【人教版】七年级数学上册全册教案 (全册)教学设计[正式用)

合集下载

人教版七年级数学上册教学设计(全册教案)

人教版七年级数学上册教学设计(全册教案)

人教版七年级数学上册(全册)教案七年级数学上册教学计划一、基本情况分析1、学生情况分析:这学期我承担七(1)(2)两班的数学教学,这些学生整体基础参差不齐,小学没有养成良好的学习习惯,所以任务艰巨。

在小学所学知识的掌握程度上,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,但位数不多。

对多数学生来说,简单的基础知识还不能有效掌握,成绩稍差。

学生的逻辑推理、逻辑思维能力,计算能力要得到加强,还要提升整体成绩,适时补充课外知识,拓展学生的知识面,抽出一定的时间给强化几何训练,全面提升学生的数学素质。

2、教材分析:1、第1章有理数:本章主要学习有理数的基本性质及运算。

本章重点内容是有理数的概念,性质和运算。

本章的难点在于理解有理数的基本性质、运算法则,并将它们应用到解决实际问题和计算中。

2、第2章整式的加减:本章主要是学习单项式和多项式的加减运算。

本章重点内容是单项式、多项式、同类项的概念;合并同类项及去括号的法则及整式的加减运算。

本章难点在于理解合并同类项和去括号的法则。

3、第3章一元一次方程:本章主要学习一元一次方程的概念、等式的基本性质、一元一次方程的解法及应用。

本章重点内容是理解等式的基本性质;掌握解一元一次方程的一般步骤;列方程解决实际问题的基本思路。

本章难点在于解一元一次方程,并利用一元一次方程解决简单的实际问题。

4、第4章几何图形初步:本章主要学习线段和角有关的性质。

本章的重点是区别直线、射线、线段,角的有关性质和计算;理解互为余角、互为补角的性质及应用。

本章的难点在于线段和角的有关计算。

二、教学目标和要求(一)知识与技能1.获得数学中的基本理论、概念、原理和规律等方面的知识,了解并关注这些知识在生产、生活和社会发展中的应用。

2.学会将实践生活中遇到的实际问题转化为数学问题,从而通过数学问题解决实际问题。

体验几何定理的探究及其推理过程并学会在实际问题进行应用。

3.初步具有数学研究操作的基本技能,一定的科学探究和实践能力,养成良好的科学思维习惯。

新人教版七年级数学上册全册教案(114页)

新人教版七年级数学上册全册教案(114页)

新人教版七年级数学上册全册教案第一章有理数1.1正数和负数目标预设:一、知识与能力借助生活中的实例会判断一个数是正数还是负数,能用正负数表示具有相反意义的量二、过程与方法1、过程:通过实例引入负数,指导学生会识别正负数及其表示法,能应用正负数表示具有相反意义的量。

2、方法:讨论法、探究法、讲授法、观察法。

三、情感、态度、价值观乐于接触社会环境中的数学信息,愿意谈论数学话题,在数学活动中发挥积极作用教学重难点:一、重点:理解正数和负数的概念,判断一个数是正数还是负数,应用正负数表示具有相反意义的量二、难点:负数的意义,理解具有相反意义的量。

教学准备:带有负数的实例若干预习导学:在生活、生产、科研中,经常遇到数的表示与数的运算的问题。

例如,⑴天气预报2003年11月某天北京的温度为-3~3℃,它的确切含义是什么?这一天北京的温差是多少?⑵有三个队参加的足球比赛中,红队胜黄队(4∶1),黄队胜蓝队(1∶0),蓝队胜红队(1∶0),如何确定三个队的净胜球数与排名顺序?⑶某机器零件的长度设计为100mm,加工图纸标注的尺寸为100±0.5(mm),这里的±0.5代表什么意思?合格产品的长度范围是多少?(问题1-3友情提示、全班交流、教师点评)教学过程:一、创设情景,谈话引入在小学里我们已经学过哪些类型的数(自然数和分数),它们都是由实际需要而产生的,由记数、排序产生数1,2,3……,由表示“没有”“空位”,产生数0,由分物、测量产生分数,,……,但在预习导学中表示温度、净胜球数、加工允许误差时用到数:-3, 3, 2, -2, 0, +0.5, -0.5。

二、精讲点拨,质疑问难这里出现了一种新数:-3,-2,-0.5。

在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,小于设计尺寸0.5mm,像-3,-2,-0.5这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数。

新人教版七年级数学上册全册教案新部编本[正式用)

新人教版七年级数学上册全册教案新部编本[正式用)

教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校义务教育新课程标准人教版数学教案七年级上册2012—2013学年度教师:蔡弘哈密市第五中学第一章《有理数》单元备课一、单元(成章)教材分析:1、本章的主要内容:对正、负数的认识;有理数的概念及分类;相反数与绝对值的概念及求法;数轴的概念、画法及其与相反数与绝对值的关系;比较两个有理数大小的方法;有理数加、减、乘、除、乘方运算法则及相关运算律;科学计数法、近似数、有效数字的概念及求法。

理解。

2.本章的地位及作用:本章的知识是本册教材乃至整个初中数学知识体系的基础,它一方面是算术到代数的过渡,另一方面是学好初中数学及与之相关学科的关键,尤其有理数的运算在整个数学及相关学科中占有极为重要的地位,可以说这一章内容是构建“数学大厦”的地基。

教学目标1.知识与技能(1)、正数与负数的概念:(2)、有理数的分类:(3)、相反数、倒数、绝对值的概念(4)、数轴:(5)、有理数大小的比较:掌握比较两个有理数的大小的哪些方法(6)、有理数的乘方:掌握(1)a n(其中n是正整数)表示什么意思?其中a、n的名称分别是什么?(2)当a、n满足什么条件时,a n的值大于0?(7)、科学记数法、近似数和有效数字运算法则及运算律(1)、有理数的加法法则①同号两数相加,和取相同的符号,并把绝对值相加;②绝对值不等的异号两数相加,和取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;③一个数与零相加仍得这个数;④两个互为相反数相加和为零。

(用符号表述:)(2)、有理数的减法法则:减去一个数等于加上这个数的相反数。

(3)、有理数的乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘;②任何数与零相乘都得零;③几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正;④几个有理数相乘,若其中有一个为零,积就为零。

人教版初中七年级上册数学教案(完整版)

人教版初中七年级上册数学教案(完整版)

七上数学教案第一章有理数教学目标1.知识与技能①通过生活实例,了解学习有理数的必要性.②理解并掌握数轴、相反数、绝对值、有理数等有关概念.③通过本章的学习,掌握有理数的加、减、乘、除、乘方及简单的混合运算.2.过程与方法通过本章的学习,培养学生应用数学知识解决实际问题的能力. 3.情感、态度与价值观结合生活实例引入新课,通过师生共同参与的教学活动,激励学生学习数学的兴趣,让学生真正体验到数学知识来源于生活并服务于生活.教学重点、难点重点:有理数的运算.这一章的主要学习目标都可以归结到有理数的运算上,比如有理数的有关概念---数轴、相反数、绝对值,运算法则,运算律,近似数等内容的学习,直接目标都是落实到有理数的运算上.难点:负数概念的建立,绝对值意义,有理数法则的理解.课时分配内容课时1.1 正数和负数 11.2 有理数 41.3 有理数的加减法 51.4 有理数的乘除法 41.5 有理数的乘方 4单元复习与验收 2教学建议教师在教学过程中注意从实际问题(即联系实际生活的典型例子)引入,让学生参与数学活动,在教师的引导和学生大胆尝试的过程中,使学生自觉地发现问题,分析问题和解决问题,从而使学生自得知识,自觅规律.1.在进行有理数的有关概念的教学时:(1)注意从实际问题引入,使学生知道数学知识来源于生活.•如:从温度与海拔高度引入负数,从而得出有理数的概念;借助温度引出数轴,建立数(有理数)与形(数轴上的点)之间的联系.(2)注意借助数轴的直观性讲述相反数、绝对值,体会用字母表示数的优越性,体现代数的特点,•使学生对概念的认识能更深一步,并为今后学习整式、方程打下基础.2.讲解有理数运算时,有理数加法及乘法法则的导出借助数轴会更直观更形象更易于学生理解,法则要着重强调符号的确定,在此基础上注意绝对值的运算,提高学生计算准确率.1.1 正数和负数教学目标1.知识与技能①了解正数与负数的引入是实际生活的需要.②会判断一个数是正数还是负数.③会用正负数表示互为相反意义的量.2.过程与方法通过正负数的学习,培养学生应用数学知识的意识,训练学生运用新知识解决实际问题的能力.3.情感、态度与价值观通过师生共同的教学活动,激发学生学习数学的兴趣,让学生体验到数学知识来源于生活并为生活服务.教学重点难点重点:会判断一个数是正数还是负数,会运用正负数表示具有相反意义的量,理解0•的含义.难点:负数的引入和理解.教与学互动设计(一)创设情境,导入新课课件展示珠穆朗玛峰和吐鲁番盆地,由同学感受高于水平面和低于水平面的不同情况.(二)合作交流,解读探究1.举出一些生活中常遇到的具有相反意义的量,如温度是零上7℃和零下5℃,买进90张课桌与卖出80张课桌,汽车向东50米和向西120米等.想一想以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?2.为了用数表示具有相反意义的量,我们把其中一种意义的量,如零上温度,前进、收入、上升、高出等规定为正的,而把与它相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算述里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外).活动每组同学之间相互合作交流,一位同学任意说出具有相反意义的两个量,由其他同学用正负数表示.讨论什么样的数是负数?什么样的数是正数?0是正数还是负数?•【总结】正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界.(三)应用迁移,巩固提高例1 举出几对具有相反意义的量,并分别用正、负数表示.【提示】具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等.【点评】这是一道开放性试题,旨在考查学生用正负数表示具有相反意义量的能力.例2 在某次乒乓球检测中,一只乒乓球超过标准质量0.02克记作+0.02克,•那么-0.03克表示什么?【答案】表示比标准质量低0.03克.例 3 2001年美国的商品进出口总额比上年减少 6.4%可记为-6.4% ,中国增长7.5%可记为+7.5% .备选例题(2004·山东淄博)某项科学研究以45分钟为1个时间单位,•并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上升7:45应记为() A.3 B.-3 C.-2.5 D.-7.45【点拨】读懂题意是解决本题的关键.7:45与10相差135分钟.【答案】 B(四)总结反思,拓展升华为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”.另外,0既不是正数也不是负数.1.填空-1,2,-3,4,-5, 6 , -7 , -8 …第81个数是–81 ,第2005个数是–2005 .【提示】通过观察可见,数字绝对值的排列是按由小到大的顺序,符号是负正相间,第奇数个数为负,第偶数个数为正.【点评】本题属于找规律问题,从绝对值和符号两方面考虑. 2.表1-1-1是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):表1-1-1星期日一二三四五六(元)+16 +5.0 -1.2 -2.1 -0.9 +10 -2.6(1)本周小张一共用掉了多少钱?存进了多少钱?【答案】 6.8元,31元.(2)储蓄罐中的钱与原来多了还是少了?【答案】多了.(3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣.【答案】用文字说明,但前者更简洁.3.数学游戏:4个同学站成一排,从左到右每个人编上号:1,2,3,4.用“+”表示“站”,“-”(负号)表示“蹲”.(1)由一个同学大声喊:+1,-2,-3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:-1,-2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”;(2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复1.的游戏;(3)这不仅仅是游戏哟!在电脑中,•所有“命令”或“数据”都是用有理数(特别是二进制数)表示的.例如,没有特别的“翻译”程序,电脑就不明白你给屏幕上的卡通人下的是“站”还是“蹲”的命令,这时,就可输入正负数以区别不同的姿势.(五)课堂跟踪反馈夯实基础1.填空题(1)如果节约用水30吨记为+30吨,那么浪费20吨记为-20 吨.(2)如果4年后记作+4,那么8年前记作 -8 .(3)如果运出货物7吨记作-7吨,那么+100吨表示运进货物100吨.(4)一年内,小亮体重增加了3kg,记作+3,小阳体重减少了2 kg,则小阳增长了 2kg .2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,•水位上涨了1米,下午5时,水位又上涨了0.5米.(1)用正数或负数记录下午1时和下午5时的水位;(2)下午5时的水位比中午12时水位高多少?【答案】(1)下午1时,水位0.5米;下午5时,水位-1米(2)0.5+1=1.5(米)提升能力3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数.【答案】 +2,-1,-0.2.4.有没有这样的有理数,它既不是正数,也不是负数?【答案】有,是0.5.下列各数中哪些是正数?哪些是负数?-15,-0.02,67,-171,4,-213,1.3,0,3.14,π【答案】正数:67,4,1.3,3.14,π;负数:-15,0.02,-1 71,-213开放探究6.同学聚会,约定在中午12点到会,早到的记为正,迟到的记为负,结果最早到的同学记为+3点,最迟到的同学记为-1.5点,•你知道他们分别是什么时候到的吗?最早到的同学比最迟到的同学早多少小时?【答案】最早的同学上午9点到,最迟的是下午1点半到,最早的比最迟的早到4.5个小时.7.新中考题(2004·玉林)冷库A的温度是-5℃,冷库B的温度是-15℃,•则温度高的是冷库A.教学反思:本节课是学生进入初中的第一节数学课,也是非常重要的一节课-----负数的引入.课堂上我主要采用了体验探究的教学方式,为学生提供了大量亲自操作的机会,使学生直接参与教学活动,学生在动手操作中对抽象的数学知识获取感性的认识,进而通过教师的引导加工总结上升为理性认识,从而获得新知,使学生的学习过程变为一个再创造的过程,同时让学生体会到获取知识的方法,感受在解决问题的过程中与他人合作的重要性,为学生今后获取新知以及探索和发现新知打下基础.1.2 有理数1.2.1 有理数教学目标1.知识与技能①理解有理数的意义.②能把有理数按要求分类.③了解0在有理数分类的作用.2.过程与方法经历本节的学习,培养学生分类讨论的意识和能正确地进行分类的能力.教学重点难点重点:会把已知各数填入相应的数集图里.难点:掌握有理数的两种分类.教与学互动设计(一)创设情境,导入新课讨论交流通过上节课的学习同学们已经知道,我们认识的数除了小学里所学的之外,还有另一类数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.(二)合作交流,解读探究学生列举:3,5.7,-7,-9,-10,0,13,25,-356, -7.4,5.2…议一议你能说说这些数的特点吗?学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数.说明:我们把所有的这些数统称为有理数.试一试你能对以上各种类型的数作出一张分类表吗?有理数说明:以上分类,若学生思考有困难,可加以引导:因为整数和分数统称为有理数,所以有理数可分为整数和分数两大类,那么整数又包含那些数?分数呢?做一做以上按整数和分数来分,那可不可以按数的性质(正数、负数)来分呢,试一试.有理数⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数零负整数负有理数负分数(3)数的集合把所有正数组成的集合,叫做正数集合.试一试 试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.(三)应用迁移,巩固提高例1 把下列各数填入相应的集合内: 127,3.1416,0,2004,-85,-0.23456,10%,10.l ,0.67,-89正数集合 负数集合 整数集合 分数集合 【答案】例2 以下是两位同学的分类方法,你认为他们分类的结果正确吗?为什么?正数集合227,2004,10%,10.1,0.67,...负数集合-3.1416,-85,-0.23456,-89,...整数集合0,2004,-89,...分数集合127,-3.1416,-85,-0.23456,10%,10.1,0.67,...…………有理数⎧⎧⎪⎨⎪⎩⎨⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负分数有理数⎧⎪⎪⎪⎨⎪⎪⎪⎩正数整数分数负数零【答案】两者都错,前者丢掉了零,后者把正负数、整数、分数混为一谈,分类标准不清楚.【点评】以上是对各类有理数的特点及有理数的分类进行的训练,基础性强,需要重视例3以下结论中正确的有(B)①0是最小的正整数②0是最小的有理数③0不是负数④0既是非正数,也是非负数A.1个B.2个C.3个D.4个例4 如果用字母表示一个数,那a可能是什么样的数,一定为正数吗?与你的伙伴交流一下你的看法.【答案】不一定,a可能是正数,可能是负数,也可能是0.【点评】此题开放性较强.要求学生能用分类的思想对a全面认识,体会用字母表示数的意义.备选例题(2004·浙江温州)观察下列数,按某种规律在横线上填入适当的数,并说明你的理由.23,34,45,________,67,…你的理解是_________.【点拨】找出各项数的特点是本题关键所在,第一个数为23,后一个数是前一个数的分子,分母都加1所得的数.【答案】56(四)总结反思,拓展升华提问:今天你获得了哪些知识?由学生自己小结,然后教师总结:今天我们学习了有理数的定义和有理数的两种分类方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的含义.1.请你在图1-2-1的圈中填上适合的数,使得圈内的数依次为整数集、•有理数集、正数集、分数集、负数集.【答案】答案不唯一,如图1-2-2所示.2.有理数按正、负可分为⎧⎪⎨⎪⎩正有理数零负有理数-1250.4813按整数分,可分为⎧⎨⎩整数分数(1)你能自己再制定一个标准,对有理数进行另一种分类吗? (2)生活中,我们也常常对事物进行分类,请你举例说明. 【答案】 (1)如将有理数分成大于1的数,小于1的数,等于1的数.(2)例如对人按年龄可分为:婴儿、幼儿、儿童、少年、青年、中年、老年.3.下面两个圈分别表示负数集和分数集,你能说出两个图的重叠部分表示什么数的集合呢?答案 负分数 (五)课堂跟踪反馈 夯实基础1.把下列各数填入相应的大括号内: -7,0.125,12,-312,3,0,50%,-0.3 (1)整数集合{-7,3,0}(2)分数集合{0.125,12,-312,50%,-0.3} (3)负分数集合{-312,-0.3}(4)非负数集合{0.125,12,3,0,50%}分数集合负数集合(5)有理数集合{-7,0.125,12,-312,3,0,50%,-0.3}2.下列说法正确的是(D)A.整数就是自然数B.0不是自然数C.正数和负数统称为有理数D.0是整数而不是正数3.某商店出售的三种规格的面粉袋上写着(25±0.1)千克,(25±0.2•千克),(25±0.3)千克的字样,从中任意两袋,它们质量相差最大的是 0.6 千克.提升能力4.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?【答案】a可以表示正整数,正分数,0,负整数或负分数.5.某校对初一新生的男生进行了引体向上的测试,以能做5个为标准,•超过的次数记为正数,不足的次数记为负数,其中10名男生的测试成绩如下:-2 -1 2 -1 3 0 -1 -2 1 0(1)这10名男生有百分之几达标(即达标率)?(2)这10名男生共做了多少个引体向上?【答案】(1)50%;(2)5×10-1=49(个)开放探究6.应用创新题若向东8米记作+8米,如果一个人从A地出发先走+12米,再走-15米,又走+18米,最后走-20米,你能判断这个人此时在何处吗?【答案】在A地西边5米处.7.新中考题(2004·内蒙古赤峰)我市2004年元月某一天的天气预报中,宁城县的最低温度是-22℃,克旗的最低温度是-26℃,这一天宁城县的最低气温比克旗的最低气温高(A)A.4℃ B.-4℃ C.8℃ D.-8℃(六)资料采撷原始的计算工具计算是人类的一种思维活动,人类初期的计算主要是计数.最早用来帮助计数的工具是人类的四肢(手、脚、手指、脚趾)或身边的小石头、贝壳、绳子等.中国有句古话叫“屈指可数”,说明人们常用手指来计算简单的数.在美国纽约的博物馆里,珍藏着一件从秘鲁出土的古代文物,名叫“基普”,意即打了绳结的绳子.基普是古人用来计数和记事的.传说公元前6世纪,•波斯国王在一次征战中曾命令一支部队守桥,他把一条打了结的皮带交给留守将士,要他们每守一天解开一个结,一直守到皮带上的结全部解完了才准撤退.在没有文字的我国古代,人们用在绳子上打结的方法来计数和记事.一件事打一个结,大事打个大结,小事打个小结,办完了一件事就解掉一个结.古人不仅用绳结计数,而且还使用小石子等其他工具来计数.例如,他们饲养的羊,早晨放牧到草地里,晚上必须圈到栅栏里.这样,早晨从栅栏里放出来的时候,出来一只就往罐子里扔一块小石子;傍晚羊进栅栏时,进去一只就从罐子里拿出一块小石子.如果石子全部拿光了,就说明羊全部进圈了;如果罐子里还剩下石子,说明有羊丢失了,必须立刻寻找.教学反思:这节课的教学,我主要采用了探究式的教学方式,为学生提供合作交流的机会,引导学生在已有知识、经验、方法的基础上去思考问题,探寻结果.学生直接参与教学活动,学习积极性高,课堂气氛活跃,通过学生的讨论,抽象的问题简单化.另外教师也可以从学生的回答中受到启发,有方法型的,有技巧型的.教师参与学生的讨论可以增加学生的学习兴趣和动力,学生在讨论的过程中可以相互学习,取长补短,深刻体会到与他人合作的重要性.1.2.2 数轴教学目标1.知识与技能①掌握数轴三要素,能正确画出数轴.②能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.2.过程与方法①使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.②结合本节内容,对学生渗透数形结合的重要思想方法.3.情感、态度与价值观使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点.教学重点难点重点:数轴的概念.难点:从直观认识到理性认识,从而建立数轴概念.教与学互动设计(一)创设情境,导入新课课件展示在一条东西方向的马路上,有一个学校,学校东50m 和西150m•处分别有一个书店和一个超市,学校西100m和160m处分别有一个邮局和医院,分别用A、B、C、D表示书店、超市、邮局、医院,你会画图表示这一情境吗?(学生画图)(二)合作交流,解读探究师:对照大家画的图,为了使表达更清楚,我们把0•左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来.•也就是本节内容──数轴.点拨(1)引导学生学会画数轴.第一步:画直线定原点第二步:规定从原点向右的方向为正(左边为负方向)第三步:选择适当的长度为单位长度(据情况而定)第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.对比思考:原点相当于什么;正方向与什么一致;单位长度又是什么?(2)有了以上基础,我们可以来试着定义数轴: 规定了原点、正方向和单位长度的直线叫数轴. 做一做 学生自己练习画出数轴.试一试:你能利用你自己画的数轴上的点来表示数4,1.5,-3,-72,0吗?讨论 若a 是一个正数,则数轴上表示数a 的点在原点的什么位置上?与原点相距多少个单位长度;表示-a 的点在原点的什么位置上?•与原点又相距了多少个长度单位?小结 整数能在数轴上都找到点吗?分数呢?可见,所有的__________都可以用数轴上的点表示___________•都在原点的左边,______________都在原点的右边. (三)应用迁移,巩固提高例1 下列所画数轴对不对?如果不对,指出错在哪里.①4②-1021③④0⑤-101⑥0-3【答案】 ①错.没有原点 ②错.没有正方向 ③正确 ④错.没有单位长度 ⑤错.单位长度不统一 ⑥正确 ⑦错.正方向标错例2 试一试:用你画的数轴上的点表示4,1.5,-3,-73,0 【答案】图中A点表示4,B点表示1.5,C点表示-3,D点表示-73,E点表示0.例3 如果a 是一个正数,则数轴上表示数a 的点在原点的什么位置上?•表示-a 的点在原点的什么位置上呢?【提示】 由数轴上数的特点不准得到,正数都在原点的右边,负数都在原点左边.【答案】 所有的有理数都可以在数轴上找个点与它对应,原点右边的点表示正数,原点左边的点表示负数.【点评】 数与数轴上的点结合,这是一种重要的数学思想,数形结合.例4 下列语句:①数轴上的点又能表示整数;②数轴是一条直线;•③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有(B)⑦-1-2021-1-45EDC BAA.1个B.2个C.3个D.4个【提示】题中,结合数轴上的点与有理数的特点,可见①中错误的;②、③是正确的;④中可以含有0,•⑤中应该是所有的有理数都可以在数轴上找出对应的点,但并不是数轴上的点都表示有理数.例5 (1)与原点的距离为2.5个单位的点有两个,它们分别表示有理数 2.5 •和-2.5 .(2)一个蜗牛从原点开始,先向左爬了4个单位,再向右爬了7•个单位到达终点,那么终点表示的数是+3 .例6 在数轴上表示-212和123,并根据数轴指出所有大于-212而小于123的整数.【答案】 -2,-1,0,1【点评】本题反映了数形结合的思想方法.例7 数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若这个数轴上随意画出一条长2000cm的线段AB,则线段AB盖住的整点是(C)A.1998或1999 B.1999或2000C.2000或2001 D.2001或2002【提示】分两种情况分析:(1)当线段AB的起点是整点时,•终点也落在整点上,那就盖住2001个整点;(2)是当线段AB的起点不是整点时,•终点也不落在整点上,那么线段AB盖住了2000个整点.【点评】本题体现了新课程标准的探索和实践能力.备选例题(2004·新疆生产建设兵团)在数轴上,离原点距离等于3的数是________.【点拨】 不要忽视在原点的左右两边.【答案】 ±3(四)总结反思,拓展升华数轴是非常重要的工具,它使数和直线上的点建立了对立关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.一条直线的流水线上,依次有5个卡通人,•它们站立的位置在数轴上依次用点M 1、M 2、M 3、M 4、M 5表示,如图:(1)点M 4和M 2所表示的有理数是什么?(2)点M 3和M 5两点间的距离为多少?(3)怎样将点M 3移动,使它先达到M 2,再达到M 5,请用文字说明;(4)若原点是一休息游乐所,那5个卡通人到游乐所休息的总路程为多少?【答案】 (1)M 4表示2,M 2表示3;(2)相距7个单位长度;(3)先向左移动1个单位,再向右移动8个单位长度;(4)17个单5M 4M 3M 2M 1位长度.(五)课堂跟踪反馈夯实基础1.规定了原点、正方向、单位长度的直线叫数轴,所有的有理数都可从用数轴上的点来表示.2.P从数轴上原点开始,向右移动2个单位,再向左移5个单位长度,此时P点所表示的数是 -3 .3.把数轴上表示2的点移动5个单位后,所得的对应点表示的数是(C)A.7 B.-3 C.7或-3 D.不能确定4.在数轴上,原点及原点左边的点所表示的数是(D)A.正数 B.负数 C.不是负数 D.不是正数 5.数轴上表示5和-5的点离开原点的距离是 5 ,但它们分别在原点的两边.提升能力6. 1 是最小的正整数,0 是最小的非负数,0 是最大的非正数.7.与原点距离为 3.5个单位长度的点有 2 个,它们分别是3.5 和-3.5 .8.画一条数轴,并把下列数表示在数轴上:+2,-3,0.5,0,-4.5,4,313【答案】略开放探究9.在数轴上与-1相距3个单位长度的点有 2 个,为-4或2 ;长为3个单位长度的木条放在数轴上,最多能覆盖 4 个整数点.10.新中考题(2004·南京)下列四个数中,在-2到0之间的数是(A)A.-1 B.1 C.-3 D.3教学反思:这节课的学习,我主要采用了体验探究的教学方式,为学生提供了亲自操作的机会,引导学生运用已有经验、知识、方法去探索与发现等式的性质,使学生直接参与教学活动,学生在动手操作中对抽象的数学定理获取感性的认识,进而通过教师的引导加工上升为理性认识,从而获得新知,使学生的学习变为一个再创造的过程,同时让学生学到获取知识的思想和方法,体会在解决问题的过程中与他人合作的重要性,为学生今后获取知识以及探索和发现打下基础。

人教版七年级数学上册教案(全册)

人教版七年级数学上册教案(全册)

第一章有理数单元教学内容1.本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,•从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系.引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念.2.通过怎样用数简明地表示一条东西走向的马路旁的树、•电线杆与汽车站的相对位置关系引入数轴.数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:(1)数轴能反映出数形之间的对应关系.(2)数轴能反映数的性质.(3)数轴能解释数的某些概念,如相反数、绝对值、近似数.(4)数轴可使有理数大小的比较形象化.3.对于相反数的概念,•从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分.4.正确理解绝对值的概念是难点.根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:(1)任何有理数都有唯一的绝对值.(2)有理数的绝对值是一个非负数,即最小的绝对值是零.(3)两个互为相反数的绝对值相等,即│a│=│-a│.(4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a.(5)若│a│=│b│,则a=b,或a=-b或a=b=0.三维目标1.知识与技能(1)了解正数、负数的实际意义,会判断一个数是正数还是负数.(2)掌握数轴的画法,能将已知数在数轴上表示出来,•能说出数轴上已知点所表示的解.(3)理解相反数、绝对值的几何意义和代数意义,•会求一个数的相反数和绝对值.(4)会利用数轴和绝对值比较有理数的大小.2.过程与方法经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法.3.情感态度与价值观使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言.重、难点与关键1.重点:正确理解有理数、相反数、绝对值等概念;会用正、•负数表示具有相反意义的量,会求一个数的相反数和绝对值.2.难点:准确理解负数、绝对值等概念.3.关键:正确理解负数的意义和绝对值的意义.课时划分1.1 正数和负数 2课时1.2 有理数 5课时1.3 有理数的加减法 4课时1.4 有理数的乘除法 5课时1.5 有理数的乘方 4课时第一章有理数(复习) 2课时1.1正数和负数第一课时三维目标一.知识与技能能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量.二.过程与方法借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性.三.情感态度与价值观培养学生积极思考,合作交流的意识和能力.教学重、难点与关键1.重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法.2.难点:正确理解负数的概念.3.关键:创设情境,充分利用学生身边熟悉的事物,•加深对负数意义的理解.教具准备投影仪.教学过程四、课堂引入我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的.人们由记数、排序、产生数1,2,3,…;为了表示“没有物体”、“空位”引进了数“0”,•测量和分配有时不能得到整数的结果,为此产生了分数和小数.在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2•页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%.五、讲授新课(1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数.而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,•它们与负数具有相反的意义,我们把这样的数(即以前学过的0•以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+13,…就是3,2,0.5,13,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号.(2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数.(3)、数0既不是正数,也不是负数,但0是正数与负数的分界数.(4) 、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度.用正负数表示具有相反意义的量(5)、把0以外的数分为正数和负数,起源于表示两种相反意义的量.•正数和负数在许多方面被广泛地应用.在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度.例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正数表示收入款额,负数表示支出款额.(6)、请学生解释课本中图1.1-2,图1.1-3中的正数和负数的含义.(7)、你能再举一些用正负数表示数量的实际例子吗?(8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量.六、巩固练习课本第3页,练习1、2、3、4题.七、课堂小结为了表示现实生活中的具有相反意义的量,我们引进了负数.正数就是我们过去学过的数(除0外),在正数前放上“-”号,就是负数,•但不能说:“带正号的数是正数,带负号的数是负数”,在一个数前面添上负号,它表示的是原数意义相反的数.如果原数是一个负数,那么前面放上“-”号后所表示的数反而是正数了,另外应注意“0”既不是正数,也不是负数.八、作业布置1.课本第5页习题1.1复习巩固第1、2、3题.九、板书设计1.1正数和负数第一课时1、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数.而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,•它们与负数具有相反的意义,我们把这样的数(即以前学过的0•以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+13,…就是3,2,0.5,13,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号.2、随堂练习。

人教版七年级数学上册教案(5篇)

人教版七年级数学上册教案(5篇)

人教版七年级数学上册教案(5篇)最新人教版七年级数学上册教案(5篇)教学过程一般按时间顺序书写,此外也可以加几点总体提示;对教学重点部分所需的时间需要有较好的认知;要有可以舍弃的内容和备用的内容,以便灵活处理。

下面是整理的最新人教版数学七年级上册教案,欢迎阅读与收藏。

最新人教版数学七年级上册教案篇1教学目标【知识与能力目标】1、巩固理解有理数的概念;2、掌握数轴的意义及构成特点,明确其在实际中的应用;3、会用数轴上的点表示有理数。

【过程与方法目标】【情感态度价值观目标】通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。

教学重难点【教学重点】数轴的意义及作用。

【教学难点】数轴上的点与有理数的直观对应关系。

课前准备《数学》人教版七年级上册,自制课件教学过程一、探索新知(投影展示)问题在一条东西向的马路上,有一个汽车站,汽车站东3m和7、5m 处分别有一棵柳树和一棵杨树,汽车站西3m和4、5m处分别有一棵槐树和一根电线杆,试画图表示这一情景。

学生结合上述问题分组讨论,明确以下问题:1、怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系(体现距离、方向)?2、举例说明生活中类似的事例;3、什么叫数轴?它有哪几个要素组成?4、数轴的.用处是什么?5、你会画数轴吗并应用它吗?“问题”解决:课件投影课本p8图1、2-1,同时说明其产生的过程及合理、简明的特点;结论:正数、0和负数可以用一条直线上的点表示出来。

3、展示温度计图形,比较其与图1、2-1的共同点和不同点:共同点:温度计也可以看作将正数、0和负数用一条直线上的点表示出来的情形;不同点:温度计是竖直的,方向感不直观。

4、描述数轴的意义(课本p9中间,由学生阅读,并尝试画一条数轴,强调)(1)数轴的构成三要素:原点、方向、单位长度;(2)数轴的用处是:把数用数轴上的点来表示,例(课本p9图1、2-3),说明有理数都可以用数轴上的点表示;5、归纳(1)一般地,设a是一个正数,则数轴上表示数a的点在原点的边,与原点的距离是个单位长度;表示数-a的点在原点的边,与原点的距离是个单位长度。

人教版七年级上册数学教案5篇

人教版七年级上册数学教案5篇

人教版七年级上册数学教案5篇教案设计是改善课堂教学的一种更高层次的探究,是提高课堂教学质量和效率的一项必要工作,它可以促进教学的系统化,使教师控制讲课节奏。

下面我给大家带来关于人教版七年级上册数学教案,方便大家学习人教版七年级上册数学教案1教学目标(一)通过复习一位数乘整百整十数不进位的口算,学生理解并控制一位数乘两位数进位乘法的口算办法,能正确地进行一位数乘两位数的口算.(二)通过学生自己动手摆一摆,学生参加到学问的形成过程中,控制口算的办法,能够比拟娴熟地进行口算.教学重点和难点重点:在理解的根底上,控制用一位数乘的口算过程.难点:理解并控制满十向前一位进“1〞的算理.教学过程设计(一)复习预备投影出示口算题:(用纸板笼罩,一题一题出示)10×514×2100×7130×220×334×2200×4210×3老师提问:14×2请你说一说口算过程.(学生答复10×2=20,4×2=8,20+8=28)老师追问:则你能不能说一说140×2又是怎样口算的呢?(同座位的两个小伴侣相互说一说)然后请同学答复(把140看成14个十,先用10个十乘以2是20个十也就是200,4个十乘以2是8个十也就是80,200加上80等于280)老师揭示课题:(板书:一位数乘两位数、乘整百整十数)(二)学习新课出例如1:板书:口算14×3.想一想14×3的意义是什么?(3个14是多少)按照14×3的意义,用小棒摆出来.想口算的顺序,先拿出表示10×3=30,3个十的小棒是30,再拿出表示4×3=12,3个4的小棒是12,合起来是42,30+12=42.板书:14×3=42.比拟14×3与14×2两道口算的异同:(同桌或四人小组的同学相互启发进行研究)然后请同学答复:两道题口算过程是相同的.都是先乘以被乘数的十位上的数,再乘以个位上的数,只是14乘以3,个位上的数相乘,满了十,最后一步是整十加上两位数.做一做投影出示:16×2=25×2=要求同学在练习本上直接写出结果.再把这几道题分离写在小黑板上,请几个同学直接写在小黑板上.待同学写完后集体勘误.分离请同学说出口算过程.16×2:10乘以2等于20,6乘以2等于12,20加上12等于32.26×3,25×2分离请同学相互说,集体说,个人说.反复表达口算过程.出例如2:板书:口算:140×3=请同学想一想应当怎样做,然后试做.(老师巡察,个别指导一下)做完后,小组同学相互说一说自己是怎样做的.集中起来说出不同的主意:因为14×3=42,则140×3只需在42后面添上一个0得420.把140看成14个十,14个十乘3得42个十,即420.3乘14得42,然后再在得数后面添上一个0.以上这几种算法,要给一定,尤其第三种办法,赋予褒扬和鼓舞.做一做投影出示:130×5=380×2=150×6=每人在自己本上直接写出结果.四人小组进行研究,能用几种办法说出口算过程.小结今日我们学习了“一位数乘两位数、乘整十整百数〞,在学习这局部内容时,要留意个位上、十位上满十向前一位进“1〞.(三)稳固反应1.根本练习:(投影出示)首先看完题后,想一想这里是什么意思,然后填在书上,填完后同桌两个同学相互说一说.最后集体勘误.2.填空练习:(投影出示)明确题目要求后,在课本上填括号.勘误时请同学说出口算过程,左面三道题,被乘数添一个0,再请同学说出结果,并表明口算过程.3.找伴侣游戏.15×318×212×514×435×2220×4240×325×4310×332×326×2160×616×514×336×2120×4160×5240×2260×2题目卡片贴在黑板上,(或在投影上一题一题出示)答案卡片发到同学手中,当题目出示后,答案就是它的伴侣.45366056708807201009109652960489072424809004805204.文字表达题.投影片出示,同学们在作业本上做.四个同学写在小黑板上,勘误时用.(1)乘数是7,被乘数是12,积是多少?12×7=84(2)250的3倍是多少?250×3=750作业:看书第1页.课堂教学设计表明本节课教学内容口算“一位数乘两位数、乘整百整十数〞.首先适量并有针对性的练习一些用一位数乘的不进位的乘法口算题,为学习新学问做预备.讲授新课例1时,抓住满十进一这一难点,以旧学问引出新学问,通过新旧学问的比拟,突出新旧学问的衔接点,通过学生自己动手、动脑、动口获取学问,体现以学生为主体.使学生真正悟出新旧学问的内在联系.通过形式多样的练习,到达能精确、快速地口算的目的.板书设计人教版七年级上册数学教案2【教学目标】1.使学生经受“提出问题—估算—口算—笔算〞的计算过程,在多样化的算法中能自主最优化。

人教版数学七年级上册教案(精选14篇)

人教版数学七年级上册教案(精选14篇)

人教版数学七年级上册教案(精选14篇)人教版数学七年级上册教案第1篇一、教材分析1、教材的内容:本节课是人教版七年级下册第五章第一节的第一课时2、教材的地位和作用:平面内两条直线的位置关系是“空间与图形”所要研究的基本问题,这些内容学生在前两个学段已经有所接触,本章在学生已有知识和经验的基础上,继续研究平面内两条直线的位置关系,首先研究相交的两条直线,这是后面学习垂直相交的必要基础也为后面学面直角坐标系奠定基石,因此本节课具有承前启后的重要作用3、教学的重点、难点:重点:邻补角、对顶角的概念,对顶角的性质和应用。

难点:理解对顶角性质的探索(确定重难点的依据:本节的学习目的是研究两条相交直线产生的四个角的关系,因此将邻补角、对顶角的概念、性质以及应用作为本节的重点。

同学们刚刚开始接触几何,对推理说理不习惯也不熟悉,所以将理解对顶角相等的性质作为难点。

)4、教学目标:A:知识与技能目标(1).理解对顶角和邻补角的概念,能在图形中辨认.(2).掌握对顶角相等的性质和它的推证过程(3).会用对顶角的性质进行有关的简单推理和计算.B:过程与方法目标(1).通过观察、操作、探究、猜想、思考、交流、归纳、推理等培养学生的推理能力和有条理的表达能力,培养操作能力、动手能力。

(2).体会具体到抽象再到具体的思想方法.C:情感、态度与价值目标(1).感受图形中和谐美、对称美.(2).感受合作交流带来的成功感,树立自信心.(3).感受数学应用的广泛性,使学生更加热爱数学二、学情分析:在此之前,学生已经学习了图形的初步认识、对相交线和平行线有了直观的感性认识,且对互补和互余有了清楚的了解,在此基础上来学习邻补角和对顶角,符合学生的认知规律,让学生对新知识的应用充满好奇与期待.三、教法和学法:教法:叶圣陶先生倡导:解放学生的手,解放学生的脑,解放学生的时间.根据这一思想及我校初一学生活泼好动的特点,我采取启发式教学、探究式教学及多媒体辅助教学相结合的方法.学法:以学生分组实践、自主探究、合作交流为主要形式的探究式学习方法.四、教学过程:1课前准备:课件,剪刀,纸片,相交线模型2教学过程:设置以下六个环节环节一:情景屋(创设情景,激发学习动机)请学生欣赏观察图片,图片中有大桥上的钢梁和钢索,窗户的窗格都给我们以相交线平行线的形象,让学生感受到相交线平行线在我们生活中有着广泛的应用,由此产生研究它们了解它们的兴趣和欲望,适时的给出本章课题:相交线和平行线环节二:问题苑(合作交流,解释发现)通过一些问题的设置,激发学生探究的欲望,具体操作:(1):动手尝试:剪纸片,感知剪刀所形成的角在剪纸过程中的变化(2):给出问题,由剪刀这个实物抽象出几何模型——两条直线相交。

人教版初中七年级上册数学全册教学设计(完整版)

人教版初中七年级上册数学全册教学设计(完整版)

人教版初中七年级上册数学全册教学设计(完整版)一. 教材分析人教版初中七年级上册数学教材主要内容包括:第一章有理数;第二章整式的加减;第三章几何图形初步;第四章数据的收集、整理与分析。

本册教材主要让学生掌握有理数、整式的加减以及几何图形的知识,培养学生解决实际问题的能力。

二. 学情分析七年级的学生已经掌握了小学阶段的数学知识,具备一定的逻辑思维能力和运算能力。

但部分学生对数学学科的学习兴趣不高,学习主动性不足。

因此,在教学过程中,需要关注学生的学习兴趣,激发学生的学习积极性。

三. 教学目标1.知识与技能:使学生掌握有理数、整式的加减以及几何图形的知识,培养学生解决实际问题的能力。

2.过程与方法:通过自主学习、合作交流的方式,培养学生解决问题的能力。

3.情感态度与价值观:培养学生对数学学科的兴趣,提高学生的自信心。

四. 教学重难点1.教学重点:有理数、整式的加减以及几何图形的知识。

2.教学难点:有理数的混合运算、整式的加减运算以及几何图形的性质。

五. 教学方法1.情境教学法:通过生活实例引入知识,使学生感受到数学与生活的紧密联系。

2.启发式教学法:引导学生主动思考问题,培养学生的逻辑思维能力。

3.合作学习法:鼓励学生之间相互讨论、交流,提高学生的合作能力。

六. 教学准备1.教师准备:熟练掌握教材内容,了解学生的学习情况。

2.学生准备:预习教材内容,了解本节课的学习目标。

3.教学资源:多媒体课件、黑板、粉笔等。

七. 教学过程1.导入(5分钟)利用生活实例引入本节课的知识,激发学生的学习兴趣。

例如,讲解温度、身高等概念,引出有理数的概念。

2.呈现(15分钟)讲解有理数的定义、性质以及运算规则。

通过示例演示有理数的加减乘除运算,让学生跟随老师一起动手操作,巩固知识点。

3.操练(15分钟)布置练习题,让学生独立完成。

题目难度可分为基础、提高、挑战三个层次,以满足不同学生的学习需求。

教师巡回指导,帮助学生解决问题。

人教版七年级上册数学教案6篇

人教版七年级上册数学教案6篇

人教版七年级上册数学教案6篇人教版七年级上册数学教案(精选篇1)一、内容特点在知识与方法上类似于数系的第一次扩张,也是后继内容学习的基础。

内容定位:了解无理数、实数概念,了解(算术)平方根的概念;会用根号表示数的(算术)平方根,会求平方根、立方根,用有理数估计一个无理数的大致范围,实数简单的四则运算(不要求分母有理化)。

二、设计思路整体设计思路:无理数的引入——无理数的表示——实数及其相关概念(包括实数运算),实数的应用贯穿于内容的始终。

学习对象——实数概念及其运算;学习过程——通过拼图活动引进无理数,通过具体问题的解决说明如何表示无理数,进而建立实数概念;以类比,归纳探索的方式,寻求实数的运算法则;学习方式——操作、猜测、抽象、验证、类比、推理等。

具体过程:首先通过拼图活动和计算器探索活动,给出无理数的概念,然后通过具体问题的解决,引入平方根和立方根的概念和开方运算。

最后教科书总结实数的概念及其分类,并用类比的方法引入实数的`相关概念、运算律和运算性质等。

第一节:数怎么又不够用了:通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性;借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想;会判断一个数是有理数还是无理数。

第二、三节:平方根、立方根:如何表示正方形的边长它的值到底是多少并引入算术平方根、平方根、立方根等概念和开方运算。

第四节:公园有多宽:在实际生活和生产实际中,对于无理数我们常常通过估算来求它的近似值,为此这一节内容介绍估算的方法,包括通过估算比较大小,检验计算结果的合理性等,其目的是发展学生的数感。

第五节:用计算器开方:会用计算器求平方根和立方根。

经历运用计算器探求数学规律的活动,发展合情推理的能力。

第六节:实数。

总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。

三、一些建议1.注重概念的形成过程,让学生在概念的形成的过程中,逐步理解所学的概念;关注学生对无理数和实数概念的意义理解。

人教版七年级上数学教案(全册)

人教版七年级上数学教案(全册)

人教版七年级上数学教案(全册)第一课时三维目标一、科学知识与技能1.复习有理数的意义及其有关概念。

其内容包括正负数、有理数、数轴、有理数大小的比较、相反数与绝对值等。

通过备考并使学生系统掌控有理数这一章的有关基本概念;2.并使学生提升分辨概念能力;二、过程与方法利用数轴来认识、理解有理数的有关概念.三、情感态度与价值观1、引导学生自己总结本单元的自学内容。

并与同伴交流在本单元自学中的斩获和严重不足,培育他们的思考意识。

教学重难点理解掌握有理数的有关概念四、复习提问:1、什么叫做数轴?图画出来一个数轴去。

2、什么是有理数?有理数集包括哪些数?有理数和数轴上的点有什么关系?请问:整数和分数泛称为有理数。

有理数的分类:整数、分数泛称有理数;整数又包含正整数、零、正数整数,分数又包含正分数与负分数。

每一个有理数都可以用数轴上唯一确定的点来表示。

但反过来以后可以看到,数轴上任一点并不一定表示有理数。

表示正有理数的点在原点的右边,表示零的点是原点,表示负有理数的点在原点的左边。

3、观测数轴分别讲出a,b,c,d,e,f各点则表示的数是什么?4、点a与f,点b与e所表示的数分别存在什么关系?(互为相反数)互为相反数的几何意义?(互为相反数就是在原点两侧且至原点等距的两点所则表示的数。

)相反数的性质?(只有符号相同的两个数就是互为相反数,a的相反数为-a;)各点所表示的数的绝对值是多少?绝对值的几何意义?(在数轴上,表示数a的点到原点的距离叫做数a的绝对值)绝对值的代数意义?(a=a(a>0),a=0(a=0),a=-a(a<0)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。

5、讲出各数的倒数?(一个数除以1税金的商是这个数的倒数,零没倒数)6、比较各点则表示的数的大小?方法一:零大于一切正数,而小于一切负数;两个负数,绝对值小的反而大。

方法二:在数轴上,右边的点表示的数总比左边的点表示的数大。

人教版初一上册数学教案优秀8篇

人教版初一上册数学教案优秀8篇

人教版初一上册数学教案优秀8篇七年级数学上册教案篇一教学目标:1、能将正方体、长方体、棱锥、棱柱展开成平面图形;并由它们的平面图形折叠成立体图形2、在操作活动中认识棱柱的某些特性;3、经历折叠、模型制作等活动,发展空间观念,积累数学活动经验;教学重点:通过活动认识归纳出棱柱的特性,并能初步感受到研究空间问题的思维方法教学难点:根据简单的立体图形判别平面图形;反之,根据平面图形判别立体图形。

教学过程:一、导入情境让学生自己出示现实生活中某些商品的包装盒(课前准备工作),制作这些纸盒,我们是先根据它们表面展开后图形的形状剪裁纸张,再折叠围成,从而引入课题——展开与折叠。

二、通过动手操作,加强对图形(棱柱)的感受,体会棱柱的性质做一做活动一:1、如图1所示的平面图形经过折叠能否围成一个棱柱?请同学们以同桌的`形式动手做做看。

2、操作完后,请学生展示他们制作的模型。

3、实践验证图1所示的平面图形经过折叠可以围成如图2所示的棱柱。

4、教师介绍棱柱的各部分名称。

数学七年级上册教学设计篇二教学目标1 知识与技能:理解平行与垂直是同一平面内两条直线的两种特殊位置关系,初步认识平行线与垂线。

2 过程与方法:在观察、操作、比较、概括中,经历探究平行线和垂线特征的过程,建立平行与垂直的概念。

3 情感态度与价值观:在活动中丰富学生活动经验,培养学生的空间观念及空间想象能力。

教学重难点1 教学重点:正确理解“相交”“互相平行”“互相垂直”等概念。

2 教学难点:理解平行与垂直概念的本质特征。

教学工具多媒体设备教学过程1 情境导入,画图感知1、学生想象在无限大的平面上两条直线的位置关系。

教师:摸一摸平放在桌面上的白纸,你有什么感觉?(1)学生交流汇报。

(2)像这样很平的面,我们就称它为平面。

(板书:平面)我们可以把白纸的这个面作为平面的一部分,请大家在这个平面上任意画一条直线,说一说,你画的这条直线有什么特点?(3)闭上眼睛想一想:白纸所在的平面慢慢变大,变得无限大,在这个无限大的平面上,直线也跟着不断延长。

人教版七年级数学上册教案(通用18篇)

人教版七年级数学上册教案(通用18篇)

人教版七年级数学上册教案〔通用18篇〕篇1:人教版七年级数学上册教案教学目的 1,掌握绝对值的概念,有理数大小比拟法那么.2,学会绝对值的计算,会比拟两个或多个有理数的大小.3.体验数学的概念、法那么来自于实际生活,浸透数形结合和分类思想.教学难点两个负数大小的比拟知识重点绝对值的概念教学过程(师生活动) 设计理念设置情境引入课题星期天黄老师从学校出发,开车去玩耍,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),假如规定向东为正,①用有理数表示黄老师两次所行的路程;②假如汽车每公里耗油0.15升,计算这天汽车共耗油多少升?学生考虑后,老师作如下说明:实际生活中有些问题只关注量的详细值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的间隔和汽油的价格,而与行驶的方向无关;观察并考虑:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的间隔 .学生答复后,老师说明如下:数轴上表示数的点到原点的间隔只与这个点分开原点的长度有关,而与它所表示的数的正负性无关;一般地,数轴上表示数a的点与原点的间隔叫做数a的绝对值,记做|a|例如,上面的问题中|20|=20,|-10|=10显然,|0|=0 这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答那么与符号没有关系,说明实际生活中有些问题,人们只需知道它们的详细数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.并使学生体验数学知识与生活实际的联络.因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难承受,所以配置此观察与考虑,为建立绝对值概念作准备.合作交流探究规律例1求以下各数的绝对值,并归纳求有理数a 的绝对有什么规律?、-3,5,0,+58,0.6要求小组讨论,合作学习.老师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法那么(见教科书第15页).稳固练习:教科书第15页练习.其中第1题按法那么直接写出答案,是求绝对值的根本训练;第2题是对相反数和绝对值概念进展区分,对学生的分析^p 、判断才能有较高要求,要注意考虑的周密性,要让学生体会出不同说法之间的区别. 求一个数的绝时值的法那么,可看做是绝对值概念的一个应用,所以安排此例.学生能做的尽量让学生完成,老师在教学过程中只是组织者.本着这个理念,设计这个讨论.结合实际发现新知引导学生看教科书第16页的图,并答复相关问题:把14个气温从低到高排列;把这14个数用数轴上的点表示出来;观察并考虑:观察这些点在数轴上的位置,并考虑它们与温度的上下之间的关系,由此你觉得两个有理数可以比拟大小吗?应怎样比拟两个数的大小呢?学生交流后,老师总结:14个数从左到右的顺序就是温度从低到高的顺序:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数.在上面14个数中,选两个数比拟,再选两个数试试,通过比拟,归纳得出有理数大小比拟法那么想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的间隔 (即它们的绝对值)以及这两个数的大小之间的关系.要求学生在头脑中有明晰的图形. 让学生体会到数学的规定都来于生活,每一种规定都有它的合理性数在大小比拟法那么第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来理解,所以配置想象练习,加强数与形的想象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

义务教育新课程标准人教版数学教案七年级上册2012—2013学年度教师:蔡弘哈密市第五中学第一章《有理数》单元备课一、单元(成章)教材分析:1、本章的主要内容:对正、负数的认识;有理数的概念及分类;相反数与绝对值的概念及求法;数轴的概念、画法及其与相反数与绝对值的关系;比较两个有理数大小的方法;有理数加、减、乘、除、乘方运算法则及相关运算律;科学计数法、近似数、有效数字的概念及求法.理解.2.本章的地位及作用:本章的知识是本册教材乃至整个初中数学知识体系的基础, 它一方面是算术到代数的过渡, 另一方面是学好初中数学及与之相关学科的关键, 尤其有理数的运算在整个数学及相关学科中占有极为重要的地位, 可以说这一章内容是构建“数学大厦”的地基.教学目标 1.知识与技能(1)、正数与负数的概念: (2)、有理数的分类: (3)、相反数、倒数、绝对值的概念(4)、数轴:(5)、有理数大小的比较:掌握比较两个有理数的大小的哪些方法(6)、有理数的乘方:掌握(1)a n(其中n是正整数)表示什么意思?其中a、n的名称分别是什么?(2)当a、n满足什么条件时, a n的值大于0?(7)、科学记数法、近似数和有效数字运算法则及运算律(1)、有理数的加法法则①同号两数相加, 和取相同的符号, 并把绝对值相加;②绝对值不等的异号两数相加, 和取绝对值较大的加数的符号, 并用较大的绝对值减去较小的绝对值;③一个数与零相加仍得这个数;④两个互为相反数相加和为零.(用符号表述: )(2)、有理数的减法法则: 减去一个数等于加上这个数的相反数.(3)、有理数的乘法法则:①两数相乘, 同号得正, 异号得负, 并把绝对值相乘;②任何数与零相乘都得零;③几个不等于零的数相乘, 积的符号由负因数的个数决定, 当负因数有奇数个数, 积为负;当负因数的个数为偶数个时, 积为正;④几个有理数相乘, 若其中有一个为零, 积就为零.(4)、有理数的除法法则:法则一:两个有理数相除, 同号得正, 异号得负, 并把绝对值相除;法则二:除以一个数等于乘以这个数的倒数.(5)、有理数的乘方:正数的任何次幂都是正数;负数的奇次幂是负数, 负数的偶次幂是正数.(6)、有理数的运算顺序:先算乘方, 再算乘除, 最后算加减;如果有括号, 则先算括号内, 再算括号外.(7)、运算律:①加法的交换律;②加法的结合律;③乘法的交换律;④乘法的结合律;⑤乘法对加法的分配律;注:除法没有分配律.3.情感、态度与价值观:渗透数形结合的思想二:教学重点和难点重点:有理数加、减、乘、除、乘方运算难点:混合运算的运算顺序, 对结果符号的确定及对科学计数法、有效数字的三、教学关键要注意的几个问题(1)有理数的两种分类经常用到, 应注意它们的区别;(2)数轴的三要素缺一不可, 利用数轴可直观地比较有理数的大小;(3)相反数指的是两个仅符号不同的数, 数轴上表示一对相反数的两个点到原点的距离相等, 它们的和为0;而倒数指的是两个乘积为1的数;(4)一个数的绝对值总是非负数, 数a的绝对值是数轴上表示数a的点到原点的距离;(5)要熟练掌握运算法则, 在法则的指导下进行运算, 做到有理有据;要时刻注意运算的顺序, 在计算前, 要认真观察式子, 选择正确的顺序进行运算;在每一步的计算过程中, 要先确定符号, 再进行绝对值的计算;灵活运用运算律可以提高运算的速度和正确率, 运算律可以正向用也可以逆向用.四.本章涉及到的主要数学思想及方法:1.分类讨论的思想:主要体现在有理数的分类及绝对值一节课的教学中.2.数形结合的思想:主要体现在数轴一节课的学习上, 用数字表示数轴(图形)的形态, 反过来用数轴(图形)反映数字的具体意义, 达到数字与图形微观与宏观的统一, 具体与抽象的结合, 即用数说明图形的形象, 用图形说明数字的具体, 尤其利用数轴比较有理数的大小, 理解相反数与绝对值的几何意义, 更是形象直观.3.化归转化的思想:主要体现在有理数的减法转化为有理数的加法, 有理数的乘法转化为有理数的除法.4.类比法:对于有理数加、减、乘、除、乘方运算可类比小学学过的加、减、乘、除、混合运算等内容学习, 总的来说计算方法不变, 只是把数字的范围扩大了, 增加了负数.在学习过程中要时时考虑符号问题.用类比的方法去学习会对新知识有“似曾相识”之感, 不会觉得陌生, 学起来自然会轻松的多.四.教法建议(仅供参考)1.在学完数轴一节课后, 把利用数轴比较有理数的大小补充进来, 提前讲解, 在讲完绝对值后, 在利用绝对值比较两个负数的大小, 这样做既可以体会到数轴的用途, 也可以避免两种方法放在一起给学生造成的混乱, 而利用绝对值比较有理数的大小, 写法上学生一般情况下掌握不好, 这样可以着重训练学生的写法, 分散难点.2.注重联系实际:这本教材的编排更注重了知识来源于生活, 反过来又应用到生活中去的思想.充分体现了生活中处处有数学, 人人都学有用的数学的理念.因此, 在每课的“创设情境”这一环节中, 要充分注意这一点, 充分利用生活实例引入新知识, 使学生充分体现到学好数学是有用的, 因而提高学生学习数学的兴趣.3.对于绝对值一课的教法建议:对于绝对值的代数意义的理解, 学生往往感到困难, 教者可以告诉学生:两棍中间夹着一个人(整体), 当它是正数和零时, 两棍一扒拉, 直接走出来, 当它是负数时, 两棍一扒拉, 拄着拐棍走出来, 比较形象, 使学生容易理解, 在《整式的加减》一章中, 才可以顺利去掉绝对值符号, 进行化简.4.注重本章的选学内容:一个是第6页的“用正负数表示加工允许误差”, 另一个是第40页的“翻牌游戏中的数学定到理”5.在近似数一节课中注意在第46页的例6中补充两个题型:1)86400(保留2个有效数字)2)3954123(精确到十万位).同时增加例7:下列由四舍五入得到的近似数, 各精确到哪一位?各有几个有效数字?1)4.20 2) 0.0022 3)4.5万 4)3.05×五.常见题型的处理建议:1.赋值法:在学生遇到一些含有字母的式子中, 往往很难判断结果, 这时采用此方法, 比较简单易行.但要注意赋值的范围.例如:对任意有理数a, 下列各式中一定成立的是:A.a﹥a的绝对值, B.a﹥﹣a的绝对值 C a≥a的绝对值的相反数 D a﹤a的绝对值2.数轴法:例如:有理数a,b,a﹤0,b﹥0, 且a的绝对值﹤b的绝对值, 试比较a,b,﹣a,﹣b的大小.借助数轴, 学生很容易得到答案.3.非负数性质的应用:这一章中我们已经接触了两种非负数:a的绝对值和a的平方.它们在计算中经常遇到, 特别注意:若A,B为非负数,且A+B=0, 则A=0,B=0.有三种可能:A,B都以绝对值的形式给出, A,B都以平方的形式给出, A,B中一个以绝对值的形式给出, 另一个以平方的形式给出.哈密市第五中学教案(课时备课)哈密市第五中学教案(课时备课)哈密市第五中学教案(课时备课)哈密市第五中学教案(课时备课)哈密市第五中学教案(课时备课)哈密市第五中学教案(课时备课)哈密市第五中学教案(课时备课)哈密市第五中学教案(课时备课)哈密市第五中学教案(课时备课)哈密市第五中学教案(课时备课)哈密市第五中学教案(课时备课)哈密市第五中学教案(课时备课)哈密市第五中学教案(课时备课)哈密市第五中学教案(课时备课)哈密市第五中学教案(课时备课)哈密市第五中学教案(课时备课)哈密市第五中学教案(课时备课)做有理数的混合运算时要注意先后顺序.作业设计必做【练习】P44练习选做教学反思哈密市第五中学教案(课时备课)哈密市第五中学教案(课时备课)第二章 整式 单元备课一、单元(成章)教材分析: 1.本单元教学的主要内容:列代数式, 单项式及其有关概念, 多项式及其有关概念, 去括号法则, 整式的加减, 合并同类项, 求代数式的值. 2.本单元在教材中的地位和作用:整式是简单代数式的一种形式, 在日常生活中经常要用整式表示有关的量, 体现了变量与常量之间的关系, 加深了对数的理解.本章中列代数式, 去括号及合并同类项是后面学习一元一次方程的基础, 求代数式的值在中考命题中占有重要的地位. 教学目标 1.知识与技能(1)关于单项式, 你都知道什么? (2)关于多项式, 你又知道什么?引导学生积极回答所提问题, 通过几名同学的回答, 掌握单项式的定义、单项式的系数、次数的定义, 多项式的定义以及多项式的项、同类项、次数、升降幂排列等定义. (3)什么叫整式?在学生回答的基础上, 进行归纳、总结, 用投影演示:整式⎩⎨⎧升降幂排列)多项式(项同类项次数)单项式(定义系数次数 2.主要法则:整式的加减⎩⎨⎧合并同类项。

去(添)括号。

2.过程与方法1.在讲多项式一节的内容中, 增加多项式的升(降)幂排列的内容, 为下一节对合并同类项的结果的整理提前做好准备.2.注重本章的数学活动:第43页的数学活动, 我认为很有价值, 有一定的趣味性, 也有较强的探索性, 对于学生思维逻辑性的培养是很有价值的, 应给予学生充分的时间进行学习.3.本章概念较多, 应使学生首先牢记概念, 在解决问题时, 才能有意识地联系这些概念, 以此为依据完成相关题目.4.在求多项式的值的相关题目中, 注意解题格式的要求, 学生初次接触, 往往不注意解题格式的写法.5.在做整式的加减运算中, 学生往往不将多项式用括号括起来, 因而导致错误.例如:求比多项式2a-3ab+6少5ab+a 的多项式, 往往直接相减, 忘加括号. 3.情感、态度与价值观培养学生主动分析问题的习惯 二、教学重、难点: 教学重点本章基础知识的归纳、总结;基础知识的运用;整式的加减运算. 教学难点本章基础知识的归纳、总结;基础知识的运用;整式的加减运算 教学关键1.潜移默化地培养学生从具体到一般的推理能力, 突出重点, 突破难点. 三.本章涉及到的主要数学思想及方法: 1.整体数思想:主要体现在式子的化简求值问题中, 有些题目采用整体代人的解题策略, 可使计算简便.有些题目只有从整体考虑才能解决问题.例如:已知:a-b=-3,c+d=2,求(b+c)-(a-d)的值2.从“特殊到一般”, 又从“一般到特殊”的数学思想:这主要体现在本章的习题中, 都是根据实际问题列出式子, 然后再根据具体数值求式子的值中.3.对比思想:本章出现了单项式, 多项式, 同类项等概念, 为了正确掌握这些概念, 可在比较辨析中加深对概念的理解. 四.教法建议(仅供参考)1.在讲多项式一节的内容中, 增加多项式的升(降)幂排列的内容, 为下一节对合并同类项的结果的整理提前做好准备.2.注重本章的数学活动:第43页的数学活动, 我认为很有价值, 有一定的趣味性, 也有较强的探索性, 对于学生思维逻辑性的培养是很有价值的, 应给予学生充分的时间进行学习.3.本章概念较多, 应使学生首先牢记概念, 在解决问题时, 才能有意识地联系这些概念, 以此为依据完成相关题目.4.在求多项式的值的相关题目中, 注意解题格式的要求, 学生初次接触, 往往不注意解题格式的写法.5.在做整式的加减运算中, 学生往往不将多项式用括号括起来, 因而导致错误.例如:求比多项式2a-3ab+6少5ab+a的多项式, 往往直接相减, 忘加括号.五.常见题型的处理建议:求代数式的值:常见的有三种题型:1)直接求值法:例如:当a=-3,b=-2时, 求2a-3ab+6的值)先化简, 再求值, 教材中有很多此种题型.3)整体代人法, :例如:若2a+1/2b=4,求4a+b的值哈密市第五中学教案(课时备课)哈密市第五中学教案(课时备课)哈密市第五中学教案(课时备课)中学教案(课时备课)哈密市第五中学教案(课时备课)。

相关文档
最新文档