动量守恒定律、碰撞、反冲现象知识点总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动量守恒定律、碰撞、反冲现象知识点归纳总结
一.知识总结归纳
1. 动量守恒定律:研究的对象是两个或两个以上物体组成的系统,而满足动量守恒的物理过程常常是物体间相互作用的短暂时间内发生的。
动量守恒定律的条件:
(1)理想守恒:系统不受外力或所受外力合力为零(不管物体间是否相互作用),此时合外力冲量为零,故系统动量守恒。当系统存在相互作用的内力时,由牛顿第三定律得知,相互作用的内力产生的冲量,大小相等,方向相反,使得系统内相互作用的物体动量改变量大小相等,方向相反,系统总动量保持不变。即内力只能改变系统内各物体的动量,而不能改变整个系统的总动量。
(2)近似守恒:当外力为有限量,且作用时间极短,外力的冲量近似为零,或者说外力的冲量比内力冲量小得多,可以近似认为动量守恒。
(3)单方向守恒:如果系统所受外力的矢量和不为零,而外力在某方向上分力的和为零,则系统在该方向上动量守恒。
2.几种常见表述及表达式
;
(1)p=p′(系统相互作用前的总动量p等于相互作用后的总动量p′).
(2)Δp=0(系统总动量不变).
(3)Δp1=-Δp2(相互作用的两物体组成的系统,两物体动量的增量大小相等、方向相反).
其中(1)的形式最常用,具体到实际应用时又有以下三种常见形式:
①m1v1+m2v2=m1v1′+m2v2′(适用于作用前后都运动的两个物体组成的系统).
②0=m1v1+m2v2(适用于原来静止的两个物体组成的系统,比如爆炸、反冲等,两者速率与各自质量成反
比).
③m1v1+m2v2=(m1+m2)v(适用于两物体作用后结合为一体或具有相同速度的情况,如完全非弹性碰撞).
[
3.理解动量守恒定律:矢量性、瞬时性、相对性、普适性.
4.应用动量守恒定律解题的步骤:
(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程);
(2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒);
(3)规定正方向,确定初、末状态动量;
(4)由动量守恒定律列出方程;
(5)代入数据,求出结果,必要时讨论说明.
|
碰撞现象
完全非弹性碰撞动量守恒,机械能损失最大
#
碰撞前后动量是否共线
对心碰撞(正碰)碰撞前后速度共线
非对心碰撞(斜碰)
碰撞前后速度不共线
2.弹性碰撞的规律
:
两球发生弹性碰撞时满足动量守恒定律和机械能守恒定律.
在光滑的水平面上,有质量分别为m1、m2的钢球沿一条直线同向运动,m1、m2的速度分别是v1、v2,(v1、>v2)m1与
m2发生弹性正碰。则由动量守恒定律和动能守恒可以列出以下方程
利用(3)式和(4)式,可讨论以下两种特殊情况:
A.如果两物体质量相等,即m1=m2,则可得
B.如果一个物体是静止的,例如质量为m2的物体在碰撞前是静止的,即v2=0,则可得
《
这里又可有以下几种情况:
a.
b.
质量较大的物体向前运动。
c.
d.以原速率反弹回来,而质量
很大的物体几乎不动。例如橡皮球与墙壁的碰撞。
e.速度几乎不变,而质量很小的物体获得的速度是原来运动物体速度的2倍,这是原来静止的物体通过碰撞可以获得的最大速度,例如铅球碰乒乓球。
^
3.一般碰撞现象满足的规律
(1)动量守恒定律:系统的总动量或某一方向上的总动量保持不变
(2)能量守恒:系统的总动能不会增加(特殊碰撞除外)
(3)速度要合理:
①若碰前两物体同向运动,则有v后>v前,碰后原来在前的物体速度一定增大,若碰后两物体同向运动,则应有v前′≥v后′.
②碰前两物体相向运动,碰后两物体的运动方向不可能都不改变.
5. 反冲现象指在系统内力作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反的方向发生动量变化的现象。显然在反冲运动过程中,系统不受外力作用或外力远远小于系统内物体间的相互作用力,所以在反冲现象里系统的动量是守恒的。
@
【典型例题】
例1. 如图1所示的装置中,木块B与水平面间接触是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短,现将子弹、木块和弹簧合在一起做为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中()
A.动量守恒,机械能守恒
B.动量不守恒,机械能不守恒
C.动量守恒,机械能不守恒
D.动量不守恒,机械能守恒
)
分析:合理选取研究对象和运动过程,利用机械能守恒和动量守恒的条件分析。
如果只研究子弹A射入木块B的短暂过程,并且只选A、B为研究对象,则由于时间极短,则只需考虑在A、B之间的相互作用,A、B组成的系统动量守恒,但此过程中存在着动能和内能之间的转化,所以A、B 系统机械能不守恒。
本题研究的是从子弹开始射入木块到弹簧压缩至最短的整个过程,而且将子弹、木块和弹簧合在一起为研究对象,在这个过程中有竖直墙壁对系统的弹力作用,(此力对系统来讲是外力)故动量不守恒。
解答:由上面的分析可知,正确选项为B
例2. 质量为m1=10g的小球在光滑的水平面上以v1=30cm/s的速率向右运动,恰遇上质量m2=50g的小球以v2=10cm/s的速率向左运动,碰撞后,小球m2恰好停止,那么碰撞后小球m1的速度是多大方向如何^
分析:由于两小球在光滑水平面上,以两小球组成的系统为研究对象,该系统沿水平方向不受外力,因此系统动量守恒。
解答:碰撞过程两小球组成的系统动量守恒。
设v1的方向,即向右为正方向,则各速度的正负及大小为: