微波技术与天线第二版答案刘学观西安电子下
《微波技术与天线》第二版刘学观 第1章
(1-1-5)
式中, Z=R+jωL, Y=G+jωC, 分别称为传输线单位长串联阻抗和 单位长并联导纳。
第1章 均匀传输线理论 2. 均匀传输线方程的解 将式(1- 1- 5)第1式两边微分并将第 2 式代入, 得
d 2U ( z ) ZYU ( z ) 0 2 dz
同理可得
d I ( z) ZYI ( z ) 0 2 dz
第1章 均匀传输线理论
图 1-1 各种微波传输线 (a) 双导体传输线; (b) 波导; (c) 介质传输线
第1章 均匀传输线理论 对均匀传输线的分析方法通常有两种: 一种是场分析法, 即
从麦克斯韦尔方程出发, 求出满足边界条件的波动解, 得出传输
线上电场和磁场的表达式, 进而分析传输特性; 第二种是等效电 路法, 即从传输线方程出发, 求出满足边界条件的电压、 电流波 动方程的解, 得出沿线等效电压、电流的表达式, 进而分析传输 特性。前一种方法较为严格, 但数学上比较繁琐, 后一种方法实
b Z0 ln r a
60
(1-1-17)
式中, εr为同轴线内、外导体间填充介质的相对介电常数。 常
用的同轴线的特性阻抗有50 Ω 和75Ω两种。
第1章 均匀传输线理论 2) 传播常数 γ 传播常数 γ 是描述传输线上导行波沿导波系统传播过程中 衰减和相移的参数, 通常为复数,由前面分析可知
1 2 1 2
。 对于 LC
R G j LC 1 jL 1 jC
1 ( RY0 GZ 0 ) j LC 2
于是小损耗传输线的衰减常数α和相移常数β分别为
(1-1-19)
1 α= (RY0+GZ0) 2 LC β=ω
微波技术与天线习题答案
微波技术与天线习题答案(总24页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《微波技术与天线》习题答案章节 微波传输线理路1.1设一特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数1Γ,在离负载λ2.0,λ25.0及λ5.0处的输入阻抗及反射系数分别为多少 解:1)()(01011=+-=ΓZ Z Z Zπβλ8.02131)2.0(j z j e e --=Γ=Γ31)5.0(=Γλ (二分之一波长重复性)31)25.0(-=ΓλΩ-∠=++= 79.2343.29tan tan )2.0(10010ljZ Z ljZ Z Z Z in ββλΩ==25100/50)25.0(2λin Z (四分之一波长阻抗变换性) Ω=100)5.0(λin Z (二分之一波长重复性)求内外导体直径分别为和的空气同轴线的特性阻抗;若在两导体间填充介电常数25.2=r ε的介质,求其特性阻抗及MHz f 300=时的波长。
解:同轴线的特性阻抗ab Z r ln 600ε= 则空气同轴线Ω==9.65ln 600abZ 当25.2=r ε时,Ω==9.43ln600abZ rε 当MHz f 300=时的波长:m f c rp 67.0==ελ题设特性阻抗为0Z 的无耗传输线的驻波比ρ,第一个电压波节点离负载的距离为1min l ,试证明此时的终端负载应为1min 1min 01tan tan 1l j l j Z Z βρβρ--⨯=证明:1min 1min 010)(1min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρββ--⨯=∴=++⨯=由两式相等推导出:对于无耗传输线而言:)(传输线上的波长为:m fr2cg ==ελ因而,传输线的实际长度为: m l g5.04==λ终端反射系数为: 961.0514901011≈-=+-=ΓZ R Z R输入反射系数为: 961.0514921==Γ=Γ-lj in eβ 根据传输线的4λ的阻抗变换性,输入端的阻抗为:Ω==2500120R ZZ in试证明无耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平方。
《微波技术与天线》习题答案
Z1 (200 j300 ) ,始端接有电压为 500V00 ,内阻为 Rg 100 的电源求:
① ② ③ 解:
传输线始端的电压。 负载吸收的平均功率.。 终端的电压。
①
Zin ( 8 )
Z0
Zl Z0
jZ 0 jZ l
tan(z) tan(z)
100
200 j300 Z100
jZ100 j200
I1 Y11V1 Y12V2
I2 Y21V1 Y22V2
Y11
I1 V1
V2 0
YA YA YB YA YA YB
YA2 YA YB 2YA YB
Y22 Y11
1
Y12
I1 V2
V1 0
YA
YA YB 1 1
YA YA YB
V2
V2
YA
YA YB YA
YA2
1
4
1
2.5cm
串联支节的长度为:
l2
2
arctan
1
3.5cm
1.16 解:
由题意可得:Rmin=4.61 ,Rmax=1390
特性阻抗 Zo R min R max = 4.611390 =80.049
pp76 题 3 3.设有标准矩形波导 BJ—32 型,a =72.12mm,b=34.04mm。
0.961
输入反射系数为:
in
1e j2l
49 51
0.961
根据传输线的 4 的阻抗变换性,输入端的阻抗为:
Z in
Z02 R1
2500
1.5 试证明无耗传输线上任意相距λ/4 的两点处的阻抗的乘积等于传输线特性阻抗的平
方。
微波技术与天线刘学观第二版第8章
第8章 线天线
图 8 – 2 开路传输线与对称振子
第8章 线天线
令振子沿z轴放置(图 8 - 1), 其上的电流分布为
I(z)=Imsinβ(h-|z|)
(8-1-1)
式中, β为相移常数, β=k= 2π 0 c
在距中心点为z处取电流元段dz, 则它对远区场的贡献为
D=1.64
(8 -1 -11)
方向图的主瓣宽度等于方程:
F
(
)
cos
π 2
cos
s in
1 2
0°<θ<180°的两个解之间的夹角
由此可得其主瓣宽度为78°。 因而, 半波振子的方向性比电基 本振子的方向性(方向系数1.5, 主瓣宽度为90°)稍强一些。
第8章 线天线
2.
1)
由传输线理论知, 均匀双导线传输线的特性阻抗沿线不变, 在
第8章 线天线 第8章 线天线
8.1 对称振子天线 8.2 阵列天线 8.3 直立振子天线与水平振子天线 8.4 引向天线与电视天线 8.5 移动通信基站天线 8.6 螺旋天线 8.7 行波天线 8.8 宽频带天线 8.9 缝隙天线 8.10 微带天线 8.11 智能天线 习题
第8章 线天线
8.1 对称振子天线
函数为
F
(
)
c os
2
c
os
sin
(8-1-9)
该函数在θ=90°处具有最大值(为1),而在θ=0°与θ=180° 处为零, 相应的方向图如图 8 -3 所示。将上式代入式(8 -1 -7) 得半波振子的辐射电阻为
RΣ=73.1 (Ω)
(8-1-10)
第8章 线天线
将F(θ)代入式(6 -3 -8)得半波振子的方向函数:
微波技术与天线,课后答案
|U |max = UC = 450 V
|I|min = UC /Zbc = 0.5 A
|U |min = |I|minZ01 = 300 V
|I|max = |U |max/Z01 = 0.75 A
(20)
Γ
=
RL RL
− Z0 + Z0
当RL > Z0时 ,Γ(z)为 正 实 数 , 终 端 为 电 压 的 波 腹 点 , 则 有RL = Z0ρ,所以ρ = RL/Z0 当RL < Z0时,Γ(z)为负实数,终端为电压的波节点,则有RL = Z0/ρ,所 以ρ = Z0/RL 证毕。
2-15 有一特性阻抗为75Ω、长为9λ/8的无耗传输线,测得电压结点 的 输入阻抗为25Ω,终端为电压腹点,求:(1)终端反射系数; (2)负载阻抗; (3)始端的输入阻抗; (4)距终端3λ/8处的反射系数。
图 5: ZL = 0的情况 2-26 ( ) 传输线电路如下图所示。图中,Z0 = 75Ω,R1 = 150Ω,R2 = 37.5Ω,行波 电压幅值|U +| = 150V 。 (1)试求信号源端的电流|ID|; (2)画出各传输线上的电压、电流幅值分布并标出极大、极小值; (3)分别计算负载R1、R2吸收的功率。 解: (1) CA段的输入阻抗为:ZCA = R1 = 150Ω; CB段的输入阻抗为:ZCB = Z02/R2 = 150Ω; C点阻抗为:ZC = ZCA//ZCB = 75Ω;
ZCE
=
Z02 2Z0
=
Z0/2
(10)
ZCF
=
Z0
微波技术与天线习题答案
微波技术与天线习题答案-CAL-FENGHAI.-(YICAI)-Company One1《微波技术与天线》习题答案章节 微波传输线理路1.1设一特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数1Γ,在离负载λ2.0,λ25.0及λ5.0处的输入阻抗及反射系数分别为多少解:1)()(01011=+-=ΓZ Z Z Zπβλ8.02131)2.0(j z j e e --=Γ=Γ31)5.0(=Γλ (二分之一波长重复性)31)25.0(-=ΓλΩ-∠=++= 79.2343.29tan tan )2.0(10010ljZ Z ljZ Z Z Z in ββλΩ==25100/50)25.0(2λin Z (四分之一波长阻抗变换性)Ω=100)5.0(λin Z (二分之一波长重复性)求内外导体直径分别为和的空气同轴线的特性阻抗;若在两导体间填充介电常数25.2=r ε的介质,求其特性阻抗及MHz f 300=时的波长。
解:同轴线的特性阻抗ab Z rln600ε= 则空气同轴线Ω==9.65ln 600abZ 当25.2=r ε时,Ω==9.43ln600abZ rε 当MHz f 300=时的波长:m f c rp 67.0==ελ题设特性阻抗为0Z 的无耗传输线的驻波比ρ,第一个电压波节点离负载的距离为1m in l ,试证明此时的终端负载应为1min 1min 01tan tan 1l j l j Z Z βρβρ--⨯=证明:1min 1min 010)(1min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρββ--⨯=∴=++⨯=由两式相等推导出:对于无耗传输线而言:)(传输线上的波长为:m fr2cg ==ελ因而,传输线的实际长度为: m l g5.04==λ终端反射系数为: 961.0514901011≈-=+-=ΓZ R Z R输入反射系数为: 961.0514921==Γ=Γ-lj in eβ 根据传输线的4λ的阻抗变换性,输入端的阻抗为:Ω==2500120R ZZ in试证明无耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平方。
微波技术与天线,课后答案
T E11、T M11: λc = 2ab/ a2 + b2 = 61.57mm > λ, 故T E11、T M11波 型能传播
T E30: λc = 2a/3 = 48.09mm < λ,故T E30波型不能传播
T E21、T M21: λc = 2ab/ a2 + (2b)2 = 49.51mm < λ, 故T E21、T M21波 型能传播. 综上,能传输的波型为:T E10、T E20、T E01、T E11、T M11波型。
微波技术与天线课后部分习题解答1第三章34矩形波导存在哪3中状态
《微波技术与天线》课后部分习题解答
1 第三章
3-4 矩形波导存在哪3中状态?其导行条件是什么?
答:存在:(a)临界状态(k = kc或λ = λc或f = fc);(b)传输状 态(k < kc或λ < λc或f > fc);(c)截止状态(k > kc或λ > λc或f < fc)。
答:
(1)截止波长:λc = 2a = 4 (λ = 3 × 108/1 × 1010 = 3cm)
1−(
λ λc
)2
相移常数:β
=
2π λp
=
157.7
(2) λc = 9.12cm λp = 3.18cm β = 197.8
(3)各参数同(1)
(4)λc = 4.56cm λp = 2.25cm β = 282.3
(
m a
)2
+
(
n b
)2
+
(
p l
微波技术与天线刘学观第节
TM0n模的 特征方程
r
u
J0(u)1H0(2)(w) J0(u) wH0(2)(w)
0
(3-2a) (3-2b)
同金属波导一样,圆形介质波导中的TE0n和TM0n模也
有截止现象。金属波导中以=0作为截止的分界点,而
圆形介质波导中的截止以w=0作为分界,这是因为当 w<0时在介质波导外出现了辐射模。
式中,kc2 =k02i–2, i (i=1,2)为介质内外相对介电常数, 1、2分别代表介质波导内部和外部。一般有r1=r,r2=1。
令:
H EzzTTB ARr
经分离变量后可得R(r)和()各自满足的方程及其解,
利用边界条件可求得混合模式下内外场的纵向分量,再
由麦克斯韦方程求得其它场分量。
(1) HEmn模在介质波导内外的场分量
波导 (waveguide)
用来约束或引导电磁波的结构。通常,波导专指各种形状的空心金属 波导管和表面波波导(介质波导),前者将被传输的电磁波完全限制在 金属管内,又称封闭波导;后者将引导的电磁波约束在波导结构的周 围,又称开波导。
当无线电波频率提高到3000兆赫至 300吉赫的厘米波波段和毫米波波 段时,同轴线的使用受到限制而采用金属波导管或其他导波装置。波 导管的优点是导体损耗和介质损耗小;功率容量大;没有辐射损耗; 结构简单,易于制造。波导管内的电磁场可由麦克斯韦方程组结合波 导的边界条件求解,与普通传输线不同,波导管里不能传输 TEM模, 电磁波在传播中存在严重的色散现象,色散现象说明电磁波的传播速 度与频率有关。表面波波导的特征是在边界外有电磁场存在 。其传播 模式为表面波。
要使w=0同时满足(3-2a)或(3-2b),必须有J0(u)=0。
微波技术与天线 刘学观 第1.3节
电压和电流 在原地振荡而不
向前传播!
《微波技术与天线》
第一章 均匀传输线理论之•状态分析
终端短路时线上电压、电流及阻抗分布
3 / 4 / 2
/4
0
终 端
短
路
U
I
U
z
串联谐振 《微波技术与天线》
并联谐振
第一章 均匀传输线理论之•状态分析
终端接短路负载传输线状态小结
3
z0
5A 3
压节点,电流腹点。经过
4
为电压腹
点(电流节点)
并联电压连续
U 250V max
。
《微波技术与天线》
第一章 均匀传输线理论之•状态分析
根据(1-3-14)式
U max I
U m in I
Z0;
I 2.5A max
max
m in
500
U 2.5 2Z0 500 V ; I
沿线各点电压和电流振幅按余弦变化,电压和电流相位 差90º,功率为无功功率,即无能量传输;
在z=n/2(n=0,1,2,…)处电压为零,电流的振幅值最大且
等于2|A1|/ Z0 ,称这些位置为电压波节点;
在 z=(2n+1)/4(n=0,1,2,…) 处 电 压 的 振 幅 值 最 大 且 等 于
解:(1)要使线上驻波比最小,实质上只要终端反射系 数的模值最小,而
1
l
Zl Z0 Zl Z0
(40 (40
Z0 )2 Z0 )2
302 302
2
将上式对求导,并令其为零,经整理可得Z0= 50
(2)终端反射系数及驻波比分别为:
l
Zl Zl