电路理论:电路的基本概念与基本定律
1《电路的基本概念及基本定律》指导与解答.
号确定的依据。对方程求解的结果,若电压、电流得正值,说明标定的 电压、电流参考方向与电压、电流的实际方向相符;若方程求解的结果 是负值,则说明假定的参考方向与实际方向相反。
电路分析和计算中,参考方向的概念十分重要,如果在计算电路时 不标示电压、电流的参考方向,显然,方程式中各量的正、负就无法确 定。本章强调了电路响应的“参考方向”在电路分析中的重要性。
W 元件发出负功率,实际上是吸收功率,因此图1.1(b)中元件实际上
是一个负载。 (3)电压、电位、电动势有何异同? 解析:电压、电位和电动势三者定义式的表达形式相同,因此它们
的单位相同,都是伏特【V】;电压和电位是反映电场力作功能力的物 理量,电动势则是反映电源力作功能力的物理量;电压和电位既可以存 在于电源外部,还可以存在于电源两端,而电动势只存在于电源内部; 电压的大小仅取决于电路中两点电位的差值,因此是绝对的量,其方向 由电位高的一点指向电位低的一点,因此也常把电压称为电压降;电位 只有高、低、正、负之分,没有方向而言,其高、低、正、负均相对于 电路中的参考点,因此电位是相对的量;电动势的方向由电源负极指向 电源正极。
2、检验学习结果解析 (1)电路由哪几部分组成,各部分的作用是什么? 解析:电路一般由电源、负载和中间环节三大部分组成。电源是电 路中提供电能的装置,其作用是将其它形式的能量转换成电能;负载是 电路中接收电能的装置,其作用是将电能转换成其它形式的能量;中间 环节包括连接导线、开关及控制保护设备及测量机构,它们是电源和负 载之间不可缺少的连接和控制部件,起着传输和分配能量、控制和保护 电气设备的作用。 (2)试述电路的分类及功能。 解析:工程应用中的实际电路,按照功能的不同可概括为两大类: ①电力系统中的电路:特点是大功率、大电流。其主要功能是对发电厂 发出的电能进行传输、分配和转换。②电子技术中的电路:特点是小功 率、小电流。其主要功能是实现对电信号的传递、变换、储存和处理。 (3)何谓理想电路元件?如何理解“理想”二字在实际电路中的含
电路的基本概念与定律
1.1 引言1.电路理论电路理论起源于物理学中电磁学的一个分支。
若从欧姆定律(1827年)和基尔霍夫定律(1845年)的发表算起,至今已有170多年的历史。
电路理论融合了物理学、数学和工程技术等多方面的成果。
物理学,尤其是其中的电磁学为研制各种电路器件提供了原理依据,对各种电路现象做出理论上的阐述;数学中的许多理论在电路理论中得到广泛的应用,成为分析、设计电路的重要方法;工程技术的进展不断向电路理论提出新课题,推动电路理论的发展。
电路理论是研究电路的基本规律及基本分析方法的工程学科。
它通常包括电路分析和网络综合两个分支。
电路分析指根据已知的电路结构和元件参数,求解电路的特性;网络综合是根据对电路性能的要求,确定合适的电路结构和元件参数,实现所需要的电路性能。
另外,由于电子元件与设备的规模扩大,促进了故障诊断理论的发展,因而故障诊断理论被人们视为继电路分析和网络综合之后电路理论的又一个新的分支。
2.课程地位和任务“电路分析基础”课程是电子信息类专业的第一门专业基础课,它与先修课程“高等数学”、“电磁学”等密切相关,又是学习后续课程“信号与系统”、“电子电路”的基础。
电路理论的各个分支中,网络综合、故障诊断都以电路分析为基础,本课程“电路分析基础”即指电路分析这一分支,并且是最基本的内容。
本书主要讨论电路分析的基本规律和电路的各种分析方法。
电路分析基础课程理论严密、逻辑性强,有广阔的工程背景。
通过本课程的学习,使学生掌握电路的基本理论知识、电路的基本分析方法和初步的实验技能,为进一步学习电路理论打下初步的基础,为学习后续课程准备必要的电电路分析基础教程 2路知识。
同时对培养学生严肃认真的科学作风和理论联系实际的工程观点,对培养学生的科学思维能力、分析计算能力、实验研究能力和科学归纳能力都有重要的作用。
3.课程的结构体系课程的基本结构是以模型为基础,以电阻电路分析、动态电路时域分析和正弦稳态电路分析为序的课程体系。
大学电路理论第1章
电路的基本概念和基本定律
本章学习中的基本问题
什么叫电路、电路元件? 电路模型的意义? 本章涉及到的基本定律是什么? 其内涵? 本章涉及到的基本元件有哪些?其基本性质?
1.1 实际电路与电路模型 1.2 电路的基本物理量
1.3 基尔霍夫定律
1.4 电路的基本元件及方程 1.5 应用
思考
? a.
+ 3 _ 设各元件为 基本单位。
1 1 1 a
i=? b
1 + 1 1 2 _
i=0
b. + 3 _
1 1 1 d
i3 i = ? 1
e + 1 1 2 _ f i4
i=0
3、基尔霍夫电压定律 (KVL)
在任一时刻,沿任一闭合路径( 按固定绕向 ), 各支路 电压的代数和为零。 即 u(t ) 0
推论: 电路中任意两点间的电压等于两点间任一条路径
经过的各元件电压的代数和。 元件电压方向与路径绕行方向一致时取正号,相反取负号。 A
A + US1 _ l2 1
2 U2
I2
l1
U3 U1
3
I3
B
UAB (沿l1)=UAB (沿l2) 电位/电压单值性
I1
_
I4 U4
US4+
4 B
U AB U 2 U 3
1.4.1 电阻元件 ( Resistive Element )
线性电阻
1. 符号
R
2. 方程--欧姆定律 (Ohm’s Law)
电压与电流的参考方向一致时 i R
uRi
+
u (Ohm,欧姆)
R 称为电阻, 基本单位: (欧)
《电工电子技术》课程标准
《电工电子技术》课程标准一、课程概述电工电子技术是一门重要的专业技术基础课程,是电气、电子、自动化等相关专业的必修课程。
本课程旨在培养学生掌握电工电子技术的基本理论、基本知识和基本技能,为后续课程的学习和实际应用打下坚实的基础。
二、课程目标1. 掌握电工电子技术的基本概念、基本原理和基本定律,能够运用所学知识分析电路和电子器件的工作原理。
2. 掌握电工电子电路的分析方法和测量方法,能够独立完成电路设计和实验操作。
3. 掌握常用电子元器件的识别、检测和选用方法,能够根据实际需求选择合适的电子元器件。
4. 了解电工电子技术的应用和发展趋势,能够将所学知识应用于实际工程中。
三、教学内容与要求1. 电路理论:掌握电路的基本概念、基本定律和定理,能够运用电路理论分析简单电路和复杂电路。
2. 电阻器与电容器:掌握电阻器和电容器的种类、性能和选用方法,能够正确使用电阻器和电容器。
3. 电源与变压器:掌握电源的类型、性能和选用方法,了解变压器的工作原理和应用。
4. 半导体器件:掌握二极管、三极管和场效应管等半导体器件的种类、性能和选用方法,能够正确使用半导体器件。
5. 数字电路:掌握数字电路的基本概念、逻辑门电路和数字集成电路,能够运用数字电路进行数字信号处理。
6. 实验与实践:完成电工电子实验和实践项目,掌握实验器材的使用方法,能够独立完成实验操作和数据分析。
7. 综合应用:能够将所学知识应用于实际工程中,解决实际问题。
四、教学方法与手段1. 采用多媒体教学,通过图片、视频和动画等形式,生动形象地展示电工电子技术的原理和应用。
2. 结合实际工程案例进行教学,使学生更好地理解所学知识在实际工程中的应用。
3. 组织学生进行实验和实践,通过实际操作加深对电工电子技术的理解和掌握。
4. 采用分组教学的方式,鼓励学生合作学习,共同解决问题。
5. 定期组织专题讲座和学术报告,拓展学生的知识面和视野。
五、教学评估与考核1. 平时成绩:包括出勤率、作业完成情况、课堂表现等,占总评成绩的30%。
电路理论——精选推荐
电路理论(电路理论内容较多,故精简之~)⼀、基本概念1.电流的参考⽅向可以任意指定,分析时:若参考⽅向与实际⽅向⼀致,则i>0,反之i<0。
电压的参考⽅向也可以任意指定,分析时:若参考⽅向与实际⽅向⼀致,则u>0反之u<0。
2.功率平衡⼀个实际的电路中,电源发出的功率总是等于负载消耗的功率。
3.全电路欧姆定律:U=E-RI4.负载⼤⼩的意义:电路的电流越⼤,负载越⼤。
电路的电阻越⼤,负载越⼩。
5.电路的断路与短路电路的断路处:I=0,U≠0电路的短路处:U=0,I≠0⼆.基尔霍夫定律1.⼏个概念:⽀路:是电路的⼀个分⽀。
结点:三条(或三条以上)⽀路的联接点称为结点。
回路:由⽀路构成的闭合路径称为回路。
⽹孔:电路中⽆其他⽀路穿过的回路称为⽹孔。
2.基尔霍夫电流定律:(1)定义:任⼀时刻,流⼊⼀个结点的电流的代数和为零。
或者说:流⼊的电流等于流出的电流。
(2)表达式:i进总和=0 或: i进=i出 (3)可以推⼴到⼀个闭合⾯。
3.基尔霍夫电压定律(1)定义:经过任何⼀个闭合的路径,电压的升等于电压的降。
或者说:在⼀个闭合的回路中,电压的代数和为零。
或者说:在⼀个闭合的回路中,电阻上的电压降之和等于电源的电动势之和。
(2)表达式:1或: 2或: 3(3)基尔霍夫电压定律可以推⼴到⼀个⾮闭合回路三.电位的概念(1)定义:某点的电位等于该点到电路参考点的电压。
(2)规定参考点的电位为零。
称为接地。
(3)电压⽤符号U表⽰,电位⽤符号V表⽰(4)两点间的电压等于两点的电位的差 。
(5)注意电源的简化画法。
四.理想电压源与理想电流源1.理想电压源(1)不论负载电阻的⼤⼩,不论输出电流的⼤⼩,理想电压源的输出电压不变。
理想电压源的输出功率可达⽆穷⼤。
(2)理想电压源不允许短路。
2.理想电流源(1)不论负载电阻的⼤⼩,不论输出电压的⼤⼩,理想电流源的输出电流不变。
理想电流源的输出功率可达⽆穷⼤。
第1章 电路的基本概念和基本定律
1.1 电路的基本概念 1.2 电路的工作状态及最大功率传输 1.3 电路的基本元件 1.4 基尔霍夫定律及其应用 习题
第1章 电路的基本概念和基本定律
1.1 电路的基本概念
1.1.1 电路的组成与模型 1. 电路是电流的通路,它是根据不同需要由某些电工设备
或元件按一定方式组合而成的。电路通常由电源或信号源、 中间环节和负载组成。
第1章 电路的基本概念和基本定律
1.1.3 在分析电子电路时,常用电位这个概念。譬如二极管,
只有当它的阳极电位高于阴极电位时,管子才导通,否则截 止。分析三极管的工作状态时,也常要分析各个极的电位高
第1章 电路的基本概念和基本定律 两点间的电压表明了两点间电位的相对高低和相差多少, 但不表明各点的电位是多少。要计算电路中某点的电位,就 要先设立参考点。参考点的电位称为参考电位,通常设其为 零。其他各点电位与它比较,比它高的为正电位,比它低的 为负电位。电路中各点电位就是各点到参考点之间的电压, 故电位计算即电压计算。
第1章 电路的基本概念和基本定律
又如一台直流发电机,标有额定值10 kW,230 V,实际 使用时一般不允许所接负载功率超过10 kW,实际供出的功 率值可能低于10 kW。
在一定电压和额定功率范围内,电源输出的功率和电流 决定于负载的大小,就是负载需要多少电源就供多少,电源 通常不一定工作在额定工作状态。对电动机也是这样,它的 实际功率和电流决定于其轴上所带机械负载的大小,通常也 不一定处于满载状态,但一般不应超过额定值。电源设备工 作于额定状态时称满载运行。
第1章 电路的基本概念和基本定律 电能或电信号的发生器(信号源)即为电源。如图 1.1.1(a) 所示的电力系统,发电机是电源,是供应电能的,它可以将 热能、水能或核能转换为电能。电池也是常用的电源,可将 化学能或光能转化为电能。电压和电流是在电源的作用下产 生的,因此,电源又称为激励源,也称输入。
第1章 电路的基本概念与定律
第1章 电路的基本概念与定律主要内容:1.实际电路的模型及其建立;2.电路中电流和电压的参考方向;3.电路的功率及能量吸收与发出的判断;4.电路中电阻、电感、电容、电源等理想电路元件的伏安特性;5.基尔霍夫电流定律与基尔霍夫电压定律。
学习要求:本章内容是所有章节的基础,学习时要深刻理解,熟练掌握。
1.了解电路模型概念、电路模型建立方法及其需要注意的问题;2.理解电路分析中电流电压参考方向的作用,掌握指定参考方向后电流电压的表示方法;3.掌握电路中功率与能量的计算方法以及电路元件吸收能量与发出能量的判断方法;4.掌握各种理想电路元件的伏安特性,能熟练灵活运用其伏安特性;5.深刻理解掌握基尔霍夫电流定律与基尔霍夫电压定律内容,能熟练灵活运用这两条电路基本定律。
本章重点:1. 电压电流的参考方向2. 元件的特性3. 基尔霍夫定律 本章难点:1. 电压电流的实际方向和参考方向的联系和差别;2. 理想电路元件与实际电路器件的联系和差别;3. 独立电源与受控电源的联系和差别. 计划课时:81.1 电路和电路模型一、实际电路 1.定义:为实现某种目的,由若干电器设备或器件按一定方式用导线连接而成的电流通路。
2.组成:~u i以手电筒照明电路为例,实际电路一般总由电源、负载、连接导线在部分组成。
其中,电源又称激励源或输入,它把其它形式的能量转换成电能,而又为电路的工作提供能源;负载也称用电设备,负载把电能转换为其他形式的能量;导线用来提供电流通路。
电路中产生的电压和电流称为响应。
3.实际电路的功能:1)进行能量的传输、分配与转换(如电力系统中的输电电路)。
2)进行信息的传递与处理(如信号的放大、滤波、调协、检波等等)。
注意:实际电路的外貌结构、具体功能以及设计方法各不相同,但遵循同一理论基础,即电路理论。
二、实际电路的电路模型及其建立方法1.实际电路的电路模型:电路理论主要研究电路中发生的电磁现象,并用电流、电荷、电压、磁通等物理量来描述其中的过程。
电路的基本概念和基本定律
R
R C
R
L
L
直流状态,仅 消耗能量
交流低频状 态,消能,储能
交流高频状态,消 耗能量,储磁场能 量和电场能量
{end}
1.2 电路变量及电流和电压的参考方向
1.2.1 电路变量 在电路理论中涉及的变量主要有电流、电压、电位、电荷、磁 通、磁通链、功率和能量。其中电流、电压、电位、能量和功率最 为常用。
+
–u(–u/ R) = u2/ R
能量:可用功表示。从t0 到 t电阻消耗的能量
WR pdξ ui dξ
t t t0 t0
1.3 电路元件及其伏安特性关系 1.3.2 电容元件 定义: 一个二端元件,其电荷q(t)和电压u(t)之间的 关系,可以用q-u平面上的一条曲线来确定,则 称为电容元件。 q 对于线性电容,有 q =Cu
第1章 电路的基本概念和基本定律
1.1 电路及其理论模型 1.2 电路变量及电流和电压的参考方向
1.3 电路元件及其伏安特性关系
1.4 基尔霍夫定律 1.5 电压和电位的区别
{end}
第1章 电路的基本概念和基本定律
重点:
1. 电压、电流的参考方向
2. 电路元件特性 (电阻、电源、受控源) 电路分析的基础 3. 基尔霍夫定律
+
U
I 关联参考方向
+
U
I 非关联参考方向
1.2 电路变量及电流和电压的参考方向
功率的计算
(1) u, i 取关联参考方向 (2) u, i 取非关联参考方向
+
i
u
+
u
i
p=ui
功率的判断
p=-ui
电路基本概念和基本定律
第一章电路基本概念和基本定律知识要点·了解电路和电路模型的概念;·理解电流、电压和电功率;理解和掌握电路基本元件的特性;·掌握电位和电功率的计算;会应用基尓霍夫定律分析电路。
随着科学技术的飞速发展,现代电工电子设备种类日益繁多,规模和结构更是日新月异,但无论怎样设计和制造,几乎都是由各种基本电路组成的。
所以,学习电路的基础知识,掌握分析电路的规律与方法,是学习电工学的重要内容,也是进一步学习电机、电器和电子技术的基础。
本章的重点阐明有关电路的基本概念、基本元件特性和电路基本定律。
电路和电路模型1.1.1 电路的概念1. 电路及其组成简单地讲,电路是电流通过的路径。
实际电路通常由各种电路实体部件(如电源、电阻器、电感线圈、电容器、变压器、仪表、二极管、三极管等)组成。
每一种电路实体部件具有各自不同的电磁特性和功能,按照人们的需要,把相关电路实体部件按一定方式进行组合,就构成了一个个电路。
如果某个电路元器件数很多且电路结构较为复杂时,通常又把这些电路称为电网络。
手电筒电路、单个照明灯电路是实际应用中的较为简单的电路,而电动机电路、雷达导航设备电路、计算机电路,电视机电路是较为复杂的电路,但不管简单还是复杂,电路的基本组成部分都离不开三个基本环节:电源、负载和中间环节。
电源是向电路提供电能的装置。
它可以将其他形式的能量,如化学能、热能、机械能、原子能等转换为电能。
在电路中,电源是激励,是激发和产生电流的因素。
负载是取用电能的装置,其作用是把电能转换为其他形式的能(如:机械能、热能、光能等)。
通常在生产与生活中经常用到的电灯、电动机、电炉、扬声器等用电设备,都是电路中的负载。
中间环节在电路中起着传递电能、分配电能和控制整个电路的作用。
最简单的中间环节即开关和联接导线;一个实用电路的中间环节通常还有一些保护和检测装置。
复杂的中间环节可以是由许多电路元件组成的网络系统。
图1-1所示的手电筒照明电路中,电池作电源,灯作负载,导线和开关作为中间环节将灯和电池连接起来。
电工技术第一章 电路的基本概念和基本定律习题解答
第一章 电路的基本概念和基本定律本章是学习电工技术的理论基础,介绍了电路的基本概念和基本定律:主要包括电压、电流的参考方向、电路元件、电路模型、基尔霍夫定律和欧姆定律、功率和电位的计算等。
主要内容: 1.电路的基本概念(1)电路:电流流通的路径,是为了某种需要由电工设备或电路元件按一定方式组合而成的系统。
(2)电路的组成:电源、中间环节、负载。
(3)电路的作用:①电能的传输及转换;②信号的传递及处理。
2.电路元件及电路模型(1)电路元件:分为独立电源和受控电源两类。
①无源元件:电阻、电感、电容元件。
②有源元件:分为独立电源和受控电源两类。
(2)电路模型:由理想电路元件所组成反映实际电路主要特性的电路。
它是对实际电路电磁性质的科学抽象和概括。
采用电路模型来分析电路,不仅使计算过程大为简化,而且能更清晰地反映该电路的物理本质。
(3)电源模型的等效变换①电压源及电阻串联的电路在一定条件下可以转化为电流源及电阻并联的电路,两种电源之间的等效变换条件为:0R I U S S =或0R U I SS =②当两种电源互相变换之后,除电源本身之外的其它外电路,其电压和电流均保持及变换前完全相同,功率也保持不变。
3.电路的基本物理量、电流和电压的参考方向以及参考电位 (1)电路的基本物理量包括:电流、电压、电位以及电功率等。
(2)电流和电压的参考方向:为了进行电路分析和计算,引入参考方向的概念。
电流和电压的参考方向是人为任意规定的电流、电压的正方向。
当按参考方向来分析电路时,得出的电流、电压值可能为正,也可能为负。
正值表示所设电流、电压的参考方向及实际方向一致,负值则表示两者相反。
当一个元件或一段电路上的电流、电压参考方向一致时,称它们为关联参考方向。
一般来说,参考方向的假设完全可以是任意的。
但应注意:一个电路一旦假设了参考方向,在电路的整个分析过程中就不允许再作改动。
(3)参考电位:人为规定的电路种的零电位点。
电路的基本概念和基本定理
对于交流电路电压、电流的真实方向随时间变化,要简 单的用一个函数或用一条曲线描述电流、电压需要假设电流、 电压的方向。
第一章. 电路的基本概念和基本定理
假设的电流方向就称为电流的参考方向。
电流的参考方向与电流的真实方向一致,电流取正值; 电流的参考方向与电流的真实方向相反,电流取负值。 利用电流值(大于零或小于零)并结合参考方向,就能 够确定电流的真实方向。 电压和电动势同理。 在以后的电路分析中,如果没有特别声明,所涉及的电 流、电压的方向,都是参考方向,电压、电流的值均为代数 值。
如果将上式中的 i3 移到等号左边,则有
i1 i2 i3 0
基尔霍夫电流定律则可以叙述为: 流进任一节点的电流的代数和为零。 同样
流出任一节点的电流的代数和为零。
i 0
第一章. 电路的基本概念和基本定理
基尔霍夫电流定律不仅对任意一个节点来说是成立 的,而且还可以推广到包围着多个节点的闭合面(广义 节点)。
三. 电路中的功率 电功率的定义: 平均功率: 在直流情况下
p ui
1 P T
T
0
1 pdt T
T
uidt
0
P UI
I
电压和电流的参考方向为关联参考方向
P UI
P 0
表示吸收功率 吸收功率 发出功率
P0
P 0
U R
P 0
电压和电流的参考方向为非关联方向
P
第一章. 电路的基本概念和基本定理
一.基尔霍夫电流定律(KCL)
对于电路中任意的一个节点,由于电荷是不会产生、 消灭和积累的,所以任意时刻流进节点的电荷一定等于流 出节点的电荷,也即:
流进节点的电流之和一定等于流出节点的电流之和。
电路分析第1章 电路的基本概念与理论 89页PPT文档
a 水流
b
水塔
重力场
图1-6 水流与电流的类比
a
电场 电 流
b
1.2 电流、电位和电压
1.2.2 电位与电压
电压,也称为电势差或电位差,是衡量单位电荷在静电场中由于电势 不同所产生的能量差的物理量。其大小等于单位正电荷因受电场力作 用从a点移动到b点所做的功,或者是a点与b点的电位差。
电压的方向规定为从高电位指向低电位的方向(电压降),即有
负载/元器件
a I /i
b
(b) 非关联方向
图1-7 电压与电流的关联方向
1.3 直流电和交流电
1.3.1 直流电
把方向和大小都不随时间变化的电流或电压称为“直流电”,用字符 “DC-Direct Current”表示。
I /U 10
I /U 10
0
t
(a)直流电流/电压
0
t
(b)脉动电流/电压
图1-8 直流电与脉动电示意图
6.根据元件特性的不同,分为线性电路与非线性电路。
1.1电路
1.1.2 电路的分类
综上所述,尽管各种电路的构成不尽相同,功能千差万别,但有三个主 要角色——电阻、电感和电容却是每个电路不可或缺的组成部件。对由 它们构成的电路的研究,是分析其它电路的前提和基础,因此,“电路 分析”课程的主要内容就是介绍由基本电路元件电阻、电感和电容构成 的线性电路的分析方法。
1.4 电阻、电感、电容及其模型
1.4.1 电阻器及其模型
电阻在电路中主要用于: 限流、分压、分流、阻抗变换、电流信号和电压信号的相互转换等。
无论是在直流电路还是交流电路中,当电流流过电阻时,电阻都会通 过发热的形式消耗电能,因此,它也是一个耗能元件,
电路1单元 电路的基本概念和定律
P3 U 3 I1 8 2 16 W(消耗)
注
对一完整的电路,发出的功率=消耗的功率
1.3 欧姆定律
流过电阻的电流与该电阻两端电压成正比,与电阻值成反比。
u i R
U I R
u
i
伏安特性为一条 过原点的直线
i Gu
i
I GU
R
+
u
(Ohm,欧姆)
R 称为电阻,单位: (欧)
实际电流源也不允许开路。因其内阻大,若 开路,电压很高,可能烧毁电源。
+
u
u
_
i
一个好的电流源要求
RS
3. 受控电源 (非独立源) 定义
电压或电流的大小和方向不是给定的时间函数,而是 受电路中某个地方的电压(或电流)控制的电源,称受控源 电路符号
+
–
受控电压源
受控电流源
分类
根据控制量和被控制量是电压u 或电流i ,受控源可分 四种类型:当被控制量是电压时,用受控电压源表示;当被 控制量是电流时,用受控电流源表示。 (1) 电流控制的电流源 ( CCCS ) 四端元件
u
伏安关系
uS (t )
i
例
i
+
uS
-
R
外 电 路
uS i R i 0 ( R )
i ( R 0)
电压源不能短路!
例
计算图示电路各元件的功率。 R 5
5V
_
i
_
P5 V uS i 5 ( 1) 5 W
PR Ri 5 1 5 W
2
满足:P(发)=P(吸)
+
(3) 用双下标表示
电路理论基础概述
电路理论基础概述电路是电子技术领域中最重要的基础概念之一。
它涉及电流、电压、电阻等关键概念的理解和应用。
本文将简要介绍电路理论的基础知识,帮助读者建立对电路的基本认识。
一、电路的基本概念1. 电路定义电路是由电子元件和导线组成的路径,通过该路径可以传输电荷或电流。
2. 电流电流是指电荷在单位时间内通过导线的数量。
用字母“I”表示,单位为安培(A)。
3. 电压电压是指电流在电路中的驱动力或能量源。
用字母“V”表示,单位为伏特(V)。
4. 电阻电阻是电路元件对电流流动的阻碍程度。
用字母“R”表示,单位为欧姆(Ω)。
二、基本电路类型电路可以分为串联电路和并联电路。
这两种电路有不同的特点和应用。
1. 串联电路串联电路是将多个电阻或电子元件依次连接在一起,电流经过每个元件时都通过相同的路径。
串联电路的总电阻等于各个电阻的总和。
2. 并联电路并联电路是将多个电阻或电子元件同时连接在一起,各个元件之间的电流可以分流。
并联电路的总电阻可以通过求倒数并相加来计算。
三、基本定律和公式电路理论基于一些基本定律和公式,用于解决电路问题和计算电路参数。
1. 欧姆定律欧姆定律描述了电流、电压和电阻之间的定量关系:V = IR。
其中,V是电压,I是电流,R是电阻。
2. 基尔霍夫定律基尔霍夫定律是用于解决复杂电路中电流和电压的分布问题的重要工具。
它包括两个定律:- 基尔霍夫第一定律:电流在一个节点进入和离开的代数和为零。
- 基尔霍夫第二定律:闭合回路中电压代数和为零。
3. 等效电阻串联电路和并联电路中可以使用等效电阻来简化计算。
对于串联电路,等效电阻等于各个电阻之和;对于并联电路,等效电阻等于各个电阻之间的倒数之和的倒数。
四、电路分析方法在解决电路问题时,有几种常见的电路分析方法可供选择。
1. 零电流法零电流法是基于串联电路中,电流在每个元件中保持恒定的原理。
通过列出每个元件上的电流方程,并解这些方程组,可以计算电路中的各个参数。
解读大学物理中的电路理论
解读大学物理中的电路理论一、简介在大学物理课程中,电路理论是电学的重要组成部分之一。
电路理论研究的是电流在电路中的传输和转换规律,旨在揭示电子在电路中运动的原理和行为。
本文将从基本原理、元件和电路分析方法三个方面对大学物理中的电路理论进行解读。
二、基本原理1. 电荷与电流:电路中的基本粒子是电子,它们带有负电荷。
当电子在导体内移动时,形成电流。
电流的大小等于单位时间内通过某一点的电荷量。
2. 电势差与电压:电路中的电势差是指两个电荷之间的电势能差,也可以理解为电荷在电场中的能量转移。
电势差的单位是伏特(V),常用符号为V。
电压则是电势差在电路中的表现形式。
3. 电阻与电导:电阻是指电流通过导体时遇到的阻碍程度,单位是欧姆(Ω),常用符号为R。
电导是电阻的倒数,表示导体对电流的导通能力,单位是西门(S),常用符号为G。
4. 欧姆定律:欧姆定律是电路理论中的基本关系之一,它表明电流与电压和电阻之间存在线性关系。
欧姆定律可以用公式I=V/R表示,其中I为电流,V为电压,R为电阻。
三、元件1. 电源:电路中的电源是提供稳定的电势差,推动电流在电路中流动的装置。
常见的电源包括电池和发电机。
2. 电阻器:电阻器是控制电路中电流大小的元件。
通过改变电阻器的阻值,可以调节电路中的电流强度。
3. 电容器:电容器是储存电荷和能量的元件。
电容器由两块导体(通常为金属板)和介质组成,当电容器两端施加电压时,电荷会在导体间储存,形成电场能量。
4. 电感器:电感器是利用自感现象来储存能量的元件。
电感器通过使电流通过线圈产生磁场,形成电磁感应,进而储存能量。
四、电路分析方法1. 罗氏定律:罗氏定律是电路分析中的重要定律之一,它表明一个电路中的电压与电流之间满足节点电流定律和电压分压定律。
罗氏定律可以用来解决电路中的各种电流与电压关系问题。
2. 特性方程法:特性方程法是用来求解电路中的电流和电压的方法之一。
它将电路的元件抽象成电压和电流关系的数学方程,通过求解方程可以得到电路中各个元件的电流和电压。
电路理论讲义(超全)
电路元件据外接 端钮数可分为
多端元件 元件图: 将电路元件用图形符号表示 的图(元件的电路符号)。
5、电路图 电路图:元件互连关量和参考方向
基本要求:熟练掌握电压、电流的定义和参考方向的概念。
1.2.1 电流
定义:电荷的定向移动形成电流 。 电荷用q或Q 表示
1A
A 5V
1kA
5kV
B
解:元件A为关联参考方向 ,吸收的功率
P UI 5 1 5 W
元件B为非关联参考方向,吸收的功率
P UI 5103 1103 5106 5 MW
例:求元件C和D发出的功率
2mA
C 10V
10A
实际 电路
电路 模型
理论 分析
科学 解释
4、电路模型
从实际电路抽象出电路模型,本质上是把构成实际 电路的电器件和设备抽象成电路元件的组合体。
I
灯泡
电源
a
U
b
电阻器在低频应用时,可 用一电阻元件作为其模型。
同一个电器件(设 备)可用不同的模 型来表示。
电阻器高频应用时,通常 必须考虑电阻器引线电感 和寄生电容的影响。
解: P UI
P UI
电路元件用理想导线连接 而成的整体。
电路几何 尺寸
电路工作时 电磁波波长
电路模型
集中参数 电路模型 分布参数 电路模型
条件: 条件: d 接近与
每一种元件只体现一种 物理效应。
电阻体现电路的能量损耗
磁场储能集中在电感内部
电场能集中在电容内部
二端电器件 电器件按可触及 的端钮数可分为 多端电器件 二端元件
第1章 电路的基本概念与基本定理
第1章电路的基本概念与基本定理电路理论是电工与电子技术的基本理论。
本章着重介绍电流和电压的参考方向、基尔霍夫定律及电路等效原理等。
通过本章内容的学习可了解和掌握电路中的基本概念和定律,为后续分析复杂电路打下一个基础。
1.1电路的基本概念在高中,我们学过电压、电流、电动势、功率以及欧姆定律等电路的基本概念。
但高中所学的这些电路理论往往解决不了一些复杂电路。
本节将进一步讲解其有关知识。
1.1.1电路的组成人们在日常生活中广泛地使用着各种电器,如热水器、电扇等。
要用电首先要有电源,然后用导线、开关和用电设备或用电器连接起来,构成一个电流流通的闭合路径。
这个电流通过的路径就叫电路。
电路的形式是多种多样的,但从电路的本质来说,其组成都有电源、负载、中间环节三个最基本的部分。
其中电源的作用是为电路提供能量,如发电机利用机械能或核能转化为电能,蓄电池利用化学能转化为电能,光电池利用光能转化为电能等;负载则将电能转化为其他形式的能量加以利用,如电动机将电能转化为机械能,电炉将电能转化为热能等;中间环节用作电源和负载的联接体,包括导线、开关、控制线路中的保护设备等。
图1-1所示的手电筒电路中,电池作电源,灯作负载,导线和开关作为中间环节将灯和电池连接起来。
1.1.2 电路模型实际电路由各种作用不同的电路元件或器件所组成。
实际电路元件尽管外形和作用千差万别,种类繁多,但在电磁性质方面却可以归为几大类。
有的元件主要是提供电能的,如发电机、电池等;有的元件主要是消耗电能的,如各种电阻器、电灯、电炉等;有的元件主要是储存电场能量,如各种电容器;有的元件主要是储存磁场能量,如各种电感线圈。
为了便于对电路进行分析的计算,我们常把实际元件加以理想化,忽略其次要的因素用以反映它们主要物理性质的理想元件来代替。
这样由理想元件组成的电路就是实际电路的电路模型,简称电路。
手电筒电路的电路模型如图1-2所示。
用来表征上述物理性质的理想电路元件(今后理想两字常略去)分别称为恒压源U S 、恒流源I S 、电阻元件R 、电容元件C 、电感元件L 。
电路理论知识点汇总总结
电路理论知识点汇总总结一、基本概念1. 电路的基本概念电路是由电路元件和连接它们的导线所组成的,其中电路元件主要包括电阻、电容、电感和电源等。
按照电路的连接方式,电路可以分为串联电路、并联电路和混合电路等类型。
2. 电压、电流和电阻电压是电路中电子运动的推动力,通常用符号V表示,单位是伏特(V)。
电流是电子在电路中流动的数量,通常用符号I表示,单位是安培(A)。
电阻是电路中阻碍电流流动的元件,通常用符号R表示,单位是欧姆(Ω)。
3. 电路的分析方法电路的分析可以采用基尔霍夫定律、欧姆定律、节点分析法、单元分析法、示波器法等方法。
4. 电路的频率响应电路对不同频率的电压信号有不同的响应特性,可以通过频率响应曲线来描述。
5. 电压、电流、功率关系电路中的电压、电流和功率之间存在一定的关系,可以通过欧姆定律、功率公式等来描述。
二、电源和电路元件1. 电源电源是提供电压或电流的设备,可以分为直流电源和交流电源。
2. 电阻电阻是电路中的一个基本元件,能够产生电阻,通常用来限制电流的大小。
3. 电容电容是电路中的一个基本元件,能够储存电荷,通常用来储存和释放电能。
4. 电感电感是电路中的一个基本元件,能够产生感抗,通常用来储存和释放磁场能量。
5. 半导体器件半导体器件包括二极管、晶体管、场效应管等,它们在电子器件中起着重要的作用。
三、基尔霍夫定律基尔霍夫定律是电路分析中的重要定律,主要包括基尔霍夫电流定律和基尔霍夫电压定律。
1. 基尔霍夫电流定律基尔霍夫电流定律是电路中的电流守恒定律,它表明流入节点的电流等于流出节点的电流之和。
2. 基尔霍夫电压定律基尔霍夫电压定律是电路中的电压守恒定律,它表明沿着闭合回路的电压之和等于零。
四、欧姆定律欧姆定律是电路分析中的重要定律,它描述了电压、电流和电阻之间的关系。
1. 欧姆定律的表达式欧姆定律的表达式为V=IR,其中V表示电压,I表示电流,R表示电阻。
2. 欧姆定律的应用欧姆定律可以用来分析电路中的电压、电流和电阻之间的关系,帮助我们计算电路中的各种参数。
第一章 电路的基本概念和基本定律
第一章电路的基本概念和基本定律电路的基本概念和基尔霍夫定律是电工技术和电子技术的基础。
§1-1 电路中的物理现象和电路模型一、实际电路电路:由电气器件或设备,按一定方式连接起来,完成能量的传输、转换或信息的处理、传递。
组成:电源、负载和中间环节。
日光灯实际电路二、理想电路元件、电路模型实际电路的分析方法:用仪器仪表对实际电路进行测量,把实际电路抽象为电路模型,用电路理论进行分析、计算。
1、理想电路元件实际的电路是由一些按需要起不同作用的元件或旗舰所组成,如发电机、变压器、电动机、电池、电阻器等,它们的电磁性质是很复杂的。
例如:一个白炽灯在有电流通过时,如下图所示:为了便于分析与计算实际电路,在一定条件下常忽略实际部件的次要因素而突出其主要电磁性质,把它看成理想电路元件。
2、电路模型将实际电路中的元件用理想电路元件表示、连接,称为实际电路的电路模型。
如下图所示:U S三、电路的分类1、分布参数电路电路本身的几何尺寸相对于工作波长不可忽略的电路。
2、集中参数电路如果电路本身的几何尺寸l相对于电路的工作频率所对应的波长λ小的多,则在分析电路时可以忽略元件和电路本身几何尺寸。
例如:工作频率为50Hz,波长λ=6000km,所以在工频情况下,多数电路满足l<<λ,可以认为是集中参数电路。
集中参数电路分为:线性电路(元件参数为常数)★非线性电路(元件参数不为常数)§1-2电路中的基本物理量一、电流及电流的参考方向1、电流:带电粒子或电荷在电场力作用下的定向运动形成的电流。
dtdqi =(单位时间内通过某一截面的电荷量) 电流的单位:A (安培)、kA (千安)、mA(毫安)、μA (微安)A 10A 1 , A 10mA 1 , A 10kA 1-633===-μ2、电流的参考方向电流的实际方向:正电荷运动的方向或负电荷运动的反方向(客观存在) 电流的参考方向:任意假定。
实际方向(2A )(参考方向与实际方向相同)A)2( 0=>i i 实际方向(2A )(参考方向与实际方向相反)A)2( 0-=<i i二、电压、电位及电压的参考方向1、电位(物理中的电势)电场力把单位正电荷从一点移到参考点所做的功。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
干电池是电源元件,用电动势 E 和内阻 R0 的串联 组合表示;
电珠主要具有消耗电能的性质,是电阻元件,其参数
为电阻R; 筒体用来连接干电池和电珠,其电阻忽略不计,认为
是无电阻的理想导体。
开关用来控制电路的通断。
总目录 章目录 返回 上一页 下一页
说明:
(1) 理想电路元件:只反映一种电磁现象。
总目录 章目录 返回 上一页 下一页
说明:(1) KCL实质上是电流连续性的体现。
(2) KCL给各支路电流加上了线性约束。
(3) 在应用KCL时,必须先指定各支路电流的参考方向。
2.推广
KCL通常用于结点,但对包围几个结点的闭合面
(广义结点)也适用。
例:
广义结点
IA
A
IAB
ICA
IB
C IC B IBC
总目录 章目录 返回 上一页 下一页
例:应用欧姆定律对下图电路列出式子,并求电阻R。
+
+
UI 6V 2A
R
– (a)
解:对图(a)有, U = IR
U 6V
I R
– –2A
(b)
所以: R U 6 3Ω I2
对图(b)有, U = – IR 所以: R U 6 3Ω I 2
物理量
电流 电压 功率
定义
i dq dt
u dw dq
p dw dt
实际方向
正电荷运动 的方向
电位降低的 方向
国际单位
备注
A(安培) 直流电流(压) 或恒定电流(压)
V(伏特) 用大写字母表示: I(U)
W(瓦特)
总目录 章目录 返回 上一页 下一页
2. 电压和电流的参考方向
(1) 参考方向 在分析与计算电路时,对电压和电流任意假定的
5 1
1
5
I= 0
总目录 章目录 返回 上一页 下一页
1.6.2 基尔霍夫电压定律(KVL定律)
1.定律内容
“在任一瞬间,沿任一回路循行方向,回路中各 段电压的代数和恒等于零。” ( U = 0)
列方程前,需任意指定一个回路的绕行方向,支路电压的参 考方向与回路的绕行方向一致,前面取“+”号,否则取“–”号。
总目录 章目录 返回 上一页 下一页
例2 在图示直接耦合的共集放大电路中,试求: 静态工作点 IB、IC 及 UCE的表达式。
解: (1)画出直流通路
R0
电流的大小由负载决定。
负载端电压:U = RI 或 U = E – R0 I
电源的外特性:电源的端电压与端电流的关系。
U
电源的外特性 E
当 R0<<R 时,则U E ,表明
当负载变化时,电源的端电压变
化不大,即带负载能力强。
0
I
总目录 章目录 返回 上一页 下一页
二、功率与功率平衡
同乘以I
总目录 章目录 返回 上一页 下一页
1.5.2 电源开路
电源开路的特征: I=0
I
+
+
E
U0
R0
U = U0 = E 电源端电压(开路电压或空载电压)
P = 0 负载功率 电路中某处断开时的特征:
有
I
源
+
电
U
路
–
1. 开路处的电流等于零,I = 0;
2. 开路处的电压 U 视电路情况而定。
总目录 章目录 返回 上一页 下一页
U –
总目录 章目录 返回 上一页 下一页
例1 若电源的开路电压 U0=12V,其短路电流Is=30A, 求该电源的电动势和内阻各为多少?
+
+
+
E
E
U0
Is
Ro
Ro
解 电源电动势:E=U0=12V
电源的内阻:R0
U0 IS
12 30
0.4
这是由开路电压和短路电流计算电源电动势 和内阻的一种方法。
注
对一完整的电路,发出的功率=吸收的功率
总目录 章目录 返回 上一页 下一页
1.4 欧姆定律
一、欧姆定律
——流过电阻的电流与电阻两端的电压成正比。
U、I 参考方向相同时, U、I 参考方向相反时,
+ U I R U = RI
–
+
U I R U = –RI –
R:电阻,单位:(欧姆)
注意:欧姆定律必须与参考方向配套使用。 通常 U、I 取关联参考方向。
IB UB–E
– IE
VCC
总目录 章目录 返回 上一页 下一页
解:(2)求静态工作点
IBRb +UBE VBB 0
IB
VBB
U BE Rb
ICQ IBQ
Rc
IC
Rb +
+ T UCE
VCC
RcIC +UCE VCC 0 VBB
IB UB–E
– IE
UCE VCC RcIC
降压 变压器
电灯 电动机 电炉
...
中间环节:传递、分 配和控制电能的作用
总目录 章目录 返回 上一页 下一页
二、 电路的组成部分
例:扩音机 信号源:
信号处理: 放大、调谐、检波等
提供信息 话筒
放 扬声器
大
器
直流电源: 提供能源
直流电源
负载
电源或信号源的电压或电流称为激励,它推动电路 工作;由激励所产生的电压和电流称为响应。
电阻元件:表示消耗电能的元件 电感元件:表示产生磁场,储存磁场能量的元件 电容元件:表示产生电场,储存电场能量的元件 电源元件:表示各种将其它形式的能量转变成电能的元件
(2) 各种电路元件都有规定的图形符号。
R 电阻元件
L 电感元件
C 电容元件
+– E
电压源
总目录 章目录 返回 上一页 下一页
1.3 电流和电压的参考方向 1. 电路分析中几个常用的物理量
元件发出2W的功率。
I = 1A
总目录 章目录 返回 上一页 下一页
例3 + U1 -
1
求图示电路中各方框
I1 +
-
+
所代表的元件吸收或 产生的功率。已知:
2 U2 -
U3 +
3
I3
U4 -
4
I4
U1=-1V,U2=-2V, U3=1V,U4=-1V , I1=1A,I3=3A, I4=-4A
(3)参考方向不同时,其表达式相差一负号,但实际 方向不变。
总目录 章目录 返回 上一页 下一页
3、 功率的计算
P=UI (1) U、I参考方向相同
+U–
P=UI
I 表吸收的功率
(2) U、I参考方向相反
+U–
P=UI
I 表发出的功率
P > 0,元件吸收功率
(负载)
P < 0,元件发出功率 (电源)
(2) 在应用KVL时,必须先指定回路的绕行方向和各 支路电压的参考方向。
(3) KVL实质上是电压与路径无关的体现。(任意两 结点之间的电压是单值的。)
(4) KVL不仅应用于闭合回路,也可以用于回路的部 分电路。
+ E
+
–
R
I
U _
对如图所示的回路有: U + RI – E = 0
或: U = E – RI
总目录 章目录 返回 上一页 下一页
1. 2 电路模型(circuit model)
实际电路
一一对应 电路模型(简称电路)
分解
近似替代 实际电路元件
组合 理想电路元件
总目录 章目录 返回 上一页 下一页
开关
S
10BASE-T wall plate
电珠
+ 开关
干 电
E
–
R
池
R0
导线
手电筒电路
干电池 导线 电珠
例:
I aR
若 I = 5A,则电流从 a 流向 b; b 若 I = –5A,则电流从 b 流向 a 。
注意:在参考方向选定后,电流(或电压)值才有正负 之分。
总目录 章目录 返回 上一页 下一页
说明: (1) 分析电路前必须选定电压和电流的参考方向。
(2) 参考方向一经选定,必须在图中相应位置标注 (包 括方向和符号),在计算过程中不得任意改变。
总目录 章目录 返回 上一页 下一页
1. 6 基尔霍夫定律
电路三 大定律
欧姆定律(VCR)
——元件电压和电流的关系
基尔霍夫电流定律(KCL)
基尔霍夫定律
——适用于结点
基尔霍夫电压定律(KVL)
——适用于回路
总目录 章目录 返回 上一页 下一页
几个常用的术语:
I1
a
I2
3
支路数 b=3
+
R1
R2
E1
方向。
(2) 参考方向的表示方法
电流:
i
箭头
a 元件 b
双下标:iab
电压: 正负极性: + u –
a 元件 b
箭头:
双下标:uab
总目录 章目录 返回 上一页 下一页
(3) 实际方向与参考方向的关系
若电流(或电压)值为正值,则表示实际方向与参 考方向一致;
若电流(或电压)值为负值,则表示实际方向与参 考方向相反。
解: P1 U1I1 11 1W 元件1吸收1W的功率。(负载)