(1)5)i ; (2)6(1)i +; (3; (4)13(1)i -。

解:(162ii eπ-=,所以555556661)223232())2i i i i e e e i i πππ--⨯-⎛⎫====-=- ⎪⎝⎭(2)因为41ii e π+=,所以63663442(1)288i i i e e e i πππ⨯⎫+====-⎪⎭(3)因为1cos sin i ππ-=+,所以()1622cos sin cossin66k k k w i i ππππππ++==+=+,其中0,1,2,3,4,5k =;即01cossin6622w i i ππ=+=+,1cos sin 22w i i ππ=+=,2551cossin 662w i i ππ=+=+,3771cos sin 662w i i ππ=+=-,433cossin 22w i i ππ=+=-,511111cos sin 662w i i ππ=+=-。

(4)因为1cos()sin()44i i ππ⎤-=-+-⎥⎦,所以11362244(1)2cos sin 33k k k w i i ππππ⎡⎤-+-+⎢⎥=-=+⎢⎥⎢⎥⎣⎦,其中0,1,2k =;即1602cos()sin()1212w i ππ⎡⎤=-+-⎢⎥⎣⎦,161772cos sin1212w i ππ⎡⎤=+⎢⎥⎣⎦,162552cos sin 44w i ππ⎡⎤=+⎢⎥⎣⎦。

《工程数学-复变函数与积分变换》吉林大学数学学院 习题详解

《工程数学-复变函数与积分变换》吉林大学数学学院 习题详解

《工程数学-复变函数与积分变换》课后习题详解大学数学学院 (主编:王忠仁 静)高等教育 习题一(P12)1.1 对任何z ,22z z =是否成立?如果是,就给出证明。

如果不是,对哪些z 值才成立?解:设z x iy =+,则2222z x y xyi =-+,222z x y =+;若22z z =成立,则有22222x y xyi x y -+=+,即222220x y x yxy ⎧-=+⎨=⎩,解得0y =,即z x =。

所以,对任何z ,22z z =不成立,只对z 为实数时才成立。

1.2 求下列各式的值:(1)5)i ; (2)6(1)i +; (3; (4)13(1)i -。

解:(162ii eπ-=,所以555556661)223232())2i i i i e e e i i πππ--⨯-⎛⎫====-=- ⎪⎝⎭(2)因为41ii e π+=,所以63663442(1)288i i i e e e i πππ⨯⎫+====-⎪⎭(3)因为1cos sin i ππ-=+,所以()1622cos sin cossin66k k k w i i ππππππ++==+=+,其中0,1,2,3,4,5k =;即01cossin6622w i i ππ=+=+,1cos sin 22w i i ππ=+=,2551cossin 662w i i ππ=+=+,3771cos sin 662w i i ππ=+=-,433cossin 22w i i ππ=+=-,511111cos sin 662w i i ππ=+=-。

(4)因为1cos()sin()44i i ππ⎤-=-+-⎥⎦,所以11362244(1)2cos sin 33k k k w i i ππππ⎡⎤-+-+⎢⎥=-=+⎢⎥⎢⎥⎣⎦,其中0,1,2k =;即1602cos()sin()1212w i ππ⎡⎤=-+-⎢⎥⎣⎦,161772cos sin1212w i ππ⎡⎤=+⎢⎥⎣⎦,162552cos sin 44w i ππ⎡⎤=+⎢⎥⎣⎦。

工程数学(复变与积分变换 A 集)目录

工程数学(复变与积分变换 A 集)目录

工程数学(复变与积分变换A集)目录 1工程数学(复变与积分变换A集)目录A.1 复数与复变函数(第一章) (2)1.1复数 (2)1.2复变函数 (4)A.2 导数(第二章) (6)2.3解析函数 (6)2.4调和函数 (8)A.3 积分(第三章) (9)3.3柯西积分公式解析函数的导数 (9)A.4 级数(第四章) (11)4.3泰勒级数 (11)4.4罗朗级数 (13)A.5 留数(第五章) (15)5.2留数及留数定理(2) (15)5.3应用留数计算定积分 (17)A.6 傅里叶变换(第七章) (18)7.1傅里叶积分 (18)7.2傅里叶变换 (19)7.3δ函数及其傅里叶变换 (20)2 工程数学习题集(复变函数与积分变换A 集)A.1 复数与复变函数(第一章)1.1 复数1.选择题(1) ( )Re()iz =(A) (B)Re()iz −Im()z −(C) (D)Im()z Im()iz (2) 下列对任意复数均成立的等式为( )z (A)22z z = (B)()22z z = (C)()22arg arg z z = (D)()22R e R e z z = 2. 将下例函数化为三角表达式和指数表达式(1)i +1解(2)i 解(3) 21i − 解A.1 复数与复变函数(第一章) 33. 填空题(1) 设,则复数的形式为8214z i i i =−+z x iy =+ 复数的模为z 辐角主值为(2) 设复数5z i =−,则其三角形式指数形式(3) 当满足z 条件时,21z z +是实数. 4.选择题(1) 设12z i =+,则3Im z =( )(A)-2(B)1 (C)8 (D)14(2) 设(1)2z i =−,则的值为( ) 100501z z ++(A)(B)i (C)1 (D)-1 i −5.计算下例各题的值(1) (2) 8(1)i −+13(1)i +(4) 10(1)−4 工程数学习题集(复变函数与积分变换A 集)1.2 复变函数6. 选择题 (1) 12(1)−=( )(A)无定义 (B)-1 (C)cos()2k ππ+ (D)sin()2i k ππ+ (2) 方程()2Re 1z =所代表的曲线为( )(A)圆周 (B)椭圆(C)双曲线 (D)抛物线(3) 下例正确的是( )(A)()Ln z 在1z =−处无定义 (B)(1)0Ln −=(C)的虚部等于(1)Ln −π (D)(1)Ln −的实部等于07. 求的值z (1) 23i z eπ−= (2) e 21z 1−=(3) (1)z Ln = (4) ln(1)z i =−A.1 复数与复变函数(第一章) 58. 选择题(1)设{}01D z z =<<,则为( )D (A)无界区域 (B)复连通域 (C)单连通域 (D)闭区域(2) 下例正确的是( )(A)为单调函数. (B)为有界函数.z e z e (C)为多值函数. (D)为周期函数.z e z e 9. 判断正误 (1) 因为12(1i +<+)i )i z ,所以12.( ) (1i +<+(2) 为有界函数. ( )sin ,cos z (3) . ( )2()2Ln z Lnz =(4) {}Re()D z z z =≤所表示的为整个复平面. ( )11. 计算下例各值(1) (2) (1)i i+(3) 32(1)− (4) cos(2)i −(5) (6) sin i ()tan 2Arc i6 工程数学习题集(复变函数与积分变换A 集)A.2 导数(第二章)2.3 解析函数1. 选择题(1) 函数()w f z u iv ==+在点处解析,则下列命题不成立的是( )0z (A)仅在点处可微且满足柯西-黎曼方程,u v 0z (B)存在点的某一邻域在0z ()0,U z u v 、()0U z 内满足柯西-黎曼方程(C)在,u v ()0U z 内可微(D) B 与C 同时成立(3) 函数()w f z u iv ==+的实、虚部在区域内有一阶连续的偏导数,则( ),u v D (A)在内满足柯西-黎曼方程 (B),u v D ()f z 在内连续D (C)()f z 在内可导 (D)D ()f z 在内解析D (4) 设函数()f z 在区域内解析,则与D ()f z ≡常数不等价的命题是( )(A)()0f z ′≡ (B)()()Re Im f z f z ≡≡常数(C) ()f z 解析 (D) ()f z ≡常数2. 讨论下列函数的解析性(1) ()1f z z=(2) ()()Re f z z z =(3) ()22f z xy ix =+yA.2 导数(第二章) 73. 判断题(1) 解析函数的导函数仍为解析函数. ( )(2) 初等函数在其定义域内解析,可导. ( )(3) 如果()f z 在解析,那么0z ()f z 在连续. ( )0z (4) 函数()2f z z =在平面上解析. () z 4. 选择题(1) 如果是0z ()f z 的奇点, 则()f z 在处一定为( )0z (A)不可导 (B)可导(C) 不解析 (D)解析(2)如果()0f z ′存在,那么()f z 在处一定有( )0z (A)解析 (B)不解析(C) 不连续 (D)连续5. 讨论()322333f z x x yi xy y =+−−i )的解析性,并求导数.6. 设函数()(3232f z my nx y i x lxy =+++为解析函数,试确定. ,,l m n8 工程数学习题集(复变函数与积分变换A 集)2.4 调和函数7. 判断题(1) 解析函数()()(,,)f z u x y iv x y =+的(),u x y 与(),v x y 互为共扼调和函数.( )(2) 若与(),u x y (),v x y 都是调和函数,则()()(),,f z u x y iv x y =+是解析函数.( )(3) 设为区域内的调和函数,(,u u x y =)D u u f i x y ∂∂=−∂∂,则f 是内的解析函数. D ( )8. 选择题(1) 函数()()(),,f z u x y iv x y =+解析,则下列命题中错误的是( )(A) 均是调和函数 (B)是u 的共轭调和函数,u v v (C) 是的共轭调和函数 (D) u v u −是的共轭调和函数v (2)下列函数中不是调和函数的是( )(A)(),arctany h x y x = (B).()()22,ln 2h x y x y x y =++−; (C)()22,x h x y y x y2=−+ (D)()2,si x h x y e y =n 3 9. 已知()2,3v x y xy x =−+,求以为虚部的解析函数v ()f z u iv =+.10. 已知,求以u 为实部的解析函数(),2sin xu x y e y =()f z u iv =+,使()00f =.A.3 积分(第三章) 9A.3 积分(第三章)3.3 柯西积分公式 解析函数的导数1. 选择题 (1) 设zC e :|2|1,dz z 2C z −=−∫ 则=( )(A) (B) i e 2πei 2π(C) (D)2e 2πi e 22π(2) 设C 3sinz:||1,dz z 2C z π=−∫ 则(=( ) (A) i π− (B) i π(C) (D) 0i 2π−2. 计算题 (1) ∫=−−1|2|2z z dz z e (2) ∫=−3||3zdz 1z e z z )( (3) 22sin (1)z z dz z =−∫(4) ∫C zdz ze ,其中C 为由正向圆周2||=z 与负向圆周1||=z 所组成。

(完整版)《复变函数与积分变换》习题册(2)

(完整版)《复变函数与积分变换》习题册(2)

第一章 复数与复变函数本章知识点和基本要求掌握复数的概念和它的各种表示方法及运算; 熟悉复平面、模与辐角的概念;熟练掌握乘积与商的模、隶莫弗公式、方根运算公式; 了解区域的概念;理解复变函数的概念; 理解复变函数的极限和连续的概念。

一、填空题1、若等式))(()75(i y i x i i -+=-成立,则=x ______, =y _______.2、设(12)(35)13i x i y i ++-=-,则x = ,y =3、若1231izi i,则z4、若(3)(25)2i i zi,则Re z5、若421iz i i+=-+,则z = 6、设(2)(2)z i i =+-+,则arg z =7复数1z i =-的三角表示式为 ,指数表示式为 。

8、复数i z 212--=的三角表示式为 _________________,指数表示式为_________________.9、设i z 21=,i z -=12,则)(21z z Arg = _ _____.10、设4i e 2z π=,则Rez=____________. Im()z = 。

z11、.方程0273=+z 的根为_________________________________.12、一曲线的复数方程是2z i -=,则此曲线的直角坐标方程为 。

13、方程3)Im(=-z i 表示的曲线是__________________________. 14、复变函数12+-=z z w 的实部=),(y x u _________,虚部=),(y x v _________. 15、不等式114z z -++<所表示的区域是曲线 的内部。

16二、判断题(正确打√,错误打⨯)1、复数7613i i +>+. ( )2、若z 为纯虚数,则z z ≠. ( )3、若 a 为实常数,则a a = ( )4、复数0的辐角为0.5、()f z u iv =+在000iy x z +=点连续的充分必要条件是(,),(,)u x y v x y 在00(,)x y 点连续。

复变函数及积分变换试题及答案

复变函数及积分变换试题及答案

第一套第一套一、选择题(每小题3分,共21分)1. 若( ),则复函数()(,)(,)f z u x y iv x y =+是区域D 内的连续函数。

A. (,)u x y 、(,)v x y 在区域D 内连续; B. (,)u x y 在区域D 内连续; C. (,)u x y 、(,)v x y 至少有一个在区域D 内连续; D. 以上都不对。

2. 解析函数()f z 的实部为sin x u e y =,根据柯西-黎曼方程求出其虚部为( )。

A.cos x e y C -+; B cos x e y C -+; C sin x e y C -+; D cos x e y C +3.2|2|1(2)z dzz -==-⎰( )。

A. i π2; B. 0; C. i π4; D. 以上都不对. 4. 函数()f z 以0z 为中心的洛朗展开系数公式为( )。

A. 101()2()n n f d c iz ξξπξ+=-⎰ B. 0()!n n f z c n =C. 201()2n k f d c iz ξξπξ=-⎰D. 210!()2()n n k n f d c iz ξξπξ+=-⎰5. z=0是函数zz sin 2的( )。

A.本性奇点B.极点C. 连续点D.可去奇点6. 将点∞,0,1分别映射成点0,1,∞的分式线性映射是( )。

A.1z zw -=B. z 1z w -=C. zz 1w -= D. z11w -=7. sin kt =()L ( ),(()Re 0s >)。

A.22k s k +; B.22k s s +; C. k s -1; D. ks 1.二、填空题(每小题3分,共18分)1.23(1)i += [1] ;----------------------------------------装--------------------------------------订-------------------------------------线----------------------------------------------------2. 幂级数∑∞=1n nn z !收敛于 [2] ;3. 设0Z 为复函数)(z f 的可去奇点,则)(z f 在该点处的留数为 [3] . ;4. 通过分式线性映射z kz λωλ-=-(k 为待定复常数)可将 [4] 映射成单位圆内部1ω<;5. 一个一般形式的分式线性映射可由z b ω=+、az ω=、1zω=三种特殊形式的映射复合而成,分别将ω平面看成z 平面的平移映射、旋转与伸缩映射、 [5] ; 6. 求积分()i x e x dx ωδ∞--∞=⎰[6] ;三、判断题 (每小题2分,共10分)1. 平面点集D 称为一个区域,如果D 中任何两点都可以用完全属于D 的一条折线连接起来,这样的集合称为连通集。

复变函数及积分变换习题答案

复变函数及积分变换习题答案

一、将下列复数用代数式、三角式、指数式表示出来。

(1)i 解:2cossin22ii e i πππ==+(2)-1解:1cos sin i e i πππ-==+(3)1+解:()/3122cos /3sin /3i e i πππ+==+ (4)1cos sin i αα-+ 解:2221cos sin 2sin 2sincos2sin(sincos )2222222sincos()sin()2sin 222222i i i i i e πααααααααααπαπαα⎛⎫- ⎪⎝⎭-+=+=+⎛⎫=-+-= ⎪⎝⎭(5)3z解:()3333cos3sin3i z r e r i θθθ==+ (6)1i e +解:()1cos1sin1i i e ee e i +==+(7)11ii-+ 解:3/411cos3/4sin 3/411i i i i e i i i πππ--==-==+++二、计算下列数值(1) 解:1ar21ar21ar2bi ctg kabi ctgabi ctgaπ⎛⎫+⎪⎝⎭==⎧⎪=⎨⎪⎩(2)解:6226363463222iki iiieie ee iπππππππ⎛⎫⎛⎫++⎪ ⎪⎝⎭⎝⎭⎛⎫+⎪⎝⎭⎧=+⎪⎪⎪⎨====+⎪⎪⎪=-⎩(3) i i解:()2222ii k ki i e eππππ⎛⎫⎛⎫+-+⎪ ⎪⎝⎭⎝⎭==(4)解:()1/2222ii k ke eππππ⎛⎫⎛⎫++⎪ ⎪⎝⎭⎝⎭==(5) cos5α解:由于:()()552cos5i ie eααα-+=,而:()()()()()()()()5555555555cos sin cos sincos sin cos sinn ni nnn ni nne i C ie i C iαααααααααα-=--==+==-=-∑∑所以:()()()()()()()()()()()5555555543253543251cos5cos sin cos sin21cos sin1125cos sin cos sin cos5cos sin10cos sin cosn n n nnnn n nnnC i iC ii C iααααααααααααααααα--=--=⎡⎤=+-⎣⎦⎡⎤=+-⎣⎦=++=-+∑∑(6) sin5α解:由于:()()552sin5i ie eααα--=,所以:()()()()()()()()()()()()55550555505234245552341sin 5cos sin cos sin 21 cos sin 1121 sin cos sin sin cos sin 10cos sin 5sin cos n n n nn n n n nn n C i i i C i i i C i C i iααααααααααααααααα--=--=⎡⎤=--⎣⎦⎡⎤=--⎣⎦=++=-+∑∑ (7) cos cos2cos n ααα+++L L 解:()()221cos cos 2cos ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e e e e e e e e e e e e e e e ααααααααααααααααααααααα----------⎡⎤+++=+++++++⎣⎦⎡⎤--+--⎡⎤--⎢⎥=+=⎢⎥---⎢⎥⎣⎦⎣⎦+=L L L L L L (1)(1)22(1cos )12cos 22cos(1)2cos cos 1cos(1)cos 22(1cos )2(1cos )1sin()sin22 2sin2i i n i n in in e e e e n n n n n ααααααααααααααααα+-+-⎡⎤---++⎢⎥-⎣⎦⎡⎤--++--++==⎢⎥--⎣⎦+-=(8) sin sin 2sin n ααα+++L L 解:()()221sin sin 2sin ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e ie e e e e e e e e e i e e i e i αααααααααααααααααααααα---------⎡⎤+++=+++-+++⎣⎦⎡⎤-----⎡⎤--⎢⎥=-=⎢⎥---⎢⎥⎣⎦⎣⎦=L L L L L L (1)(1)112(1cos )12sin 2sin(1)2sin sin sin(1)sin 22(1cos )2(1cos )1cos()cos22 2sin2i n in i i n in e e e e e i i n i n n n i n αααααααααααααααααα+--+-⎡⎤--+-++-⎢⎥-⎣⎦⎡⎤-++-++==⎢⎥--⎣⎦-++=1.2 复变函数1、试证明函数f (z )=Arg(z ) (-π<Arg(z) ≤π),在负实轴上(包括原点)不连续。

《复变函数与积分变换》习题册

《复变函数与积分变换》习题册

第一章 复数与复变函数本章知识点和基本要求掌握复数的概念和它的各种表示方法及运算;熟悉复平面、模与辐角的概念;熟练掌握乘积与商的模、隶莫弗公式、方根运算公式;了解区域的概念;理解复变函数的概念;理解复变函数的极限和连续的概念。

一、填空题1、若等式成立,则______, _______.))(()75(i y i x i i -+=-=x =y 2、设,则,(12)(35)13i x i y i ++-=-x =y =3、若,则1231iz i i+=--z =4、若,则(3)(25)2i i z i+-=Re z =5、若,则 421iz i i+=-+z =6、设,则 (2)(2)z i i =+-+arg z =7复数的三角表示式为 ,指数表示式为1z i =-。

8、复数的三角表示式为_________________,指数表示式为i z 212--=_________________.9、设,,则=_ _____.i z 21=i z -=12)(21z z Arg 10、设,则Rez=____________. 。

4i e 2z π=Im()z =z =11、.方程的根为_________________________________.0273=+z 12、一曲线的复数方程是,则此曲线的直角坐标方程为 2z i -=。

13、方程表示的曲线是__________________________.3)Im(=-z i 14、复变函数的实部_________,虚部_________.12+-=z z w =),(y x u =),(y x v 15、不等式所表示的区域是曲线的内部。

114z z -++<16=二、判断题(正确打√,错误打)⨯1、复数. ( )7613i i +>+2、若为纯虚数,则. ()z z z ≠3、若 为实常数,则 ( a a a =)4、复数0的辐角为0.5、在点连续的充分必要条件是在()f z u iv =+000iy x z +=(,),(,)u x y v x y 点连续。

工程数学-复变函数与积分变换-总复习

工程数学-复变函数与积分变换-总复习
定理一
一. 点可导的充要条件
解 析 函 数
且满足柯西黎曼(Cauchy-Riemann )方程:
u v , x y
u v . (简称 C R 方程) y x
5
§2.2 解析函数的充要条件
§解析函数的充要条件
第 二 定理 函数 w f ( z ) u( x, y ) i v( x, y ) 在区域 D 内解析的 章 P42 定理二 充要条件是: u( x , y ) 和 v ( x , y ) 在区域 D 内可微,且 解 满足 C R 方程。 析 函 数 推论 若函数 u( x, y ) 和 v( x , y ) 的四个偏导数 u , u , v , v x y x y 在区域 D 内存在且连续,并满足 C R 方程,则函数
解析
判别 方法 C-R 方程
指数函数 对数函数 幂 函 数 (反)三角函数 (反)双曲函数
4
初等函数
§2.2 解析函数的充要条件
§解析函数的充要条件
第 二 定理 函数 w f ( z ) u( x, y ) i v( x, y ) 在点 z x i y 处可导 章 P41 的充要条件是: u( x, y ) 和 v( x , y ) 在点 ( x, y ) 处可微,
i(
i 2k πi ) 2
(
2k π ) 2 ,
解 析 例 求 1 2 的值。 函 数 解 1 2 e 2 Ln 1 e
2 [ 0 i ( 0 2 k )]
e2
2 k πi
cos ( 2 2 k π ) i sin ( 2 2 k π ) , (k 0, 1, 2,) .
2
例 求解方程 z 3 1 0 . 解 z 3 1 1 e

复变函数 积分变换——课后答案

复变函数   积分变换——课后答案
z (
ln 1 z 1
( )
+
b .lim lim 1 ,故z 0 为可去奇点。
z→0 z→0 1+
----------------------- Page 1-----------------------
习题五解答
1、下列函数有些什么奇点?如果是极点,指出它的级。
z − z −
( 1)( 1) z z
( −1)( +1)
∞ z n+1 ( ) ∞ n
1 z
(4 ) ; (5) ; (6)e − ;
n +1 z n +1
n 0 n 0
3 sin z
a. z 0 为sin z 为的一级零点;而z 0 为z 的三级零点。故z 0 为 的二级极点。
z z z z 2 z 1
(7)因e −1 z∑ z(1+ + +) ,故z 0 为z (e −1) 的三级零点,因而是 2 z
1
ln(z +1) z
(2k+1)π
1+z (k 0,±1,±2,) 1+e
(5)由1+z 0 得z ±i 为 的一级零点,由1+e 0得z 2k +1 i 为
( ) 2 2 ( )
z (z +1)
其奇点,z 0 为一级极点,而z ±i 为其二级极点。
3
z
n 0 (n +1) ! 2 3! z (e −1)
的三级极点,而z 2kπi,(k ±1,±2,) 均为一级极点。
1 sin z 1
(1) ; (2 ) ; (3) ;

复变函数与积分变换练习册参考答案

复变函数与积分变换练习册参考答案
5 5
分析:显然原方程可化简为一个典型的二项方程。
⎛ 1+ z ⎞ 解:由直接验证可知原方程的根 z ≠ 1 。所以原方程可改写为 ⎜ ⎟ = 1。 ⎝ 1− z ⎠

5
ω=
1+ z , ……………(1) 1− z
2π i 5
则 ω = 1 , ……………………(2)
5
方程(2)的根为 ω = 1, e
(5) lim
z →1
zz + 2 z − z − 2 3 = 。 2 z2 −1 zz + 2 z − z − 2 ( z + 2)( z − 1) z +2 3 = lim = lim = 。 2 z →1 ( z − 1)( z + 1) z →1 z + 1 2 z −1
提示: lim
z →1
(1 − cos α ) 2 + sin 2 α = 4sin 2
α
2
= 2sin
α
2
;因为当 0 < α < π 时,
sin α > 0 , 1 − cos α > 0 ,则 arg z = arctan
= arctan(tan +i sin
π −α
2
)=
π −α
2 e
π −α i 2
sin α α = arctan(cot ) 1 − cos α 2

6、 ( 2)
=e
2 ln 2 − 2kπ
7、方程 sinh z = i 的解为 三、计算和证明 1、试证函数
1 在复平面上任何点都不解析。 z
利用 C-R 条件,即用解析的充要条件判别,即 u =

工程数学—复变函数的积分2

工程数学—复变函数的积分2
k! (k 1)( z ) k h 2O(1) (k 1)! f ( ) C f ( ) ( z h)k 1 ( z )k 1 d 2i C ( z )k 2 d 2ih
(k 1)! 1 1 C f ( )[( z h) k 1 ( z) ( z) k 2 ]d hO(1) 2i
例如:f ( z ) 1时,I 2i.
现在考虑f(z)为一般解析函数的情况。作以z0 为心,以r为半径的圆Cr, 由闭路变形定理,得
f ( z) f ( z) z z0 dz C z z0 dz C r
由于I的值只与f(z) 在z0点附近的值有关, 与r无关,由f(z)在点z0的连续性,应该有
I 2if ( z0 ),

1 f ( z) f ( z0 ) C z z0 dz 2i
定理3 .3(柯西公式)
设f(z)在区域D内处处解析,C为D内的任何 一条正向简单闭曲线,它的内部完全含于D 。那 么在C内任一点z0,有
1 f ( z) f ( z0 ) C z z0 dz 2 i
y
C2
C1
O 0 L
图 3.7
1
x
1 分别以 0和1为心, 做半径为 的圆周 C1 , C 2 .取正向 8 2z 1 2z 1 2z 1 L z 2 z dz C1 z 2 z dz C2 z 2 z dz

C1
2z 1 2z 1 z 1 dz z dz C2 z 1 z

z i 1
e dz 2πie z i
f ( z) z 5 z2
iz
iz z i
2πei
(2)注意到函数 在 z 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1次 复变函数(1)一、填空题。

1. 设(1)(2)(3)(3)(2)i i i z i i +--=++,则z =__________ 2.设z =, 3arg()4z i π-=,则z=________________ 3. 不等式522<++-z z 所表示的区域是曲线_______________的内部。

4. 复数i 31-的三角表达式为 二、请计算i +1的值。

三、已知21z z 和是两个复数,证明)Re(2212221221z z z z z z ++=+四、下列坐标变换公式写成复数形式;1) 平移公式:1111x x a y y b =+⎧⎨=+⎩,2)旋转公式:1111cos sin sin cos x x y y x y αααα=-⎧⎨=+⎩五、指出下列各题中点z 的轨迹或所在范围,并作图。

1)56z -=; 2)21z i +≥;3)314z z +++=。

4)312z z -≥-六、将下列方程(t 为实参数)给出的曲线用一个实直角坐标方程表出:1)(1)z t i =+; 2)t ib t a z sin cos += (b a ,为实常数)3)22i z t t=+。

4) it it z ae be -=+第2次 复变函数(2)一、填空题1. 241lim (12)z i z z →+++=________________ 2. 由映射2)(z z f =得到的两个二元实函数=),(y x u =),(y x v . 3. 函数zz z f =)( 在0→z 时极限为 4. 已知映射3z =ω, 则点i z =在该映射下在ω平面的象为 二、对于映射11()2w z z =+,求出圆周|z|=4的像。

三、函数1w z =把下列z 平面上的曲线映射成w 平面上怎样的曲线? 1)224x y +=; 2) y x =。

3) 1x =。

4) 22(1)1x y -+=.四、设函数()f z 在0z 连续且0()0f z ≠,那么可找到0z 的小邻域,在这邻域内()0f z ≠。

五、设1()(),(0)2z z f z z i z z=-≠. 试证当0z →时()f z 的极限不存在。

*六、设0lim ()z z f z A →=,证明函数()f z 在0z 的某一去心邻域内是有界的,即存在一个实常数0>M ,使在0z 的某一去心邻域内有()f z M ≤.第三次 解读函数(1)一、填空题1.设2.导函数在区域D 解读的充要条件为 3.设4. 已知函数52)2()(i z z f +=,则该函数的导数为二、讨论下面函数的可导性,如果可导,求出)(/z f .1) 22)(iy x z f +=2) )Im()(z z z f =三 如果是的解读函数,证明四、设为解读函数,试确定,,的值.五、证明柯西–黎曼方程的极坐标形式为.*六、设的解读函数,若记第四次 解读函数(2)一、填空题1) =212) i i 主值是.3) =->-ze z z 1lim 0 4) 函数)Re()Im()(z z z zf -=仅在点=z 处可导.5) 若函数)()(by x i ay x z f +++=在复平面上解读,则=a b =二、求出下列全部解;(1);(2).三.解方程四、证明:当∞→y 时,趋于无穷大.五、求)3(i Ln -,)43(i Ln +-和它们的主值.六. 求,exp [(1+)/4],和i i )1(+的值.第五次 复积分的概念、柯西-古萨定理一、填空题1) 设c 为沿原点0=z 到点i z +=1的直线段,则=⎰c dz z _2__________。

2)设c 是椭圆2214y x +=,则dz z z C ⎰+2sin 。

3)设c 是i z e θ=,θ从π-到π的一周,则Re()cz dz =⎰。

4)设c 为正向圆周3=z ,则dz z z z c ⎰+_=__________。

二、沿原点路线计算积分⎰+idz z 302(1) 自原点至3+i 的直线段;(2) 自原点沿实轴至3,再由3铅直向上至3+i ;(3) 自原点沿虚轴至i ,再由i 沿水平方向向右至3+i 。

三、求积分23C z dz ⎰的值,其中C 为:(1)从1i +到34i -的直线段;(2)圆周11z i --=的正向。

四、 试用观察法得出下列积分的值,并说明观察时所依据的是什么?C 是正向单位圆周1=z 。

(1)⎰++c z z dz 422(2)⎰-c z dz 21(3)dz ze c ⎰2(4)()⎰+⎪⎭⎫ ⎝⎛-c z i z dz 22五、证明2sin 2C z dz e z π≤⎰,其中C 是单位圆1z =的一周。

六、计算积分dz z z ⎰=--11211*七、设()f z 在原点的某邻域内连续,试证明200lim ()2(0)i r f re d f πθϕπ→=⎰第六次 复合闭路定理 原函数与不定积分柯西积分公式一、填空题:1 设c 为负向圆周4=z ,则=-⎰dz i z e cz5)(π__________。

2 设c 为正向圆周1z =,则2cos 2231C z dz z z π++⎰__________。

3 积分20cos i z z dz π⎰的值为。

4 积分32i z ie dz ππ-⎰=。

5 设c 为正向圆周5z =,则23123C z dz z z ---⎰的值为__________。

二、沿指定曲线的正向计算下列积各积分(1);:,22a a z c a z dz c =--⎰ (2) .1:,5=⎰z c dz z e c z(3) 2,:3;(1)c dz c z z z =-⎰ (4) 2sin ,:22;9czdz c z i z -=+⎰三、 计算下列函数沿正向圆周的积分(1),2314dz i z z c ⎰⎪⎭⎫⎝⎛+++其中c :4=z ;(2),122dz z i c ⎰+其中 61:=-z c四、 计算积分2sin 4,1c z dz z π-⎰其中C 分别为: 1(1)12z -=; 1(2)12z +=; (3) 2.z =五、 计算下列各题(1)⎰10;sin zdz z (2)21(2)i iz dz +⎰*六、求积分,1dz z e z z⎰=从而证明πθθπθ=⎰d e )cos(sin 0cos第七次 高阶导数公式 解读函数与调和函数的关系一 填空题1)、设)(z f =ξξξπξd z ⎰=-2)2sin(,其中,2≠z 则=)3('f __________。

2)、设C 为负向圆周4=z ,则=-⎰dz i z e c z5)(π__________。

3)、设C 为任意实常数,那么由调和函数22u x y =-确定的解读函数()f z u iv =+是。

4)、若函数32(,)u x y x axy =+为某一解读函数的虚部,则常数a =。

二 计算下列积分(1),cos 213dz z z c c c ⎰+=其中2:1=z c 为正向,3:2=z c 为负向;(2)2221,:2;(1)c z z dz c z z -+=-⎰(3)331,(1)(1)c dz z z -+⎰其中C 为复平面内不过1±的一条正向简单闭曲线。

三 下列各已知调和函数求解读函数()vi u z f +=(1) ()();422y xy x y x u ++-= (2) ();02,22=+=f yx y v四、证明2222,x u x y v x y =+=+都是调和函数,但是()f z u iv =+不是解读函数。

五、设,sin y ev px =求p 的值使v 为调和函数,并求出解读函数()iv u z f +=。

六、计算积分dz z C ⎰+21的值,并由此计算0cos 45cos 210=++⎰θθθπd第八次 复数项级数 幂级数一、填空题(1)若幂级数0()n nn c z i ∞=+∑在i z =处发散,那么该级数在2=z 处的敛散性为。

(2)幂级数210(2)n n n i z∞+=∑的收敛半径R =。

(3)极限2lim 1n n ni ni→∞+=-。

(4)幂级数0(1)n n n z∞=+∑的和函数为。

二、下列数列{}n a 是否收敛?如果收敛,求出它们的极限。

1)n n ia -+=)21(;2)1)1(++-=n i a n n ; 3)sin n i n a n =三、判别下列级数的绝对收敛性与收敛性。

1)∑∞=+08)56(n n n i ; 2)∑∞=02cos n n in3)02sin nn in ∞=∑;四、求下列幂级数的收敛半径。

1)∑∞=12)!(n n n z nn ; 2)∑∞=1/n n n i z e π ;3)1(1)n n n i z ∞=-∑; 4)21(34)n n n i z ∞=+∑五、把下列各函数展开成z 的幂函数,并指出它们的收敛半径。

1)311z +; 2)22)1(1z +;*六、求2(1)(2)n n n n i +∞-=-∑的值。

第九次 泰勒级数 洛朗级数一、填空题(1)函数z arctan 在0=z 处的泰勒展开式为(2)函数zz e e 1+在+∞<<||0z 内的洛朗展开式为 (3)函数sin z e 在0=z 处泰勒展开式的收敛半径为(4)设1(1),11(1)n n n a z z z z +∞=-∞=-->-∑,则3a -= (5)函数1()z z i -在1z i <-<+∞内的洛朗展开式是 二、求下列各函数在指定点0z 处的泰勒展开式,并指出它们的收敛半径: 1)1,110=+-z z z ; 2)2,)2)(1(0=++z z z z ;3)1,102-=z z ; 4)i z z +=-1,3410三、把下列各函数在指定的圆环域内展开成罗朗级数。

1)1,0||1;2|2|(1)(2)z z z z z <<<-<+∞--;2)21,1||323z z z <<--3)1|1|0;1||0,)1(12<-<<<-z z z z ;四、设C 为正向圆周3z =,利用洛朗级数展开式计算下列积分: 1)21(1)C dz z z +⎰; 2)(1)(2)C z dz z z ++⎰。

第十次 留数(1)一、填空题:1. 设0z =为函数22sin z z -的m 级零点,那么m =2. 如果0z 是()f z 的(1)m m >级零点,那么0z 是()f z '的级零点。

相关文档
最新文档