矩形性质练习题

合集下载

矩形的性质与判定典型例题

矩形的性质与判定典型例题

矩形的证明题目一.选择题(共5小题)1.(2016春•巴南区校级月考)如图矩形都是由大小不等的正方形按照一定规律组成的,其中,第①个矩形的周长为6,第②个矩形的周长为10,第③个矩形的周长为16,…,则第⑧个矩形的周长为()A.168 B.170 C.178 D.1882.(2016•姜堰区校级模拟)矩形ABCD中,AB=4,BC=8,矩形CEFG上的点G在CD边,EF=a,CE=2a,连接BD、BF、DF,则△BDF的面积是( )A.32 B.16 C.8 D.16+a23.(2016•深圳模拟)如图所示,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,则下面的结论:①△ODC是等边三角形;②BC=2AB;③∠AOE=135°;④S△AOE=S△COE,其中正确结论有()A.1个 B.2个 C.3个 D.4个4.(2015•十堰一模)如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为()A.8B.8 C.4D.65.(2015•天台县模拟)如图,矩形ABCD中,BC=1,连接AC与BD交于点E1,过E1作E1F1⊥BC于F1,连接AF1交BD于E2,过E2作E2F2⊥BC于F2,连接AF2交BD于E3,过E3作E3F3⊥BC于F3,…,以此类推,则BF n (其中n为正整数)的长为( )A. B. C. D.二.解答题(共25小题)6.(2015•龙岩)如图,E,F分别是矩形ABCD的边AD,AB上的点,若EF=EC,且EF⊥EC.(1)求证:AE=DC;(2)已知DC=,求BE的长.7.(2015•玉林)如图,在矩形ABCD中,AB=5,AD=3,点P是AB边上一点(不与A,B重合),连接CP,过点P作PQ⊥CP交AD边于点Q,连接CQ.(1)当△CDQ≌△CPQ时,求AQ的长;(2)取CQ的中点M,连接MD,MP,若MD⊥MP,求AQ的长.8.(2015•石家庄二模)已知:如图所示,四边形ABCD是矩形,分别以BC、CD为一边作等边△EBC和等边△FCD,点E在矩形上方,点F在矩形内部,连接AE、EF.(1)求∠ECF的度数;(2)求证:AE=FE.9.(2015春•巴南区校级期末)如图,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.(1)猜想线段GF与GC有何数量关系?并证明你的结论;(2)若AB=3,AD=4,求线段GC的长.10.(2015秋•开江县期末)已知,四边形ABCD是长方形,F是DA延长线上一点,CF交AB于点E,G是CF 上一点,且AG=AC,∠ACG=2∠GAF.(1)若∠ACB=60°,求∠ECB的度数.(2)若AF=12cm,AG=6。

(完整版)矩形练习题及答案

(完整版)矩形练习题及答案

矩形课后练习1、矩形具有而平行四边形不具有的性质是()A.内角和为360°B.对角线相等C.对角相等D.相邻两角互补2、平行四边形、矩形、菱形、正方形都具有的性质()A.对角线相等B.对角线互相平分C.对角线平分一组对角D.对角线互相垂直3、下列关于矩形的说法中正确的是()A.矩形的对角线互相垂直且平分B.矩形的对角线相等且互相平分C.对角线相等的四边形是矩形D.对角线互相平分的四边形是矩形下列说法正确的有()①两条对角线相等的四边形是矩形;②有一组对边相等,一组对角是直角的四边形是矩形;③一个角为直角,两条对角线相等的四边形是矩形;④四个角都相等的四边形是矩形;⑤对角线相等且垂直的四边形是矩形;⑥有一个角是直角的平行四边形是矩形.A.1个B.2个C.3个D.4个4、如图,在矩形ABCD中,AE⊥BD,垂足为E,∠DAE:∠BAE=1:2,试求∠CAE的度数.5、如图,已知矩形ABCD中,AC与BD相交于O,DE平分∠ADC交BC于E,∠BDE=15°,试求∠COE的度数.6、Rt△ABC中,∠BAC=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM 的最小值为.7、如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2,E是AB边的中点,F是AC边的中点,D是BC边上一动点,则△EFD的周长最小值是.8、如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.9、(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.10、如图,以△ABC的各边向同侧作正△ABD,正△BCF,正△ACE.(1)求证:四边形AEFD是平行四边形;(2)当∠BAC=______时,四边形AEFD是矩形;(3)当∠BAC=______时,以A、E、F、D为顶点的四边形不存在.11、如图,已知平行四边形ABCD,延长AD到E,使DE=AD,连接BE与DC交于O点.(1)求证:△BOC≌△EOD;(2)当∠A=12∠EOC时,连接BD、CE,求证:四边形BCED为矩形.12、已知四边形ABCD中,AB=CD,BC=DA,对角线AC、BD交于点O.M是四边形ABCD外的一点,AM⊥MC,BM⊥MD.试问:四边形ABCD是什么四边形,并证明你的结论.13、如图,△ABC中,AB=AC,D是BC中点,F是AC中点,AN是△ABC的外角∠MAC的角平分线,延长DF交AN于点E.(1)判断四边形ABDE的形状,并说明理由;(2)问:线段CE与线段AD有什么关系?请说明你的理由.14、已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.15、如图,矩形纸片ABCD的宽AD=5,现将矩形纸片ABCD沿QG折叠,使点C落到点R的位置,点P是QG上的一点,PE⊥QR于E,PF⊥AB于F,求PE+PF.16、如图,已知,E是矩形ABCD边AD上一点,且BE=ED,P是对角线BD上任一点,PF⊥BE,PG⊥AD,垂足分别为F、G,你知道PF+PG与AB有什么关系吗?并证明你的结论.矩形课后练习参考答案题一: B .详解:A .内角和为360°矩形与平行四边形都具有,故此选项错误;B .对角线相等只有矩形具有,而平行四边形不具有,故此选项正确;C .对角相等矩形与平行四边形都具有,故此选项错误;D .相邻两角互补矩形与平行四边形都具有,故此选项错误.故选B . 题二: B .详解:因为平行四边形的对角线互相平分、正方形的对角线垂直平分且相等、矩形的对角线互相平分且相等、菱形的对角线互相垂直平分,可知正方形、矩形、菱形都具有的特征是对角线互相平分.故选B .题三: B .详解:A .矩形的对角线互相平分,且相等,但不一定互相垂直,本选项错误;B .矩形的对角线相等且互相平分,本选项正确;C .对角线相等的四边形不一定为矩形,例如等腰梯形对角线相等,但不是矩形,本选项错误;D .对角线互相平分的四边形为平行四边形,不一定为矩形,本选项错误.故选B .题四: C .详解:两条对角线相等且相互平分的四边形为矩形,故①③⑤错;有一个角为直角的平行四边形为矩形,故②④⑥正确.故选C . 题五: 30°.详解:∵∠DAE :∠BAE =1:2,∠DAB =90°,∴∠DAE =30°,∠BAE =60°,∴∠DBA =90°-∠BAE =90°-60°=30°,∵OA =OB ,∴∠OAB =∠OBA =30°,∴∠CAE =∠BAE -∠OAB =60°-30°=30°.题六: 75°.详解:∵四边形ABCD 是矩形,DE 平分∠ADC ,∴∠CDE =∠CED = 45°,∴EC =DC ,又∵∠BDE =15°,∴∠CDO =60°,又∵矩形的对角线互相平分且相等,∴OD =OC ,∴△OCD 是等边三角形,∴∠DCO =60°,∠OCB =90°-∠DCO =30°,∵DE 平分∠ADC ,∠ECD =90°,∠CDE =∠CED = 45°,∴CD =CE =CO ,∴∠COE =∠CEO ;∴∠COE =(180°-30°)÷2=75°.题七: 65.详解:由题意知,四边形AFPE 是矩形,∵点M 是矩形对角线EF 的中点,则延长AM 应过点P ,∴当AP 为Rt △ABC 的斜边上的高时,即AP ⊥BC 时,AM 有最小值,此时AM =12AP ,由勾股定理知BC =22AB AC +=5,∵S △ABC =12AB •AC =12BC •AP ,∴AP =345⨯=125,∴AM =12AP =65. 题八: 1+13.详解:作点F 关于BC 的对称点G ,连接EG ,交BC 于D 点,D 点即为所求,∵E 是AB 边的中点,F 是AC 边的中点,∴EF 为△ABC 的中位线,∵BC =2,∴EF =12BC =12×2=1;∵EF 为△ABC 的中位线,∴EF ∥BC ,∴∠EFG =∠C =90°,又∵∠ABC =60°,BC =2,FG =AC =23,EG =22EF FG +=13,∴DE +FE +DF =EG +EF =1+13.题九: 见详解.详解:(1)BD =CD .理由:∵AF ∥BC ,∴∠AFE =∠DCE ,∵E 是AD 的中点, ∴AE =DE ,在△AEF 和△DEC 中,∠AFE =∠DCE ,∠AEF =∠DEC ,AE =DE ,∴△AEF ≌△DEC (AAS),∴AF =CD ,∵AF =BD ,∴BD =CD ;(2)当△ABC 满足:AB =AC 时,四边形AFBD 是矩形.理由:∵AF ∥BD ,AF =BD ,∴四边形AFBD 是平行四边形,∵AB =AC ,BD =CD ,∴∠ADB =90°,∴平行四边形AFBD 是矩形. 题十: 见详解.详解:(1)∵△BCF 和△ACE 是等边三角形,∴AC =CE ,BC =CF ,∠ECA =∠BCF =60°,∴∠ECA -∠FCA =∠BCF -∠FCA ,即∠ACB =∠ECF ,∵在△ACB 和△ECF 中,AC =CE ,∠ACB =∠ECF ,BC =CF ,∴△ACB ≌△ECF (SAS),∴EF =AB ,∵三角形ABD 是等边三角形,∴AB =AD ,∴EF =AD =AB ,同理FD =AE =AC ,即EF =AD ,DF =AE ,∴四边形AEFD 是平行四边形;(2)当∠BAC =150°时,平行四边形AEFD 是矩形,理由:∵△ADB 和△ACE 是等边三角形,∴∠DAB =∠EAC =60°,∵∠BAC =150°,∴∠DAE =360°-60°-60°-150°=90°,∵由(1)知:四边形AEFD 是平行四边形,∴平行四边形AEFD 是矩形.(3)当∠BAC =60°时,以A 、E 、F 、D 为顶点的四边形不存在,理由如下:∵∠DAB =∠EAC =60°,∠BAC =60°,∴∠DAE =60°+60°+60°=180°,∴D 、A 、E 三点共线,即边DA 、AE 在一条直线上,∴当∠BAC =60°时,以A 、E 、F 、D 为顶点的四边形不存在.题十一: 见详解.详解:(1)∵在平行四边形ABCD 中,AD =BC ,AD ∥BC ,∴∠EDO =∠BCO ,∠DEO =∠CBO ,∵DE =AD ,∴DE =BC , 在△BOC 和△EOD 中,∠OBC =∠OED ,BC =DE ,∠OCB =∠ODE ,∴△BOC ≌△EOD (ASA);(2)∵DE =BC ,DE ∥BC ,∴四边形BCED 是平行四边形, 在平行四边形ABCD 中,AB ∥DC ,∴∠A =∠ODE ,∵∠A =12∠EOC ,∴∠ODE =12∠EOC , ∵∠ODE +∠OED =∠EOC ,∴∠ODE =∠OED ,∴OE =OD ,∵平行四边形BCED 中,CD =2OD ,B E =2OE ,∴CD =BE ,∴平行四边形BCED 为矩形.题十二:见详解.详解:矩形.理由:连接OM,∵AB=CD,BC=DA,∴四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AM⊥MC,BM⊥MD,∴∠AMC=∠BMD=90°,∴OM=12BD,OM=12AC,∴BD=AC,∴四边形ABCD是矩形.题十三:见详解.详解:(1)四边形ABDE是平行四边形,理由:∵AB=AC,D是BC中点,F是AC中点,∴DF∥AB,∵AB=AC,D是BC 中点,∴∠BAD=∠CAD,AD⊥DC,∵AN是△ABC的外角∠MAC的角平分线,∴∠MAE=∠CAE,∴∠NAD=90°,∴AE∥BD,∴四边形ABDE是平行四边形;(2)CE∥AD,CE=AD;理由:∵AN是△ABC外角∠CAM的平分线,∴∠MAE=12∠MAC,∵∠MAC=∠B+∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠MAE=∠B,∴AN∥BC,∵AB=AC,点D为BC中点,∴AD⊥BC,∵CE⊥AN,∴AD∥CE,∴四边形ADCE为平行四边形,∵CE⊥AN,∴∠AEC=90°,∴四边形ADCE为矩形,∴CE∥AD,CE=AD.题十四:见详解.详解:(1)∵四边形ABCD是平行四边形,∴∠4=∠C,AD=CB,AB=CD,∵点E、F分别是AB、CD的中点,∴AE=12 AB,CF=12CD.∴AE=CF,在△AED与△CBF中,AD=CB,∠4=∠C,AE=CF,∴△ADE≌△CBF(SAS),(2)当四边形BEDF是菱形时,四边形AGBD是矩形;证明:∵四边形ABCD是平行四边形,∴AD∥BC,∵AG∥BD,∴四边形AGBD是平行四边形,∵四边形BEDF是菱形,∴DE=BE,∵AE=BE,∴AE=BE=DE,∴∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°,∴∠2+∠3=90°,即∠ADB=90°,∴四边形AGBD是矩形.题十五:5.详解:把折叠的图展开,如图所示:EF=AD,∵AD=5,∴EF=5,∴PF+PE=5.题十六:PF+PG =AB.详解:PF+PG=AB.理由如下:连接PE,则S△BEP+S△DEP=S△BED,即12BE•PF+12DE•PG =12DE•AB.又∵BE=DE,∴12DE•PF+12DE•PG=12DE•AB,即12DE(PF+PG)=12DE•AB,∴PF+PG =AB.。

矩形的性质练习题及答案

矩形的性质练习题及答案

矩形的性质练习题及答案
练题
1. 矩形是一种特殊的四边形,具有哪些特点?
2. 矩形的四边分别叫什么?
3. 矩形的对角线有什么特点?
4. 如何判断一个四边形是否为矩形?
5. 下列哪个形状不是矩形?
- (A) 正方形
- (B) 长方形
- (C) 梯形
- (D) 菱形
6. 一个矩形的长和宽分别为8cm和6cm,求他的面积和周长。

答案
1. 矩形具有以下特点:
- 四个角都是直角(90°)
- 两对相邻边相等
- 对角线相等
2. 矩形的四边分别叫:
- 上边(或上底)
- 下边(或下底)
- 左边(或左底)
- 右边(或右底)
3. 矩形的对角线有以下特点:
- 对角线长度相等
- 对角线互相垂直(成直角)
4. 判断一个四边形是否为矩形,需满足以下条件:- 四个角都是直角
- 两对相邻边相等
5. 下列哪个形状不是矩形?
- (C) 梯形
6. 长为8cm,宽为6cm的矩形的面积和周长计算如下:
- 面积:8cm × 6cm = 48cm²
- 周长:2 × (8cm + 6cm) = 28cm
注意:矩形的面积单位为平方单位,周长单位为长度单位。

---
以上为矩形的性质练习题及答案。

了解矩形的特点和计算方法能够帮助我们更好地理解和应用矩形的性质。

如果还有其他问题,欢迎继续咨询。

矩形常见练习题

矩形常见练习题

矩形常见练习题矩形常见练习题矩形是我们在数学课上经常遇到的一个几何形状。

它有四条边,两对边相互平行,且相等。

矩形的特点使得它在数学中有着重要的地位,也是我们常常需要进行练习的内容之一。

下面,我们将通过一些常见的矩形练习题来加深对矩形的理解。

1. 计算矩形的周长和面积首先,我们来计算一个矩形的周长和面积。

假设一个矩形的长为6cm,宽为4cm。

根据矩形的定义,我们知道它的周长等于两条长边和两条短边的长度之和。

所以,这个矩形的周长为2 * (6 + 4) = 20cm。

而矩形的面积等于长乘以宽,即6 * 4 = 24cm²。

通过这个简单的计算,我们可以得到矩形的周长和面积。

2. 矩形的对角线长度接下来,我们来计算一个矩形的对角线长度。

假设一个矩形的长为8cm,宽为5cm。

根据勾股定理,我们可以得到矩形的对角线长度。

将矩形的长和宽分别作为直角三角形的两条直角边,对角线作为斜边,我们可以得到勾股定理的形式:长的平方加上宽的平方等于对角线的平方。

所以,这个矩形的对角线长度等于√(8² + 5²) ≈ 9.43cm。

通过这个计算,我们可以得到矩形的对角线长度。

3. 矩形的特殊性质:正方形正方形是一种特殊的矩形,它的四条边相等且相互平行。

正方形的特殊性质使得它在数学中有着重要的地位。

我们来看一个正方形的例子。

假设一个正方形的边长为10cm。

根据正方形的定义,我们知道它的周长等于四条边的长度之和,即4 * 10 = 40cm。

而正方形的面积等于边长的平方,即10² = 100cm²。

通过这个例子,我们可以看到正方形的周长和面积的计算方法与矩形相同,只是因为它的特殊性质,边长的计算更为简单。

4. 矩形的应用:建筑设计矩形在建筑设计中有着广泛的应用。

许多建筑物的地基、墙体和窗户等都是矩形的形状。

在建筑设计中,矩形的特点使得它易于计算和构造,同时也能够满足建筑物的结构需求。

(完整版)22.3矩形的性质常考题(含详细的答案解析)

(完整版)22.3矩形的性质常考题(含详细的答案解析)

22.3矩形的性质常考题一、选择题(共28小题)1、一个长方形在平面直角坐标系中三个顶点的坐标为(- 1,-1) , (- 1, 2), (3, - 1),则第四个顶点的坐标为 ( )A 、(2, 2)B 、(3, 2)C (3, 3)D 、(2, 3)2、( 2007?临沂)如图,矩形ABCD 中,AB=1, AD=2, M 是CD 的中点,点P 在矩形的边上沿 A?B?C?M 运动,则厶APM 的面积y 与点P 经过的路程x 之间的函数关系用图象表示大致是下图中的()A 、1.6B 2.5C 3D 、3.44、 一次数学课上,老师请同学们在一张长为 18厘米,宽为16厘米的矩形纸板上,剪下一个腰长为10厘米的等腰三角形,且要求等腰三角形的一个顶点与矩形的一个顶点重合,其它两个顶点在矩形的边上,则剪下的等腰三角形的面积为多少平方厘米()A 、50B 50 或 40C 50 或 40 或 30D 、50 或 30 或 20 5、 菱形具有而矩形不具有性质是()A 、对角线相等B 、对角线互相平分C 对角线互相垂直D 、对角线平分且相等6、 (2009?绥化)在矩形 ABCD 中,AB=1, AD= 一 _;, AF 平分/ DAB ,过C 点作CE! BD 于E ,延长 AF 、EC 交于点H,3、(2009?济南)如图,矩形 ABCD 中,AB=3, BC=5.过对角线交点 O 作OE 丄AC 交AD 于E ,贝U AE 的长是(下列结论中:①AF=FH ;②BO=BF ;③CA=CH ;④BE=3ED .正确的是()9、(2007?潍坊)如图,矩形 ABCD 的周长为20cm ,两条对角线相交于 O 点,过点O 作AC 的垂线EF,分别交AD , BC 于E ,F 点,连接CE 则厶CDE 的周长为()B 8cm D 、10cm如图,在矩形 ABCD 中,E 为CD 的中点,连接AE 并延长交BC 的延长线于点F ,则图中全等的直A 、6对B 5对C 4对D 、3对11、(2006?宿迁)如图,将矩形 ABCD 沿 AE 折叠,若/ BAD' =30 °则/ AED'等于()C ①②④ 7、(2009?长如图, D 、②③④矩形ABCD 的两条对角线相交于点 O , / AOB=60°, AB=2,则矩形的对角线 AC 的长是( )C 2:,定不相等的是(A 、5cm C 、9cm 10、(2007?陕西)13、 (2006?大兴安岭)如图,在矩形 ABCD 中,EF// AB , GH// BC, EF 、GH 的交点P 在BD 上,图中面积相等的四边D 、55 °如图,在宽为 20m ,长为30m 的矩形地面上修建两条同样宽的道路,余下部分作为耕地•根据 )C 60 ° 12、 (2006?恩施州) 的坐标分别是(2,A 、 (1, 1)C (1,- 2) B 45 °D 、75 °矩形ABCD 中的顶点A 、B 、C D 按顺时针方向排列,若在平面直角坐标系内, 0 )、(0, 0),且A 、C 两点关于x 轴对称,则C 点对应的坐标是()B 、(1 , - 1)-.:':)B 、D 两点对应D 、C 75 ° 15、(2005?泸州)图中数据,计算耕地的面积为(A 、600m 2 C 550m 2 16、(2005?福州) ABCD 的面积的(B 、551m 2 D 、500m 2如图,EF 过矩形ABCD 对角线的交点 O ,且分别交AB CD 于E 、F ,那么阴影部分的面积是矩形 )143|17、( 2004?绍兴)如图,一张矩形纸片沿 AB 对折,以AB 中点O 为顶点将平角五等分,并沿五等分的折线折叠, 再沿CD 剪开,使展开后为正五角星(正五边形对角线所构成的图形),则/ OCD 等于()/ CED =60。

初三中考数学复习 矩形的性质与判定 专项训练题 含答案

初三中考数学复习  矩形的性质与判定  专项训练题 含答案

初三中考数学复习矩形的性质与判定专项训练题含答案2019 初三中考数学复习 矩形的性质与判定 专项训练题1. 矩形具有而平行四边形不一定具有的性质是( )A .对角相等B .对角线相等C .对边平行D .对边相等2.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,∠ACB =30°,则∠AOB 的大小为( )A .30°B .60°C .90°D .120°3. 已知直角三角形的周长为14,斜边上的中线长为3,则直角三角形的面积为( )A .5B .6C .7D .84. 如图,在矩形ABCD 中,对角线AC =8cm ,∠AOD =120°,则AB 的长为( ) A.3cm B .2cm C .23cm D .4cm5. 如图,Rt △ABC 中,DC 是斜边AB 上的中线,EF 过点C 且平行于AB.若∠BCF =35°,则∠ACD 的度数是( )A .35°B .45°C .55°D .65°6. 在矩形ABCD 中,AD =2,AB =3,过点A 、C 作相距为2的平行线段AE 、CF ,分别交CD 、AB 于点E 、F ,则DE 的长是( ) A. 5 B.136 C .1 D.567. 如图,在Rt △ABC 中,∠ACB =90°,AB =10,CD 是AB 边上的中线,则CD 的长是 .8. 如图,BE 、CF 分别是△ABC 的高,M 为BC 的中点,EF =5,BC =8,则△EFM 的周长是 .9. 在矩形ABCD 中,AB =3,AD =4,对角线AC 与BD 相交于点O ,EF 是经过点O 分别与AB 、CD 相交于点E 、F 的直线,则图中阴影部分的面积为 .10. 如图,在矩形ABCD 中,AB =3,对角线AC 、BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为______.又N 为BD 的中点,∴MN ⊥BD(三线合一).点拨:遇直角三角形斜边上有中点的,一般可考虑用直角三角形性质.15. 证明:∵四边形ABCD 是矩形,∴∠B =∠C =90°,∵EF ⊥DF ,∴∠EFD =90°,∴∠EFB +∠CFD =90°,∵∠EFB +∠BEF =90°,∴∠BEF =∠CFD ,在△BEF 和△CFD 中,⎩⎪⎨⎪⎧ ∠BEF =∠CFDBE =CF∠B =∠C ,∴△BEF ≌△CFD(ASA),∴BF =CD.。

矩形的性质与判定练习(含答案)

矩形的性质与判定练习(含答案)


17.在四边形 ABCD 中,对角线 AC , BD 交于点 O ,OA OC ,OB OD ,添加一个条件
使四边形 ABCD 是矩形,那么所添加的条件可以是
(写出一个即可).
18.如图,在矩形 ABCD 中,对角线 AC 与 BD 相交于点 O ,CE BD ,垂足为点 E ,CE 5 ,
A.5
B. 5 3
C.10
D.10 3
7.如图,延长矩形 ABCD 的边 BC 至点 E ,使 CE BD ,连接 AE ,如果 ADB 38 ,则 E 的值是 ( )
A. 19
B. 18
C. 20
D. 21
8.如图,在矩形 ABCD 中,对角线 AC 、 BD 交于 O , BC 2 , AE BD ,垂足为 E ,

24.如图,已知 BEFG 是长方形, A 为 EB 延长线上一点, AF 交 BG 于点 C , D 为 AC 上 一点,且 AD BD BF ,若 BFG 60 ,则 AFG 的度数为 .
B.②③
3.下列对矩形的判定中,正确的个数有 (
C.③④ )
D.②④
(1)对角线相等的四边形是矩形;
(2)对角线互相平分且相等的四边形是矩形;
(3)有一个角是直角的四边形是矩形;
(4)有四个角是直角的四边形是矩形;
(5)四个角都相等的四边形是矩形;
(6)对角线相等,且有一个直角的四边形是矩形;
(7)一组邻边垂直,一组对边平行且相等的四边形是矩形;
A. 12 5
B. 24 5
C. 18 5
D.5
11.如图所示,矩形 ABCD 中, AE 平分 BAD 交 BC 于 E ,CAE 15 ,则下面的结论中 正确的有 ( ) ① ODC 是等边三角形; ② BC 2 AB ; ③ AOE 135 ; ④ SAOE SCOE .

矩形的性质和判定典型试题综合训练(含解析)完美打印版

矩形的性质和判定典型试题综合训练(含解析)完美打印版

矩形的性质和判定典型试题综合训练(含解析)一.选择题(共15小题)1.矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等D.对角线互相平分2.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB3.下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分4.如图,平行四边形ABCD的对角线AC与BD相交于点O,要使它成为矩形,需再添加的条件是()A.AO=OC B.AC=BD C.AC⊥BD D.BD平分∠ABC5.下列图形是用矩形纸片来折出阴影部分为等腰三角形,其中正确的有()A.1个B.2个C.3个D.4个6.如图,EF过矩形ABCD对角线的交点O,且分别交AD、BC于点E、F已知AB=3,BC=4,则图中阴影部分的面积是()A.3 B.4 C.6 D.127.如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP 的面积S1与矩形QCNK的面积S2的关系是()A.S1>S2B.S1=S2C.S1<S2D.S1=2S28.如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.3S1=2S29.如图,矩形ABCD中,AB=12,BC=13,以B为圆心,BA为半径画弧,交BC于点E,以D为圆心,DA 为半径画弧,交BC于点F,则EF的长为()A.3 B.4 C.D.510.如图,长方形ABCD中,M为CD中点,分别以点B、M为圆心,以BC长、MC长为半径画弧,两弧相交于点P.若∠PMC=110°,则∠BPC的度数为()A.35°B.45°C.55°D.65°11.已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:对于两人的作业,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对12.如图,将矩形纸片ABCD沿直线EF折叠,使点C落在AD边的中点C′处,点B落在点B′处,其中AB=9,BC=6,则FC′的长为()A.B.4 C.4.5 D.513.如图,P是矩形ABCD的边AD上一个动点,PE⊥AC于E,PF⊥BD于F,当P从A向D运动(P与A,D不重合),则PE+PF的值()A.增大B.减小C.不变D.先增大再减小14.如图,矩形ABCD中,AB=4,BC=6,P是CD边上的中点,E是BC边上的一动点,点M、N分别是AE、PE的中点,则线段MN长为()A.2B.3 C.D.15.如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为()A.cm2B.cm2C.5cm2D.cm2二.填空题(共12小题)16.如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件,使四边形DBCE是矩形.17.如图,矩形ABCD的对角线AC,BD相交于点O,分别过点C,D作BD,AC的平行线,相交于点E.若AD=6,则点E到AB的距离是.18.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加条件,才能保证四边形EFGH 是矩形.19.如图,在矩形ABCD中,∠ABC的平分线交AD于点E,连接CE.若BC=7,AE=4,则CE=.20.如图,在矩形ABCD中,AD=4,AB=3,MN∥BC分别交AB、CD于点M、N,在MN上任取两点P、Q,那么图中阴影部分的面积是.21.如图,在矩形ABCD中,AD=6,AB=4,点E、G、H、F分别在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,点P是直线EF、GH之间任意一点,连接PE、PF、PG、PH,则△PEF和△PGH的面积和等于.22.如图矩形ABCD中,AB=8cm,CB=4cm,E是DC的中点,BF=BC,则四边形DBFE的面积为cm2.23.已知:Rt△ABC中,∠C=90°,AC=3,BC=4,P为AB上任意一点,PF⊥AC于F,PE⊥BC于E,则EF 的最小值是.24.如图,在平面直角坐标系中,矩形OABC的顶点B的坐标为(10,4),点D是OA的中点,点P在边BC上运动,当△ODP是等腰三角形时,点P的坐标为.25.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是.26.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中一定成立的结论有(将正确结论的序号填在横线上)27.如图,矩形ABCD中,AD=,F是DA延长线上一点,G是CF上一点,且∠ACG=∠AGC,∠GAF=∠F=20°,则AB=.三.解答题(共7小题)28.如图,在△ABC中,AB=AC,D为边BC的中点,四边形ABDE是平行四边形,AC,DE相交于点O.(1)求证:四边形ADCE是矩形;(2)若∠AOE=60°,AE=2,求矩形ADCE对角线的长.29.如图,在▱ABCD中,AC⊥BC,过点D作DE∥AC交BC的延长线于点E,连接AE交CD于点F.(1)求证:四边形ADEC是矩形;(2)在▱ABCD中,取AB的中点M,连接CM,若CM=5,且AC=8,求四边形ADEC的面积.30.如图,O为△ABC内一点,把AB、OB、OC、AC的中点D、E、F、G依次连接形成四边形DEFG.(1)四边形DEFG是什么四边形,请说明理由;(2)若四边形DEFG是矩形,点0所在位置应满足什么条件?说明理由.31.△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于E,交∠DCA的平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.32.如图,在▱ABCD中,点P是AB边上一点(不与A,B重合),CP=CD,过点P作PQ⊥CP,交AD边于点Q,连结CQ.(1)若∠BPC=∠AQP,求证:四边形ABCD是矩形;(2)在(1)的条件下,当AP=2,AD=6时,求AQ的长.33.如图,在△ABC中,AB=AC,AD平分∠BAC,CE∥AD且CE=AD.(1)求证:四边形ADCE是矩形;(2)若△ABC是边长为4的等边三角形,AC,DE相交于点O,在CE上截取CF=CO,连接OF,求线段FC 的长及四边形AOFE的面积.34.已知:如图1,矩形ABCD中,AB=6,BC=8,E、F、G、H分别是AB、BC、CD、DA四条边上的点(且不与各边顶点重合),设m=EF+FG+GH+HE,探索m的取值范围.(1)如图2,当E、F、G、H分别是AB、BC、CD、DA四边中点时,m=.(2)为了解决这个问题,小贝同学采用轴对称的方法,如图3,将整个图形以CD为对称轴翻折,接着再连续翻折两次,从而找到解决问题的途径,求得m的取值范围.①请在图3中补全小贝同学翻折后的图形;②m的取值范围是.矩形的性质和判定典型试题综合训练参考答案与试题解析一.选择题(共15小题)1.矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等D.对角线互相平分【分析】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.【解答】解:矩形的对角线相等,而平行四边形的对角线不一定相等.故选:C.2.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB【分析】由矩形和菱形的判定方法即可得出答案.【解答】解:A、∠BAC=∠DCA,不能判断四边形ABCD是矩形;B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形;C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;D、∠BAC=∠ADB,不能判断四边形ABCD是矩形;故选:C.3.下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分【分析】根据矩形的性质和判定定理逐个判断即可.【解答】解:A、对角线相等的平行四边形才是矩形,故本选项错误;B、矩形的对角线相等且互相平分,故本选项正确;C、对角线互相平分的四边形是平行四边形,不一定是矩形,故本选项错误;D、矩形的对角线互相平分且相等,不一定垂直,故本选项错误;故选B.4.如图,平行四边形ABCD的对角线AC与BD相交于点O,要使它成为矩形,需再添加的条件是()A.AO=OC B.AC=BD C.AC⊥BD D.BD平分∠ABC【分析】根据矩形的判定定理(对角线相等的平行四边形是矩形)推出即可.【解答】解:添加的条件是AC=BD,理由是:∵AC=BD,四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故选:B.5.下列图形是用矩形纸片来折出阴影部分为等腰三角形,其中正确的有()A.1个B.2个C.3个D.4个【分析】根据等腰三角形的定义,即可一一判断.【解答】解:如图图1中,∵∠1=∠3,∠2=∠3,∴∠1=∠2,∴BA=BC,∴△ABC是等腰三角形.图3中,同法可证∠1=∠2,∴BA=BC,∴△ABC是等腰三角形.图4中,△ABC是等腰直角三角形,故选C.6.如图,EF过矩形ABCD对角线的交点O,且分别交AD、BC于点E、F已知AB=3,BC=4,则图中阴影部分的面积是()A.3 B.4 C.6 D.12【分析】由全等三角形的判定得到△OFB≌△OED,将阴影部分的面积转化为规则的几何图形的面积进行计算.【解答】解:在矩形ABCD中,OB=OD,∠FBO=∠EDO,∴在△OFB与△OED中,∴△FBO≌△EDO,∴S阴影部分=S△ABO=S矩形=×3×4=3.故选A.7.如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP 的面积S1与矩形QCNK的面积S2的关系是()A.S1>S2B.S1=S2C.S1<S2D.S1=2S2【分析】根据矩形的性质,可知△ABD的面积等于△CDB的面积,△MBK的面积等于△QKB的面积,△PKD的面积等于△NDK的面积,再根据等量关系即可求解.【解答】解:∵四边形ABCD是矩形,四边形MBQK是矩形,四边形PKND是矩形,∴△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,∴△ABD的面积﹣△MBK的面积﹣△PKD的面积=△CDB的面积﹣△QKB的面积=△NDK的面积,∴S1=S2.故选:B.8.如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.3S1=2S2【分析】由于矩形ABCD的面积等于2个△ABC的面积,而△ABC的面积又等于矩形AEFC的一半,所以可得两个矩形的面积关系.【解答】解:矩形ABCD的面积S=2S△ABC,而S△ABC=S矩形AEFC,即S1=S2,故选B.9.如图,矩形ABCD中,AB=12,BC=13,以B为圆心,BA为半径画弧,交BC于点E,以D为圆心,DA为半径画弧,交BC于点F,则EF的长为()A.3 B.4 C.D.5【分析】连接DF,在Rt△CDF中,求出CF,再求出CE即可解决问题.【解答】解:连接DF.∵四边形ABCD是矩形,∴AB=CD=BE=12,DA=BC=DF=13,∠C=90°,∴CF===5,∵EC=BC﹣BE=13﹣12=1,∴EF=CF﹣CE=4.故选B.10.如图,长方形ABCD中,M为CD中点,分别以点B、M为圆心,以BC长、MC长为半径画弧,两弧相交于点P.若∠PMC=110°,则∠BPC的度数为()A.35°B.45°C.55°D.65°【分析】根据三角形内角和定理和等腰三角形两底角相等求出∠MCP,然后求出∠BCP,再根据等腰三角形两底角相等和三角形内角和定理求解即可.【解答】解:∵以B、M为圆心,分别以BC长、MC长为半径的两弧相交于P点,∴BP=BC,MP=MC,∵∠PMC=110°,∴∠MCP=(180°﹣∠PMC)=(180°﹣110°)=35°,在长方形ABCD中,∠BCD=90°,∴∠BCP=90°﹣∠MCP=90°﹣35°=55°,∴∠BCP=∠BPC=55°.故选C.11.已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:对于两人的作业,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对【分析】先由两组对边分别相等的四边形是平行四边形得出四边形ABCD是平行四边形,再根据有一个角是直角的平行四边形是矩形判断甲的作业正确;先由对角线互相平分的四边形是平行四边形得出四边形ABCD是平行四边形,再根据有一个角是直角的平行四边形是矩形判断乙的作业也正确.【解答】解:由甲同学的作业可知,CD=AB,AD=BC,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴▱ABCD是矩形.所以甲的作业正确;由乙同学的作业可知,CM=AM,MD=MB,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴▱ABCD是矩形.所以乙的作业正确;故选A.12.如图,将矩形纸片ABCD沿直线EF折叠,使点C落在AD边的中点C′处,点B落在点B′处,其中AB=9,BC=6,则FC′的长为()A.B.4 C.4.5 D.5【分析】设FC′=x,则FD=9﹣x,根据矩形的性质结合BC=6、点C′为AD的中点,即可得出C′D的长度,在Rt△FC′D中,利用勾股定理即可找出关于x的一元一次方程,解之即可得出结论.【解答】解:设FC′=x,则FD=9﹣x,∵BC=6,四边形ABCD为矩形,点C′为AD的中点,∴AD=BC=6,C′D=3.在Rt△FC′D中,∠D=90°,FC′=x,FD=9﹣x,C′D=3,∴FC′2=FD2+C′D2,即x2=(9﹣x)2+32,解得:x=5.故选D.13.如图,P是矩形ABCD的边AD上一个动点,PE⊥AC于E,PF⊥BD于F,当P从A向D运动(P与A,D不重合),则PE+PF的值()A.增大B.减小C.不变D.先增大再减小【分析】首先过A作AG⊥BD于G.利用面积法证明PE+PF=AG即可.【解答】解:如图,过A作AG⊥BD于G,则S△AOD=×OD×AG,S△AOP+S△POD=×AO×PF+×DO×PE=×DO×(PE+PF),∵S△AOD=S△AOP+S△POD,四边形ABCD是矩形,∴OA=OD,∴PE+PF=AG,∴PE+PF的值是定值,故选C.14.如图,矩形ABCD中,AB=4,BC=6,P是CD边上的中点,E是BC边上的一动点,点M、N分别是AE、PE的中点,则线段MN长为()A.2B.3 C.D.【分析】连接AP,根据矩形的性质求出AP的长度,再根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AP,问题得解.【解答】解:连接AP,∵矩形ABCD中,AB=DC=4,P是CD边上的中点,∴DP=2,∴AP==2,连接AP,∵M,N分别是AE、PE的中点,∴MN是△AEP的中位线,∴MN=AP=.故选D.15.如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为()A.cm2B.cm2C.5cm2D.cm2【分析】根据矩形的对角线互相平分,平行四边形的对角线互相平分可得下一个图形的面积是上一个图形的面积的,然后求解即可.【解答】方法一:解:设矩形ABCD的面积为S=20cm2,∵O为矩形ABCD的对角线的交点,∴平行四边形AOC1B底边AB上的高等于BC的,∴平行四边形AOC1B的面积=S,∵平行四边形AOC1B的对角线交于点O1,∴平行四边形AO1C2B的边AB上的高等于平行四边形AOC1B底边AB上的高的,∴平行四边形AO1C2B的面积=×S=,…,依此类推,平行四边形AO4C5B的面积===(cm2).故选:B.二.填空题(共12小题)16.如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件EB=DC,使四边形DBCE是矩形.【分析】利用平行四边形的判定与性质得到四边形DBCE为平行四边形,结合“对角线相等的平行四边形为矩形”来添加条件即可.【解答】解:添加EB=DC.理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴DE∥BC,又∵DE=AD,∴DE=BC,∴四边形DBCE为平行四边形.又∵EB=DC,∴四边形DBCE是矩形.故答案是:EB=DC.17.如图,矩形ABCD的对角线AC,BD相交于点O,分别过点C,D作BD,AC的平行线,相交于点E.若AD=6,则点E到AB的距离是9.【分析】连接EO,延长EO交AB于H.只要证明四边形ADEO是平行四边形,推出OE=AD,再证明OH 是△ADB的中位线,可得OE=AD,延长即可求出EH解决问题.【解答】解:连接EO,延长EO交AB于H.∵DE∥OC,CE∥OD,∴四边形ODEC是平行四边形,∵四边形ABCD是矩形,∴OD=OC,∴四边形ODEC是菱形,∴OE⊥CD,∵AB∥CD,AD⊥CD,∴EH⊥AB,AD∥OE,∵OA∥DE,∴四边形ADEO是平行四边形,∴AD=OE=6,∵OH∥AD,OB=OD,∴BH=AH,∴OH=AD=3,∴EH=OH+OE=3+6=9,故答案为9.18.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加AC⊥BD条件,才能保证四边形EFGH是矩形.【分析】根据三角形的中位线平行于第三边,HG∥BD,EH∥AC,根据平行线的性质∠EHG=∠1,∠1=∠2,根据矩形的四个角都是直角,∠EFG=90°,所以∠2=90°,因此AC⊥BD.【解答】解:∵G、H、E分别是BC、CD、AD的中点,∴HG∥BD,EH∥AC,∴∠EHG=∠1,∠1=∠2,∴∠2=∠EHG,∵四边形EFGH是矩形,∴∠EHG=90°,∴∠2=90°,∴AC⊥BD.故还要添加AC⊥BD,才能保证四边形EFGH是矩形.19.如图,在矩形ABCD中,∠ABC的平分线交AD于点E,连接CE.若BC=7,AE=4,则CE=5.【分析】首先证明AB=AE=CD=4,在Rt△CED中,根据CE=计算即可.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,AB=CD,BC=AD=7,∠D=90°,∴∠AEB=∠EBC,∵∠ABE=∠EBC,∴AB=AE=CD=4,在Rt△EDC中,CE===5.故答案为520.如图,在矩形ABCD中,AD=4,AB=3,MN∥BC分别交AB、CD于点M、N,在MN上任取两点P、Q,那么图中阴影部分的面积是6.【分析】用矩形的面积减去△ADQ和△BCP的面积求解即可.【解答】解:∵四边形ABCD为矩形,∴AD=BC=4.S阴影=S矩形ABCD﹣S△BPC﹣S△ADQ=AB•CB﹣BC•MB AD•AM=4×3﹣4×BM﹣×4×AM=12﹣2MB﹣2AM=12﹣2(MB+AM)=12﹣2×3=6.故答案为:6.21.如图,在矩形ABCD中,AD=6,AB=4,点E、G、H、F分别在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,点P是直线EF、GH之间任意一点,连接PE、PF、PG、PH,则△PEF和△PGH的面积和等于7.【分析】连接EG,FH,根据题目数据可以证明△AEF与△CGH全等,根据全等三角形对应边相等可得EF=GH,同理可得EG=FH,然后根据两组对边相等的四边形是平行四边形可得四边形EGHF是平行四边形,所以△PEF和△PGH的面积和等于平行四边形EGHF的面积的一半,再利用平行四边形EGHF的面积等于矩形ABCD 的面积减去四周四个小直角三角形的面积即可求解.【解答】解:∵在矩形ABCD中,AD=6,AB=4,AF=CG=2,BE=DH=1,∴AE=AB﹣BE=4﹣1=3,CH=CD﹣DH=4﹣1=3,∴AE=CH,在△AEF与△CGH中,,∴△AEF≌△CGH(SAS),∴EF=GH,同理可得,△BGE≌△DFH,∴EG=FH,∴四边形EGHF是平行四边形,∵△PEF和△PGH的高的和等于点H到直线EF的距离,∴△PEF和△PGH的面积和=×平行四边形EGHF的面积,平行四边形EGHF的面积=4×6﹣×2×3﹣×1×(6﹣2)﹣×2×3﹣×1×(6﹣2),=24﹣3﹣2﹣3﹣2,=14,∴△PEF和△PGH的面积和=×14=7.故答案为:7.22.如图矩形ABCD中,AB=8cm,CB=4cm,E是DC的中点,BF=BC,则四边形DBFE的面积为10cm2.【分析】本题主要考查矩形的性质,找出题里面的等量关系求解即可.【解答】解:AB=8cm,CB=4cm,E是DC的中点,BF=BC,∴CE=4,CF=3.∴四边形DBFE的面积=8×4﹣8×4÷2﹣4×3÷2=10cm2.23.已知:Rt△ABC中,∠C=90°,AC=3,BC=4,P为AB上任意一点,PF⊥AC于F,PE⊥BC于E,则EF 的最小值是 2.4.【分析】根据已知得出四边形CEPF是矩形,得出EF=CP,要使EF最小,只要CP最小即可,根据垂线段最短得出即可.【解答】解:连接CP,如图所示:∵∠C=90°,PF⊥AC于F,PE⊥BC于E,∴∠C=∠PFC=∠PEC=90°,∴四边形CEPF是矩形,∴EF=CP,要使EF最小,只要CP最小即可,当CP⊥AB时,CP最小,在Rt△ABC中,∠C=90°,AC=3,BC=4,由勾股定理得:AB=5,由三角形面积公式得:×4×3=×5×CP,∴CP=2.4,即EF=2.4,故答案为:2.4.24.如图,在平面直角坐标系中,矩形OABC的顶点B的坐标为(10,4),点D是OA的中点,点P在边BC上运动,当△ODP是等腰三角形时,点P的坐标为(2,4)或(3,4)或(8,4)或(2.5,4).【分析】分为三种情况:①OP=OD时,②DO=DP时,③OP=PD时,根据点B的坐标,根据勾股定理和等腰三角形的性质即可求出答案.【解答】解:∵B的坐标是(10,4),四边形OCBA是矩形,∴OC=AB=4,∵D为OA中点,∴OD=AD=5,∵P在BC上,∴P点的纵坐标是4,以O为圆心,以OD为半径作弧,交BC于P,如图1所示:此时OP=OD=5,由勾股定理得:CP=3,即P的坐标是(3,4);由勾股定理得:CP=3,即P的坐标是(3,4);以D为圆心,以OD为半径作弧,交BC于P、P′,如图2所示:此时DP=OD=DP′=5,由勾股定理得:DM=DN=3,即P的坐标是(2,4),P′的坐标是(8,4);③作OD的垂直平分线交BC于P,如图3所示:此时OP=DP,P的坐标是(2.5,4);故答案为:(2,4)或(3,4)或(8,4)或(2.5,4).25.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是16.【分析】由把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,∠EFB=60°,易证得△EFB′是等边三角形,继而可得△A′B′E中,B′E=2A′E,则可求得B′E的长,然后由勾股定理求得A′B′的长,继而求得答案.【解答】解:在矩形ABCD中,∵AD∥BC,∴∠DEF=∠EFB=60°,∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠EFB=∠EFB′=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB=A′B′,在△EFB′中,∵∠DEF=∠EFB=∠EB′F=60°∴△EFB′是等边三角形,Rt△A′EB′中,∵∠A′B′E=90°﹣60°=30°,∴B′E=2A′E,而A′E=2,∴B′E=4,∴A′B′=2,即AB=2,∵AE=2,DE=6,∴AD=AE+DE=2+6=8,∴矩形ABCD的面积=AB•AD=2×8=16.故答案为:16.26.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中一定成立的结论有①③④(将正确结论的序号填在横线上)【分析】①正确.只要证明BO=BC,OF=FO即可解决问题;②错误.可以证明△EOB≌△FCB,由此即可判断;③正确.只要证明△DEF是等边三角形即可.④正确.只要证明S△BCM=S△ACB,S△AOE=S△AOB=S即可;△ABC【解答】解:∵四边形ABCD是矩形,∴∠ABC=∠DCB=90°,OA=OC,∴OB=OA=OB,∵∠COB=60°,∴△BOC是等边三角形,∴∠OCB=60°,∴∠DCA=30°,∵FO=FC,BO=BC,∴BF垂直平分OC,故①正确,∴∠FBC=∠OBE=30°,∴∠FOC=∠FCO=30°,∴∠FOB=90°,∵CD∥AB,∴∠FCO=∠EAO,∵∠FOC=∠AOE,OA=OC,∴△FOC≌△EOA,∴OE=OF,∴BF=BE,∵∠BOE=∠BCF=90°,∠EBO=∠CBF,∴△EBO≌△FBC,故②错误,∵DF∥EB,DF=BE,∴四边形DEBF是平行四边形,∴∠EDF=∠FBE=60°,∵∠DFE=180°﹣∠CFO=60°,∴△EDF是等边三角形,∴DE=EF,故③正确,易知CM=AC,AE=CF=BF=BE,∴S△BCM=S△ACB,S△AOE=S△AOB=S△ABC,∴S△AOE:S△BCM=2:3.故④正确,故答案为①③④27.如图,矩形ABCD中,AD=,F是DA延长线上一点,G是CF上一点,且∠ACG=∠AGC,∠GAF=∠F=20°,则AB=.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠AGC=∠GAF+∠F=40°,再根据等腰三角形的性质求出∠CAG,然后求出∠CAF=120°,再根据∠BAC=∠CAF﹣∠BAF求出∠BAC=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得AC=2BC=2AD,然后利用勾股定理列式计算即可得解.【解答】解:由三角形的外角性质得,∠AGC=∠GAF+∠F=20°+20°=40°,∵∠ACG=∠AGC,∴∠CAG=180°﹣∠ACG﹣∠AGC=180°﹣2×40°=100°,∴∠CAF=∠CAG+∠GAF=100°+20°=120°,∴∠BAC=∠CAF﹣∠BAF=120°﹣90°=30°,在Rt△ABC中,AC=2BC=2AD=2,由勾股定理,AB===.故答案为:.三.解答题(共7小题)28.如图,在△ABC中,AB=AC,D为边BC的中点,四边形ABDE是平行四边形,AC,DE相交于点O.(1)求证:四边形ADCE是矩形;(2)若∠AOE=60°,AE=2,求矩形ADCE对角线的长.【分析】(1)根据四边形ABDE是平行四边形和AB=AC,推出AD和DE相等且互相平分,即可推出四边形ADCE是矩形.(2)根据∠AOE=60°和矩形的对角线相等且互相平分,得出△AOE为等边三角形,即可求出AO的长,从而得到矩形ADCE对角线的长.【解答】(1)证明:∵四边形ABDE是平行四边形,∴AB=DE,又∵AB=AC,∴DE=AC.∵AB=AC,D为BC中点,∴∠ADC=90°,又∵D为BC中点,∴CD=BD.∴CD∥AE,CD=AE.∴四边形AECD是平行四边形,又∴∠ADC=90°,∴四边形ADCE是矩形.(2)解:∵四边形ADCE是矩形,∴AO=EO,∵∠AOE=60°∴△AOE为等边三角形,∴AO=AE=2,∴AC=2OA=4.29.如图,在▱ABCD中,AC⊥BC,过点D作DE∥AC交BC的延长线于点E,连接AE交CD于点F.(1)求证:四边形ADEC是矩形;(2)在▱ABCD中,取AB的中点M,连接CM,若CM=5,且AC=8,求四边形ADEC的面积.【分析】(1)利用平行四边形的性质可得AD∥BC,结合条件可先证得四边形ADEC为平行四边形,结合AC⊥BC,可证得结论;(2)由直角三角形的性质可求得AB的长,在Rt△ABC中,由勾股定理可求得BC的长,再利用矩形的性质可求得AD的长,结合AC可求得矩形ADEC的面积.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.又∵DE∥AC,∴四边形ADEC是平行四边形.又∵AC⊥BC,∴∠ACE=90°.∴四边形ADEC是矩形;(2)解:∵AC⊥BC,∴∠ACB=90°.∵M是AB的中点,∴AB=2CM=10.∵AC=8,∴BC==6.又∵四边形ABCD是平行四边形,∴BC=AD.又∵四边形ADEC是矩形,∴EC=AD.∴EC=BC=6.∴矩形ADEC的面积=6×8=48.30.如图,O为△ABC内一点,把AB、OB、OC、AC的中点D、E、F、G依次连接形成四边形DEFG.(1)四边形DEFG是什么四边形,请说明理由;(2)若四边形DEFG是矩形,点0所在位置应满足什么条件?说明理由.【分析】(1)可用三角形中位线定理求解,易知DG、EF分别是△ABC和△BOC的中位线,那么DG、EF 都平行且相等于BC,即DG与EF平行且相等,由此可证得四边形DEFG是平行四边形.(2)连接OA,则DE∥OA∥GF;若四边形DEFG是矩形,则DG和DE互相垂直;因此OA和BC也互相垂直,由此可判断出O点所处的位置.【解答】解:(1)四边形DEFG是平行四边形.理由如下:∵D、G分别是AB、AC的中点,∴DG是△ABC的中位线;∴DG∥BC,且DG=BC;同理可证:EF∥BC,且EF=BC;∴DG∥EF,且DG=EF;故四边形DEFG是平行四边形;(2)O在BC边的高上(且不与点A和垂足重合)理由如下:连接OA;∵把AB、OB、OC、AC的中点D、E、F、G依次连接形成四边形DEFG.∴DE∥OA∥GF,EF∥BC,∵O点在BC边的高上,∴AO⊥BC,∴AO⊥EF,∵DE∥OA,∴DE⊥EF,∴四边形DEFG是矩形.31.△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于E,交∠DCA的平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.【分析】(1)由于CE平分∠BCA,那么有∠1=∠2,而MN∥BC,利用平行线的性质有∠1=∠3,等量代换有∠2=∠3,于OE=OC,同理OC=OF,于是OE=OF;(2)OA=OC,那么可证四边形AECF是平行四边形,又CE、CF分别是∠BCA及其外角的角平分线,易证∠ECF是90°,从而可证四边形AECF是矩形.【解答】(1)解:当点O运动到AC中点时,四边形AECF是矩形;理由如下:如图所示:∵CE平分∠BCA,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,同理,FO=CO,∴EO=FO;(2)解:∵OA=OC,∴四边形AECF是平行四边形,∵CF是∠BCA的外角平分线,∴∠4=∠5,又∵∠1=∠2,∴∠1+∠5=∠2+∠4,又∵∠1+∠5+∠2+∠4=180°,∴∠2+∠4=90°,∴平行四边形AECF是矩形.32.如图,在▱ABCD中,点P是AB边上一点(不与A,B重合),CP=CD,过点P作PQ⊥CP,交AD边于点Q,连结CQ.(1)若∠BPC=∠AQP,求证:四边形ABCD是矩形;(2)在(1)的条件下,当AP=2,AD=6时,求AQ的长.【分析】(1)证出∠A=90°即可;(2)由HL证明Rt△CDQ≌Rt△CPQ,得出DQ=PQ,设AQ=x,则DQ=PQ=6﹣x,由勾股定理得出方程,解方程即可.【解答】(1)证明:∵∠BPQ=∠BPC+∠CPQ=∠A+∠AQP,又∠BPC=∠AQP,∴∠CPQ=∠A,∵PQ⊥CP,∴∠A=∠CPQ=90°,∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形∴∠D=∠CPQ=90°,在Rt△CDQ和Rt△CPQ中,,∴Rt△CDQ≌Rt△CPQ(HL)),∴DQ=PQ,设AQ=x,则DQ=PQ=6﹣x在Rt△APQ中,AQ2+AP2=PQ2 ∴x2+22=(6﹣x)2,解得:x=∴AQ的长是.33.如图,在△ABC中,AB=AC,AD平分∠BAC,CE∥AD且CE=AD.(1)求证:四边形ADCE是矩形;(2)若△ABC是边长为4的等边三角形,AC,DE相交于点O,在CE上截取CF=CO,连接OF,求线段FC 的长及四边形AOFE的面积.【分析】(1)根据平行四边形判定得出平行四边形,再根据矩形判定推出即可;(2)分别求出AE、OH、CE、CF的长,再求出三角形AEC和三角形COF的面积,即可求出答案.【解答】(1)证明:∵CE∥AD且CE=AD,∴四边形ADCE是平行四边形,∵在△ABC中,AB=AC,AD平分∠BAC,∴AD⊥BC(等腰三角形三线合一性质),∴∠ADC=90°,∴四边形ADCE是矩形;(2)解:∵△ABC是等边三角形,边长为4,∴AC=4,∠DAC=30°,∴∠ACE=30°,AE=2,CE=2,∵四边形ADCE为矩形,∴OC=OA=2,∵CF=CO,∴CF=2,过O作OH⊥CE于H,∴OH=OC=1,∴S四边形AOFE=S△AEC﹣S△COF=×2×2﹣×2×1=2﹣1.34.已知:如图1,矩形ABCD中,AB=6,BC=8,E、F、G、H分别是AB、BC、CD、DA四条边上的点(且不与各边顶点重合),设m=EF+FG+GH+HE,探索m的取值范围.(1)如图2,当E、F、G、H分别是AB、BC、CD、DA四边中点时,m=20.(2)为了解决这个问题,小贝同学采用轴对称的方法,如图3,将整个图形以CD为对称轴翻折,接着再连续翻折两次,从而找到解决问题的途径,求得m的取值范围.①请在图3中补全小贝同学翻折后的图形;②m的取值范围是20≤m<28.【分析】(1)利用勾股定理求出矩形对角线的长度,再利用三角形中位线的性质得出EH=BD,EF=AC,FG=BD,HG=AC,进而求出即可;(2)①利用轴对称图形的性质得出答案即可;②利用两点之间线段最短以及三角形三边关系得出m的取值范围即可.【解答】解:(1)如图2,连接AC,BD,∵在矩形ABCD中,AB=6,BC=8,∴AC=BD==10,∵E、F、G、H分别是AB、BC、CD、DA四边中点,∴EH,EF,FG,HG,分别是△ABD,△ABC,△BCD,△ACD的中位线,∴EH=BD,EF=AC,FG=BD,HG=AC,∴m=EF+FG+GH+HE=AC+BD=10+10=20;(2)①如图3所示(虚线可以不画),②由图形可知,四边形的周长即折线HM的长,由两点之间线段最短可知,折线HM≥20,即周长不小于20;又由题可知,四边形周长小于矩形ABCD的周长,即周长小于28,故20≤m<28.故答案为:20;20≤m<28.。

矩形的性质和判定同步练习及答案

矩形的性质和判定同步练习及答案

矩形的性质和判定一.填空题1.如图,矩形ABCD中,∠ABC的平分线交AD边于点E,点F是CD的中点,连接EF.若AB=8,且EF平分∠BED,则AD的长为.题1 题3 题42.若矩形的一条对角线与一边的夹角是40°,则两条对角线相交所成的锐角是.3.如图,在矩形ABCD中,AB=,E是BC的中点,AE⊥BD于点F,则CF的长是.4.如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为.5.如图,在矩形ABCD中,∠ABC的平分线交AD于点E,连接CE.若BC=7,AE=4,则CE= .题5 题6 题76.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则EF= cm.7.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加条件,才能保证四边形EFGH是矩形.8.如图,在四边形ABCD中,对角线AC、BD相交于点O,且AO=CO,BO=DO,要使四边形ABCD 为矩形,则需添加的条件为(填一个即可).题8 题11 题129.已知四边形ABCD为平行四边形,要使得四边形ABCD为矩形,则可以添加一个条件为.10.木匠做一个矩形木框,长为80cm,宽为60cm,对角线的长为100cm,则这个木框(填“合格”或“不合格”)11.如图,在四边形ABCD中,已知AB∥DC,AB=DC,在不添加任何辅助线的情况下,请补充一个条件,使四边形ABCD成为矩形,这个条件是.12.如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件,使四边形DBCE是矩形.二.解答题13.如图,在▱ABCD中,∠BAD的平分线交CD于点E,交BC的延长线于点F,连接BE,∠F=45°.(1)求证:四边形ABCD是矩形;(2)若AB=14,DE=8,求sin∠AEB的值.14.如图,AD是等腰△ABC底边BC上的高.点O是AC中点,延长DO到E,使OE=OD,连接AE,CE.(1)求证:四边形ADCE的是矩形;(2)若AB=17,BC=16,求四边形ADCE的面积.15.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且FC=AB,E为AD上一点,EC交AF于点G.(1)求证:四边形ABCF是矩形;(2)若EA=EG,求证:ED=EC.16.如图,在▱ABCD中,AE⊥BC于点E点,延长BC至F点使CF=BE,连接AF,DE,DF.(1)求证:四边形AEFD是矩形;(2)若AB=6,DE=8,BF=10,求AE的长.17.平行四边形ABCD中,过点D作DE⊥AB于点E,点F在CD上,CF=AE,连接BF,AF.(1)求证:四边形BFDE是矩形;(2)若AF平分∠BAD,且AE=3,DE=4,求矩形BFDE的面积.矩形的性质和判定解析一.填空题(共12小题)1.如图,矩形ABCD中,∠ABC的平分线交AD边于点E,点F是CD的中点,连接EF.若AB=8,且EF平分∠BED,则AD的长为12 .【分析】根据两直线平行,内错角相等求出∠AEB=∠EBC,再求出∠ABE=∠EBC,根据等角对等边可得AE=AB,然后根据AD=AE+ED代入数据计算即可得解.【解答】解:∵矩形ABCD中,∴AD∥BC,∴∠AEB=∠EBC,∵∠ABC的平分线交AD边于点E,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE=8,同理得出ED=DF=DC=4,∴AD=AE+ED=8+4=12,故答案为:12.2.若矩形的一条对角线与一边的夹角是40°,则两条对角线相交所成的锐角是80°.【分析】因为两条对角线相交所成的锐角只有一个,直接应用三角形的内角和定理求解即可.【解答】解:由矩形的对角线相等且互相平分,所构成的三角形为等腰三角形,利用等边对等角,所以另一底角为40°,两条对角线相交所成的钝角为:180°﹣40°×2=100°故它们所成锐角为:180°﹣100°=80°.故答案为80.3.如图,在矩形ABCD中,AB=,E是BC的中点,AE⊥BD于点F,则CF的长是.【分析】根据四边形ABCD是矩形,得到∠ABE=∠BAD=90°,根据余角的性质得到∠BAE=∠ADB,根据相似三角形的性质得到BE=1,求得BC=2,根据勾股定理得到AE==,BD==,根据三角形的面积公式得到BF==,过F作FG⊥BC于G,根据相似三角形的性质得到CG=,根据勾股定理即可得到结论.【解答】解:∵四边形ABCD是矩形,∴∠ABE=∠BAD=90°,∵AE⊥BD,∴∠AFB=90°,∴∠BAF+∠ABD=∠ABD+∠ADB=90°,∴∠BAE=∠ADB,∴△ABE∽△ADB,∴,∵E是BC的中点,∴AD=2BE,∴2BE2=AB2=2,∴BE=1,∴BC=2,∴AE==,BD==,∴BF==,过F作FG⊥BC于G,∴FG∥CD,∴△BFG∽△BDC,∴==,∴FG=,BG=,∴CG=,∴CF==.故答案为:.4.如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为.【分析】由AAS证明△ABM≌△DEA,得出AM=AD,证出BC=AD=3EM,连接DM,由HL证明Rt △DEM≌Rt△DCM,得出EM=CM,因此BC=3CM,设EM=CM=x,则BM=2x,AM=BC=3x,在Rt△ABM中,由勾股定理得出方程,解方程即可.【解答】解:∵四边形ABCD是矩形,∴AB=DC=1,∠B=∠C=90°,AD∥BC,AD=BC,∴∠AMB=∠DAE,∵DE=DC,∴AB=DE,∵DE⊥AM,∴∠DEA=∠DEM=90°,在△ABM和△DEA中,,∴△ABM≌△DEA(AAS),∴AM=AD,∵AE=2EM,∴BC=AD=3EM,连接DM,如图所示:在Rt△DEM和Rt△DCM中,,∴Rt△DEM≌Rt△DCM(HL),∴EM=CM,∴BC=3CM,设EM=CM=x,则BM=2x,AM=BC=3x,在Rt△ABM中,由勾股定理得:12+(2x)2=(3x)2,解得:x=,∴BM=;故答案为:.5.如图,在矩形ABCD中,∠ABC的平分线交AD于点E,连接CE.若BC=7,AE=4,则CE= 5 .【分析】首先证明AB=AE=CD=4,在Rt△CED中,根据CE=计算即可.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,AB=CD,BC=AD=7,∠D=90°,∴∠AEB=∠EBC,∵∠ABE=∠EBC,∴AB=AE=CD=4,在Rt△EDC中,CE===5.故答案为56.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则EF= cm.【分析】根据勾股定理求出AC,根据矩形性质得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根据三角形中位线求出即可.【解答】解:∵四边形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:BD=AC==10(cm),∴DO=5cm,∵点E、F分别是AO、AD的中点,∴EF=OD=,故答案为:.7.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加AC⊥BD 条件,才能保证四边形EFGH是矩形.【分析】根据三角形的中位线平行于第三边,HG∥BD,EH∥AC,根据平行线的性质∠EHG=∠1,∠1=∠2,根据矩形的四个角都是直角,∠EFG=90°,所以∠2=90°,因此AC⊥BD.【解答】解:∵G、H、E分别是BC、CD、AD的中点,∴HG∥BD,EH∥AC,∴∠EHG=∠1,∠1=∠2,∴∠2=∠EHG,∵四边形EFGH是矩形,∴∠EHG=90°,∴∠2=90°,∴AC⊥BD.故还要添加AC⊥BD,才能保证四边形EFGH是矩形.8.如图,在四边形ABCD中,对角线AC、BD相交于点O,且AO=CO,BO=DO,要使四边形ABCD 为矩形,则需添加的条件为∠DAB=90°(填一个即可).【分析】根据对角线互相平分线的四边形为平行四边形可得四边形ABCD是平行四边形,添加条件∠DAB=90°可根据有一个角是直角的平行四边形是矩形进行判定.【解答】解:可以添加条件∠DAB=90°,∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∵∠DAB=90°,∴四边形ABCD是矩形,故答案为:∠DAB=90°.9.已知四边形ABCD为平行四边形,要使得四边形ABCD为矩形,则可以添加一个条件为∠BAD=90°.【分析】根据矩形的判定方法:已知平行四边形,再加一个角是直角填空即可.【解答】解:∵四边形ABCD是平行四边形,∠BAD=90°,∴四边形ABCD是矩形,故答案为:∠BAD=90°(答案不唯一).10.木匠做一个矩形木框,长为80cm,宽为60cm,对角线的长为100cm,则这个木框合格(填“合格”或“不合格”)【分析】只要算出桌面的长与宽的平方和是否等于对角线的平方,如果相等可得长、宽、对角线构成的是直角三角形,由此可得到每个角都是直角,根据矩形的判定:有三个角是直角的四边形是矩形,可得此桌面合格.【解答】解:解:∵802+602=10000=1002,即:AD2+DC2=AC2,∴∠D=90°,同理:∠B=∠BCD=90°,∴四边形ABCD是矩形,故答案为合格.11.如图,在四边形ABCD中,已知AB∥DC,AB=DC,在不添加任何辅助线的情况下,请补充一个条件,使四边形ABCD成为矩形,这个条件是∠A=90°.【分析】根据有一个角是90°的平行四边形是矩形,即可解决问题.【解答】解:∵AB∥DC,AB=DC,∴四边形ABCD是平行四边形,∴当∠A=90°时,四边形ABCD是平行四边形.故答案为∠A=90°.(填∠B=90°或∠C=90°或∠D=90°也可以)12.如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件EB=DC ,使四边形DBCE是矩形.【解答】解:添加EB=DC.理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴DE∥BC,又∵DE=AD,∴DE=BC,∴四边形DBCE为平行四边形.又∵EB=DC,∴四边形DBCE是矩形.故答案是:EB=DC.二.解答题(共6小题)13.如图,在▱ABCD中,∠BAD的平分线交CD于点E,交BC的延长线于点F,连接BE,∠F=45°.(1)求证:四边形ABCD是矩形;(2)若AB=14,DE=8,求sin∠AEB的值.【分析】(1)欲证明四边形ABCD是矩形,只需推知∠DAB是直角;(2)如图,过点B作BH⊥AE于点H.构建直角△BEH.通过解该直角三角形可以求得sin ∠AEB的值.在Rt△BCE中,由勾股定理得.在Rt△AHB中,BH=AB•sin45°=7.所以通过解Rt△BHE得到:sin∠AEB=.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAF=∠F.∵∠F=45°,∴∠DAE=45°.∵AF是∠BAD的平分线,∴∠EAB=∠DAE=45°.∴∠DAB=90°.又∵四边形ABCD是平行四边形,∴四边形ABCD是矩形.(2)解:如图,过点B作BH⊥AE于点H.∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠DCB=∠D=90°.∵AB=14,DE=8,∴CE=6.在Rt△ADE中,∠DAE=45°,∴∠DEA=∠DAE=45°.∴AD=DE=8.∴BC=8.在Rt△BCE中,由勾股定理得.在Rt△AHB中,∠HAB=45°,∴BH=AB•sin45°=7.∵在Rt△BHE中,∠BHE=90°,∴sin∠AEB=.14.如图,AD是等腰△ABC底边BC上的高.点O是AC中点,延长DO到E,使OE=OD,连接AE,CE.(1)求证:四边形ADCE的是矩形;(2)若AB=17,BC=16,求四边形ADCE的面积.【分析】(1)根据平行四边形的性质得出四边形ADCE是平行四边形,根据垂直推出∠ADC=90°,根据矩形的判定得出即可;(2)求出DC,根据勾股定理求出AD,根据矩形的面积公式求出即可.【解答】(1)证明:∵点O是AC中点,∴AO=OC,∵OE=OD,∴四边形ADCE是平行四边形,∵AD是等腰△ABC底边BC上的高,∴∠ADC=90°,∴四边形ADCE是矩形;(2)解:∵AD是等腰△ABC底边BC上的高,BC=16,AB=17,∴BD=CD=8,AB=AC=17,∠ADC=90°,由勾股定理得:AD===15,∴四边形ADCE的面积是AD×DC=15×8=120.15.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且FC=AB,E为AD上一点,EC交AF于点G.(1)求证:四边形ABCF是矩形;(2)若EA=EG,求证:ED=EC.【分析】(1)由条件可先证得四边形ABCF为平行四边形,再由∠B=90°可证得结论;(2)利用等腰三角形的性质可求得∠EAG=∠EGA=∠FGC,再利用直角三角形的性质可求得∠D=∠ECD,可证得ED=EC.【解答】证明:(1)∵AB∥CD,且FC=AB,∴四边形ABCF为平行四边形,∵∠B=90°,∴四边形ABCF是矩形;(2)∵EA=EG,∴∠EAG=∠EGA=∠FGC,∵四边形ABCF为矩形,∴∠AFC=∠AFD=90°,∴∠D+∠DAF=∠FGC+∠ECD=90°,∴∠D=∠ECD,∴ED=EC.16.如图,在▱ABCD中,AE⊥BC于点E点,延长BC至F点使CF=BE,连接AF,DE,DF.(1)求证:四边形AEFD是矩形;(2)若AB=6,DE=8,BF=10,求AE的长.【分析】(1)先证明四边形AEFD是平行四边形,再证明∠AEF=90°即可.(2)证明△ABF是直角三角形,由三角形的面积即可得出AE的长.【解答】(1)证明:∵CF=BE,∴CF+EC=BE+EC.即 EF=BC.∵在▱ABCD中,AD∥BC且AD=BC,∴AD∥EF且AD=EF.∴四边形AEFD是平行四边形.∵AE⊥BC,∴∠AEF=90°.∴四边形AEFD是矩形;(2)解:∵四边形AEFD是矩形,DE=8,∴AF=DE=8.∵AB=6,BF=10,∴AB2+AF2=62+82=100=BF2.∴∠BAF=90°.∵AE⊥BF,∴△ABF的面积=AB•AF=BF•AE.∴AE===.17.平行四边形ABCD中,过点D作DE⊥AB于点E,点F在CD上,CF=AE,连接BF,AF.(1)求证:四边形BFDE是矩形;(2)若AF平分∠BAD,且AE=3,DE=4,求矩形BFDE的面积.【分析】(1)根据有一个角是90度的平行四边形是矩形即可判定.(2)首先证明AD=DF,求出AD即可解决问题.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴DF∥BE,∵CF=AE,∴DF=BE,∴四边形BFDE是平行四边形,∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形.(2)∵AB∥CD,∴∠BAF=∠AFD,∵AF平分∠BAD,∴∠DAF=∠AFD,∴AD=DF,在Rt△ADE中,∵AE=3,DE=4,∴AD==5,∴矩形的面积为20.18.在▱ABCD中,过点D作DE⊥AB于点E,点F在CD上,CF=AE,连接BF,AF.(1)求证:四边形BFDE是矩形;(2)若AD=DF,求证:AF平分∠BAD.【分析】(1)先证明四边形BFDE是平行四边形,再证明∠DEB=90°即可.(2)欲证明AF平分∠BAD,只要证明∠DAF=∠BAF即可.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,即BE∥DF,∵CF=AE,∴DF=BE,∴四边形BFDE是平行四边形,∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形.(2)由(1)可知AB∥CD,∴∠BAF=∠AFD,∵AD=DF,∴∠DAF=∠AFD,∴∠BAF=∠DAF,即AF平分∠BAD.。

矩形的性质习题

矩形的性质习题
①△MNK一定是等腰三角形;②△MNK可能是钝角三角形; ③△MNK有最小面积且等于4.5;④△MNK有最大面积且等于7.5. A.1个 B.2个 C.3个 D.4个
9.如图,在矩形ABCD中,M为BC边上一点,连接AM,
过点D作DE⊥AM于E,若DE=DC=2,AE=2EM,
则BM的长为

10.已知:如图,在矩形ABCD中,AE⊥BD于E,对角
(1)当AB=BC时,求∠GEF的度数; (2)若AB= ,BC=2,求EF的长.
31.如图①,四边形ABCD是矩形,△PBC和△QCD都是等边三 角形,连接AP、PQ.
(1)请你判断AP与PQ的数量关系并证明: (2)如图②,若将“四边形ABCD是矩形”的条件改为“四边形
ABCD是平行四边形”,则(1)中的结论是否成立,若不成立, 请说明理由,若成立,请给出证明.
(1)若∠1=70°,求∠MKN的度数;
(2)△MNK的面积能否小于 ?若能,求出此时∠1的度数;若不能,试说明理由; (3)如何折叠能够使△MNK的面积最大?请你用备用图探究可能出现的情况,求最大
值.
37.如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5,在矩形ABCD 的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于 点K,得到△MNK.
且△ABG,△DCH的面积分别为12和18,则图中阴
影部分的面积为

17.如图,在平面直角坐标系中,矩形OABC的两边OA,
OC分别在x轴和y轴上,并且OA=5,OC=3.若把矩
形OABC绕着点O逆时针旋转,使点A恰好落在BC边
上的A1处,则点C的对应点C1的坐标为

18.如图,矩形ABCD中,AD=3,∠CAB=30°,点P

九年级数学矩形练习题(性质)(含答案)

九年级数学矩形练习题(性质)(含答案)

7题E D C B A 8题E D C B A pF E 9题D C B A F E 10题D C B A 矩形练习题1、矩形是特殊的平行四边形,它除了具有平行四边形的所有性质之外,还具有其自身特有的性质 ○1 ○2 2、 的四边形是矩形。

的平行四边形是矩形。

3、如图,O 为矩形ABCD 中AC 、BD 的交点,AE ⊥BD 于点E 。

○1若OE ∶OB=1∶2,AE= 3 cm ,则∠ABO 的度数为 BD 的长度为○2若AE 分∠DAB 为∠BAE ∶∠DAE=1∶5两部分,则∠OAE 的度数为 4、Rt △ABC 中,斜边AB 上的中线CD=5,∠A=30°,则斜边AB 上的高为5、矩形的一个内角平分线将矩形的一边分成3cm 和4cm 两部分,则该矩形的面积为6、矩形的两条对角线的夹角为60°,且矩形的短边长为4cm,则它的面积为7、如图,矩形ABCD 中,AB=2BC ,E 为CD 上一点,且AE=AB ,则∠EBC 的度数为8、如图,矩形ABCD 中,E 为AB 中点,∠CED=90°,若矩形的周长为36,则AB= S 矩形=9、如图,矩形ABCD 中,AP ⊥BD 于点P ,E 、F 分别为AB 、AD 的中点,若矩形的周长为18,则四边形AEPF 的周长为10、如图,矩形ABCD 中,E 为AB 中点,DF ⊥CE 于点E ,若AB=6,BC=4,则DF=11、如图,矩形ABCD 的长为4,宽为3,O 为对角线的交点,直线l 经过点O ,将矩形分为两部分,则S 阴影= 。

12、如图,矩形ABCD 中,AC 、BD 交于点O ,AB=4,BC=3,N 为CD 上一点, NE ⊥OD 于点E ,N F ⊥OC 于点F ,则NE+NF 的值为 。

13、如图,将长AD=10㎝,AB=8㎝的矩形沿AE 对折,D 点落在BC 边上的F 点,则DE= 。

14、如图,若将四根木条钉成的矩形木框变形为平行四边形ABCD 的形状,并使其面积为原面积的一半,则该平行四边形的一个最小内角的度数为 。

矩形的判定专项练习30题

矩形的判定专项练习30题

矩形的判定专项练习30题1.在四边形ABCD中,AD∥BC,E、F为AB上两点,且△DAF≌△XXX。

证明:(1)∠A=90°;(2)四边形ABCD 是矩形。

1)因为AD∥BC,所以∠DAB = ∠CBA,又因为△DAF≌△XXX,所以∠DAF = ∠XXX,∠AFD = ∠XXX。

因此,∠FAB = ∠ECB,∠AFD = ∠XXX,所以∠BAD =∠CBD。

因为∠BAD + ∠ABC = 180°,所以∠ABC + ∠CBD= 180°,即ABCD为平行四边形,所以∠A = 90°。

2)因为ABCD为平行四边形,所以∠A = ∠C,∠B =∠D。

又因为AD∥BC,所以∠BAD + ∠ABC = 180°,即∠BAD = ∠DCB。

因此,∠A = ∠C = 90°,所以ABCD为矩形。

2.在平行四边形ABCD中,∠ABC,∠BCD的平分线BE、CF分别交AD于E、F,BE、CF交于点G,点H为BC的中点,GH的延长线交GB的平行线CM于点M。

证明:(1)∠BGC=90°;(2)四边形GBMC为矩形。

1)因为ABCD为平行四边形,所以∠ABC = ∠BCD,又因为BE、CF分别是∠ABC,∠BCD的平分线,所以∠ABE = ∠XXX。

因此,△ABE≌△CBF,所以AE = CF,因为GH 为BC的中点,所以GH = HB。

又因为BE、CF交于点G,所以XXX GF。

因此,△GHE≌△GFB,所以∠BGC = 90°。

2)因为ABCD为平行四边形,所以∠ABC = ∠BCD,又因为BE、CF分别是∠ABC,∠BCD的平分线,所以∠ABE = ∠XXX。

因此,△ABE≌△CBF,所以AE = CF。

因为点H 为BC的中点,所以HM∥AB,又因为GB∥AB,所以HM∥GB。

因为GH = HB,所以GM = MB。

因此,GBMC为平行四边形,又因为∠BGC = 90°,所以GBMC为矩形。

(完整版)矩形经典题型(培优提高)

(完整版)矩形经典题型(培优提高)

矩形知识归纳定义:有一个角是直角的平行四边形叫做矩形。

性质:1. 矩形的四个角是直角,对边相等2. 矩形的对角线相等3. 矩形所在平面内任意一点到其两对角线端点的平方和相等4. 矩形既是轴对称图形,也是中心对称图形,其对称轴是任何一组对边中点的连线5. 对边平行且相等6. 对角线互相平分判定:1. 有一个角是直角的平行四边形是矩形2. 对角线相等的平行四边形是矩形3. 有三个角是直角的四边形是矩形4. 四个内角相等的四边形是矩形5. 关于任何一组对边中点的连线成轴对称图形的平行四边形是矩形6. 对于平行四边形,若存在一点到两对角线端点的距离的平方和相等,则此平行四边形为矩形7. 对角线互相平分且相等的四边形是矩形8. 对角线互相平分且有一个内角是直角的四边形是矩形例题讲解例1:如图,在平行四边形ABCD中,E,F为BC上两点,且BE=CF,AF=DE.求证:(1)△ABF≌△DCE;(2)四边形ABCD是矩形.例2:如图,将一矩形纸片ABCD 沿对角线AC 折叠,使点B 落在B ‘处,AB '交CD 于点E ,已知∠EAC=25°,求∠B 'CE 的度数。

E D CA B'B例3:如图,在矩形ABCD 中,E 是BC 上一点,F 是AB 上一点,EF=ED ,且EF DE .(1)求证:AE 平分∠BAD .(2)若CE=2,矩形ABCD 的周长为16求BE 与DF 的长.例4:如图,矩形ABCD ,延长CB 到点E ,使CE=CA ,点F 是AE 的中点.求证:BF ⊥DF 。

(提示:连接CF )A DEF课堂练习一.选择题1.如图,在矩形ABCD中,AE,AF三等分∠BAD,若BE=2,CF=1,则最接近矩形面积的是()A.13 B.14 C.15 D.162.如图,矩形OABC的顶点A,C在坐标轴上,顶点B的坐标是(4,2),若直线y=mx﹣1恰好将矩形分成面积相等的两部分,则m的值为()A.1 B.0.5 C.0.75 D.23.如图,矩形ABCD的边AB=5cm,BC=4cm动点P从A点出发,在折线AD﹣DC﹣CB上以1cm/s的速度向B点作匀速运动,则表示△ABP的面积S(cm)与运动时间t(s)之间的函数系的图象是()A.B.C.D.4.如图,在矩形ABCD中,AB=2BC,在CD上取一点E,使AE=AB,则∠EBC的度数为()A.30°B.15°C.45°D.不能确定5.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为()A.1 B.1.2 C.1.3 D.1.56.已知:如图,在矩形ABCD中,BC=2,AE⊥BD,垂足为E,∠BAE=30°,那么△ECD的面积是()A.B.C.D.7.如图,用8块相同的长方形地砖拼成一个矩形,已知地砖的宽为10cm,则每块长方形地砖的面积是()A.200cm2B.300cm2C.600cm2D.2400cm28.如图,在矩形ABCD中,AB=3,AD=4,点P在AB上,PE⊥AC于E,PF⊥BD于F,则PE+PF等于()A.B.C.D.9.下列各句判定矩形的说法( 1)对角线相等的四边形是矩形;(2)对角线互相平分且相等的四边形是矩形;(3)有一个角是直角的四边形是矩形;(4)有四个角是直角的四边形是矩形;(5)四个角都相等的四边形是矩形;(6)对角线相等,且有一个角是直角的四边形是矩形;是正确有几个( )A .2个B .3个C .4个D .5个二.填空题1. 已知矩形的面积为48平方厘米,一条边长为6厘米,那么这个矩形的一条对角线的长是_______.2. 矩形一条边上的中点与对边两个端点的连线互相垂直,已知矩形周长为30厘米,那么矩形的面积为_________.3. 已知矩形两条对角线的一个交角为60°,矩形的短边长为4厘米,则长边为_________,对角线为__________.4. 从矩形的一个顶点作一条对角线的垂线,这条垂线分这条对角线成1:3两部分,则矩形的两条对角线的夹角为__________.5. 已知直角坐标系中,四边形OABC 是矩形,点A (10,0),点C (0,4),点D 是OA 的中点,点P 是BC 边上的一个动点,当△POD 是等腰三角形时,点P 的坐标为 .6. 利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是7. 如图,Rt △ABC 中,∠C=90°,AC=3,BC=4,点P 为AB 边上任一点,过P 分别作PE ⊥AC 于E ,PF ⊥BC 于F ,则线段EF 的最小值是 .80cm ①70cm②三.解答题1.已知:如图,平行四边形ABCD的四个内角的平分线分别相交于点E,F,G,H,求证:四边形EFGH是矩形。

专题09 矩形的性质 题型全覆盖(31题)-2020-2021学年八年级数学下(人教版)(解析版)

专题09 矩形的性质 题型全覆盖(31题)-2020-2021学年八年级数学下(人教版)(解析版)

专题09 矩形的性质 题型全覆盖(31题)【思维导图】【考查题型】考查题型一 利用矩形的性质求角度1.(2020·河北张家口市·八年级期中)如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,若50COD =︒∠,那么CAD ∠的度数是( )A .30B .20︒C .40︒D .25︒【答案】D【提示】 根据题意只要证明OA=OD ,根据三角形的外角的性质即可解决问题;【详解】解:∵矩形ABCD 中,对角线AC ,BD 相交于点O ,∴DB =AC ,OD =OB ,OA =OC ,∴OA =OD ,∴∠CAD =∠ADO ,∵∠COD =50°=∠CAD +∠ADO ,∴∠CAD =25°,故选D .【名师点拨】 本题考查了矩形的性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.2.(2020·河南许昌市·八年级期末)如图,矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,则∠BDE的度数为()A.36°B.18°C.27°D.9°【答案】B【解析】试题解析:已知∠ADE:∠EDC=3:2⇒∠ADE=54°,∠EDC=36°,又因为DE⊥AC,所以∠DCE=90°-36°=54°,根据矩形的性质可得∠DOC=180°-2×54°=72°所以∠BDE=180°-∠DOC-∠DEO=18°故选B.3.(2020·河南新乡市·八年级期末)如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ABD=60°,那么∠BAE的度数是()A.40°B.55°C.75°D.80°【答案】C【提示】连接AC,由矩形性质可得AD∥BE,AC=BD,∠BAD=90°,∠ABD=∠BAC=60°,又可得∠E=∠DAE,可得∠E度数,进而得出∠BAE的度数.【详解】解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,∠BAD=90°,∠ABD=∠BAC=60°,∴∠E=∠DAE ,∠CAD=∠BAD-∠BAC=90°-60°=30°,又∵BD=CE ,∴CE=CA ,∴∠E=∠CAE ,∵∠CAD=∠CAE+∠DAE ,∴∠E+∠E=30°,即∠E=15°.∴∠BAE=90°-15°=75°,故选C .【名师点拨】本题考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.4.(2020·河北保定市·八年级期末)如图,矩形ABCD 中,连接AC ,延长BC 至点E ,使BE AC =,连接DE ,若40BAC ∠=︒,则∠E 的度数是( )A .65°B .60°C .50°D .40°【答案】A【提示】 连接BD ,与AC 相交于点O ,则BD=AC=BE ,得△BDE 是等腰三角形,由OB=OC ,得∠OBC=50°,即可求出∠E 的度数.【详解】解:如图,连接BD ,与AC 相交于点O ,∴BD=AC=BE ,OB=OC ,∴△BDE 是等腰三角形,∠OBC=∠OCB ,∵40BAC ∠=︒,∠ABC=90°,∴∠OBC=904050︒-︒=︒,∴11(18050)1306522E ∠=⨯︒-︒=⨯︒=︒; 故选择:A.【名师点拨】本题考查了矩形的性质,等腰三角形的判定和性质,三角形内角和定理,以及直角三角形两个锐角互余,解题的关键是正确作出辅助线,构造等腰三角形进行解题.5.(2020·山东青岛市期末)如图,矩形ABCD 中,AC ,BD 交于点O ,M ,N 分别为BC ,OC 的中点.若3MN =,6AB =,则ACB ∠的度数为( )A .30B .35︒C .45︒D .60︒【答案】A【提示】 根据矩形的性质和直角三角形的性质以及中位线的性质,即可得到答案.【详解】∵M ,N 分别为BC ,OC 的中点,∴MN 是∆OBC 的中位线,∴OB=2MN=2×3=6,∵四边形ABCD 是矩形,∴OB=OD=OA=OC=6,即:AC=12,∵AB=6,∴AC=2AB ,∵∠ABC=90°,∴ACB ∠=30°.故选A .【名师点拨】本题主要考查矩形的性质和直角三角形的性质以及中位线的性质,掌握矩形的对角线互相平分且相等,是解题的关键.考查题型二 利用矩形的性质求线段长度6.(2020·山东菏泽市·九年级期中)如图,点O是矩形ABCD的对角线AC的中点,OM//AB交AD于点M,若OM=3,BC=10,则OB的长为()A.5 B.4 C.2D【答案】D【详解】提示:在Rt△AOM中,用勾股定理求AO,根据BO是Rt△ABC斜边上的中线求解.详解:因为四边形ABCD是矩形,所以AD=BC=10,∠ABC=∠D=90°.因为OM∥AB,所以∠AMO=∠D=90°.因为OM=3,AM=12AD=12×10=5.Rt△AMO中,由勾股定理得AO因为O是矩形ABCD的对角线AC的中点,所以OB=AO故选D.名师点拨:本题考查了勾股定理和矩形的性质及直角三角形斜边上的中线,矩形的对边相等,四个角都是直角,直角三角形斜边上的中线等于斜边的一半.7.(2020·山东济南市·八年级期末)如图,P是矩形ABCD的对角线AC的中点,E是AD的中点.若AB=6,AD=8,则四边形ABPE的周长为()A.14 B.16 C.17 D.18【答案】D【提示】由矩形的性质得出∠ABC=90°,CD=AB=6,BC=AD=8,由勾股定理求出AC,由直角三角形斜边上的中线性质得出BP,证明PE是△ACD的中位线,由三角形中位线定理得出PE=12CD=3,四边形ABPE的周长=AB+BP+PE+AE,即可得出结果.【详解】∵四边形ABCD是矩形,∴∠ABC=90°,CD=AB=6,BC=AD=8,∴,∴BP=12AC=5,∵P是矩形ABCD的对角线AC的中点,E是AD的中点,∴AE=12AD=4,PE是△ACD的中位线,∴PE=12CD=3,∴四边形ABPE的周长=AB+BP+PE+AE=6+5+3+4=18;故选D.【名师点拨】本题考查了矩形的性质、勾股定理、直角三角形斜边上的中线性质、三角形中位线定理;熟练掌握矩形的性质,并能进行推理论证与计算是解决问题的关键.8.(2020·福建省八年级期中)如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AC=16,则图中长度为8的线段有()A.2条B.4条C.5条D.6条【答案】D【提示】根据矩形性质得出DC=AB,BO=DO=12BD,AO=OC=12AC=8,BD=AC,推出BO=OD=AO=OC=8,再证得△ABO是等边三角形,推出AB=AO=8=DC,由此即可解答.【详解】∵AC=16,四边形ABCD是矩形,∴DC=AB,BO=DO=12BD,AO=OC=12AC=8,BD=AC,∴BO=OD=AO=OC=8,∵∠AOD=120°,∴∠AOB=60°,∴△ABO是等边三角形,∴AB=AO=8,∴DC=8,即图中长度为8的线段有AO、CO、BO、DO、AB、DC共6条,故选D.【名师点拨】本题考查了矩形性质和等边三角形的性质和判定的应用,矩形的对角线互相平分且相等,矩形的对边相等.9.(2020·湖北武汉市八年级期中)如图,点O是矩形ABCD的对角线AC的中点,M是CD边的中点.若AB=8,OM=3,则线段OB的长为()A.5 B.6 C.8 D.10【答案】A【提示】已知OM是△ADC的中位线,再结合已知条件则DC的长可求出,所以利用勾股定理可求出AC的长,由直角三角形斜边上中线的性质则BO的长即可求出.【详解】解:∵四边形ABCD是矩形,∴∠D=90°,∵O是矩形ABCD的对角线AC的中点,OM∥AB,∴OM是△ADC的中位线,∵OM=3,∴AD=6,∵CD=AB=8,∴,∴BO=1AC=5.2故选A.【名师点拨】本题考查了矩形的性质,勾股定理的运用,直角三角形斜边上中线的性质以及三角形的中位线的应用,解此题的关键是求出AC的长.10.(2020·渠县土溪镇九年级期末)若矩形对角线相交所成钝角为120°,短边长3.6cm,则对角线的长为( ).A.3.6cm B.7.2cm C.1.8cm D.14.4cm【答案】B【提示】如图,根据矩形性质得出AC=BD,AO=OC=12AC,BO=OD=12BD,求出OA=OB,得出△AOB是等边三角形,求出AB=AO=OB,即可得出答案.【详解】如图,∵四边形ABCD是矩形,∴AC=BD,AO=OC=12AC,BO=OD=12BD,∴OA=OB,∵∠AOD=120°,∴∠AOB=180°-120°=60°,∴△AOB是等边三角形,∴AB=AO=OB=3.6cm,∴BD=AC=2AO=7.2cm,故选B.【名师点拨】本题考查了矩形性质和等边三角形的性质和判定的应用,关键是求出等边三角形AOB和求出BD=AC=2AO.考查题型三利用矩形的性质求面积11.(2020·河南洛阳市·七年级期中)如图,周长为34的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为()A.280 B.140 C.70 D.196【答案】C【解析】解:设小长方形的长、宽分别为x、y,依题意得:,解得:,则矩形ABCD的面积为7×2×5=70.故选C.【点评】考查了二元一次方程组的应用,此题是一个信息题目,首先会根据图示找到所需要的数量关系,然后利用这些关系列出方程组解决问题.12.(2020·滕州市九年级期中)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10 B.12 C.16 D.18【答案】C【提示】首先根据矩形的特点,可以得到S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN,最终得到S矩形EBNP= S矩形MPFD ,即可得S△PEB=S△PFD,从而得到阴影的面积.【详解】作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN∴S矩形EBNP= S矩形MPFD ,又∵S△PBE= 12S矩形EBNP,S△PFD=12S矩形MPFD,∴S△DFP=S△PBE=12×2×8=8,∴S阴=8+8=16,故选C.【名师点拨】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.13.(2020·酒泉市九年级期中)如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的( )A.15B.14C.13D.310【答案】B 【提示】根据矩形的性质,得△EBO≌△FDO,再由△AOB与△ABC同底且△AOB的高是△ABC高的12得出结论.【详解】解:∵四边形为矩形,∴OB=OD=OA=OC,在△EBO与△FDO中,∵∠EOB=∠DOF,OB=OD,∠EBO=∠FDO,∴△EBO≌△FDO(ASA),∴阴影部分的面积=S△AEO+S△EBO=S△AOB,∵△AOB与△ABC同底且△AOB的高是△ABC高的12,∴S△AOB=12S△ABC=14S矩形ABCD.故选B.【名师点拨】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质14.(2020·石阡县八年级期末)矩形的对角线长为20,两邻边之比为3:4,则矩形的面积为()A.56 B.192C.20 D.以上答案都不对【答案】B【提示】首先设矩形的两邻边长分别为:3x,4x,可得(3x)2+(4x)2=202,继而求得矩形的两邻边长,则可求得答案.【详解】解:∵矩形的两邻边之比为3:4,∴设矩形的两邻边长分别为:3x,4x,∵对角线长为20,∴(3x)2+(4x)2=202,解得:x=4,∴矩形的两邻边长分别为:12,16;∴矩形的面积为:12×16=192.故选B.考查题型四求矩形的顶点在直角坐标系上的坐标15.(2020·南丹县八年级期中)如图将四个全等的矩形分别等分成四个全等的小矩形,其中阴影部分面积相等的是()A.只有①和②相等B.只有③和④相等C.只有①和④相等D.①和②,③和④分别相等【答案】D【详解】试题提示:根据三角形的面积公式来计算即可.解:小矩形的长为a ,宽为b ,则①中的阴影部分为两个底边长为a ,高为b 的三角形, ∴1·22S a b ab =⨯⨯=; ②中的阴影部分为一个底边长为a ,高为2b 的三角形, ∴1·22S a b ab =⨯⨯=; ③中的阴影部分为一个底边长为a ,高为b 的三角形, ∴11·22S a b ab =⨯=; ④中的阴影部分为一个底边长为a ,高为b 的三角形, ∴11·22S a b ab =⨯=. 故选D.考点:三角形的面积.16.(2020·江苏苏州市·八年级期末)如图,平面直角坐标系中,长方形OABC ,点A ,C 分别在x 轴,y 轴的正半轴上,点B (6,3),现将△OAB 沿OB 翻折至△OA ′B 位置,OA ′交BC 于点P .则点P 的坐标为( )A .(94,3)B .(32,3)C .(125,3)D .(5,32) 【答案】A【提示】由折叠的性质和矩形的性质证出OP =BP ,设OP =BP =x ,则PC =6﹣x ,再用勾股定理建立方程9+(6﹣x )2=x 2,求出x 即可.【详解】∵将△OAB 沿OB 翻折至△OA ′B 位置,OA ′交BC 于点P ,∴∠A 'OB =∠AOB ,∵四边形OABC 是矩形,∴BC ∥OA ,∴∠OBC =∠AOB ,∴∠OBC =∠A 'OB ,∴OP =BP ,∵点B 的坐标为(6,3),∴AB =OC =3,OA =BC =6,设OP =BP =x ,则PC =6﹣x ,在Rt △OCP 中,根据勾股定理得,OC 2+PC 2=OP 2,∴32+(6﹣x )2=x 2,解得:x =154, ∴PC =6﹣154=94, ∴P (94,3), 故选:A .【名师点拨】此题主要考查折叠和矩形的性质以及利用勾股定理构建方程,熟练掌握,即可解题.17.(2020·辽宁浑南区·九年级期末)如图,在平面直角坐标系中,四边形OABC 是矩形,点O 是坐标原点,点A 、C 的坐标分别是()6,0,()0,3,点B 在第一象限,则点B 的坐标是( )A .()3,6B .()6,3C .()6,6D .()3,3【答案】B【提示】 根据矩形的性质得出点B 的坐标即可.【详解】解:∵四边形OABC 是矩形,∴OC=AB ,CB=OA ,∵点A ,C 的坐标分别是(6,0),(0,3),∴AB=3,OA=6,∴点B坐标为(6,3),故选:B.【名师点拨】此题考查矩形的性质,关键是根据矩形的性质得出点B的坐标.18.(2020·河北唐山市·八年级期末)如图,四边形OABC 是矩形,A(2,1),B(0,5),点C 在第二象限,则点C 的坐标是()A.(1,3)B.(﹣1,2)C.(﹣2,﹣3)D.(﹣2,4)【答案】D【提示】先分别过C和A作y轴的垂线,构造两组全等三角形,用矩形的相关性质即可证明,再利用两组三角形全等对应边相等CE=AF、BE=OF,结合已知坐标就能求得C点坐标.【详解】解:过C作CE⊥y轴与E,过A作AF⊥y轴于F.∴∠CEO=∠AFB=90°∵四边形ABCO为矩形∴AB=OC ,AB //OC∴∠ABF=∠COECEO AFB ABF COE AB OC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△OCE ≌△BAF (AAS )同理可得CEB AFO AOF CBE CB AO ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BCE ≌△OAF (AAS )∴CE=AF ,OE=BF ,BE=OF∵A (2,1),B (0,5)∴AF=CE=2,BE=OF=1,OB=5∴OE=4,∴点C 的坐标为(-2,4)故选:D .【名师点拨】本题主要考察矩形性质的应用、三角形全等的判定与性质、坐标系与几何综合,易错点在于与坐标系综合中可能会出现的符号错误问题.19.(2020·河南周口市·七年级期中)一个长方形在平面直角坐标系中三个顶点的坐标分别是(﹣1,﹣1)、(﹣1,2)、(3,2),则第四个顶点的坐标是( )A .(2,2)B .(2,3)C .(3,﹣1)D .(3,3)【答案】C【提示】过(-1,-1)、(3,2)两点分别作x 轴、y 轴的平行线,交点为第四个顶点.【详解】解:如图所示:过(﹣1,﹣1)、(3,2)两点分别作x轴、y轴的平行线,交点为(3,﹣1),即为第四个顶点坐标.故选:C.【名师点拨】本题考查了矩形的性质和坐标与图形性质,熟练掌握矩形的性质是解题的关键.考查题型五直角三角形斜边中线20.(2020·江西吉安市·九年级期中)如图,矩形纸片ABCD中,已知AD =8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为( )A.3 B.4C.5 D.6【答案】D【解析】试题提示:先根据矩形的特点求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8﹣3=5,在Rt△CEF中,CF===4,设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,故选D.考点:翻折变换(折叠问题);勾股定理.21.(2020·河北邯郸市·八年级期末)已知:如图,折叠矩形ABCD,使点B落在对角线AC上的点F处,若BC=8,AB=6,则线段CE的长度是()A.3 B.4 C.5 D.6【答案】C【提示】在Rt△ABC中利用勾股定理可求出AC=10,设BE=a,则CE=8﹣a,根据折叠的性质可得出BE=FE=a,AF=AB =6,∠AFE=∠B=90°,进而可得出FC=4,在Rt△CEF中,利用勾股定理可得出关于a的一元二次方程,解之即可得出a值,将其代入8﹣a中即可得出线段CE的长度.【详解】解:在Rt△ABC中,AB=6,BC=8,∴AC=10.设BE=a,则CE=8﹣a,根据翻折的性质可知,BE=FE=a,AF=AB=6,∠AFE=∠B=90°,∴FC=4.在Rt△CEF中,EF=a,CE=8﹣a,CF=4,∴CE2=EF2+CF2,即(8﹣a)2=a2+42,解得:a=3,∴8﹣a=5.故选C.【名师点拨】本题考查了翻折变换、矩形的性质、勾股定理以及解一元二次方程,在Rt△CEF中,利用勾股定理找出关于a的一元二次方程是解题的关键.22.(2020·甘肃白银市·九年级期末)如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31°B.28°C.62°D.56°【答案】D【提示】先利用互余计算出∠FDB=28°,再根据平行线的性质得∠CBD=∠FDB=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DFE的度数.【详解】解:∵四边形ABCD为矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°-∠BDC=90°-62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿对角线BD折叠,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故选D.【名师点拨】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.23.(2020·山东泰安市·九年级期中)如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A .95B .185C .165D .125【答案】B【提示】连接BF ,由折叠可知AE 垂直平分BF ,根据勾股定理求得AE=5,利用直角三角形面积的两种表示法求得BH=125,即可得BF=245 ,再证明∠BFC=90°,最后利用勾股定理求得CF=185. 【详解】连接BF ,由折叠可知AE 垂直平分BF ,∵BC=6,点E 为BC 的中点,∴BE=3,又∵AB=4,∴==5, ∵1122AB BE AE BH ⋅=⋅, ∴1134522BH ⨯⨯=⨯⨯, ∴BH=125,则BF=245, ∵FE=BE=EC ,∴∠BFC=90°,∴==185 . 故选B .【名师点拨】本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.24.(2020·河南洛阳市·八年级期末)如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点B 落在点B ′处,则重叠部分△AFC 的面积为( )A .12B .10C .8D .6【答案】B【提示】 已知AD 为CF 边上的高,要求AFC △的面积,求得FC 即可,求证AFD CFB '△≌△,得B F DF '=,设DF x =,则在Rt AFD △中,根据勾股定理求x ,于是得到CF CD DF =-,即可得到答案.【详解】解:由翻折变换的性质可知,AFD CFB '△≌△,'DF B F ∴=,设DF x =,则8AF CF x ==-,在Rt AFD △中,222AF DF AD =+,即222(8)4x x -=+,解得:3x =,835CF CD FD ∴=-=-=,1102AFC S AF BC ∴=⋅⋅=△. 故选:B .【名师点拨】本题考查矩形的性质、折叠的性质、勾股定理等内容,根据折叠的性质得到AFD CFB '△≌△是解题的关键. 考查题型六 直角三角形中线25.(2020·山东枣庄市·九年级期末)如图,△ABC 中,AB=AC=10,BC=8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长为( )A .20B .12C .14D .13【答案】C【详解】解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=1BC=4,2∵点E为AC的中点,∴DE=CE=1AC=5,2∴△CDE的周长=CD+DE+CE=4+5+5=14.故选C.【名师点拨】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.26.(2020·江苏省无锡市八年级期中)如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=()A.2 B.3 C.4 D.【答案】C【解析】提示:根据直角三角形的性质得出AE=CE=5,进而得出DE=3,利用勾股定理解答即可.详解:∵在Rt△ABC中,∠ACB=90°,CE为AB边上的中线,CE=5,∴AE=CE=5,∵AD=2,∴DE=3,∵CD为AB边上的高,∴在Rt△CDE中,,故选C.名师点拨:此题考查直角三角形的性质,关键是根据直角三角形的性质得出AE=CE=5.27.(2020·株洲市八年级期中)如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AM的长为1.2km ,则M 、C 两点间的距离为( )A0.5kmA .0.6km B .0.9km C .1.2km【答案】D【详解】根据直角三角形斜边上的中线等于斜边的一半即可求得距离为1.2km.故选D28.(2020·黑龙江哈尔滨市·八年级期中)直角三角形中,两直角边分别是12和5,则斜边上的中线长是( ) A .34 B .26 C .6.5 D .8.5【答案】C【提示】利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.【详解】解:由勾股定理得,斜边=2212513+=, 所以,斜边上的中线长=12×13=6.5.故选C .【名师点拨】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.考查题型七 利用矩形的性质证明29.(2020·金昌市八年级期中)如图,四边形ABCD 是矩形,点E 在CD 边上,点F 在DC 延长线上,AE =BF .(1)求证:四边形ABFE 是平行四边形;(2)若∠BEF =∠DAE ,AE =3,BE =4,求EF 的长.【答案】(1)证明见解析;(2)EF =5【详解】解:(1)∵四边形ABCD是矩形,∴AD=BC,∠D=∠BCD=90°.∴∠BCF=180°﹣∠BCD=180°﹣90°=90°.∴∠D=∠BCF.在Rt△ADE和Rt△BCF中AE BF AD BC,∴Rt△ADE≌Rt△BCF .∴∠1=∠F.∴AE∥BF.∵AE=BF,∴四边形ABFE是平行四边形.(2)解:∵∠D=90°,∴∠DAE+∠1=90°.∵∠BEF=∠DAE,∴∠BEF+∠1=90°.∵∠BEF+∠1+∠AEB=180°,∴∠AEB=90°.在Rt△ABE中,AE=3,BE=4,5==.∵四边形ABFE是平行四边形,∴EF=AB=5.【名师点拨】熟练运用矩形的性质,平行四边形的判定方法,勾股定理是解答本题的关键.30.(2020·山东菏泽市·九年级期中)已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.【答案】证明过程见解析【解析】试题提示:由四边形ABCD为矩形,得到四个角为直角,再由EF与FD垂直,利用平角定义得到一对角互余,利用同角的余角相等得到一对角相等,利用ASA得到三角形BEF与三角形CFD全等,利用全等三角形对应边相等即可得证.试题解析:∵四边形ABCD是矩形,∴∠B=∠C=90°,∵EF⊥DF,∴∠EFD=90°,∴∠EFB+∠CFD=90°,∵∠EFB+∠BEF=90°,∴∠BEF=∠CFD,在△BEF和△CFD中,,∴△BEF≌△CFD(ASA),∴BF=CD.考点:(1)矩形的性质;(2)全等三角形的判定与性质31.(2020·广东揭阳市·九年级期末)已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图(1),连接AF、CE.①四边形AFCE是什么特殊四边形?说明理由;②求AF的长;(2)如图(2),动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A 停止,点Q自C→D→E→C停止.在运动过程中,已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.【答案】(1)①菱形,理由见解析;②AF=5;(2)43秒.【提示】(1)①先证明四边形ABCD为平行四边形,再根据对角线互相垂直平分的平行四边形是菱形作出判定;②根据勾股定理即可求AF的长;(2)分情况讨论可知,P点在BF上;Q点在ED上时;才能构成平行四边形,根据平行四边形的性质列出方程求解即可.【详解】(1)①∵四边形ABCD是矩形,∴AD∥BC,∴∠CAD=∠ACB,∠AEF=∠CFE.∵EF垂直平分AC,∴OA=OC.在△AOE 和△COF 中,CAD ACB AEF CFE A C O O ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AOE ≌△COF(AAS),∴OE =OF(AAS).∵EF ⊥AC ,∴四边形AFCE 为菱形.②设菱形的边长AF =CF =xcm ,则BF =(8﹣x)cm ,在Rt △ABF 中,AB =4cm ,由勾股定理,得16+(8﹣x)2=x 2,解得:x =5,∴AF =5.(2)由作图可以知道,P 点AF 上时,Q 点CD 上,此时A ,C ,P ,Q 四点不可能构成平行四边形;同理P 点AB 上时,Q 点DE 或CE 上,也不能构成平行四边形.∴只有当P 点在BF 上,Q 点在ED 上时,才能构成平行四边形,∴以A ,C ,P ,Q 四点为顶点的四边形是平行四边形时,∴PC =QA ,∵点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,∴PC =5t ,QA =12﹣4t ,∴5t =12﹣4t ,解得:t =43. ∴以A ,C ,P ,Q 四点为顶点的四边形是平行四边形时,t =43秒.【名师点拨】本题考查了矩形的性质的运用,菱形的判定及性质的运用,勾股定理的运用,平行四边形的判定及性质的运用,解答时提示清楚动点在不同的位置所构成的图形的形状是解答本题的关键.。

矩形的性质与判定练习题

矩形的性质与判定练习题

矩形的性质与判定练习题1.如图,矩形ABCD 中,AB=3,BC=3,AE ⊥BD 于E ,则EC=( )A . 27B . 25C . 215D . 221 2.下列说法:①矩形是轴对称图形,两条对角线所在的直线是它的对称轴;②两条对角线相等的四边形是矩形;③有两个角相等的平行四边形是矩形;④两条对角线相等且互相平分的四边形是矩形;⑤两条对角线互相垂直平分的四边形是矩形.其中,正确的有( )A .1个B .2个C .3个D .4个3.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,则EF 的最小值为( )A .2B .2.2C .2.4D .2.54.如图∠BOP=∠AOP=15°,PC ∥OB ,PD ⊥PB 于D ,PC=2,则PD 的长度为( )A .4 B .3 C .2 D .15.下列说法中,错误的是( )A .矩形的四个内角都相等 B .四个内角都相等的四边形是矩形 C .菱形的对角线互相垂直D .对角线互相垂直的四边形是菱形6.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为( )A . 45 B . 25 C . 35 D . 56 7.在梯形ABCD 中,AD ∥BC ,若CD=2,∠C=60°,∠B=90°,则AB=( )A .4 B .2 C . 3 D .38.如图,在△ABC 中,AB=6,AC=8,BC=10,P 为边BC上一动点(且点P 不与点B 、C 重合),PE ⊥AB 于E ,PF ⊥AC于F .则EF 的最小值为( )A .4B .4.8C .5.2D .69.如图是一把30°的三角尺,外边AC=8,内边与外边的距离都是2,那么EF 的长度是( )A .4 B .43 C .2.5 D .6-2310.下列命题错误的是( )A .平行四边形的对边相等 B .两组对边分别相等的四边形是平行四边形 C .对角线相等的四边形是矩形 D .矩形的对角线相等11.△ABC 中,AB=AC=5,BC=6,点D 是BC 上的一点,那么点D 到AB 与AC 的距离的和为( )A .5 B .6 C .4 D .524 12.(2013•河北区二模)已知下列命题中:(1)矩形是轴对称图形,且有两条对称轴;(2)两条对角线相等的四边形是矩形;(3)有两个角相等的平行四边形是矩形;(4)两条对角线相等且互相平分的四边形是矩形.其中正确的有( )A .4个 B .3个 C .2个 D .1个13.如图,在梯形ABCD 中,AD ∥BC ,∠BCD=90°,BC=2AD ,F 、E 分别是BA 、BC 的中点,则下列结论不正确的是( )A .△ABC 是等腰三角形 B .四边形EFAM 是菱形 C .S △BEF = 21S △ACD D .DE 平分∠CDF 14.(2012•冷水江市三模)下列关于矩形的说法中正确的是( )A .矩形的对角线互相垂直且平分 B .矩形的对角线相等且互相平分C .对角线相等的四边形是矩形D .对角线互相平分的四边形是矩形15.直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD=2.BC=DC=5,P 在BC 上运动,则PA+PD 取最小值时,△APD 边AP 上的高是多少( )A . 17174 B .17178 C . 17177 D . 81717 16.如图,四边形ABCD 中,AC=a ,BD=b ,且AC 丄BD ,顺次连接四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1,再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2…,如此进行下去,得到四边形A n B n C n D n .下列结论正确的有( )①四边形A 2B 2C 2D 2是矩形; ②四边形A 4B 4C 4D 4是菱形;③四边形A 5B 5C 5D 5的周长是4ba + ④四边形A n B n C n D n 的面积是12+n abA .①②B .②③C .②③④D .①②③④17.如图,△ABC 中,AC 的垂直平分线分别交AC 、AB 于点D 、F ,BE ⊥DF 交DF 的延长线于点E ,已知∠A=30°,BC=2,AF=BF ,则四边形BCDE 的面积是( )A .23B .33C .4D .4318..下列关于矩形的说法,正确的是( ) A .对角线相等的四边形是矩形 B .对角线互相平分的四边形是矩形 C .矩形的对角线互相垂直且平分 D .矩形的对角线相等且互相平分19.下列命题中,正确的是( )A .等腰梯形的对角线相等 B .矩形的对角线互相垂直平分 C .有两个角为直角的四边形是矩形 D .对角线互相垂直的四边形是菱形20.下列说法正确的是( )A .有两个角为直角的四边形是矩形 B .矩形的对角线互相垂直 C .等腰梯形的对角线相等 D .对角线互相垂直的四边形是菱形21.时钟的表面为圆形,在它的圆周上有12个用于表示整点的等分点.以这些等分点为顶点的矩形共有( )A .6个B .12个C .15个D .18个22.四边形ABCD 中,∠BAD=90°,DC ⊥AC ,AC 交BD 于点O ,AO=AB ,过B 作BN ∥CD 交AC 于E ,交AD 于N ,下列结论:①∠NBD=21 ∠ADC ;②CD+BE=AD ;③若AO=2CO ,则BE=CD ;④S △ABD =S △ADC ,其中正确的个数是( )A .1个B .2个C .3个D .4个23.如图,四边形ABCD 中,对角线AC ⊥BD ,且AC=8,BD=4,各边中点分别为A 1、B 1、C 1、D 1,顺次连接得到四边形A 1B 1C 1D 1,再取各边中点A 2、 B 2、C 2、D 2,顺次连接得到四边形A 2B 2C 2D 2,…,依此类推,这样得到四边形A n B n C n D n ,则四边形A n B n C n D n 的面积为( )A .n 216 B . 128-n C .421-n D .不确定 24.下列各组条件中,能判定四边形ABCD 为矩形的是( )A .∠A+∠B=90°B .AB ∥CD ,AB=CD ,AC=BDC .AB ∥CD ,AD=BC ,AC=BD D .AC=BD ,∠A=90°25.顺次连接四边形ABCD 的四条边的中点,得到一个矩形,那么( )A .AC=BDB .AC ⊥BD C .AB=CD D .AB ⊥CD26.在四边形ABCD 中,∠A=60°,AB ⊥BC ,CD ⊥AD ,AB=4cm ,CD=2cm ,求四边形ABCD 的周长( )A .10+23 B .8+25 C .8+35 D .10+2531.如图,在△ABC 中,AB=8,BC=6,AC=10,D 为边AC 上一动点,DE ⊥AB 于点E ,DF ⊥BC 于点F ,则EF 的最小值为( )A .2.4 B .3C .4.8D .532.等腰梯形的一内角为45°,高等于上底,下底为9,那么梯形的面积为( )A .27 B .18 C .36 D .2433.下列命题:(1)两条对角线相等的四边形是矩形(2)圆心角相等则所对的弦也相等.(3)两条对角线互相平分的四边形是平行四边形(4)垂直于弦的直径平分这条弦.其中真命题的个数是( ) A .3B .2C .1D .034.比较左、右两图的阴影部分面积,可以得到因式分解公式( )A .a 2-b 2=(a+b )(a-b )B .(a+b )2=a2+2ab+b2 C.(a-b)2=a2-2ab+b2 D.a2-ab=a(a-b)35.取四边形ABCD的各边中点E、F、G、H,依次连接EFGH得到四边形EFGH,现知四边形EFGH是菱形,则四边形ABCD的对角线()A.相等B.相等且平分C.垂直D.垂直且平分36.如图,矩形ABCD中,AB>AD,AN平分∠DAB,DM⊥AN于点M,CN⊥AN于点N,G为MN的中点,GH⊥MN交CD于点H,且DM=a,GH=b,则CN的值为(用含a、b的代数式表示)()A.2a+b B.a+2b C.a+b D.2a+2b37.下列说法正确的是()A.矩形的对角线互相平分B.平行四边形的对角线相等C.有一个角是直角的四边形是矩形D.对角线相等的四边形是矩形39.已知1个四边形的对角线互相垂直,且两条对角线的长度分别是8和10,那么顺次连接这个四边形的四边中点所得的四边形的面积是()A.40 B.202C.20 D.10240.在四边形ABCD中,∠A=60°,∠ABC=∠ADC=90°,BC=2,CD=11,自D作DH⊥AB 于H,则DH的长是()A.7.5 B.7 C.6.5 D.5.5。

矩形的性质专项练习30题(有答案)ok

矩形的性质专项练习30题(有答案)ok

矩形的性质专项练习30题(有答案)1.已知:如图,在矩形ABCD中,AF=DE,求证:BE=CF.2.如下图,已知矩形ABCD中,对角线AC、BD交于点O,作BE∥AC交DC的延长于点E.(1)请判断△DEB的形状,并说明理由;(2)若AD=8,DC=6,试△DEB的周长.3.如图,在矩形ABCD中,AB=12,AC=20,两条对角线相交于点O,以OB、OC为邻边作平行四边形OBB1C,求平行四边形OBB1C的面积.4.如图,已知在矩形ABCD中,AB=2,BC=4,四边形AFCE为菱形,求菱形的面积.5.如图,矩形ABCD中,对角线AC、BD相交于点O,∠AOB=60°,AB=2cm(1)求证:△AOB是等边三角形;(2)求矩形ABCD的面积.6.如图,四边形ABCD是矩形,△EAD是等腰直角三角形,△EBC是等边三角形.已知AE=DE=2,求AB的长.7.如图,已知在矩形ABCD中,E是AD上的一点,F是AB上的一点,EF⊥EC,且EF=EC,DE=3cm,BC=7cm.(1)求证:△AEF≌△DCE;(2)请你求出EF的长.8.如图,在矩形ABCD中,点E在AD上,CE平分∠BED.(1)△BEC是否为等腰三角形?为什么?(2)若AB=1,∠DCE=22.5°,求BC长.9.如图,ABCD是矩形纸片,翻折∠B、∠D,使BC、AD恰好落在AC上.设F、H分别是B、D落在AC上的点,E、G分别是折痕CE与AB、AG与CD的交点.(1)试说明四边形AECG是平行四边形;(2)若矩形的一边AB的长为3cm,当BC的长为多少时,四边形AECG是菱形?10.已知:如图,矩形ABCD的对角线AC的垂直平分线EF与AD、AC、BC分别交于点E、O、F.(1)求证:四边形AFCE是菱形;(2)若AB=5,BC=12,EF=6,求菱形AFCE的面积.11.如图所示,矩形ABCD的对角线AC、BD相交于点O,AE⊥BD,垂足为E,∠1=∠2,OB=6(1)求∠BOC的度数;(2)求△DOC的周长.12.如图,矩形ABCD的对角线交于点O,E是边AD的中点.(1)OE与AD垂直吗?说明理由;(2)若AC=10,OE=3,求AD的长度.13.如图,在矩形ABCD中,BM⊥AC,DN⊥AC,M、N是垂足.(1)求证:AN=CM;(2)如果AN=MN=2,求矩形ABCD的面积.14.如图,矩形ABCD中,角平分线AE交BC于点E,BE=5,CE=3.(1)求∠BAE的度数;(2)求△ADE的面积.15.如图,已知在矩形ABCD中,对角线AC、BD交于点O,CE=AE,F是AE的中点,AB=4,BC=8.求线段OF的长.16.如图,矩形纸片ABCD中,AB=8,AD=10,沿AE对折,点D恰好落在BC边上的F点处.17.如图,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.(1)猜想线段GF与GC有何数量关系?并证明你的结论;(2)若AB=3,AD=4,求线段GC的长.18.已知:如图,矩形ABCD的对角线AC和BD相交于点O,AC=2AB.求证:∠AOD=120°.19.在矩形ABCD中,对角线AC,BD交于点O,AB=6cm,AC=8cm.(1)求BC的长;(2)画出△AOB沿射线AD方向平移所得的△DEC;(3)连接OE,写出OE与DC的关系?说明理由.20.如图,矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86cm,对角线长是13cm,那么矩形的周长是多少?21.如图,矩形ABCD纸片,E是AB上的一点,且BE:EA=5:3,CE=15,把△BCE沿折痕EC向上翻折,若点B恰好与AD边上的点F重合,求AB、BC的长.22.已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD上,AH=2,连接CF.(1)当四边形EFGH为正方形时,求DG的长;(2)当△FCG的面积为1时,求DG的长;(3)当△FCG的面积最小时,求DG的长.23.设E,F分别在矩形ABCD边BC和CD上,△ABE、△ECF、△FDA的面积分别是a,b,c.求△AEF的面积S.24.如图,过矩形ABCD对角线AC的中点O作EF⊥AC,分别交AB、DC于E、F,点G为AE的中点,若∠AOG=30°,求证:OG=DC.25.如图,在矩形ABCD中,AB=6,AD=4,E是AD边上一点(点E与A、D不重合).BE的垂直平分线交AB 于M,交DC于N.(1)设AE=x,试把AM用含x的代数式表示出来;(2)设AE=x,四边形ADNM的面积为S.写出S关于x的函数关系式.(1)求∠COE的度数.(2)若AB=4,求OE的长.27.如图,在矩形ABCD中,AB=b,AD=a,过D和B作DE⊥AC,BF⊥AC,且AE=EF,试求a与b之间的关系.28.如图,设在矩形ABCD中,点O为矩形对角线的交点,∠BAD的平分线AE交BC于点E,交OB于点F,已知AD=3,AB=.(1)求证:△AOB为等边三角形;(2)求BF的长.29.如图,在等腰梯形ABCD中,AD∥BC,G是边AB上的一点,过点G作GE∥DC交BC边于点E,F是EC 的中点,连接GF并延长交DC的延长线于点H.求证:BG=CH.30.已知,矩形ABCD中,延长BC至E,使BE=BD,F为DE的中点,连接AF、CF.求证:(1)∠ADF=∠BCF;(2)AF⊥CF.参考答案:1.连接BF 、CE ,已知矩形ABCD ,∴AB=CD ,∠BAF=∠CDE=90°, 又AF=DE ,∴△AFB ≌△DEC , ∴BF=CE ,∠AFB=∠DEC , ∵矩形ABCD ,AD ∥BC ,∴∠CBF=∠AFB ,∠BCE=∠DEC , ∴∠CBF=∠BCE , BC=BC ,∴△BCF ≌△CBE , ∴BE=CF2.(1)△DEB 的形状为等腰三角形. 理由:∵矩形ABCD , ∴DC ∥AB ,AC=BD . ∵BE ∥AC ,∴四边形ABEC 为平行四边形. ∴AC=BE . ∴BE=BD .∴△DEB 的形状为等腰三角形. (2)∵AD=8,DC=6, ∴AC==10.∴BD=BE=10.∵BC ⊥DE , ∴CD=DE=6.∴△DEB 的周长=2(CD+BD )=2(6+10)=32 3.在Rt △ABC中,,∴,∵矩形ABCD 对角线相交于点O , ∴,∵四边形OBB 1C 是平行四边形, ∴.4.∵四边形AFCE 为菱形, ∴AF=CF=EC=AE ,∵四边形ABCD 是矩形, ∴∠B=90°,设AE=x ,则BE=BC ﹣EC=4﹣x ,∴x=,∴S 菱形AFCE =EC •AB=×2=5.∴菱形的面积为55.1)证明:在矩形ABCD 中,AO=BO , 又∠AOB=60°,∴△AOB 是等边三角形.(2)解:∵△AOB 是等边三角形 ∴OA=OB=AB=2(cm ), ∴BD=2OB=4cm , 在Rt △ABD ,(cm )∴S 矩形ABCD =2×2=4(cm 2),答:矩形ABCD 的面积是4cm 2.6.过点E 作EF ⊥BC ,交AD 于G ,垂足为F . ∵四边形ABCD 是矩形, ∴AD ∥BC , ∴EG ⊥AD .(1分)∵△EAC 是等腰直角三角形,EA=ED=2, ∴AG=GD ,AD=.∴EG==.(1分)∵EB=EC=BC=AD=2,∴BF=,(1分)∴EF=.(1分) ∴AB=GF=EF ﹣EG=7. (1)证明:在矩形ABCD 中,∠A=∠D=90°,∴∠ECD+∠CED=90°, ∵EF ⊥EC ,∴∠AEF+∠CED=90°, ∴∠ECD=∠AEF , 在△AEF 与△DCE 中,,∴△AEF ≌△DCE (AAS );∴AF=DE,∵DE=3cm,BC=7cm,∴AF=3cm,AE=AD﹣DE=BC﹣DE=7﹣3=4cm,在Rt△AEF中,EF===5.故答案为:58.(1)△BEC是等腰三角形,理由是:∵矩形ABCD,∴AD∥BC,∴∠DEC=∠ECB,∵CE平分∠BED,∴∠DEC=∠CEB,∴∠CEB=∠ECB,∴BE=BC,∴△BEC是等腰三角形.(2)解:∵矩形ABCD,∴∠A=∠D=90°,∵∠DCE=22.5°,∴∠DEB=2×(90°﹣22.5°)=135°,∴∠AEB=180°﹣∠DEB=45°,∴∠ABE=∠AEB=45°,∴AE=AB=1,由勾股定理得:BE=BC==,答:BC 的长是9.(1)由题意,得∠GAH=∠DAC,∠ECF=∠BCA,∵四边形ABCD为矩形,∴AD∥BC,∴∠DAC=∠BCA,∴∠GAH=∠ECF,∴AG∥CE,又∵AE∥CG∴四边形AECG是平行四边形;(2)∵四边形AECG是菱形,∴F、H重合,∴AC=2BC,在Rt△ABC中,设BC=x,则AC=2x,在Rt△ABC中AC2=AB2+BC2,即(2x)2=32+x2,解得x=,即线段BC 的长为cm.10.(1)∵四边形ABCD是矩形,∴AE∥FC,∴∠EAO=∠FCO,∵EF垂直平分AC,∴AO=CO,FE⊥AC,又∠AOE=∠COF,∴△AOE≌△COF,又∵FE⊥AC,∴平行四边形AFCE为菱形;(2)在Rt△ABC中,由AB=5,BC=12,根据勾股定理得:AC===13,又EF=6,∴菱形AFCE的面积S=AC•EF=×13×6=3911.(1)∵四边形ABCD为矩形,AE⊥BD,∴∠1+∠ABD=∠ADB+∠ABD=∠2+∠ABD=90°,∴∠ACB=∠ADB=∠2=∠1=30°,又AO=BO,∴△AOB为等边三角形,∴∠BOC=120°;(2)由(1)知,△DOC≌△AOB,∴△DOC为等边三角形,∴OD=OC=CD=OB=6,∴△DOC的周长=3×6=1812.(1)解:OE⊥AD,理由:∵四边形ABCD是矩形,∴AC=BD,AO=OC,DO=BO,∴AO=DO,又∵点E是AD的中点,∴OE⊥AD.(2)解:由(1)知OE⊥AD,AO=5,在Rt△AOE中,由勾股定理得:AE===4,∵E是边AD的中点,∴AD=2AE=8.答:AD的长度是813.(1)证明:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∴∠DAC=∠BCA,又∵DN⊥AC,BM⊥AC,∴∠DNA=∠BMC,∴△DAN≌△BCM,∴AN=CM.(2)连接BD交AC于点O.∵AN=NM=2,∴AC=BD=6,又∵四边形ABCD是矩形,∴DN=,∴矩形ABCD的面积=,答:矩形ABCD的面积是12.14.(1)∵四边形ABCD是矩形,∴∠BAD=90°,∵AE平分∠BAD,∴∠BAE=∠BAD=×90°=45°.(2)∵四边形ABCD是矩形,∴AD∥BC,∠BAD=∠B=90°,∴∠DAE=∠AEB∵∠BAE=∠DAE=45°,∴∠AEB=45°,∴∠BAE=∠AEB,∴AB=BE=5,∴BC=3+5=8=AD,∴S△ADE =AD×AB=×8×5=2015.∵四边形ABCD是矩形,∴∠ADC=90°,AD=BC=8,CD=AB=4.(1分)设DE=x,那么AE=CE=8﹣x,(1分)∵在Rt△DEC中,CE2=DE2+CD2,(1分)∴(8﹣x)2=x2+42,(1分)∴x=3.(1分)∴CE=8﹣x=5.(1分)∵四边形ABCD是矩形,∴O为AC中点.(1分)又∵F是AE 的中点,∴.16.(1)设BF=x,CE=y,则CF=10﹣x,EF=DE=8﹣y,在Rt△ABF中根据勾股定理可得x2+82=102,在Rt△CEF中根据勾股定理可得y2+(10﹣x)2=(8﹣y)2,解得x=6,y=3,即BF=6,CE=3;(2)△ABF 的面积为×8×6=24,△ADE 的面积为×10×5=25,∴四边形AFCE的面积为8×10﹣24﹣25=31,答:BF的长为6,CE的长度为3,四边形AFCE的面积为31∵E是BC的中点,∴BE=EC,∵△ABE沿AE折叠后得到△AFE,∴BE=EF,∴EF=EC,∵在△GFE和△GCE中,,∴△GFE≌△GCE(HL),∴GF=GC;(2)设GC=x,则AG=3+x,DG=3﹣x,在Rt△ADG中,42+(3﹣x)2=(3+x)2,解得x=18.∵四边形ABCD是矩形,∴∠ABC=90°(矩形的四个角都是直角),∵在Rt△ABC中,AC=2AB,∴∠ACB=30°,∵四边形ABCD是矩形,∴OB=OD=BD,OC=OA=AC,AC=BD,∴BO=CO,∴∠OBC=∠OCB=30°,∵∠OBC+∠OCB+∠BOC=180°,∴∠BOC=120°,∴∠AOD=∠BOC=120°19.(1)∵矩形ABCD,∴∠CBA=90°,AB=6cm,AC=8cm,由勾股定理:BC===2(cm),答:BC的长是2cm.(2)解:如图所示(3)答:OE与DC的关系是互相垂直平分.理由是:∵矩形ABCD,∴OA=OC,OD=OB,AC=BD,∴OD=OC=DE=CE,∴四边形ODEC是菱形,∴OE⊥CD,OG=EG,CG=DG,即OE与DC的关系是互相垂直平分20.∵四边形ABCD是矩形,∴AC=BD=13cm,∵△AOB、△BOC、△COD和△AOD四个三角形的周长和为86cm,∴OA+OB+AB+OB+OC+BC+OC+OD+DC+OD+OA+A D=86cm,∴AB+BC+CD+DA=86﹣2(AC+BD)=86﹣4×13=34(cm).答:矩形ABCD的周长等于34cm.21.∵四边形ABCD是矩形∴∠A=∠B=∠D=90°,BC=AD,AB=CD,∴∠AFE+∠AEF=90°(2分)∵F在AD上,∠EFC=90°,∴∠AFE+∠DFC=90°,∴∠AEF=∠DFC,∴△AEF∽△DFC,(3分)∴.(4分)∵BE:EA=5:3设BE=5k,AE=3k∴AB=DC=8k,由勾股定理得:AF=4k ,∴∴DF=6k∴BC=AD=10k(5分)在△EBC中,根据勾股定理得BE2+BC2=EC2∵CE=15,BE=5k,BC=10k∴∴k=3(6分)∴AB=8k=24,BC=10k=3022.∴HG=HE,∵∠DHG+∠AHE=90°,∠DHG+∠DGH=90°,∴∠DGH=∠AHE,∴△AHE≌△DGH(AAS)∴DG=AH=2(2)作FM⊥DC,M为垂足,连接GE,∵AB∥CD,∴∠AEG=∠MGE∵HE∥GF,∴∠HEG=∠FGE,∴∠AEH=∠MGF.在△AHE和△MFG中,∠A=∠M=90°,HE=FG,∴△AHE≌△MFG.∴FM=HA=2,即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2.因此S△FCG =GC=1,解得GC=1,DG=6.(3)设DG=x,则由第(2)小题得,S△FCG=7﹣x,又在△AHE中,AE≤AB=7,∴HE2≤53,∴x2+16≤53,x ≤,∴S△FCG 的最小值为,此时DG=23.设AB=x1,BE=x2,EC=x3,CF=x4,则FD=x1﹣x4,AD=x2+x3,由题意得x1•x2=2a,x3•x4=2b,(x1﹣x4)×(x2+x3)=2c,即x2•x3﹣x2•x4=2(b+c﹣a),又x1x2x3x4=4ab代入x2x4=x1x3﹣2(b+c﹣a)得关于x1x3的一元二次方程,即(x1x3)2﹣2(b+c﹣a)x1x3﹣4ab=0解之得x1x3=(b+c﹣a)+又S矩形=x1(x2+x3)=2a+(b+c﹣a)+=(a+b+c)+∴S△AEF=S矩形﹣S△ABE﹣S△CEF﹣S△ADF=(a+b+c)+﹣a﹣b﹣c=∴△AOE是直角三角形∴OG=AG=GE,∴∠BAC=∠AOG=30°,∠AEO=60°,∠GOE=∠AOE ﹣∠AOG=60°,∴△OEG是正三角形,∴OG=OE=GE,∴∠ABO=∠BAC=30°,∴∠AOB=180°﹣30°﹣30°=120°,∴∠BOE=∠AOB﹣90°=30°,∴△OEB是等腰三角形,∴OE=EB,∴OG=AG=GE=EB=OE,∴OG=AB=DC.25.(1)连接ME.∵MN是BE的垂直平分线,∴BM=ME=6﹣AM,在△AME中,∠A=90°,由勾股定理得:AM2+AE2=ME2,AM2+x2=(6﹣AM)2,AM=3﹣x.(2)连接ME,NE,NB,设AM=a,DN=b,NC=6﹣b,因MN垂直平分BE,则ME=MB=6﹣a,NE=NB,所以由勾股定理得AM2+AE2=ME2,DN2+DE2=NE2=BN2=BC2+CN2即a2+x2=(6﹣a)2,b2+(4﹣x)2=42+(6﹣b)2,解得a=3﹣x2,b=x2+x+3,所以四边形ADNM的面积为S=×(a+b)×4=2x+12,即S关于x的函数关系为S=2x+12(0<x<2),答:S关于x的函数关系式是S=2x+1226.(1)∵四边形ABCD是矩形,DE平分∠ADC,∴∠CDE=∠CED=45°;∴EC=DC,又∵∠ADB=30°,∴∠CDO=60°;又∵因为矩形的对角线互相平分,∴OD=OC;∴△OCD是等边三角形;∴∠DCO=60°,∠OCB=90°﹣∠DCO=30°;∵DE平分∠ADC,∠ECD=90°,∠CDE=∠CED=45°,∴CD=CE=CO,∴∠COE=∠CEO;∴∠COE=(180°﹣30°)÷2=75°;(2)过O作OF⊥BC于F,∵AO=CO,∴BF=CF,∴OF=AB=2,∵∠ADB=30°,AB=4,∴AC=8,∴BC==4,∴BF=CF=2,∵CD=CE=4,∴EF=CE﹣CF=4﹣2,在Rt△OFE中,OE==4.27.:a与b的关系是b=a,理由是:∵矩形ABCD,∴AD=BC,AD∥BC,∴∠DAC=∠BCA,∵DE⊥AC,BF⊥AC,∴∠AED=∠CFB=90°,在△ADE和△CBF中,∴△ADE≌△CBF,∴AE=CF,∵AE=EF,∴AE=EF=CF,∵矩形ABCD,∴∠ABC=90°=∠BFC,∴∠BCF+∠CBF=90°,∠ABF+∠CBF=90°,∴∠ABF=∠BCF,∵∠AFB=∠CFB=90°,∴△ABF∽△BCF,∴==,矩形的性质专项练习--11设AE=EF=CF=c,则BF2=AF•CF=2c2,∴BF=c,∵AB=b,BC=a,∴==,∴b=a,即a与b之间的关系是b= a28.(1)证明:在Rt△ABD中,BD===2,∵矩形ABCD,∴OA=OB=BD=,∴△AOB为等边三角形;(2)解:∵AE是∠BAD的平分线,∴∠BAE=45°,∴△ABE是等腰直角三角形,△BEO是等腰三角形,又∠EBO=90°﹣60°=30°,∴∠BOE=(180°﹣30°)÷2=75°,在△BOC中∠COE=180°﹣30°×2﹣75°=45°,所以,在△BEF和△COE 中,∴△BEF≌△COE(ASA),∴BF=CE,又CE=BC﹣BE=3﹣,∴BF=3﹣.29.在△GEF和△HCF中,∵GE∥DC,∴∠GEF=∠HCF,∵F是EC的中点,∴FE=FC,而∠GFE=∠CFH(对顶角相等),∴△GEF≌△HCF,∴GE=HC,四边形ABCD为等腰梯形,∴∠B=∠DCB,∵GE∥DC,∴∠GEB=∠DCB,(2分)∴∠GEB=∠B,∴GB=GE=HC,∴BG=CH30.(1)在矩形ABCD中,∵AD=BC,∠ADC=∠BCD=90°,∴∠DCE=90°,在Rt△DCE中,∵F为DE中点,∴DF=CF,∴∠FDC=∠DCF,∴∠ADC+∠CDF=∠BCD+∠DCF,即∠ADF=∠BCF;(2)连接BF,∵BE=BD,F为DE的中点,∴BF⊥DE,∴∠BFD=90°,即∠BFA+∠AFD=90°,在△AFD和△BFC 中,∴△ADF≌△BCF,∴∠AFD=∠BFC,∵∠AFD+∠BFA=90°,∴∠BFC+∠BFA=90°,即∠AFC=90°,∴AF⊥FC.矩形的性质专项练习--12。

矩形的性质与判定经典例题练习

矩形的性质与判定经典例题练习

矩 形第一课时1、矩形的定义2、矩形的性质 1)边 2)角 3)对角线4)对称性3.已知矩形ABCD 中,S 矩形ABCD =24 cm 2,若BC =6 cm ,则对角线AC 的长是________ cm.练一练: 1、矩形的两条对角线把矩形分成 个等腰三角形.2、矩形具有而平行四边形不具有的性质是( )A .对角线互相平分B .两组对边分别相等C .相邻两角互补D .对角线相等3.已知E 是矩形ABCD 的边BC 的中点,那么S △AED =________S 矩形ABCD ( )A.21B.41C.51D.61 4.在矩形ABCD 的边AB 上有一点E ,且CE =DE ,若AB =2AD ,则∠ADE 等于( )A.45°B.30°C.60°D.75°【探究三】直角三角形斜边上的中线性质1、根据矩形对角线性质可得到直角三角形斜边上的中线性质:练一练:1、已知直角三角形的周长为14,斜边上的中线长为3.则直角三角形的面积为( ) A .5B .6C .7D .82、如果一个直角三角形斜边上的中线与斜边上的高所夹的锐角为34°,那么这个直角三角形的较小的内角是 度.精讲精练例1、如图,在矩形ABCD 中,AC 、BD 相较于点O ,AE 平分BAD ∠交BC 于E ,若15CAE ∠=︒,求BOE ∠的度数。

变式:已知矩形ABCD 中,如图2,对角线AC 、BD 相交于O ,AE ⊥BD 于E ,若∠DAE ∶∠BAE =3∶1,则∠EAC =________.例题2、如图,已知BD 、CE 是ABC 的两条高,M 、N 分别是BC 、DE 的中点,MN 与DE 有怎样的位置关系。

请证明。

例题3.如图,周长为68的矩形ABCD 被分成7个全等的矩形,则矩形ABCD 的面积为( )A.98B.196C.280D.284三、用中学习: 1.(2013•老河口市模拟)由10块相同的长方形地砖拼成面积为1.6m 2的矩形ABCD (如图),则矩形ABCD 的周长为多少?2.矩形的一内角平分线把矩形的一条边分成3和5两部分,则该矩形的周长是( )A.16B.22C.26D.22或263.矩形的两条对角线的夹角是60°,一条对角线与矩形短边的和为15,那么矩形对角线的长为_______,短边长为_______.O N M D CBA 4.矩形ABCD 的周长是56 cm ,它的两条对角线相交于O ,△AOB 的周长比△BOC 的周长少 4 cm ,则AB =_______,BC =_______.5、 矩形是轴对称图形,它有______条对称轴.6、在矩形ABCD 中,对角线AC ,BD 相交于点O ,若对角线AC=10cm ,•边BC=•8cm ,•则△ABO 的周长为________.7、如图2,根据实际需要,要在矩形实验田里修一条公路(•小路任何地方水平宽度都相等),则剩余实验田的面积为________.(1) (2)8、在矩形ABCD 中, 对角线交于O 点,AB=0.6, BC=0.8, 那么△AOB 的面积为_______________; 周长为_______9、一个矩形周长是12cm, 对角线长是5cm, 那么它的面积为__________________.10.在△ABC 中, AM 是中线, ∠BAC=90︒, AB=6cm, AC=8cm, 那么AM 的长为_____________________.11.在矩形ABCD 中, AB=3, BC=4, P 为形内一点, 那么PA+PB+PC+PD 的最小值为______12.如图, 矩形ABCD 对角线交于O 点, 且满足AM=BN, 给出以下结论: ①MN //DC; ②∠DMN=∠MNC; ③OMD ONC S S =. 其中正确的是______________.13、 已知,如图,矩形ABCD 的对角线AC ,BD 相交于点O ,E ,F 分别是OA ,OB 的中点.(1)求证:△ADE ≌△BCF ;(2)若AD=4cm ,AB=8cm ,求OF 的长.14、如图,在矩形ABCD 中,已知AB=8cm ,BC=10cm ,折叠矩形的一边AD ,使点D 落在BC 边的中点F 处,折痕为AE ,求CE 的长.矩形的判定典型例题及练习归纳矩形的三种判定方法:精讲精练例1、已知:如图,ABCD 的四个内角的平分线分别相交于点E 、F 、G 、H 。

人教版九年级上册数学矩形的性质专项练习题

人教版九年级上册数学矩形的性质专项练习题

1.2矩形的性质与判定第1课时矩形的性质1.我们把__________叫做矩形.2.矩形是特殊的____________,所以它不但具有一般________的性质,而且还具有特殊的性质:(1)_________;(2)___________.3.矩形既是______图形,又是________图形,它有_______条对称轴.4.如图1所示,矩形ABCD的两条对角线相交于点O,图中有_______个直角三角形,•有____个等腰三角形.5.矩形的两条邻边分别是5、2,则它的一条对角线的长是______.6.如图所示,矩形ABCD的两条对角线相交于点O,若∠AOD=60°,OB=•4,•则DC=________.7.矩形具有而一般平行四边形不具有的性质是()A.对角线相等 B.对角相等 C.对边相等 D.对角线互相平分8.若矩形的对角线长为4cm,一条边长为2cm,则此矩形的面积为()A.83cm2B.43cm2C.23c m2D.8cm29.如图2所示,在矩形ABCD中,∠DBC=29°,将矩形沿直线BD折叠,顶点C落在点E处,则∠ABE的度数是()A.29° B.32° C.22° D.61°10.矩形ABCD的周长为56,对角线AC,BD交于点O,△ABO与△BC O的周长差为4,•则AB的长是()A.12 B.22 C.16 D.2611.如图3所示,在矩形ABCD中,E是BC的中点,AE=AD=2,则AC的长是() A.5 B.4 C. 23 D.712.如图所示,在矩形ABCD中,点E在DC上,AE=2BC,且A E=AB,求∠CBE的度数.13.如图所示,在矩形ABCD中,对角线AC,BD交于点O,过顶点C作CE∥BD,交A•孤延长线于点E,求证:AC=CE.14.如图所示,在矩形ABCD中,AB=8,AD=10,将矩形沿直线AE折叠,顶点D恰好落在BC边上的点F处,求CE的长.15.如图所示,在矩形ABCD中,AB=5cm,BC=4cm,动点P以1cm/s的速度从A点出发,•经点D,C到点B,设△ABP的面积为s(cm2),点P运动的时间为t(s).(1)求当点P在线段AD上时,s与t之间的函数关系式;(2)求当点P在线段BC上时,s与t之间的函数关系式;(3)在同一坐标系中画出点P在整个运动过程中s与t之间函数关系的图像.答案:1.有一个角是直角的平行四边形2.平行四边形,平行四边形(1)矩形的四个角都是直角(2)矩形的对角线相等3.中心对称,轴对称,2 4.4,4 5.3 6.437.A 8.B 9.B 10.C 11.D 12.15°13.证四边形BDCE是平行四边形,得CE=•BD=AC14. 3 15.(1)s=52t (2)s=-52t+35 (3)略1.3矩形的性质与判定第1课时矩形的性质1. 矩形具有而一般平行四边形不具有的性质是()A. 对边相互平行B. 对角线相等C. 对角线相互平分D. 对角相等2. 在下列图形性质中,矩形不一定具有的是()A.对角线互相平分且相等 B.四个角相等ODC B AONM DCBA PHDCBAE DCBAO EDCB AC .是轴对称图形D .对角线互相垂直3. 在矩形ABCD 中, 对角线交于O 点,AB=6, BC=8, 那么△AOB 的面积为_______________; 周长为_______________.4. 一个矩形周长是16cm, 对角线长是7cm, 那么它的面积为__________________.5. 如图, 矩形ABCD 的对角线交于O 点, 若, 那么∠BDC 的大小为________________.6. 如图, 矩形ABCD 对角线交于O 点, 且满足AM=BN, 给出以下结论: ①MN //DC; ②∠DMN=∠MNC; ③OMDONCS S=. 其中正确的是______________.7. 如图, 在矩形ABCD 中, AE 平分∠BAD, ∠CAE=15︒, 那么∠BOE 的度数为__________________.8. 在矩形ABCD 中, AB=3, BC=4, P 为形内一点, 那么PA+PB+PC+PD 的最小值为__________________.9. 在△ABC 中, AM 是中线, ∠BAC=90︒, AB=6cm, AC=8cm, 那么AM 的长为_______.10. 如图, 在矩形ABCD 中,DE ⊥AC 于点E, BC=那么CE=________;BE=_________11. 如图, 在矩形ABCD 中, AP=DC, PH=PC, (1)求证:△ABH ≌△PAD ; (2)求证: PB 平分∠CBH.FED C B AFED CB A12. 如图, 在矩形ABCD 中, △CEF 为等腰直角三角形, (1)求证:AE=AB ;(2)若矩形ABCD 的周长为16cm, DE=2cm,求△CEF 的面积.13. 如图, 在矩形ABCD 中, AD=12, AB=7, DF 平分∠ADC, AF ⊥EF, (1)求证:AF=EF ; (2)求EF 长;14. 如图,在矩形ABCD 中,AB=3,BC=4,如果将该矩形沿对角线BD 重叠,(1)求证:△ABE ≌△C 1DE (2)求图中阴影部分的面积.CCDAB★15. 如图矩形ABCD 中,延长CB 到E ,使CE AC =,F 是AE 中点. 求证:BF DF ⊥.1.4 矩形的性质与判定第1课时 矩形的性质1.矩形具备而平行四边形不具有的性质是( )A .对角线互相平分B .邻角互补C .对角相等D .对角线相等 2.在下列图形性质中,矩形不一定具有的是( )A .对角线互相平分且相等B .四个角相等C .既是轴对称图形,又是中心对称图形D .对角线互相垂直平分3、如左下图,在矩形ABCD 中,两条对角线AC 和BD 相交于点O ,AB =OA =4 cm ,求BD 与AD 的长.4、如右上图,矩形ABCD 的两条对角线相交于点O ,∠AOD =120°,AB =2,则矩形的对角线AC 的长是______.5、已知:△ABC 的两条高为BE 和CF ,点M 为BC 的中点. 求证:ME =MF6、如左下图,矩形ABCD 中,AC 与BD 相交于一点O ,AE 平分∠BAD ,若∠EAO =15°,求∠BOE 的度数.ABCEFD7、把一张长方形的纸片按右上图所示的方式折叠,EM 、FM 为折痕,折叠后的C 点落在B ′M 或B ′M 的延长线上,那么∠EMF 的读度为( )A .85°B .90°C .95°D .100°8、如右图所示,把两个大小完全一样的矩形拼成“L ”形图案,则∠FAC=_______,∠FCA=________.9、如右图,在矩形ABCD 中,EF ∥AB ,GH ∥BC ,EF 、GH 的交点P 在BD 上,图中面积相等 的四边形有( )A .3对B .4对C .5对D .6对10、如图4,矩形ABCD 的周长为68,它被分成7个全等的矩形,则矩形ABCD•的面积为( )A .98B .196C .280D .28411、如左下图所示,矩形ABCD 中,M 是BC 的中点,且MA ⊥MD ,若矩形的周长为36 cm ,求此矩形的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩形的性质练习
♦随堂检测
1矩形是轴对称图形,它有________ 对称轴.
2、在矩形ABC冲,对角线AC,BD相交于点0,若对角线AC=10cm ?边BC=?8cm ?则厶AB0
的周长为________ .
3、如图1周长为68的矩形ABCD被分成7个全等的矩形,则矩形ABCD勺面积为().
A.98
B.196
C.280
D.284
4、如图2,根据实际需要,要在矩形实验田里修一条公路(?小路任何地方水平宽度都相等)则剩余实验田的面积为_____________ .
5、如图3,在矩形ABCD中, M是BC的中点,且MALMD ?若矩形ABCD的周长为48cm, ?则
矩形ABCD勺面积为 ______ cm2
6、如图,在矩形ABCD中,已知AB=8cm BC=10cm折叠矩形的一边AD使点D落在BC边的F处,折痕为AE,求CE的长.
♦典例分析
如图,在矩形ABCD中,对角线AC BD交于点O, DE平分/ ADC交BC于E,Z BDE=15,求 / COC与/ COE勺度数.
分析:要求/ COD^Z COE勺度数,根据矩形的性质及已知条件可知△ COD是等边三角形,△
1
CED是等腰直角三角形,故CE=CO 贝UZ COE=2 (180 ° - Z OCE).
•拓展提高
1、矩形的两条对角线的夹角为60°, 一条对角线与短边的和为12,则对角线长为_,短边长为 .
2、在矩形ABC冲,AC与BD相交于点O,作AE L BD垂足为E. ED=3EB贝UZ AOB得度数为
)A.30 ° B.45 ° C.60 ° D.90 °
3、矩形中,对角线把矩形的一个直角分成 1 : 2两部分,则矩形对角线所夹的锐角为()
A.30 °
B.45 °
C.60 °
D. 不确定
4、如图所示,矩形ABCD中, AB=8 BC=6 E、F是AC的三等分点,则△ BEF的面积为()
(2) (3)
5
、已知,如图,矩形 ABCD 的对角线AC BD 相交于点Q E , F 分别是OA 0B 的中点.
(1)求证:△ ADE^A BCF (2)若 AD=4cr p AB=8cr p 求 QF 的长.
6、在矩形ABCD 中/ BAD 的平分线交BC 于点E, Q 为对角线交点,且/ CAE=15 .
(1)A AOB 为等边三角形,说明理由;
(2)求/ AOE 的度数.
体验中考
1、如图,矩形ABCD 中,AB=3, BC =5.过对角线交点0作0E — AC 交AD 于E,则AE 的长 是( )
A. 1.6 B . 2.5 C . 3 D . 3.4
A.8 D.5
B.6
C.4 第电题
第Bffi
2、将矩形纸片ABC 敢如图所示的方式折叠,AE EF 为折痕,/ BAE= 30°,AB^ ' 3,折叠 后,点C 落在AD 边上的C1处,并且点B 落在EC1边上的B1处.则BC 的长为(
).
A. 3
B.2
C.3
D. 23。

相关文档
最新文档