2019年全国高考安徽省数学(理)试卷及答案【精校版】
安徽省2019年高考理科数学试题(word版)
2019年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至2页,第II卷第3至第4页。
全卷满分150分,考试时间120分钟。
考生注意事项:1. 务必在试题卷、答题卡自己的姓名、座位号,并认真粘贴的条形码中姓名座位号是否一致。
务必面规定的地方填写姓名和座位号后两位。
2.答第I卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.答第II卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效。
4.考试结束,务必将试卷和答题卡一并上交。
参考:如果事件A与B互斥,那么P(A+B)=P(A)+P(B)如果事件A与B相互独立,那么P(AB)=P(A)P(B)如果A与B为事件,P(A)>0,那么一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的(1)复数x满足f(x-i)(2-i)=5. 则A.-2-2i B -2+2iC 2-2iD 2+2i(2) 下列函数中,不满足飞(2x)等于2f(x)的是A f(x)=xB f (x)=x-xC f(x)=x+1D f(x)=-x3 如图所示,程序框图(算法流程图)的输出结果是A.3B.4C.5D.84.的等比数列{a n}的各项都是正数,且a3a11=16,则log2a16=(A)4 (B)5 (C)6 (D)75.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则(A )甲的成绩的平均数小于乙的成绩的平均数 (B )甲的成绩的中位数等于乙的成绩的中位数 (C )甲的成绩的方差小于乙的成绩的方差 (D )甲的成绩的极差小于乙的成绩的极差(6)设平面α与平面β相交于直线m ,直线a 在平面α内。
2019年普通高等学校招生全国统一考试(安徽卷.理)含详解
2019年普通高等学校招生全国统一考试(安徽卷)理科数学第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1等于A .iB .i -C iD i (2)、设集合{}22,A x x x R =-≤∈,{}2,12B y x x ==--≤≤,则()R C A B 等于A .RB .{},0x x R x ∈≠ C .{}0 D .∅(3)、若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为 A .2- B .2 C .4- D .4(4)、设,a R ∈b ,已知命题:p a b =;命题222:22a b a bq ++⎛⎫≤⎪⎝⎭,则p 是q 成立的 A .必要不充分条件 B .充分不必要条件C .充分必要条件D .既不充分也不必要条件 2,x 0x ≥(5)、函数y = 的反函数是 2x -, 0x <2x, 0x ≥0x ≥ A .y = B .y, 0x <, 0x <2x, 0x ≥ 2,x 0x ≥ C .y = D .y =0x < 0x <(6)、将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=- ⎪⎝⎭平移,平移后的图象如图所示,则平移后的图象所对应函数的解析式是 A .sin()6y x π=+ B .sin()6y x π=-C .sin(2)3y x π=+ D .sin(2)3y x π=-(7)、若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++=(8)、设0a >,对于函数()sin (0)sin x af x x xπ+=<<,下列结论正确的是A .有最大值而无最小值B .有最小值而无最大值C .有最大值且有最小值D .既无最大值又无最小值(9)、表面积为的正八面体的各个顶点都在同一个球面上,则此球的体积为A .3 B .13π C .23π D .3 10x y -+≥,(10)、如果实数x y 、满足条件 10y +≥, 那么2x y -的最大值为 10x y ++≤,A .2B .1C .2-D .3-(11)、如果111A B C ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,则A .111ABC ∆和222A B C ∆都是锐角三角形 B .111A B C ∆和222A B C ∆都是钝角三角形C .111A B C ∆是钝角三角形,222A B C ∆是锐角三角形D .111A B C ∆是锐角三角形,222A B C ∆是钝角三角形(12)、在正方体上任选3个顶点连成三角形,则所得的三角形是直角非等腰三角形的概率为 A .17 B .27 C .37 D .472019年普通高等学校招生全国统一考试(安徽卷)理科数学第Ⅱ卷(非选择题 共90分)注意事项:请用0.5毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上书写作答无效。
2019年高考理科数学试题及参考答案安徽卷30页word
王某为某县劳动与社会保障局的一名科长,因违纪受到降级处分。
下列何种说法符合《公务员法》的规定( )A.王某对处分不服,可自接到处分决定之日起30日内向某县人事局提出申诉B.王某对处分不服申请复核时,复核期间应暂停对王某的处分C.王某受处分期间,不得晋升级别,但可以享受年终奖金D.处分解除后.王某的原级别即自行恢复×错误您的答案:B 正确答案:C答案详解:根据《公务员法》规定,公务员对涉及本人的下列人事处理不服的,可以自知道该人事处理之日起三十日内向原处理机关申请复核,王某为某县劳动与社会保障局的一名科长,不应向某县人事局提出申诉,A错误;公务员复核、申诉期间不停止人事处理的执行,B错误;公务员在受处分期间不得晋升职务和级别,其中受记过、记大过、降级、撤职处分的,不得晋升工资档次,但可以享受年终奖金,C正确;解除处分后,晋升工资档次、级别和职务不再受原处分的影响。
但是,解除降级、撤职处分的,不视为恢复原级别、原职务,D错误。
扩展阅读:关于公务员惩戒以及对不服的申诉,《公务员法》相关规定如下:第五十五条公务员因违法违纪应当承担纪律责任的,依照本法给予处分;违纪行为情节轻微,经批评教育后改正的,可以免予处分。
第五十六条处分分为:警告、记过、记大过、降级、撤职、开除。
第五十八条公务员在受处分期间不得晋升职务和级别,其中受记过、记大过、降级、撤职处分的,不得晋升工资档次。
受处分的期间为:警告,六个月;记过,十二个月;记大过,十八个月;降级、撤职,二十四个月。
受撤职处分的,按照规定降低级别。
第五十九条公务员受开除以外的处分,在受处分期间有悔改表现,并且没有再发生违纪行为的,处分期满后,由处分决定机关解除处分并以书面形式通知本人。
解除处分后,晋升工资档次、级别和职务不再受原处分的影响。
但是,解除降级、撤职处分的,不视为恢复原级别、原职务。
第九十条公务员对涉及本人的下列人事处理不服的,可以自知道该人事处理之日起三十日内向原处理机关申请复核;对复核结果不服的,可以自接到复核决定之日起十五日内,按照规定向同级公务员主管部门或者作出该人事处理的机关的上一级机关提出申诉;也可以不经复核,自知道该人事处理之日起三十日内直接提出申诉:(一)处分;(二)辞退或者取消录用;(三)降职;(四)定期考核定为不称职;(五)免职;(六)申请辞职、提前退休未予批准;(七)未按规定确定或者扣减工资、福利、保险待遇;(八)法律、法规规定可以申诉的其他情形。
2019年高考理科数学(全国1卷)答案详解(附试卷)
P 20 5 64 16
PS:其实可以对题目进行抽象:即有 A、B 两种字母,填 6 个位置,求恰有 3 个 A 的概率.这样更
容易求解.
【答案】A
第 2 页 共 18 页
7.(平面向量)已知非零向量 a,b 满足 | a | 2 | b | ,且 (a b) b ,则 a 与 b 的夹角为
头顶至肚脐的长度小于 68.07cm,所以身高小于 68.07+68.07÷0.618=178.21cm. 所以选答案 B.
【答案】B
5.(函数)函数
f
(x)
sin x x cos x x2
在[, ] 的图像大致为
A.
B.
C.
D.
【解析】∵
f (x)
sin x x cos x x2
A. (x+1)2 y 2 1 B. (x 1)2 y2 1 C. x2 ( y 1)2 1 D. x2 ( y+1)2 1
【解析】由题意得 z i x ( y 1)i ,∵ z i =1 ,∴ x2 ( y 1)2 1 ,即 x2 ( y 1)2 1
【答案】D
6.(概率统计)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的 6 个爻 组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦 恰有 3 个阳爻的概率是
5
A.
16
11
B.
32
21
C.
32
11
D.
16
【解析】所有重卦的个数为 26 64 ,恰有 3 个阳爻的个数为 C36C33 20 ,因此恰有 3 个阳爻的概率为
2019年全国统一高考数学试卷(理科)(新课标Ⅲ)(解析版)
2019年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题1. 已知集合A={−1, 0, 1, 2}, B={x|x2≤1},则A∩B=( )A.{−1,0,1}B.{0,1}C.{−1,1}D.{0,1,2}2. 若z(1+i)=2i,则z=( )A.−1−iB.−1+iC.1−iD.1+i3. 《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了了解本校小学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该学校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )A.0.5B.0.6C.0.7D.0.84. (1+2x2)(1+x)4的展开式中x3的系数为( )A.12B.16C.20D.245. 已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3=( )A.16B.8C.4D.26. 已知曲线y=ae x+x ln x在点(1,ae)处的切线方程为y=2x+b,则( )A.a=e, b=−1B.a=e, b=1C.a=e−1, b=1D.a=e−1,b=−17. 函数y=2x32x+2−x在[−6,6]的图象大致为()A. B.C. D.8. 如图,点N为正方形ABCD的中心,△EDC为正三角形,平面EDC⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线9. 执行下边的程序框图,如果输入的ε为0.01,则输出的值等于()A.2−124B.2−125C.2−126D.2−12710. 双曲线C :x 24−y 22=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点.若|PO|=|PF|,则△PFO 的面积为( ) A.3√24B.3√22C.2√2D.3√211. 设f(x)是定义域为R 的偶函数,且在(0,+∞)单调递减,则( ) A.f (log 314)>f (2−32)>f (2−23) B.f (log 314)>f (2−23)>f (2−32) C.f (2−32)>f (2−23)>f (log 314)D.f (2−23)>f (2−32)>f (log 314)12. 设函数f(x)=sin (ωx +π5)(ω>0),已知f(x)在[0,2π]有且仅有5个零点,下述四个结论: ①f(x)在(0,2π)有且仅有3个极大值点, ②f(x)在(0,2π)有且仅有2个极小值点, ③f(x)在(0,π10)单调递增,④ω的取值范围是[125,2910). 其中所有正确结论的编号是( ) A.①④ B.②③ C.①②③ D.①③④二、填空题13. 已知a →,b →为单位向量,且a →⋅b →=0,若c →=2a →−√5b →,则cos (a →,c →)=________.14. 记S n 为等差数列{a n }项和,若a 1≠0,a 2=3a 1,则S 10S 5=________.15. 设F 1,F 2为椭圆C :x 236+y 220=1的两个焦点,M 为C 上一点且在第一象限,若△MF 1F 2为等腰三角形,则M 的坐标为________.16. 学生到工厂劳动实践,利用3D 打印技术制作模型,如图,该模型为长方体ABCD −A 1B 1C 1D 1,挖去四棱锥O −EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H ,分别为所在棱的中点,AB =BC =6cm ,AA 1=4cm ,3D 打印所用原料密度为0.9g/cm 2,不考虑打印损耗,制作该模型所需原料的质量为________g .三、解答题 17.为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同. 经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比,根据试验数据分别得到如下直方图: 记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).18. △ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,已知a sin A+C 2=b sin A .(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.19. 图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60∘,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ;(2)求图2中的二面角B −CG −A 的大小.20. 已知函数f(x)=2x 3−ax 2+b . (1)讨论f(x)的单调性;(2)是否存在a,b ,使得f(x)在区间[0,1]的最小值为−1且最大值为1?若存在,求出a,b 的所有值;若不存在,说明理由.21. 已知曲线C :y =x 22,D 为直线y =−12上的动点,过D 作C 的两条切线,切点分别为A,B .(1)证明:直线AB 过定点;(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.22. 如图,在极坐标系Ox 中,A(2,0),B(√2,π4),C(√2,3π4),D(2,π),弧AB̂,BC ̂,CD ̂所在圆的圆心分别是(1,0),(1,π2),(1,π),曲线M 1是弧AB̂,曲线M 2是弧BC ̂,曲线M 3是弧CD ̂.(1)分别写出M 1,M 2,M 3的极坐标方程;(2)曲线M 由M 1,M 2,M 3构成,若点P 在M 上,且|OP|=√3,求P 的极坐标.23. 设x ,y ,z ∈R ,且x +y +z =1.(1)求(x −1)2+(y +1)2+(z +1)2的最小值;(2)若(x −2)2+(y −1)2+(z −a)2≥13成立,证明:a ≤−3或a ≥−1.参考答案与试题解析2019年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题1.【答案】A【考点】一元二次不等式的解法交集及其运算【解析】此题暂无解析【解答】解:∵x2≤1,∴−1≤x≤1,∴B={x|−1≤x≤1},∴A∩B={−1,0,1}.故选A.2.【答案】D【考点】复数代数形式的乘除运算【解析】此题暂无解析【解答】解:z(1+i)=2i,z=2i1+i,z=2i(1−i)(1+i)(1−i),z=1+i,故选D.3.【答案】C【考点】生活中概率应用【解析】此题暂无解析【解答】解:只阅读过《红楼梦》或《西游记》的人数为:90−60=30,只阅读过《红楼梦》的人数为:80−60=20,只阅读过《西游记》的人数为30−20=10,阅读过《西游记》的人数为:10+60=70,与该校学生总数比值为70100=0.7.故选C.4.【答案】A【考点】二项式定理的应用【解析】此题暂无解析【解答】解:(1+x)4展开式中x3项的系数:C43=4;(1+x)4展开式中x项的系数:C41=4;所以(1+2x2)(1+x)4展开式中x3项的系数为:4+2×4=12. 故选A.5.【答案】C【考点】等比数列的前n项和【解析】此题暂无解析【解答】解:a1q4=3a1q2+4a1,q4−3q2−4=0,解得q=2或−2(舍)a1(1−q4)1−q=15,解得a1=1,所以a3=a1q2=4.故选C.6.【答案】D【考点】利用导数研究曲线上某点切线方程【解析】此题暂无解析【解答】解:y′=ae x+ln x+1,∵曲线y=ae x+x ln x在点(1,ae)处的切线方程为y=2x+b,∴ae+ln1+1=2,解得a=e−1.∴切线方程为y=2x−1,解得b=−1.故选D.7.【答案】B【考点】函数奇偶性的判断函数的图象【解析】此题暂无解析【解答】解:将−x代入题中函数,可得y1=2(−x)32−x+2−(−x)=−y,故原函数为奇函数,关于原点对称,因此排除选项C.将x=1代入函数,得y=45>0,排除选项D.将x=4代入函数,得y=2⋅4324+2−4≈23=8,排除选项A. 故选B.8.【答案】B【考点】空间中直线与直线之间的位置关系【解析】此题暂无解析【解答】解:连接M,N,∵ MN为△DBE的中位线,∴ MN//EB,∴ M,N,E,B四点共线,∴ BM,EN相交;设AB=4,则AD=DC=CB=DE=CE=4;设P为CD中点,Q为DP中点,连接EP,MQ;∵ EP⊥DC,平面ECD⊥平面ABCD,EP⊂平面ECD,平面ECD∩平面ABCD=CD;∴ EP⊥平面ABCD,∴ EP⊥PN,同理MQ⊥QB,在△EPN中,EP=2√3,PN=2,则EN=4;在△MQB中,MQ=√3,BQ=5,则BM=2√7.∴ BM≠EN;故选B.9.【答案】C【考点】程序框图【解析】此题暂无解析【解答】解:∵ ε=0.01,①输入x=1,s=0,有s=1+0=1,x=12,x>ε;②输入x=12,s=1+12=2−12,x=122,x>ε;③输入x=122,s=2−12+122=2−122,x=123,x>ε;④输入x=123,s=2−122+123=2−123,x=124,x>ε;⑤输入x=124,s=2−123+124=2−124,x=125,x>ε;⑥输入x=125,s=2−124+125=2−125,x=126,x>ε;⑦输入x=126,s=2−125+126=2−126,x=127<ε,此时输出s=2−126.故选C . 10.【答案】 A【考点】双曲线的渐近线 【解析】 此题暂无解析 【解答】解:设点P =(x 0,y 0), ∵ a =2,b =√2, ∴ c =√6.由题知x 02+y 02=(x 0−√6)2+y 02,解得x 0=√62, 由于双曲线的渐近线方程为y =±√22, ∴ y 0=√32, ∴ S △PFO =12×√6×√32=3√24. 故选A. 11.【答案】 C【考点】幂函数的单调性、奇偶性及其应用 【解析】 此题暂无解析 【解答】解:|log 34−1|=|−log 34|>1, 2−32=√23<23=2−23,又∵ f(x)为偶函数,且在(0,+∞)上单调递减, ∴ f (2−32)>f (2−23)>f (log 314). 故选C.12.【答案】D【考点】正弦函数的周期性由y=Asin (ωx+φ)的部分图象确定其解析式 正弦函数的单调性 正弦函数的定义域和值域 【解析】 此题暂无解析 【解答】解:作出f(x)的大致图像,由图知f(x)在(0,2π)上有3个极大值点,①对;f(x)在(0,2π)上有2个或3个极小值点,②错; 5π−π5≤2πω<6π−π5,解得125≤ω<2910,④对;24π100≤π10ω<29100π,∵ π2−π5=310π.∴ f(x)在(0,π10)单调递增,③对.故选D .二、填空题 13.【答案】23【考点】数量积判断两个平面向量的垂直关系 数量积表示两个向量的夹角 单位向量 【解析】 此题暂无解析 【解答】解:由题可知, ∵ a →⋅b →=0,∴ a →⊥b →, ∵ c →=2a →−√5b →,∴ |c →|=√22+(√5)2=3,且c →与a →夹角小于π2,故cos (a →,c →)=a →⋅c→|a →|⋅|c →|=(2a →−√5b →)⋅a →|a →|⋅|c →|=23,故答案为:23. 14.【答案】 4【考点】等差数列的前n 项和 【解析】 此题暂无解析 【解答】解:∵ 数列{a n }为等差数列,a 2=3a 1, ∴ a 1+d =3a 1, 即d =2a 1, S n =na 1+n(n−1)d2, ∴S 10S 5=10a 1+(10×9)2d 5a 1+(5×4)2d,将d =2a 1代入,得S10S 5=4.故答案为:4. 15. 【答案】 (3,√15)【考点】 椭圆的应用 椭圆的定义 【解析】 此题暂无解析 【解答】解:因为M 在椭圆上,设M 横坐标为t ,则M(t,√180−5t 29);又因为△MF 1F 2为等腰三角形且M 在第一象限, 则MF 1=F 1F 2, 由题意得F 1F 2=8. (t +4)2+(√180−5t 29)2=64,解得t =3或t =−21(舍去). 当t =3时,M 的坐标为(3,√15).故答案为:(3,√15). 16.【答案】 118.8 【考点】柱体、锥体、台体的体积计算 【解析】 此题暂无解析 【解答】解:模型的体积为长方体的体积减去四棱锥的体积, 正方体的体积为:6×6×4=144cm 3, 四棱锥的体积为:13×6×4×12×3=12cm 3. 模型的体积为:144−12=132cm 3. 模型的质量为:132×0.9=118.8g . 故答案为:118.8. 三、解答题17.【答案】解:(1)由题意得:0.7=a +0.2+0.15, 解得:a =0.35.b =1−0.05−0.15−0.7=0.1.(2)甲离子残留百分比的平均值的估计值为:2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05. 乙离子残留百分比的平均值的估计值为:3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00. 【考点】众数、中位数、平均数 频率分布直方图【解析】 此题暂无解析 【解答】解:(1)由题意得:0.7=a +0.2+0.15,解得:a=0.35.b=1−0.05−0.15−0.7=0.1.(2)甲离子残留百分比的平均值的估计值为:2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05. 乙离子残留百分比的平均值的估计值为:3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.18.【答案】解:(1)由题设及正弦定理可得,sin A sin A+C2=sin B sin A,∵sin A≠0,∴sin A+C2=sin B,∵ A+B+C=180∘,可得sin A+C2=cos B2,故cos B2=2sin B2cos B2.∵cos B2≠0,故sin B2=12,∴ B=60∘.(2)由题设及(1)可知,S△ABC=12ac sin B=√34a,由正弦定理得a=c sin Asin C =sin(120∘−C)sin C=√32tan C+12,∵ △ABC为锐角三角形,故0∘<A<90∘,0∘<C<90∘,由(1)知A+C=120∘,∴30∘<C<90∘,故12<a<2,从而√38<S△ABC<√32.答:△ABC面积的取值范围为(√38,√32).【考点】解三角形三角函数中的恒等变换应用【解析】此题暂无解析【解答】解:(1)由题设及正弦定理可得,sin A sin A+C2=sin B sin A,∵sin A≠0,∴sin A+C2=sin B,∵ A+B+C=180∘,可得sin A+C2=cos B2,故cos B2=2sin B2cos B2.∵cos B2≠0,故sin B2=12,∴ B=60∘.(2)由题设及(1)可知,S△ABC=12ac sin B=√34a,由正弦定理得a=c sin Asin C=sin(120∘−C)sin C=√32tan C+12,∵ △ABC为锐角三角形,故0∘<A<90∘,0∘<C<90∘,由(1)知A+C=120∘,∴30∘<C<90∘,故12<a<2,从而√38<S△ABC<√32.答:△ABC面积的取值范围为(√38,√32).19.【答案】(1)证明:由已知得AD//BE,CG//BE,所以AD//CG,故AD,CG确定一平面,从而A,C,G,D四点共面,由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE,又因为AB⊂平面ABC,所以平面ABC ⊥平面BCGE . (2)解:作EH ⊥BC ,垂足为H , 因为EH ⊂平面BCGE , 平面BCGE ⊥平面ABC , 所以EH ⊥平面ABC .由已知,菱形BCGE 的边长为2,∠EBC =60∘, 可求得BH =1,EH =√3.以H 为坐标原点,HC →的方向为x 轴的正方向, 建立如图所示的空间直角坐标系H −xyz ,则A (−1,1,0),C (1,0,0),G (2,0,√3), CG →=(1,0,√3),AC →=(2,−1,0), 设平面ACGD 的法向量为n →=(x ,y ,z), 则{CG →⋅n →=0,AC →⋅n →=0,即{x +√3z =0,2x −y =0.所以可取n →=(3,6,−√3).又平面BCGE 的法向量可取为m →=(0,1,0), 所以cos <n →,m →>=n →⋅m→|n →||m →|=√32. 因此二面角B −CG −A 的大小为30∘. 【考点】用空间向量求平面间的夹角 平面与平面垂直的判定【解析】 此题暂无解析 【解答】(1)证明:由已知得AD//BE ,CG//BE , 所以AD//CG , 故AD ,CG 确定一平面, 从而A ,C ,G ,D 四点共面, 由已知得AB ⊥BE ,AB ⊥BC , 故AB ⊥平面BCGE , 又因为AB ⊂平面ABC , 所以平面ABC ⊥平面BCGE . (2)解:作EH ⊥BC ,垂足为H , 因为EH ⊂平面BCGE , 平面BCGE ⊥平面ABC , 所以EH ⊥平面ABC .由已知,菱形BCGE 的边长为2,∠EBC =60∘,可求得BH =1,EH =√3.以H 为坐标原点,HC →的方向为x 轴的正方向,建立如图所示的空间直角坐标系H −xyz ,则A (−1,1,0),C (1,0,0),G (2,0,√3), CG →=(1,0,√3),AC →=(2,−1,0), 设平面ACGD 的法向量为n →=(x ,y ,z),则{CG →⋅n →=0,AC →⋅n →=0,即{x +√3z =0,2x −y =0.所以可取n →=(3,6,−√3).又平面BCGE 的法向量可取为m →=(0,1,0), 所以cos <n →,m →>=n →⋅m→|n →||m →|=√32. 因此二面角B −CG −A 的大小为30∘. 20.【答案】解:(1)f ′(x)=6x 2−2ax =2x(3x −a). 令f ′(x)=0,得x =0或x =a3.若a >0,则当x ∈(−∞,0)∪(a3,+∞)时,f ′(x)>0;当x ∈(0,a3)时,f ′(x)<0.故f(x)在(−∞,0),(a3,+∞)单调递增,在(0,a3)单调递减; 若a =0,f(x)在(−∞,+∞)单调递增;若a <0,则当x ∈(−∞,a3)∪(0,+∞)时,f ′(x)>0; 当x ∈(a3,0)时,f ′(x)<0.故f(x)在(−∞,a3),(0,+∞)单调递增,在(a3,0)单调递减.(2)满足题设条件的a,b 存在.i 当a ≤0时,由(1)知,f(x)在[0,1]单调递增,所以f(x)在区间[0,1]的最小值为f(0)=b ,最大值为f(1)=2−a +b , 此时a ,b 满足题设条件当且仅当b =−1, 2−a +b =1,即a =0,b =−1. ii 当a ≥3时,由(1)知,f(x)在[0,1]单调递减,所以f(x)在区间[0,1]的最大值为f(0)=b ,最小值为f(1)=2−a +b . 此时a,b 满足题设条件当且仅当2−a +b =−1, b =1,即a =4,b =1.iii 当0<a <3时,由(1)知,f(x)在[0,1]的最小值为f (a3)=−a 327+b ,最大值为b 或2−a +b . 若−a 327+b =−1, b =1,则a =3√23,与0<a <3矛盾.若−a 327+b =−1,2−a +b =1,则a =3√3或a =−3√3或a =0,与0<a <3矛盾.综上,当且仅当a =0, b =−1或a =4, b =1时, f(x)在[0,1]的最小值为−1,最大值为1.【考点】利用导数研究函数的最值 利用导数研究函数的单调性【解析】 此题暂无解析 【解答】解:(1)f ′(x)=6x 2−2ax =2x(3x −a). 令f ′(x)=0,得x =0或x =a3.若a >0,则当x ∈(−∞,0)∪(a3,+∞)时,f ′(x)>0;当x ∈(0,a3)时,f ′(x)<0.故f(x)在(−∞,0),(a3,+∞)单调递增,在(0,a3)单调递减; 若a =0,f(x)在(−∞,+∞)单调递增;若a <0,则当x ∈(−∞,a3)∪(0,+∞)时,f ′(x)>0;当x ∈(a3,0)时,f ′(x)<0.故f(x)在(−∞,a 3),(0,+∞)单调递增,在(a3,0)单调递减. (2)满足题设条件的a,b 存在.i 当a ≤0时,由(1)知,f(x)在[0,1]单调递增, 所以f(x)在区间[0,1]的最小值为f(0)=b ,最大值为f(1)=2−a +b ,此时a ,b 满足题设条件当且仅当b =−1, 2−a +b =1, 即a =0,b =−1.ii 当a ≥3时,由(1)知,f(x)在[0,1]单调递减,所以f(x)在区间[0,1]的最大值为f(0)=b ,最小值为f(1)=2−a +b . 此时a,b 满足题设条件当且仅当2−a +b =−1, b =1,即a =4,b =1. iii 当0<a <3时,由(1)知,f(x)在[0,1]的最小值为f (a3)=−a 327+b ,最大值为b 或2−a +b . 若−a 327+b =−1, b =1,则a =3√23,与0<a <3矛盾. 若−a 327+b =−1,2−a +b =1,则a =3√3或a =−3√3或a =0,与0<a <3矛盾. 综上,当且仅当a =0, b =−1或a =4, b =1时, f(x)在[0,1]的最小值为−1,最大值为1. 21. 【答案】解:(1)设D (t,−12), A (x 1,y 1),则x 12=2y 1.由于y ′=x ,所以切线DA 的斜率为x 1, 故y 1+12x 1−t=x 1.整理得2tx 1−2y 1+1=0.设B (x 2,y 2),同理可得2tx 2−2y 2+1=0. 故直线AB 的方程为2tx −2y +1=0. 所以直线AB 过定点(0,12).(2)由(1)得直线AB 的方程为y =tx +12.由{y =tx +12,y =x22可得x 2−2tx −1=0. 于是x 1+x 2=2t, x 1x 2=−1, y 1+y 2=t (x 1+x 2)+1=2t 2+1, |AB|=√1+t 2|x 1−x 2| =√1+t 2×√(x 1+x 2)2−4x 1x 2=2(t 2+1).设d 1,d 2分别为点D,E 到直线AB 的距离, 则d 1=√t 2+1, d 2=√t 2+1.因此,四边形ADBE 的面积S =12|AB|(d 1+d 2)=(t 2+3)√t 2+1. 设M 为线段AB 的中点,则M (t,t 2+12).由于EM →⊥AB →,而EM →=(t,t 2−2), AB →与向量(1,t)平行, 所以t +(t 2−2)t =0, 解得t =0或t =±1.当t =0时,S =3;当t =±1时S =4√2, 因此,四边形ADBE 的面积为3或4√2. 【考点】 直线恒过定点利用导数研究曲线上某点切线方程 直线与圆的位置关系【解析】 此题暂无解析 【解答】解:(1)设D (t,−12), A (x 1,y 1),则x 12=2y 1.由于y ′=x ,所以切线DA 的斜率为x 1, 故y 1+12x 1−t=x 1.整理得2tx 1−2y 1+1=0.设B (x 2,y 2),同理可得2tx 2−2y 2+1=0. 故直线AB 的方程为2tx −2y +1=0. 所以直线AB 过定点(0,12).(2)由(1)得直线AB 的方程为y =tx +12.由{y =tx +12,y =x22可得x 2−2tx −1=0. 于是x 1+x 2=2t, x 1x 2=−1, y 1+y 2=t (x 1+x 2)+1=2t 2+1, |AB|=√1+t 2|x 1−x 2|=√1+t 2×√(x 1+x 2)2−4x 1x 2=2(t 2+1). 设d 1,d 2分别为点D,E 到直线AB 的距离,则d 1=√t 2+1, d 2=√t 2+1.因此,四边形ADBE 的面积S =12|AB|(d 1+d 2)=(t 2+3)√t 2+1.设M 为线段AB 的中点,则M (t,t 2+12).由于EM →⊥AB →,而EM →=(t,t 2−2), AB →与向量(1,t)平行, 所以t +(t 2−2)t =0, 解得t =0或t =±1.当t =0时,S =3;当t =±1时S =4√2, 因此,四边形ADBE 的面积为3或4√2. 22. 【答案】解:(1)由题设可得,弧AB̂,BC ̂,CD ̂所在圆的极坐标方程分别为, ρ=2cos θ, ρ=2sin θ, ρ=−2cos θ, 所以M 1的极坐标方程为ρ=2cos θ(0≤θ≤π4),M 2的极坐标方程为ρ=2sin θ(π4≤θ≤3π4),M 3的极坐标方程为ρ=−2cos θ(3π4≤θ≤π). (2)设P(ρ,θ),由题设及(1)知, 若0≤θ≤π4,则2cos θ=√3, 解得θ=π6; 若π4≤θ≤3π4,则2sin θ=√3,解得θ=π3或θ=2π3;若3π4≤θ≤π,则−2cos θ=√3,解得θ=5π6.综上,P 的极坐标为(√3,π6)或(√3,π3)或(√3,2π3)或(√3,5π6). 【考点】圆的极坐标方程 极坐标刻画点的位置 【解析】 此题暂无解析【解答】解:(1)由题设可得,弧AB̂,BC ̂,CD ̂所在圆的极坐标方程分别为, ρ=2cos θ, ρ=2sin θ, ρ=−2cos θ, 所以M 1的极坐标方程为ρ=2cos θ(0≤θ≤π4),M 2的极坐标方程为ρ=2sin θ(π4≤θ≤3π4),M 3的极坐标方程为ρ=−2cos θ(3π4≤θ≤π).(2)设P(ρ,θ),由题设及(1)知, 若0≤θ≤π4,则2cos θ=√3,解得θ=π6; 若π4≤θ≤3π4,则2sin θ=√3,解得θ=π3或θ=2π3;若3π4≤θ≤π,则−2cos θ=√3,解得θ=5π6.综上,P 的极坐标为(√3,π6)或(√3,π3)或(√3,2π3)或(√3,5π6).23.【答案】(1)解:由于[(x −1)+(y +1)+(z +1)]2 =(x −1)2+(y +1)2+(z +1)2+2[(x −1)(y +1)+(y +1)(z +1)+(z +1)(x −1)] ≤3[(x −1)2+(y +1)2+(z +1)2],故由已知得(x −1)2+(y +1)2+(z +1)2≥43,当且仅当x =53, y =−13, z =−13时等号成立.(2)证明:由于[(x −2)+(y −1)+(z −a)]2=(x −2)2+(y −1)2+(z −a)2+2[(x −2)(y −1)+(y −1)(z −a)+(z −a)(x −2)] ≤3[(x −2)2+(y −1)2+(z −a)2], 由已知得,(x −2)2+(y −1)2+(z −a)2≥(2+a)23,当且仅当x =4−a 3, y =1−a 3, z =2a−23时等号成立,因此(x −2)2+(y −1)2+(z −a)2的最小值为(2+a)23,由题设知(2+a)23≥13,解得a ≤−3或a ≥−1.【考点】 柯西不等式 【解析】 此题暂无解析 【解答】(1)解:由于[(x −1)+(y +1)+(z +1)]2 =(x −1)2+(y +1)2+(z +1)2+2[(x −1)(y +1)+(y +1)(z +1)+(z +1)(x −1)] ≤3[(x −1)2+(y +1)2+(z +1)2],故由已知得(x −1)2+(y +1)2+(z +1)2≥43, 当且仅当x =53, y =−13, z =−13时等号成立. (2)证明:由于[(x −2)+(y −1)+(z −a)]2 =(x −2)2+(y −1)2+(z −a)2+2[(x −2)(y −1)+(y −1)(z −a)+(z −a)(x −2)] ≤3[(x −2)2+(y −1)2+(z −a)2], 由已知得,(x −2)2+(y −1)2+(z −a)2≥(2+a)23,当且仅当x =4−a 3, y =1−a 3, z =2a−23时等号成立,因此(x −2)2+(y −1)2+(z −a)2的最小值为(2+a)23,由题设知(2+a)23≥13,解得a ≤−3或a ≥−1.。
2019年安徽高考理科数学试题及答案
(1)求A;
(2)若 ,求sinC.
18.(12分)
如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.
(1)证明:MN∥平面C1DE;
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
21.(12分)
为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得 分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得 分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.
1.已知集合 ,则 =
A. B. C. D.
2.设复数z满足 ,z在复平面内对应的点为(x,y),则
A. B. C. D.
3.已知 ,则
A. B. C. D.
4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是 ( ≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是 .若某人满足上述两个黄金分割比例,且腿长为105 cm,头顶至脖子下端的长度为26 cm,则其身高可能是
2019年全国高考安徽省数学(理)试卷及答案【精校版】
2019年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至第2页,第II 卷第3至第4页。
全卷满分150分,考试时间120分钟。
考生注意事项:1. 答题前,务必在试卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。
务必在答题卡背面规定的地方填写姓名和座位号后两位。
2. 答第I 卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3. 答第II 卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出..答题区域书写的答案无效...........,.在答题卷、草稿纸上答题无效.............。
4. 考试结束,务必将试卷和答题卡一并上交。
参考公式:如果事件A 、B 互斥,那么 如果事件A 、B 相互独立,那么 P (A+B )= P (A )+ P (B ) P (A·B)= P (A )·P(B ) 第I 卷(选择题共50分)一.选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设i 是虚数单位,z 表示复数z 的共轭复数。
若,1i z +=则zi z i+⋅=( ) A .2- B .2i - C .2 D .2i 2.“0<x ”是“0)1ln(<+x ”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 3.如图所示,程序框图(算法流程图)的输出结果是( )A .34B .55C .78D .89 4.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴, 建立极坐标系,两种坐标系中取相同的长度单位,已知直 线l 的参数方程是⎩⎨⎧-=+=31y y t x ,(t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为( )A .14B .142C .2D .225.y x ,满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+02202202y x y x y x ,若ax y z -=取得最大值的最优解不唯一,则实数a 的值为( )A .121-或B .212或C .2或1D .12-或6.设函数))((R x x f ∈满足()()sin f x f x x π+=+,当π<≤x 0时,0)(=x f ,则=)623(πf ( ) A .12 B .23 C .0 D .21-7.一个多面体的三视图如图所示,则该多面体的表面积为( )A .213B .183+.21 D .188.从正方体六个面的对角线中任取两条作为一对,其中所成的角为60︒的共有( )A .24对B .30对C .48对D .60对 9.若函数()12f x x x a =+++的最小值为3,则实数a 的值为( )A .5或8B .1-或5C .1-或4-D .4-或810.在平面直角坐标系xOy 中,已知向量,,1,0,a b a b a b ==⋅=点Q 满2()OQ a b =+。
2019年全国统一高考数学试卷(理科)真题解析(解析版)
绝密★启用前2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B =A. (-∞,1)B. (-2,1)C. (-3,-1)D. (3,+∞)【答案】A 【解析】 【分析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【详解】由题意得,{}{}2,3,1A x x x B x x ==<或,则{}1A B x x ⋂=<.故选A .【点睛】本题考点为集合的运算,为基础题目,难度偏易.不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.2.设z =-3+2i ,则在复平面内z 对应的点位于 A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限【答案】C 【解析】 【分析】本题考查复数的共轭复数和复数在复平面内的对应点位置,渗透了直观想象和数学运算素养.采取定义法,利用数形结合思想解题.【详解】由32,z i =-+得32,z i =--则32,z i =--对应点(-3,-2)位于第三象限.故选C .【点睛】本题考点为共轭复数,为基础题目,难度偏易.忽视共轭复数的定义致错,复数与共轭复数间的关系为实部同而虚部异,它的实部和虚部分别对应复平面上点的横纵坐标.3.已知AB =(2,3),AC =(3,t ),BC =1,则AB BC ⋅= A. -3 B. -2 C. 2 D. 3【答案】C 【解析】 【分析】本题考查平面向量数量积的坐标运算,渗透了直观想象和数学运算素养.采取公式法,利用转化与化归思想解题.【详解】由(1,3)BC AC AB t =-=-,211BC ==,得3t =,则(1,0)BC =,(2,3)(1,0)21302AB BC ==⨯+⨯=.故选C .【点睛】本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.学生易在处理向量的法则运算和坐标运算处出错,借助向量的模的公式得到向量的坐标,然后计算向量数量积.4.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设r Rα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为A.B.C.D.【答案】D 【解析】 【分析】本题在正确理解题意的基础上,将有关式子代入给定公式,建立α的方程,解方程、近似计算.题目所处位置应是“解答题”,但由于题干较长,易使考生“望而生畏”,注重了阅读理解、数学式子的变形及运算求解能力的考查. 【详解】由rRα=,得r R α= 因为121223()()M M M R r R r r R +=++,所以12122222(1)(1)M M M R R R ααα+=++,即543232221133[(1)]3(1)(1)M M αααααααα++=+-=≈++,解得3α=所以3.r R α==【点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是复杂式子的变形出错.5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A. 中位数B. 平均数C. 方差D. 极差【答案】A 【解析】 【分析】可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案. 【详解】设9位评委评分按从小到大排列为123489x x x x x x <<<<<.则①原始中位数为5x ,去掉最低分1x ,最高分9x ,后剩余2348x x x x <<<,中位数仍为5x ,∴A 正确. ②原始平均数1234891()9x x x x x x x =<<<<<,后来平均数234817x x x x x '=<<<()平均数受极端值影响较大,∴x 与x '不一定相同,B 不正确③()()()22221119q S x x x x x x ⎡⎤=-+-++-⎢⎥⎣⎦ ()()()222223817s x x x x x x ⎡⎤'=-'+-'++-'⎢⎥⎣⎦由②易知,C 不正确.④原极差91=x -x ,后来极差82=x -x 显然极差变小,D 不正确. 【点睛】本题旨在考查学生对中位数、平均数、方差、极差本质的理解.6.若a >b ,则 A. ln(a −b )>0B. 3a <3bC. a 3−b 3>0D. │a │>│b │【答案】C 【解析】 【分析】本题也可用直接法,因为a b >,所以0a b ->,当1a b -=时,ln()0a b -=,知A 错,因为3xy =是增函数,所以33a b >,故B 错;因为幂函数3y x =是增函数,a b >,所以33a b >,知C 正确;取1,2a b ==-,满足a b >,12a b =<=,知D 错.【详解】取2,1a b ==,满足a b >,ln()0a b -=,知A 错,排除A ;因为9333a b =>=,知B 错,排除B ;取1,2a b ==-,满足a b >,12a b =<=,知D 错,排除D ,因为幂函数3y x =是增函数,a b >,所以33a b >,故选C .【点睛】本题主要考查对数函数性质、指数函数性质、幂函数性质及绝对值意义,渗透了逻辑推理和运算能力素养,利用特殊值排除即可判断.7.设α,β为两个平面,则α∥β的充要条件是 A. α内有无数条直线与β平行 B. α内有两条相交直线与β平行 C. α,β平行于同一条直线 D. α,β垂直于同一平面 【答案】B 【解析】 【分析】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.【详解】由面面平行的判定定理知:α内两条相交直线都与β平行是//αβ的充分条件,由面面平行性质定理知,若//αβ,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是//αβ的必要条件,故选B .【点睛】面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,//a b a b αβ⊂⊂,则//αβ”此类的错误.8.若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A. 2B. 3C. 4D. 8【答案】D 【解析】 【分析】利用抛物线与椭圆有共同的焦点即可列出关于p 的方程,即可解出p ,或者利用检验排除的方法,如2p =时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A ,同样可排除B ,C ,故选D .【详解】因为抛物线22(0)y px p =>的焦点(,0)2p 是椭圆2231x y p p +=的一个焦点,所以23()2pp p -=,解得8p =,故选D .【点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养.9.下列函数中,以2π为周期且在区间(4π,2π)单调递增的是 A. f (x )=│cos 2x │ B. f (x )=│sin 2x │ C. f (x )=cos│x │ D. f (x )= sin│x │【答案】A 【解析】 【分析】本题主要考查三角函数图象与性质,渗透直观想象、逻辑推理等数学素养.画出各函数图象,即可做出选择.【详解】因为sin ||y x =图象如下图,知其不是周期函数,排除D ;因为cos cos y x x ==,周期为2π,排除C ,作出cos2y x =图象,由图象知,其周期为2π,在区间单调递增,A 正确;作出sin 2y x =的图象,由图象知,其周期为2π,在区间单调递减,排除B ,故选A .【点睛】利用二级结论:①函数()y f x =的周期是函数()y f x =周期的一半;②sin y x ω=不是周期函数;10.已知a ∈(0,π2),2sin2α=cos2α+1,则sinα=A.15B.5C. D.【答案】B 【解析】 【分析】利用二倍角公式得到正余弦关系,利用角范围及正余弦平方和为1关系得出答案. 【详解】2sin 2cos21α=α+,24sin cos 2cos .0,,cos 02π⎛⎫∴α⋅α=αα∈∴α> ⎪⎝⎭.sin 0,2sin cos α>∴α=α,又22sin cos 1αα+=,2215sin 1,sin 5∴α=α=,又sin 0α>,sin α∴=B .【点睛】本题为三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负,很关键,切记不能凭感觉.11.设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为 A.B. C. 2 D.【答案】A 【解析】 【分析】准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 关系,可求双曲线的离心率. 【详解】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又||PQ OF c ==,||,2cPA PA ∴=∴为以OF 为直径的圆的半径,A ∴为圆心||2cOA =.,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a =∴==.e ∴=A .【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.12.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A. 9,4⎛⎤-∞ ⎥⎝⎦B. 7,3⎛⎤-∞ ⎥⎝⎦ C. 5,2⎛⎤-∞ ⎥⎝⎦ D. 8,3⎛⎤-∞ ⎥⎝⎦【答案】B 【解析】 【分析】本题为选择压轴题,考查函数平移伸缩,恒成立问题,需准确求出函数每一段解析式,分析出临界点位置,精准运算得到解决. 【详解】(0,1]x ∈时,()=(1)f x x x -,(+1)= ()f x 2f x ,()2(1)f x f x ∴=-,即()f x 右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,()=4(2)=4(2)(3)f x f x x x ---,令84(2)(3)9x x --=-,整理得:2945560x x -+=,1278(37)(38)0,,33x x x x ∴--=∴==(舍),(,]x m ∴∈-∞时,8()9f x ≥-成立,即73m ≤,7,3m ⎛⎤∴∈-∞ ⎥⎝⎦,故选B .【点睛】易错警示:图像解析式求解过程容易求反,画错示意图,画成向左侧扩大到2倍,导致题目出错,需加深对抽象函数表达式的理解,平时应加强这方面练习,提高抽象概括、数学建模能力.二、填空题:本题共4小题,每小题5分,共20分.13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________. 【答案】0.98. 【解析】 【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【详解】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10+20+10=40,所以该站所有高铁平均正点率约为39.20.9840=. 【点睛】本题考点为概率统计,渗透了数据处理和数学运算素养.侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.14.已知()f x 是奇函数,且当0x <时,()e axf x =-.若(ln 2)8f =,则a =__________.【答案】-3【解析】 【分析】本题主要考查函数奇偶性,对数的计算.渗透了数学运算、直观想象素养.使用转化思想得出答案. 【详解】因为()f x 是奇函数,且当0x <时,()ax f x e -=-.又因为ln 2(0,1)∈,(ln 2)8f =,所以ln 28a e --=-,两边取以e 为底的对数得ln 23ln 2a -=,所以3a -=,即3π. 【点睛】本题主要考查函数奇偶性,对数的计算.15.V ABC 的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则V ABC 的面积为__________.【答案】【解析】 【分析】本题首先应用余弦定理,建立关于c 的方程,应用,a c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查. 【详解】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=, 即212c =解得c c ==-所以2a c ==11sin 222ABC S ac B ∆==⨯= 【点睛】本题涉及正数开平方运算,易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.【答案】 (1). 共26个面. (2). 1. 【解析】 【分析】第一问可按题目数出来,第二问需在正方体中简单还原出物体位置,利用对称性,平面几何解决. 【详解】由图可知第一层与第三层各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有18826+=个面.如图,设该半正多面体的棱长为x ,则A B B E x ==,延长BC 与FE 交于点G ,延长BC 交正方体棱于H ,由半正多面体对称性可知,BGE ∆为等腰直角三角形,,21)122BG GE CH x GH x x x ∴===∴=⨯+==,1x ∴==.【点睛】本题立意新颖,空间想象能力要求高,物体位置还原是关键,遇到新题别慌乱,题目其实很简单,稳中求胜是关键.立体几何平面化,无论多难都不怕,强大空间想象能力,快速还原图形.三、解答题:共70分。
2019年全国高考数学卷安徽理含答案9页word
2019年普通高等学校招生全国统一考试(安徽卷)数 学(理科)一、选择题:本大题共11小题,每小题5分,共55分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列函数中,反函数是其自身的函数为( )A .2()[0)f x x x =∈+∞,,B .3()()f x x x =∈-∞+∞,,C .()e ()xf x x =∈-∞+∞,,D .1()(0)f x x x=∈+∞,, 2.设l m n ,,均为直线,其中m n ,在平面α内,则“l α⊥”是“l m ⊥且l n ⊥”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.若对任意x ∈R ,不等式x ax ≥恒成立,则实数a 的取值范围是( ) A .1a <- B .1a ≤C .1a <D .1a ≥4.若a=,则a 等于( )AB.C.D.-5.若22{228}{log 1}x A x B x x -=∈<=∈>Z R ≤,,则()A B R I ð的元素个数为( ) A .0B .1C .2D .36.函数()3sin 2f x x π⎛⎫=- ⎪3⎝⎭的图象为C , ①图象C 关于直线1112x =π对称; ②函数()f x 在区间5ππ⎛⎫-⎪1212⎝⎭,内是增函数; ③由3sin 2y x =的图象向右平移π3个单位长度可以得到图象C . 以上三个论断中,正确论断的个数是( ) A .0 B .1 C .2D .37.如果点P 在平面区域22021020x y x y x y -+⎧⎪-+⎨⎪+-⎩≥≤≤上,点Q 在曲线22(2)1x y ++=上,那么PQ 的最小值为( )A1B1- C.1 D18.半径为1的球面上的四点A B C D ,,,是正四面体的顶点,则A 与B 两点间的球面距离为( )A.arccos 3⎛- ⎝⎭B.arccos 3⎛⎫- ⎪ ⎪⎝⎭C .1arccos 3⎛⎫- ⎪⎝⎭D .1arccos 4⎛⎫-⎪⎝⎭9.如图,1F 和2F 分别是双曲线22221(00)x ya b a b -=>>, 的两个焦点,A 和B 是以O 为圆心,以1OF 为半径的圆与 该双曲线左支的两个交点,且2F AB △是等边三角形,则双 曲线的离心率为( ) ABC.2D.110.以()x ∅表示标准正态总体在区间()x -∞,内取值的概率,若随机变量ξ服从正态分布2()N μσ,,则概率()P ξμσ-<等于( )A .()()μσμσ∅+-∅-B .(1)(1)∅-∅-C .1μσ-⎛⎫∅⎪⎝⎭D .2()μσ∅+11.定义在R 上的函数()f x 既是奇函数,又是周期函数,T 是它的一个正周期.若将方程()0f x =在闭区间[]T T -,上的根的个数记为n ,则n 可能为( )A .0B .1C .3D .52019年普通高等学校招生全国统一考试(安徽卷)数 学(理科)第Ⅱ卷(非选择题 共95分)注意事项: 请用0.5毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上书写作答无效. 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.第9题图12.若32nx x ⎛+ ⎪⎝⎭的展开式中含有常数项,则最小的正整数n 等于 .13.在四面体O ABC -中,OA OB OC D ===u u u r u u u r u u u r,,,a b c 为BC 的中点,E 为AD 的中点,则OE =u u u r(用,,a b c 表示).14.如图,抛物线21y x =-+与x 轴的正半轴交于点A ,将线段OA 的n 等分点从左至右依次记为121n P P P -L ,,,, 过这些分点分别作x 轴的垂线,与抛物线的交点依次为121n Q Q Q -L ,,,,从而得到1n -个直角三角形11Q OP △, 212121n n n Q PP Q P P ---L △,,△.当n →∞时,这些三角形 的面积之和的极限为 .15.在正方体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是 (写出所有正确结论的编号). ①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体; ④每个面都是等边三角形的四面体; ⑤每个面都是直角三角形的四面体.三、解答题:本大题共6小题,共79分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分) 已知0αβπ<<4,为()cos 2f x x π⎛⎫=+ ⎪8⎝⎭的最小正周期,1tan 1(cos 2)4αβα⎛⎫⎛⎫=+-= ⎪ ⎪⎝⎭⎝⎭,,,a b ,且g a b m =.求22cos sin 2()cos sin ααβαα++-的值. 17.(本小题满分14分)如图,在六面体1111ABCD A B C D -中,四边形ABCD 是边长为 2的正方形,四边形1111A B C D 是边长为1的正方形,1DD ⊥平面 1111A B C D ,1DD ⊥平面ABCD ,12DD =.(Ⅰ)求证:11A C 与AC 共面,11B D 与BD 共面. (Ⅱ)求证:平面11A ACC ⊥平面11B BDD ;(Ⅲ)求二面角1A BB C --的大小(用反三角函数值表示). 18.(本小题满分14分)设0a ≥,2()1ln 2ln (0)f x x x a x x =--+>.(Ⅰ)令()()F x xf x '=,讨论()F x 在(0)+,∞内的单调性并求极值; (Ⅱ)求证:当1x >时,恒有2ln 2ln 1x x a x >-+.A BCD 1A1B1C 1Dyx1Q 2Q1n Q +21y x =+1P 2P2n P - 1n P - O第14题图19.(本小题满分12分)如图,曲线G 的方程为22(0)y x y =≥.以原点为圆心.以(0)t t >为半径的圆分别与曲线G 和y 轴的正半轴相交于点A 与点B .直线AB 与x 轴相交于点C .(Ⅰ)求点A 的横坐标a 与点C 的横坐标c 的关系式(Ⅱ)设曲线G 上点D 的横坐标为2a +求证:直线CD 的斜率为定值. 20.(本小题满分13分) 在医学生物学试验中,两只苍蝇(此时笼内共有8只蝇子,6蝇子一只一只地往外飞,直到..只数.(Ⅰ)写出ξ的分布列(不要求写出计算过程); (Ⅱ)求数学期望E ξ; (Ⅲ)求概率()P E ξξ≥.21.(本小题满分14分)某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为1a ,以后每年交纳的数目均比上一年增加(0)d d >,因此,历年所交纳的储备金数目12a a L ,,是一个公差为d 的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定年利率为(0)r r >,那么,在第n 年末,第一年所交纳的储备金就变为11(1)n a r -+,第二年所交纳的储备金就变为22(1)n a r -+,L L .以n T 表示到第n 年末所累计的储备金总额.(Ⅰ)写出n T 与1(2)n T n -≥的递推关系式;(Ⅱ)求证:n n n T A B =+,其中{}n A 是一个等比数列,{}n B 是一个等差数列.2019年普通高等学校招生全国统一考试(安徽卷)数学(理科)试题参考答案一、选择题:本题考查基本知识和基本运算.每小题5分,满分55分. 1.D 2.A 3.B 4.B 5.C 6.C 7.A 8.C 9.D 10.B 11.D 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 12.713.111244++a b c 14.1315.①③④⑤三、解答题16.本小题主要考查周期函数、平面向量数量积与三角函数基本关系式,考查运算能力和推2x理能力.本小题满分12分. 解:因为β为π()cos 28f x x ⎛⎫=+⎪⎝⎭的最小正周期,故πβ=. 因m =·a b ,又1cos tan 24ααβ⎛⎫=+- ⎪⎝⎭ab ··. 故1cos tan 24m ααβ⎛⎫+=+ ⎪⎝⎭·. 由于π04α<<,所以 17.本小题主要考查直线与平面的位置关系、平面与平面的位置关系、二面角及其平面角等有关知识,考查空间想象能力和思维能力,应用向量知识解决立体几何问题的能力.本小题满分14分.解法1(向量法):以D 为原点,以1DADC DD ,,所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系D xyz -如图,则有1111(200)(220)(020)(102)(112)(012)(002)A B C A B C D ,,,,,,,,,,,,,,,,,,,,. (Ⅰ)证明:AC u u u r ∴与11AC u u u u r 平行,DB u u u r 与11DB u u u u r 平行, 于是11AC 与AC 共面,11BD 与BD 共面.(Ⅱ)证明:1(002)(220)0DD AC =-=u u u u r u u u r ,,,,··, 1DD 与DB 是平面11B BDD 内的两条相交直线.AC ⊥∴平面11B BDD .又平面11A ACC 过AC .∴平面11A ACC ⊥平面11B BDD .(Ⅲ)解:111(102)(112)(012)AA BB CC =-=--=-u u u r u u u r u u u u r ,,,,,,,,. 设111()x y z =,,n 为平面11A ABB 的法向量,于是10y =,取11z =,则12x =,(201)=,,n . 设222()x y z =,,m 为平面11B BCC 的法向量,于是20x =,取21z =,则22y =,(021)=,,m .∴二面角1A BB C --的大小为1πarccos 5-.解法2(综合法):(Ⅰ)证明:1D D ⊥∵平面1111A B C D ,1D D ⊥平面ABCD .1D D DA ⊥∴,1D D DC ⊥,平面1111A B C D ∥平面ABCD .于是11C D CD ∥,11D A DA ∥.设E F ,分别为DA DC ,的中点,连结11EF A E C F ,,,有111111A E D D C F D D DE DF ==,,,∥∥. 于是11A C EF ∥.由1DE DF ==,得EF AC ∥, 故11AC AC ∥,11A C 与AC 共面.过点1B 作1B O ⊥平面ABCD 于点O ,则1111B O A E B O C F , ∥∥,连结OE OF ,, 于是11OE B A ∥,11OF B C ∥,OE OF =∴. 所以点O 在BD 上,故11D B 与DB 共面.(Ⅱ)证明:1D D ⊥∵平面ABCD ,1D D AC ⊥∴, 又BD AC ⊥(正方形的对角线互相垂直),1D D 与BD 是平面11B BDD 内的两条相交直线,AC ⊥∴平面11B BDD .又平面11A ACC 过AC ,∴平面11A ACC ⊥平面11B BDD .(Ⅲ)解:∵直线DB 是直线1B B 在平面ABCD 上的射影,AC DB ⊥, 根据三垂线定理,有1AC B B ⊥.过点A 在平面11ABB A 内作1AM B B ⊥于M ,连结MC MO ,, 则1B B ⊥平面AMC ,ABCD1A1B1C 1DMOEF于是11B B MC B B MO⊥⊥,,所以,AMC∠是二面角1A B B C--的一个平面角.根据勾股定理,有111A A C CB B==.1OM B B⊥∵,有11B O OBOMB B==·,BM=AM=,CM=.二面角1A BB C--的大小为1πarccos5-.18.本小题主要考查函数导数的概念与计算,利用导数研究函数的单调性、极值和证明不等式的方法,考查综合运用有关知识解决问题的能力.本小题满分14分.(Ⅰ)解:根据求导法则有2ln2()10x af x xx x'=-+>,,故()()2ln20F x xf x x x a x'==-+>,,于是22()10xF x xx x-'=-=>,,列表如下:故知()F x在(02),内是减函数,在(2)+,∞内是增函数,所以,在2x=处取得极小值(2)22ln22F a=-+.(Ⅱ)证明:由0a≥知,()F x的极小值(2)22ln220F a=-+>.于是由上表知,对一切(0)x∈+,∞,恒有()()0F x xf x'=>.从而当0x>时,恒有()0f x'>,故()f x在(0)+,∞内单调增加.所以当1x>时,()(1)0f x f>=,即21ln2ln0x x a x--+>.故当1x>时,恒有2ln2ln1x x a x>-+.19.本小题综合考查平面解析几何知识,主要涉及平面直角坐标系中的两点间距离公式、直线的方程与斜率、抛物线上的点与曲线方程的关系,考查运算能力与思维能力、综合分析问题的能力.本小题满分12分.解:(Ⅰ)由题意知,(A a.2x=因为OA t =,所以222a a t +=.由于0t >,故有t (1) 由点(0)(0)B t C c ,,,的坐标知, 直线BC 的方程为1x yc t+=.又因点A 在直线BC 上,故有1a c t+=,将(1)代入上式,得1a c =,解得2c a =+(Ⅱ)因为(2D a +,所以直线CD 的斜率为所以直线CD 的斜率为定值.20.本小题主要考查等可能场合下的事件概率的计算、离散型随机变量的分布列、数学期望的概念及其计算,考查分析问题及解决实际问题的能力.本小题满分13分. 解:(Ⅰ)ξ的分布列为:(Ⅱ)数学期望为(162534)228E ξ=⨯+⨯+⨯=.(Ⅲ)所求的概率为5432115()(2)2828P E P ξξξ++++===≥≥. 21.本小题主要考查等差数列、等比数列的基本概念和基本方法,考查学生阅读资料、提取信息、建立数学模型的能力、考查应用所学知识分析和解决实际问题的能力.本小题满分14分.解:(Ⅰ)我们有1(1)(2)n n n T T r a n -=++≥. (Ⅱ)11T a =,对2n ≥反复使用上述关系式,得 在①式两端同乘1r +,得②-①,得121(1)[(1)(1)(1)]n n n n n rT a r d r r r a --=++++++++-L即1122(1)nn a r d a r d d T r n r r r++=+--.如果记12(1)nn a r d A r r +=+,12na r d d B n r r+=--, 则n n n T A B =+. 其中{}n A 是以12(1)a r dr r++为首项,以1(0)r r +>为公比的等比数列;{}n B 是以12a r d d r r +--为首项,dr-为公差的等差数列.。
安徽省2019年高考理科数学试题及答案
安徽省2019年高考理科数学试题及答案(满分150分,考试时间120分钟)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.已知集合}242{60{}M x x N x x x =-<<=--<,,则MN =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A .22+11()x y += B .221(1)x y +=-C .22(1)1y x +-=D .22(+1)1y x +=3.已知0.20.32log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之,称为黄金分割比例),著名的“断臂维纳斯”便 是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是12.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子 下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A .B .C .D .6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .11167.已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6B .π3C .2π3D .5π68.如图是求112122++的程序框图,图中空白框中应填入A .A =12A +B .A =12A +C .A =112A+D .A =112A+9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =- 10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y +=11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③12.已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D二、填空题(本题共4小题,每小题5分,共20分。
2019年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)
绝密★启用前2019 年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12 小题,每小题5 分,共60 分。
在每小题给的四个选项中,只有一项是符合题目要求的。
1.已知集合A = {-1, 0,1, 2},B = {x x2≤1} ,则AA.{-1,0,1} B.{0,1} C.{-1,1} D.{0,1, 2}2.若z(1+ i) = 2i ,则z=A.-1- iB.-1+iC.1- iD.1+i3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100 学生,其中阅读过《西游记》或《红楼梦》的学生共有90 位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60 位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5 B.0.6 C.0.7 D.0.84.(1+2x2)(1+x)4的展开式中x3的系数为A.12 B.16 C.20 D.245.已知各项均为正数的等比数列{a n}的前4 项为和为15,且a5=3a3+4a1,则a3=A.16 B.8 C.4 D.26.已知曲线y =a e x+x ln x 在点(1,a e)处的切线方程为y=2x+b,则A. a = e,b =-1 b =-1B.a=e,b=1 C.a = e-1,b = 1 D .a = e-1,B =7.函数y =2x32x + 2-x在[-6, 6]的图象大致为A.B.C.D.8.如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD⊥平面ABCD,M是线段ED 的中点,则A.BM=EN,且直线BM、EN 是相交直线B.BM≠EN,且直线BM,EN 是相交直线C.BM=EN,且直线BM、EN 是异面直线D.BM≠EN,且直线BM,EN 是异面直线9.执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于yA. 2 - 124B. 2 - 125C. 2 - 126D. 2 - 12710. 双曲线 C :x2- =1 的右焦点为 F ,点 P 在 C 的一条渐进线上,O 为坐标原点,若 4 2PO = PF ,则△PFO 的面积为A. 3 24B. 3 22C. 2D. 311. 设 f( x ) 是定义域为 R 的偶函数,且在(0, ∞) 单调递减,则A. f (log1 )> f (- 3)>f ( - 2 )B. f (log 34 1)> f ( 2 2- 2)> f ( 2 3- 3 )3 4 2 3 2 2C. f ( - 3)> f ( -2)> f (log1)2 22 334D. f ( - 2)> f ( -3)> f (log1 )2 32 23412. 设函数 f( x ) =sin (ω x + π)( ω >0),已知 f (x ) 在[0, 2π]有且仅有 5 个零点,下述 5四个结论:① f (x ) 在( 0, 2π )有且仅有 3 个极大值点 2 22, xy ② f (x ) 在( 0, 2π )有且仅有 2 个极小值点③ f (x ) 在( 0, π)单调递增10④ ω 的取值范围是[12 29) 5 10其中所有正确结论的编号是A . ①④B . ②③C . ①②③D . ①③④二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
2019年高考理科数学全国三卷真题及答案解析
【答案】D
【解析】
【分析】
通过求导数,确定得到切线斜率的表达式,求得 ,将点的坐标代入直线方程,求得 .
【详解】详解:
,
将 代入 得 ,故选D.
【点睛】本题关键得到含有a,b的等式,利用导数几何意义和点在曲线上得到方程关系。
7.函数 在 的图像大致为
A. B. C. D.
【答案】B
A. B. C. D.
【答案】C
【解析】
【分析】
根据题先求出阅读过西游记的人数,进而得解.
【详解】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C.
【点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.
【详解】 是R的偶函数, .
,
又 在(0,+∞)单调递减,
∴ ,
,故选C.
【点睛】本题主要考查函数的奇偶性、单调性,解题关键在于利用中间量大小比较同一区间的取值.
12.设函数 =sin( )( >0),已知 在 有且仅有5个零点,下述四个结论:
① 在( )有且仅有3个极大值点
② 在( )有且仅有2个极小值点
4.(1+2x2)(1+x)4的展开式中x3的系数为
A.12B.16C.20D.24
【答案】A
【解析】
【分析】
本题利用二项展开式通项公式求展开式指定项的系数.
【详解】由题意得x3的系数为 ,故选A.
【点睛】本题主要考查二项式定理,利用展开式通项公式求展开式指定项的系数.
5.已知各项均为正数的等比数列 的前4项和为15,且 ,则 ( )
2019年理科数学高考真题试卷(全国I卷)及参考答案
绝密★启用前2019年普通高等学校招生全国统一考试理科数学本试卷共4页,23小题,满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合}242{60{}M x x N x x x =-<<=--<,,则M N I = A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A .22+11()x y +=B .221(1)x y +=-C .22(1)1y x +-=D .22(+1)1y x +=3.已知0.20.32log 0.220.2a b c ===,,,则A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是( )A .165 cmB .175 cmC .185 cmD .190 cm 5.函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A .B .C .D .6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .11167.已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π68.如图是求112122++的程序框图,图中空白框中应填入A .A =12A +B .A =12A +C .A =112A+D .A =112A+9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =- 10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212xy += B .22132x y += C .22143x y+= D .22154x y+= 11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③12.已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F分别是P A ,PB 的中点,∠CEF =90°,则球O 的体积为 A .6πB .64πC .6πD 6π二、填空题:本题共4小题,每小题5分,共20分。
2019年全国统一高考数学试卷(理科)(新课标ⅲ)-解析版
2019年全国统一高考数学试卷(理科)(新课标Ⅲ)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合{1A =-,0,1,2},2{|1}B x x = ,则(A B = )A .{1-,0,1}B .{0,1}C .{1-,1}D .{0,1,2}【解答】解:因为{1A =-,0,1,2},2{|1}{|11}B x x x x ==- ,所以{1A B =- ,0,1},故选:A .2.(5分)若(1)2z i i +=,则(z =)A .1i--B .1i-+C .1i -D .1i+【解答】解:由(1)2z i i +=,得22(1)12i i i z i -==+1i =+.故选:D .3.(5分)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并成为中国古典小说四大名著.某中学为了了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为()A .0.5B .0.6C .0.7D .0.8【解答】解:某中学为了了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,作出韦恩图,得:∴该学校阅读过《西游记》的学生人数为70人,则该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为:700.7100=.故选:C .4.(5分)24(12)(1)x x ++的展开式中3x 的系数为()A .12B .16C .20D .24【解答】解:24(12)(1)x x ++的展开式中3x 的系数为:3311133414311121112C C C C ⨯⨯⨯⨯+⨯⨯⨯⨯=.故选:A .5.(5分)已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3(a =)A .16B .8C .4D .2【解答】解:设等比数列{}n a 的公比为(0)q q >,则由前4项和为15,且53134a a a =+,有231111421111534a a q a q a q a q a q a ⎧+++=⎪⎨=+⎪⎩,∴112a q =⎧⎨=⎩,∴2324a ==,故选:C .6.(5分)已知曲线x y ae xlnx =+在点(1,)ae 处的切线方程为2y x b =+,则()A .a e =,1b =-B .a e =,1b =C .1a e -=,1b =D .1a e -=,1b =-【解答】解:x y ae xlnx =+的导数为1x y ae lnx '=++,由在点(1,)ae 处的切线方程为2y x b =+,可得102ae ++=,解得1a e -=,又切点为(1,1),可得12b =+,即1b =-,故选:D .7.(5分)函数3222x xx y -=+在[6-,6]的图象大致为()A .B .C .D .【解答】解:由32()22x x x y f x -==+在[6-,6],知332()2()()2222x x x xx x f x f x ----==-=-++,()f x ∴是[6-,6]上的奇函数,因此排除C又f (4)1182721=>+,因此排除A ,D .故选:B .8.(5分)如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则()A .BM EN =,且直线BM ,EN 是相交直线B .BM EN ≠,且直线BM ,EN 是相交直线C .BM EN =,且直线BM ,EN 是异面直线D .BM EN ≠,且直线BM ,EN 是异面直线【解答】解: 点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,BM ∴⊂平面BDE ,EN ⊂平面BDE ,BM 是BDE ∆中DE 边上的中线,EN 是BDE ∆中BD 边上的中线,∴直线BM ,EN 是相交直线,设DE a =,则2BD a =,2235244BE a a a =+=,62BM a ∴=,223144EN a a a =+=,BM EN ∴≠,故选:B .9.(5分)执行如图所示的程序框图,如果输入ò为0.01,则输出的s 值等于()A .4122-B .5122-C .6122-D .7122-【解答】解:第一次执行循环体后,1s =,12x =,不满足退出循环的条件0.01x <;再次执行循环体后,112s =+,212x =,不满足退出循环的条件0.01x <;再次执行循环体后,211122s =++,312x =,不满足退出循环的条件0.01x <;⋯由于610.012>,而710.012<,可得:当261111222s =++++⋯,712x =,此时,满足退出循环的条件0.01x <,输出2661111122222s =+++⋯=-.故选:C .10.(5分)双曲线22:142x y C -=的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若||||PO PF =,则PFO ∆的面积为()A .4B .2C .D .【解答】解:双曲线22:142x y C -=的右焦点为F 0),渐近线方程为:y =,不妨P 在第一象限,可得2tan 2POF ∠=,P ,所以PFO ∆的面积为:1224=.故选:A .11.(5分)设()f x 是定义域为R 的偶函数,且在(0,)+∞单调递减,则()A .233231(log )(2)(2)4f f f -->>B .233231(log (2)(2)4f f f -->>C .233231(2)(2)(log )4f f f -->>D .233231(2)(2)(log )4f f f -->>【解答】解:()f x 是定义域为R 的偶函数∴331(log )(log 4)4f f =,33log 4log 31>= ,2303202221--<<<<=,23323022log 4--∴<<<()f x 在(0,)+∞上单调递减,∴233231(2)(2)()4f f f log -->>,故选:C .12.(5分)设函数()sin(0)5f x x πωω=+>,已知()f x 在[0,2]π有且仅有5个零点.下述四个结论:①()f x 在(0,2)π有且仅有3个极大值点②()f x 在(0,2)π有且仅有2个极小值点③()f x 在(0,)10π单调递增④ω的取值范围是12[5,29)10其中所有正确结论的编号是()A .①④B .②③C .①②③D .①③④【解答】解:当[0x ∈,2]π时,[55x ππω+∈,25ππω+,()f x 在[0,2]π有且仅有5个零点,5265πππωπ∴+< ,∴1229510ω<,故④正确,因此由选项可知只需判断③是否正确即可得到答案,下面判断③是否正确,当(0,10x π∈时,[55x ππω+∈,(2)]10ωπ+,若()f x 在(0,)10π单调递增,则(2)102ωππ+<,即3ω<,1229510ω<,故③正确.故选:D .二、填空题:本题共4小题,每小题5分,共20分。
2019年全国高考理科数学试题及答案-安徽卷
2019年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷和第II 卷(非选择题)两部分,第Ⅰ卷第1至第2页,第II 卷第3至第4页。
全卷满分150分,考试时间为120分钟。
参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+如果事件A 与B 相互独立,那么()()()P AB P A P B =第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 设i 是虚数单位,z 表示复数z 的共轭复数,若z=1+I,则iz+i ·z = (A )-2 (B )-2i (C )2 (D )2i (2)“x <0”是ln (x+1)<0的 (A )充分不必要条件(B )必要不充分条件 (C )充分必要条件(D )既不充分也不必要条件(3)如图所示,程序框图(算法流程图)的输出结果是(A )34 (B )55 (C )78 (D )89(4) 以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位。
已知直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为(A )14 (B )214 (C )2 (D )22(5)x , y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+.022,022,02y x y x y x 若z=y-ax 取得最大值的最优解不唯一...,则实数a 的值为(A )21 或-1 (B )2或21 (C )2或1 (D )2或-1 (6)设函数f(x)(x ∈R )满足f(x+π)=f(x)+sinx.当0≤x ≤π时,f(x)=0,则)623(πf = (A )21 (B )23 (C )0 (D )21-(7)一个多面体的三视图如图所示,则该多面体的表面积为(A )321+ (B )318+ (C )21 (D )18(8)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有 (A )24对 (B )30对 (C )48对 (D )60对(9)若函数f(x)=| x+1 |+| 2x+a |的最小值为3,则实数a 的值为 (A )5或8 (B )-1或5 (C )-1或 -4 (D )-4或8(10)在平面直角坐标系xOy 中,已知向量啊a , b , | a | = | b | = 1 , a ·b = 0,点Q 满足=2( a + b ).曲线C={ P | =a cos θ + b sin θ ,0≤θ<2π},区域Ω={ P | 0 < r ≤| | ≤ R , r <R },若C ⋂Ω为两段分离的曲线,则(A )1 < r < R <3 (B )1 < r < 3 ≤ R (C )r ≤ 1 < R <3 (D )1 < r < 3 < R2019普通高等学校招生全国统一考试(安徽卷)数 学(理科) 第Ⅱ卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上.....作答,在试题卷上答题无效.........。
2019高考数学(理)试题精校精析(安徽卷)(纯word书稿)
2019高考数学(理)试题精校精析(安徽卷)(纯word 书稿)1、[2018·安徽卷] 复数z 满足(z -i)(2-i)=5,那么z =( ) A 、-2-2i B 、-2+2i C 、2-2i D 、2+2i1、D [解析] 此题考查复数的简单运算、由()z -i ()2-i =5,得z -i =52-i ,所以z =i +5()2+i ()2-i ()2+i =2+2i. 2、[2018·安徽卷] 以下函数中,不满足...f (2x )=2f (x )的是( ) A 、f (x )=|x | B 、f (x )=x -|x | C 、f (x )=x +1 D 、f (x )=-x2、C [解析] 此题考查函数的新定义,复合函数的性质.(解法一)因为f (x )=kx 与f (x )=k |x |均满足f (2x )=2f (x ),所以A ,B ,D 满足条件;对于C 项,假设f (x )=x +1,那么f (2x )=2x +1≠2f (x )=2x +2.(解法二)对于A 项,f (2x )=2|x |,2f (x )=2|x |,可得f (2x )=2f (x );对于B 项,f (2x )=2x -2|x |,2f (x )=2x -2|x |,可得f (2x )=2f (x );对于C 项,f (2x )=2x +1,2f (x )=2x +2,可得f (2x )≠2f (x );对于D 项,f (2x )=-2x,2f (x )=-2x ,可得f (2x )=2f (x ),应选C 项、3、[2018·安徽卷] 如图1-1所示,程序框图(算法流程图)的输出结果是( )图1-1A 、3B 、4C 、5D 、83、B [解析] 此题考查程序框图的应用,逻辑推理的能力、 (解法一)用表格列出x(解法二)第一次循环后:x =2,y =2;第二次循环后:x =4,y =3;第三次循环后:x =8,y =4跳出循环,输出 y =4.4、[2018·安徽卷] 公比为32的等比数列{a n }的各项都是正数,且a 3a 11=16,那么log 2a 16=( )A 、4B 、5C 、6D 、74、B [解析] 此题考查等比数列,等比中项的性质,对数运算等、(解法一)由等比中项的性质得a 3a 11=a 27=16,又数列{}a n 各项为正,所以a 7=4.所以a 16=a 7×q 9=32.所以log 2a 16=5.(解法二)设等比数列的公比为q ,由题意,a n >0,那么a 3 · a 11 = a 27 =⎝ ⎛⎭⎪⎫a 16 q 92 = 126a 216 = 24,所以a 216 = 210,解得a 16=25.故log 2a 16=5. 5、[2018·安徽卷] 甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图1-2所示,那么( )2A 、甲的成绩的平均数小于乙的成绩的平均数B 、甲的成绩的中位数等于乙的成绩的中位数C 、甲的成绩的方差小于乙的成绩的方差D 、甲的成绩的极差小于乙的成绩的极差5、C [解析] 此题考查频率分布直方图,平均数,中位数,方差,极差、由条形图易知甲的平均数为x 甲=4+5+6+7+85=6,中位数为6,所以方差为s 2甲=-22+-12+02+12+225=2,极差为8-4=4; 乙的平均数为x 乙=3×5+6+95=6,中位数为5, 所以方差为s 2乙=3×-12+02+325=125>2, 极差为9-5=4,比较得x 甲=x 乙,甲的极差等于乙的极差,甲乙中位数不相等且s 2乙>s 2甲. 6、[2018·安徽卷] 设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,那么“α⊥β”是“a ⊥b ”的( )A 、充分不必要条件B 、必要不充分条件C 、充分必要条件D 、既不充分也不必要条6、A [解析] 此题考查线面关系的判断,证明,充要条件的判断、面垂直的性质定理可得a ⊥b ,所以条件具有充分性;但当a ⊥b 时,如果a ∥m ,就得不出α⊥β,所以条件不具有必要性,故条件是结论的充分不必要条件、7、[2018·安徽卷](x 2+2)⎝ ⎛⎭⎪⎫1x 2-15的展开式的常数项是()A 、-3B 、-2C 、2D 、37、D[解析]此题考查二项式定理的简单应用、因为()x 2+2⎝ ⎛⎭⎪⎫1x 2-15=x 2⎝ ⎛⎭⎪⎫1x 2-15+2⎝ ⎛⎭⎪⎫1x 2-15,又2⎝ ⎛⎭⎪⎫1x 2-15展开式中的常数项为2C 55⎝ ⎛⎭⎪⎫1x 20()-15=-2,x 2⎝ ⎛⎭⎪⎫1x 2-15展开式中的常数项为x 2C 45⎝ ⎛⎭⎪⎫1x 21()-14=5,故二项式()x 2+2⎝ ⎛⎭⎪⎫1x 2-15展开式中的常数项为-2+5=3.8、[2018·安徽卷]在平面直角坐标系中,点O (0,0),P (6,8),将向量OP →绕点O 按逆时针方向旋转3π4后得向量OQ →,那么点Q 的坐标是()A 、(-72,-2)B 、(-72,2)C 、(-46,-2)D 、(-46,2)8、A[解析]此题考查三角函数的和角公式,点的坐标、设∠POx =α,因为P ()6,8,所以tan α=43,可得tan ⎝ ⎛⎭⎪⎫α+3π4=tan α+tan 3π41-tan α×tan 3π4=43-11+43=17,验证可知只有当Q 点坐标为()-72,-2满足条件,故答案为A.9、[2018·安徽卷]过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点、假设|AF |=3,那么△AOB 的面积为()A.22B.2C.322D 、2 29、C[解析]此题考查抛物线的定义,直线与抛物线的位置关系、如图,设A ()x 0,y 0()y 0<0.易知抛物线y 2=4x 的焦点为F ()1,0,抛物线的准线方程为x =-1,故由抛物线的定义得||AF =x 0-()-1=3,解得x 0=2,所以y 0=-22,故点A ()2,-22.那么直线AB 的斜率为k =-22-02-1=-22,直线AB 的方程为y =-22x +22,联立⎩⎨⎧y =-22x +22,y 2=4x ,消去y得2x 2-5x +2=0,由x 1x 2=1,得A ,B 两点横坐标之积为1,所以点B 的横坐标为12.再由抛物线的定义得||BF =12-()-1=32,||AB =||AF +||BF =3+32=92.又因为点O 到直线AB 的距离为d =223,所以S △AOB =12×92×223=322.10、[2018·安徽卷]6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品、6位同学之间共进行了13次交换,那么收到4份纪念品的同学人数为()A 、1或3B 、1或4C 、2或3D 、2或410、D[解析]此题考查组合数等计数原理、 任意两个同学之间交换纪念品共要交换C 26=15次,如果都完全交换,每个人都要交换5次,也就是得到5份纪念品,现在6个同学总共交换了13次,少交换了2次,这2次如果不涉及同一个人,那么收到4份纪念品的同学人数有4人;如果涉及同一个人,那么收到4份纪念品的同学人数有2人,答案为D.11、[2018·安徽卷]假设x ,y满足约束条件⎩⎨⎧x ≥0,x +2y ≥3,2x +y ≤3,那么x -y的取值范围是________、11.[]-3,0[解析]此题考查线性规划的应用、设z =x -y .作出约束条件⎩⎨⎧x ≥0,x +2y ≥3,2x +y ≤3表示的可行域,如图阴影部分所示(含边界)、易知当直线z =x -y 经过点A y 轴上截距最大,目标函数z 取得最小值,且z min =-3,当直线z =x -y 经过点C (1,1)时,直线在y 轴上截距最小,目标函数z 取得最大值,即z max =0,所以x -y ∈[-3,0]、12、[2018·安徽卷]某几何体的三视图如图1-3所示,该几何体的表面积是________、图1-312、92[解析]此题考查三视图的识别,四棱柱等空间几何体的表面积、 如图根据三视图还原的实物图为底面是直角梯形的直四棱柱,其表面积为S =12×()2+5×4×2+4×2+5×4+4×4+5×4=92.13、[2018·安徽卷]在极坐标系中,圆ρ=4sin θ的圆心到直线θ=π6(ρ∈)的距离是________、13.3[解析]此题考查极坐标与直角坐标的互化,圆的方程,点到直线的距离、应用极坐标与直角坐标的互化公式⎩⎨⎧x =ρcos θ,y =ρsin θ将圆ρ=4sin θ化为直角坐标方程为x 2+()y -22=4,直线θ=π6化为直角坐标方程为y =33x .因为x 2+()y -22=4的圆心为()0,2,所以圆心()0,2到直线y =33x ,即3x -3y=0的距离为d =||2×()-3()33+32=3.14、[2018·安徽卷]假设平面向量,满足|2-|≤3,那么·的最小值是________、14、-98[解析]此题考查平面向量的数量积,模的有关运算、因为|2-|≤3,所以|2-|2=(2-)2=4||2-4+||2≤9.所以9+4≥4||2+||2.又由均值不等式得4||2+||2≥4||||≥-4,所以9+4≥-4,解得·≥-98,当且仅当2||=||且,方向相反,即=-时取等号,故的最小值为-98.15.[2018·安徽卷]设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,那么以下命题正确的选项是________(写出所有正确命题的编号)、①假设ab >c 2,那么C <π3;②假设a +b >2c ,那么C <π3;③假设a 3+b 3=c 3,那么C <π2;④假设(a +b )c <2ab ,那么C >π2;⑤假设(a 2+b 2)c 2<2a 2b 2,那么C >π3.15、①②③[解析]此题考查命题真假的判断,正、余弦定理,不等式的性质,基本不等式等、对于①,由c 2=a 2+b 2-2ab cos C <ab 得2cos C +1>a 2+b 2ab =b a +ab ≥2,那么cos C >12,因为0<C <π,所以C <π3,故①正确;对于②,由4c 2=4a 2+4b 2-8ab cos C <a 2+b 2+2ab得ab ()8cos C +2>3()a 2+b 2即 8cos C +2>3⎝ ⎛⎭⎪⎫a b +b a ≥6,那么cos C >12,因为0<C <π,所以C <π3,故②正确;对于③,a 3+b 3=c 3可变为⎝ ⎛⎭⎪⎫a c 3+⎝ ⎛⎭⎪⎫b c 3=1,可得0<a c <1,0<b c <1,所以1=⎝ ⎛⎭⎪⎫a c 3+⎝ ⎛⎭⎪⎫b c 3<⎝ ⎛⎭⎪⎫a c 2+⎝ ⎛⎭⎪⎫b c 2,所以c 2<a 2+b 2,故C <π2,故③正确;对于④,()a +b c <2ab 可变为2×1c >1a +1b ≥2ab ,可得ab >c ,所以ab >c 2,因为a 2+b 2≥2ab >ab >c 2,所以C <π2,④错误;对于⑤,()a 2+b 2c 2<2a 2b 2可变为1a 2+1b 2<2c 2,即1c 2>1ab ,所以c 2<ab ≤a 2+b 22,所以cos C >a 2+b 222ab ≥12,所以C <π3,故⑤错误、故答案为①②③.16、[2018·安徽卷]设函数f (x )=22cos2x +π4+sin 2x . (1)求f (x )的最小正周期;(2)设函数g (x )对任意x ∈,有g ⎝ ⎛⎭⎪⎫x +π2=g (x ),且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,g (x )=12-f (x )、求g (x )在区间[-π,0]上的解析式、16、解:(1)f (x )=22cos ⎝ ⎛⎭⎪⎫2x +π4+sin 2x=22⎝ ⎛⎭⎪⎫cos2x cos π4-sin2x sin π4+1-cos2x 2 =12-12sin2x .故f (x )的最小正周期为π.(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,g (x )=12-f (x )=12sin2x ,故①当x ∈⎣⎢⎡⎦⎥⎤-π2,0时,x +π2∈⎣⎢⎡⎦⎥⎤0,π2.由于对任意x ∈,g ⎝ ⎛⎭⎪⎫x +π2=g (x ),从而g (x )=g ⎝ ⎛⎭⎪⎫x +π2=12sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π2=12sin(π+2x )=-12sin2x .②当x ∈⎣⎢⎡⎭⎪⎫-π,-π2时,x +π∈⎣⎢⎡⎭⎪⎫0,π2,从而 g (x )=g (x +π)=12sin[2(x +π)]=12sin2x . 综合①②得g (x )在[-π,0]上的解析式为 g (x )=⎩⎪⎨⎪⎧12sin2x ,x ∈⎣⎢⎡⎭⎪⎫-π,-π2,-12sin2x ,x ∈⎣⎢⎡⎦⎥⎤-π2,0.17、[2018·安徽卷]某单位招聘面试,每次从试题库中随机调用一道试题,假设调用的是A 类型试题,那么使用后该试题回库,并增补一道A 类型试题和一道B 类型试题入库,此次调题工作结束;假设调用的是B 类型试题,那么使用后该试题回库,此次调题工作结束、试题库中现共有n +m 道试题,其中有n 道A 类型试题和m 道B 类型试题、以X 表示两次调题工作完成后,试题库中A 类型试题的数量、(1)求X =n +2的概率;(2)设m =n ,求X 的分布列和均值(数学期望)、17、解:以A i 表示第i 次调题调用到A 类型试题,i =1,2.(1)P (X =n +2)=P (A 1A 2)=n m +n ·n +1 m +n +2=n n +1m +n m +n +2. (2)X 的可能取值为n ,n +1,n +2.P (X =n )=P (A 1A 2)=n n +n ·n n +n =14,P (X =n +1)=P (A 1A 2)+P (A 1A 2)=n n +n ·n +1n +n +2+n n +n ·n n +n =12,P (X =n +2)=P (A 1A 2)=n n +n ·n +1n +n +2=14, 从而XEX =n ×14+(n +1)×2+(n +2)×4=n +1.18、[2018·安徽卷]平面图形ABB 1A 1C 1C 如图1-4(1)所示,其中BB 1C 1C 是矩形,BC =2,BB 1=4,AB =AC =2,A 1B 1=A 1C 1= 5.图1-4现将该平面图形分别沿BC 和B 1C 1折叠,使△ABC 与△A 1B 1C 1所在平面都与平面BB 1C 1C 垂直,再分别连接A 1A ,A 1B ,A 1C ,得到如图1-4(2)所示的空间图形、对此空间图形解答以下问题、(1)证明:AA 1⊥BC ; (2)求AA 1的长;(3)求二面角A -BC -A 1的余弦值、18、解:(向量法):(1)证明:取BC B 1C 1的中点分别为D 和D 1,连接A 1D 1,1由BB 1C 1C 为矩形知, DD 1⊥B 1C 1,因为平面BB 1C 1C ⊥平面A 1B 1C 1, 所以DD 1⊥平面A 1B 1C 1, 又由A 1B 1=A 1C 1知, A 1D 1⊥B 1C 1.故以D 1为坐标原点,可建立如下图的空间直角坐标系D 1-xyz . 由题设,可得A 1D 1=2,AD =1.由以上可知AD ⊥平面BB 1C 1C ,A 1D 1⊥平面BB 1C 1C ,于是AD ∥A 1D 1.所以A (0,-1,4),B (1,0,4),A 1(0,2,0),C (-1,0,4),D (0,0,4)、 故AA 1→=(0,3,-4),BC →=(-2,0,0),AA 1→·BC →=0, 因此AA 1→⊥BC →,即AA 1⊥BC .(2)因为AA 1→=(0,3,-4), 所以||AA 1→=5,即AA 1=5. (3)连接A 1D ,由BC ⊥AD ,BC ⊥AA 1,可知BC ⊥平面A 1AD ,BC ⊥A 1D ,所以∠ADA 1为二面角A -BC -A 1的平面角、因为DA →=(0,-1,0),DA1→=(0,2,-4),所以cos 〈DA →,DA1→〉=-21×22+-42=-55.即二面角A -BC -A 1的余弦值为-55.(综合法)(1)证明:取BC ,B 11的中点分别为和D 1,连接A 1D 1,DD 1,AD ,A 1D .由条件可知,BC ⊥AD ,B 1C 1⊥A 1D 1,由上可得AD ⊥面BB 1C 1C ,A 1D 1⊥面BB 1C 1C . 因此AD ∥A 1D 1,即AD ,A 1D 1确定平面AD 1A 1D . 又因为DD 1∥BB 1,BB 1⊥BC ,所以DD 1⊥BC . 又考虑到AD ⊥BC ,所以BC ⊥平面AD 1A 1D , 故BC ⊥AA 1.(2)延长A 1D 1到G 点,使GD 1=AD ,连接AG . 因为AD 綊GD 1,所以AG 綊DD 1綊BB 1. 由于BB 1⊥平面A 1B 1C 1,所以AG ⊥A 1G .由条件可知,A 1G =A 1D 1+D 1G =3,AG =4, 所以AA 1=5.(3)因为BC ⊥平面AD 1A 1D ,所以∠ADA 1为二面角A -BC -A 1的平面角、 在Rt △A 1DD 1中,DD 1=4,A 1D 1=2,解得sin ∠D 1DA 1=55,cos ∠ADA 1=cos ⎝ ⎛⎭⎪⎫π2+∠D 1DA 1=-55.即二面角A -BC -A 1的余弦值为-55.19、[2018·安徽卷]设函数f (x )=a e x+1a e x +b (a >0)、 (1)求f (x )在[0,+∞)内的最小值;(2)设曲线y =f (x )在点(2,f (2))处的切线方程为y =32x ,求a ,b 的值、19、解:(1)f ′(x )=a e x-1a e x .当f ′(x )>0,即x >-ln a 时,f (x )在(-ln a ,+∞)上递增; 当f ′(x )<0,即x <-ln a 时,f (x )在(-∞,-ln a )上递减;①当0<a <1时,-ln a >0,f (x )在(0,-ln a )上递减,在(-ln a ,+∞)上递增,从而f (x )在[)0,+∞上的最小值为f (-ln a )=2+b ;②当a ≥1时,-ln a ≤0,f (x )在[)0,+∞上递增,从而f (x )在[0,+∞)上的最小值为f (0)=a +1a +b .(2)依题意f ′(2)=a e 2-1a e 2=32,解得a e 2=2或a e 2=-12(舍去)、所以a =2e 2,代入原函数可得2+12+b =3,即b =12.故a =2e 2,b =12.20、[2018·安徽卷]如图1-5,点F 1(-c,0),F 2(c,0)分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过点F 1作x 轴的垂线交椭圆C 的上半部分于点P ,过点F 2作直线PF 2的垂线交直线x =a 2c 于点Q .(1)如果点Q 的坐标是(4,4),求此时椭圆C 的方程; (2)证明:直线PQ 与椭圆C 只有一个交点、图1-520、解:(1)(方法一)由条件知,P ⎝ ⎛⎭⎪⎫-c ,b 2a ,故直线PF 2的斜率为kPF 2=b 2a -0-c -c =-b 22ac .因为PF 2⊥F 2Q ,所以直线F 2Q 的方程为y =2ac b 2x -2ac 2b 2,故Q ⎝ ⎛⎭⎪⎫a 2c ,2a .由题设知,a 2c =4,2a =4,解得a =2,c =1.故椭圆方程为x 24+y 23=1.(方法二)设直线x =a 2c 与x 轴交于点M ,由条件知,P ⎝ ⎛⎭⎪⎫-c ,b 2a .因为△PF 1F 2∽△F 2MQ ,所以||PF 1||F 2M =||F 1F 2||MQ .即b 2a a 2c -c=2c||MQ ,解得||MQ =2a .所以⎩⎨⎧a 2c =4,2a =4,a =2,c =1,故椭圆方程为x 24+y 23=1.(2)证明:直线PQ 的方程为y -2ab 2a -2a =x -a 2c -c -a 2c,即y =ca x +a .将上式代入椭圆方程得,x 2+2cx +c 2=0.解得x =-c ,y =b 2a ,所以直线PQ 与椭圆C 只有一个交点、21、[2018·安徽卷]数列{x n }满足x 1=0,x n +1=-x 2n +x n +c (n ∈*)、 (1)证明:{x n }是递减数列的充分必要条件是c <0; (2)求c 的取值范围,使{x n }是递增数列、 21、解:(1)证明:先证充分性,假设c <0,由于x n +1=-x 2n +x n +c ≤x n +c <x n ,故{x n }是递减数列;再证必要性,假设{x n }是递减数列, 那么由x 2<x 1可得c <0.(2)(i)假设{x n }是递增数列,由x 1=0,得x 2=c ,x 3=-c 2+2c , 由x 1<x 2<x 3,得0<c <1. 由x n <x n +1=-x 2n +x n +c 知, 对任意n ≥1都有x n <c .① 注意到c -x n +1=x 2n -x n -c +c = (1-c -x n )(c -x n )、②由①式和②式可得1-c -x n >0即x n <1-c . 由②式和x n ≥0还可得,对任意n ≥1都有 c -x n +1≤(1-c )(c -x n )、③ 反复运用③式,得c -x n ≤(1-c )n -1(c -x 1)<(1-c )n -1, x n <1-c 和c -x n <(1-c )n -1两式相加, 知2c -1<(1-c )n -1对任意n ≥1成立、根据指数函数y =(1-c )x的性质,得2c -1≤0,c ≤14,故0<c ≤14.(ii)假设0<c ≤14,要证数列{x n }为递增数列,即x n +1-x n =-x 2n +c >0. 即证x n <c 对任意n ≥1成立、下面用数学归纳法证明当0<c ≤14时,x n <c 对任意n ≥1成立、(1)当n =1时,x 1=0<c ≤12,结论成立、(2)假设当n =k (k ∈*)时结论成立,即:x k <c .因为函数f (x )=-x 2+x +c 在区间⎝ ⎛⎦⎥⎤-∞,12内单调递增,所以x k +1=f (x k )<f (c )=c ,这就是说当n =k +1时,结论也成立、故x n <c 对任意n ≥1成立、因此,x n +1=x n -x 2n +c >x n ,即{x n }是递增数列、由(i)(ii)知,使得数列{x n }单调递增的c 的范围是⎝ ⎛⎦⎥⎤0,14.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第I卷(选择题)和第卷(非选择题)两部分,第I卷第1至第2页,第卷第3至第4页。
全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,务必在试卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。
务必在答题卡背面规定的地方填写姓名和座位号后两位。
2.答第I卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.答第卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出答题区域书写的答案无效........................,.在答题卷、草稿纸上答题无效..。
4.考试结束,务必将试卷和答题卡一并上交。
参考公式:如果事件A、B互斥,那么如果事件A、B相互独立,那么P()= P(A)+ P(B) P(A·B)= P(A)·P(B)第I卷(选择题共50分)一.选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设是虚数单位,表示复数的共轭复数。
若则()A .B .C .D .2.“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件3.如图所示,程序框图(算法流程图)的输出结果是()A.34 B.55 C.78 D.894.以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线的参数方程是,(t为参数),圆C 的极坐标方程是,则直线被圆C截得的弦长为()A .B .C .D .5.满足约束条件,若取得最大值的最优解不唯一,则实数的值为()A .B .C.2或1 D .6.设函数满足,当时,,则()A .B .C .D .7.一个多面体的三视图如图所示,则该多面体的表面积为()A .B .C .D .8.从正方体六个面的对角线中任取两条作为一对,其中所成的角为的共有7题图()A.24对 B.30对 C.48对 D.60对9.若函数的最小值为3,则实数的值为()A.5或8 B .或5 C .或 D .或810.在平面直角坐标系中,已知向量点满。
曲线,区域。
若为两段分离的曲线,则( )A .B .C .D .(在此卷上答题无效)2019年普通高等学校招生全国统一考试(安徽卷)数学(理科)第Ⅱ卷(非选择题共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上...............作答,在试题卷上答题无效二.选择题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置。
11.若将函数的图像向右平移个单位,所得图像关于轴对称,则的最小正值是.12.数列是等差数列,若构成公比为的等比数列,则。
13.设是大于1的自然数,的展开式为。
若点的位置如图所示,则。
14.设分别是椭圆的左、右焦点,过点的直线交椭圆于两点,若轴,则椭圆的方程为。
15.已知两个不相等的非零向量,两组向量和均由2个和3个排列而成。
记,表示所有可能取值中的最小值。
则下列①有5个不同的值。
②若则与无关。
③若则与无关.④若,则。
⑤若,则与的夹角为三.解答题:本大题共6小题,共75分。
解答应写出文字说明、证明过程或演算步骤。
解答写在答题卡上的指定区域内。
16.(本小题满分12分)设的内角所对边的长分别是,且(Ⅰ)求的值;(Ⅱ)求的值。
17.(本小题满分12分)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛,假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立。
(Ⅰ)求甲在4局以内(含4局)赢得比赛的概率;(Ⅱ)记为比赛决出胜负时的总局数,求的分布列和均值(数学期望)。
18.(本小题满分12分)设函数其中。
(Ⅰ)讨论在其定义域上的单调性; (Ⅱ)当时,求取得最大值和最小值时的的值。
19.(本小题满分13分)如图,已知两条抛物线和,过原点的两条直线和,与分别交于两点,与分别交于两点。
(Ⅰ)证明:(Ⅱ)过原点作直线(异于,)与分别交于两点。
记与的面积分别为与,求的值。
20.(本题满分13分)如图,四棱柱中,底面.四边形为梯形,,且.过三点的平面记为,与的交点为。
(Ⅰ)证明:为的中点;(Ⅱ)求此四棱柱被平面所分成上下两部分的体积之比; (Ⅲ)若,,梯形的面积为6,求平面与底面所成二面角大小。
21.(本小题满分13分)设实数,整数,。
(I )证明:当且时,; ()数列满足,,证明:。
参考答案1.答案:C ,解析: 2.答案:B ,解析:,所以“”是“”的必要而不充分条件。
3.答案:B ,解析:,故运算7次后输出的结果为55。
4.答案:D ,解析:将直线方程化为一般式为:,1 123 5 8 13 21 12 3 5 8 13 21 34 2 3581321 34 55圆C的标准方程为:,圆C到直线的距离为:∴弦长。
5.答案:D,解析:画出约束条件表示的平面区域如右图,取得最大值表示直线向上平移移动最大,表示直线斜率,有两种情况:或。
6.答案:A,解析:7.答案:A,解析:如右图,将边长为2的正方体截去两个角,∴8.答案:C,解析:与正方体一条对角线成的对角线有4条,∴从正方体六个面的对角线中任取两条作为一对,其中所成的角为的共有(对)。
9.答案:D,解析:(1)当时,,此时;(2)当时,,此时在两种情况下,,解得或。
注:此题也可以由绝对值的几何意义得,从而得或。
10.答案:A,解析:设则,所以曲线C是单位元,区域为圆环(如右图)∵,∴。
11.答案:,解析:∴,∴,当时。
12.答案:,解析:∵是等差数列且构成公比为的等比数列,∴即令,则有,展开的,即,∴。
13.答案:,解析:由图易知∴,∴,解得。
14.答案:,解析:由题意得通径,∴点B坐标为将点B坐标带入椭圆方程得,又,解得∴椭圆方程为。
15.答案:②④,解析:S有下列三种情况:∵,∴,若,则,与无关,②正确;若,则,与有关,③错误;若,则,④正确;若,则∴,∴,⑤错误。
16.(本小题满分12分)解析:(Ⅰ)∵,∴,由正弦定理得∵,∴。
(Ⅱ)由余弦定理得,由于,∴,故。
17.(本小题满分12分)解析:用A表示“甲在4局以内(含4局)赢得比赛”,表示“第局甲获胜”,表示“第局乙获胜”,则(Ⅰ)(Ⅱ)的可能取值为2,3,4,5故的分布列为2 3 4 5∴18.(本小题满分12分)解析:(Ⅰ)的定义域为,令得所以当或时;当时故在和内单调递减,在内单调递增。
(Ⅱ)∵,∴(1)当时,由(Ⅰ)知在上单调递增∴在和处分别取得最小值和最大值。
(2)当时,,由(Ⅰ)知在上单调递增,在上单调递减∴在处取得最大值又∴当时在处取得最小值当时在和处同时取得最小值当时,在取得最小值。
19.(本小题满分13分)(Ⅰ)证:设直线的方程分别为,则由得;由得同理可得,所以故,所以。
(Ⅱ)解:由(Ⅰ)知,同理可得,所以,因此又由(Ⅰ)中的知,故。
20.(本小题满分13分)(Ⅰ)证:∵∴从而平面与这两个平面的交线相互平行,即故与的对应边相互平行,于是∴,即为的中点。
(Ⅱ)解:如图,连接,。
设,梯形的高为,四棱柱被平面所分成上下两部分的体积分别为和,,则。
,∴图1又,∴故(Ⅲ)解法1:如图1,在中,作,垂足为E,连接又,且∴,∴∴为平面和平面所成二面角的平面角。
∵,,∴又∵梯形的面积为6,2,∴,于是,,故平面和底面所成二面角的大小为。
解法2:如图2,以D为原点,,分别为轴和轴正方向,建立空间直角坐标系。
设因为,所以,从而,设平面的法向量为由得所以又平面的法向量所以故平面和底面所成二面角的大小为。
21.(本小题满分13分)(Ⅰ)证:用数学归纳法证明(1)当时,,原不等式成立。
(2)假设时,不等式成立当时,所以时,原不等式成立。
综合(1)(2)可得当当且时,对一切整数,不等式均成立。
(Ⅱ)证法1:先用数学归纳法证明。
(1)当时由假设知成立。
(2)假设时,不等式成立由易知当时由得由(Ⅰ)中的结论得因此,即所以当时,不等式也成立。
综合(1)(2)可得,对一切正整数,不等式均成立。
再由得,即综上所述,证法2:设,则,并且,由此可见,在上单调递增,因而当时。
(1)当时由,即可知,并且,从而故当时,不等式成立。
(2)假设时,不等式成立,则当时,即有,所以当时原不等式也成立。
综合(1)(2)可得,对一切正整数,不等式均成立。