浙江省温州市瓯海区八年级数学上册《4.4方差和标准差》教案 浙教版
方差和标准差.3方差和标准差
3.3方差和标准差教学设计一、教学目标1、了解方差,标准差公式的产生过程2、熟练掌握方差和标准差的计算方法及其运用。
3、能通过实例学会用样本方差分析总体方差二、教学重点方差、标准差的概念、计算及其运用三、教学难点方差概念的理解和应用四、教材分析《方差与标准差》这节课是选自浙教版八年级上第三章第三节,是在学生学会用平均数,中位数,众数来表示数据集中程度的统计量后的另一种反映数据离散程度的统计量。
是对数据进行分析的另一重要指标。
这节课是七年纪上册“数据与图表”内容的延续,在数据与图表中是着重用图表的形式来反映数据的特征和变化。
而本章则是用统计量来反映数据的特征和变化。
学好本节课,不仅为进一步学好数据分析打好基础,而且在日常生活和实际生产中有着广泛的应用。
计算方差、标准差时,首先要求平均数,因此,求方差、标准差也是求平均数的练习和巩固的过程。
但平均数与方差的最本质的区别是:平均数是反映一组数据的集中程度的统计量而方差是反映一组数据的离散程度的统计量。
五、学情分析根据我自己对所带两个班级学生的了解,他们在分析,推导能力上不是特别强,所以本节的内容我准备按课本的要求来,不做较大的改变,不要求学生解决复杂或生僻的问题。
对于八年级的学生要根据实际选择统计量,并通过数据分析作出判断或预测。
不仅需要学生有教高的综合分析能力,而且要有较丰富的生活实践经验,对于这个年龄段的学生来说,是比较薄弱的。
因此,我在教学中会把握好教学要求,给学生留有充分的时间思考和小组讨论,用集体的智慧来解决难题。
在这堂新课中,我放较大的比重在公式的产生上,既公式的推导过程。
因为中考不允许学生使用计算器,所以在数据的选择上要便于计算,不允许学生使用计算器。
六、教学过程 (一)情景引入 学生观看射击比赛视频提问:一年一度的比赛又要开始了,所有的学员都这么优秀选谁? 设计意图:1、通过视频吸引学生的注意力,让学生的注意力集中到课堂上 2、每个学员都很优秀有自己的特点,所以我们要有一个合理的选拔 标准,从而引出了本堂课的学习内容 (二)合作学习甲、乙两人的测试成绩统计如下:(1)分别算出甲、乙两人的平均成绩. (2)根据这两人的成绩,再画出折线统计图.(3)现要从甲、乙两人中挑选一人参加比赛,你认为挑选哪一位比较适宜?为什么?提问:1、哪组数据围绕其平均数波动较大,波动大反映了什么? 2、谁射击成绩比较稳定?设计意图:1、1,2两个小题学生根据自己现有的知识能够解决,通过给出两个 问题,引导学生仔细观察折线图,因为折线图能够直观反应两人成24 68 成绩(环)10 0 1 2 3 4 5绩水平的高低以及稳定性。
数学:4.4《方差和标准差》教案(浙教版八年级上)
4.4方差和标准差〖教学目标〗◆1、了解方差、标准差的概念.◆2、会求一组数据的方差、标准差,并会用他们表示数据的离散程度.◆3、能用样本的方差来估计总体的方差.◆4、通过实际情景,提出问题,并寻求解决问题的方法,培养学生应用数学的意识和能力.〖教学重点与难点〗◆教学重点:本节教学的重点是方差的概念和计算。
.◆教学难点:方差如何表示数据的离散程度,学生不容易理解,是本节教学的难点.〖教学过程〗一、创设情景,提出问题甲、乙两名射击手的测试成绩统计如下表:①请分别算出甲、乙两名射击手的平均成绩;②请根据这两名射击手的成绩在图中画出折线图;二、合作交流,感知问题请根据统计图,思考问题:①、甲、乙两名射击手他们每次射击成绩与他们的平均成绩比较, 哪一个偏离程度较低?②、射击成绩偏离平均数的程度与数据的离散程度与折线的波动情况有怎样的联系?③、用怎样的特征数来表示数据的偏离程度?可否用各个数据与平均的差的累计数来表示数据的偏离程度?④、是否可用各个数据与平均数的差的平方和来表示数据的偏离程度?⑤、数据的偏离程度还与什么有关?要比较两组样本容量不相同的数据的偏离平均数的程度,应如何比较?三、概括总结,得出概念1、根据以上问题情景,在学生讨论,教师补充的基础上得出方差的概念、计算方法、与用方差来判断数据的稳定性。
2、方差的单位和数据的单位不统一,引出标准差的概念。
〔注意:在比较两组数据特征时,应取相同的样本容量,计算过程可借助计数器〕3、现要挑选一名射击手参加比赛,你认为挑选哪一位比较适宜?为什么?〔这个问题没有标准答案,要根据比赛的具体情况来分析,作出结论〕四、应用概念,巩固新知1、已知某样本的方差是4,则这个样本的标准差是。
2、已知一个样本1,3,2,X,5,其平均数是3,则这个样本的标准差是。
3、甲、乙两名战士在射击训练中,打靶的次数相同,且中环的平均数X甲=X乙,如果甲的射击成绩比较稳定,则方差的大小关系是S2甲S2乙4、已知一个样本的方差是S=[〔X1—4〕2+〔X2—4〕2+…+〔X5—4〕2],则这个样本的平均数是,样本的容量是。
《标准差与方差》数学教案设计
《标准差与方差》数学教案设计一、教学目标1.理解方差的定义和性质,掌握方差的意义和应用。
2.学会计算数据的方差和标准差。
3.培养学生运用统计方法解决实际问题的能力。
二、教学重点与难点1.重点:方差和标准差的定义及计算方法。
2.难点:方差的意义和在实际问题中的应用。
三、教学准备1.教学课件或黑板。
2.数据表格、计算器等教学工具。
四、教学过程一、导入新课(1)引导学生回顾平均数的定义和计算方法。
(2)提出问题:平均数能否完全反映一组数据的特征?为什么?(3)引导学生思考,为引入方差和标准差的概念做铺垫。
二、新课讲解1.讲解方差的定义和性质(1)通过实际例子,让学生感受数据波动的大小。
(2)引导学生理解方差是衡量数据波动程度的统计量。
(3)讲解方差的计算公式和性质。
2.讲解标准差的定义和性质(1)介绍标准差是方差的平方根,用于衡量数据的离散程度。
(2)讲解标准差的计算公式和性质。
3.讲解方差和标准差的意义(1)通过实际例子,让学生感受方差和标准差在数据分析中的作用。
(2)引导学生理解方差和标准差在描述数据分布特征方面的重要性。
三、案例分析1.分析案例一:某班学生的数学成绩(1)给出学绩的数据表格。
(2)引导学生计算平均数、方差和标准差。
(3)让学生讨论:哪个统计量更能反映这组数据的特征?2.分析案例二:某地区气温变化(1)给出某地区气温变化的数据表格。
(2)引导学生计算平均数、方差和标准差。
(3)让学生讨论:如何利用方差和标准差分析气温变化的规律?四、巩固练习1.学生独立完成课后练习题。
2.教师对学生的答案进行点评和讲解。
五、课堂小结2.强调方差和标准差在数据分析中的应用。
六、作业布置1.学生完成课后作业。
2.教师批改作业,了解学生的学习情况。
七、教学反思1.本节课教学效果如何?哪些地方需要改进?2.学生对方差和标准差的理解是否到位?如何提高学生的理解能力?3.在今后的教学中,如何更好地运用案例教学,提高学生的学习兴趣和积极性?八、教学延伸1.引导学生了解其他统计量(如偏度、峰度等)的定义和作用。
浙教版八年级数学上册教案(精选10篇)
浙教版八年级数学上册教案(精选10篇)浙教版八年级数学上册教案(精选10篇)作为一名教职工,通常需要准备好一份教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。
优秀的教案都具备一些什么特点呢?下面是小编为大家收集的浙教版八年级数学上册教案,欢迎大家借鉴与参考,希望对大家有所帮助。
浙教版八年级数学上册教案篇1教学目标1、理解并掌握等腰三角形的判定定理及推论2、能利用其性质与判定证明线段或角的相等关系.教学重点:等腰三角形的判定定理及推论的运用教学难点:正确区分等腰三角形的判定与性质,能够利用等腰三角形的判定定理证明线段的相等关系.教学过程:一、复习等腰三角形的性质二、新授:I提出问题,创设情境出示投影片.某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60°方向走一段距离到C处时,测得∠ACB为30°,这时,地质专家测得AC的长度就可知河流宽度.学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”.II引入新课1.由性质定理的题设和结论的变化,引出研究的内容——在△ABC 中,苦∠B=∠C,则AB= AC吗?作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?2.引导学生根据图形,写出已知、求证.2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称).强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”.4.引导学生说出引例中地质专家的测量方法的根据.III例题与练习1.如图2其中△ABC是等腰三角形的是[ ]2.①如图3,已知△ABC中,AB=AC.∠A=36°,则∠CXXXXXX(根据什么?).②如图4,已知△ABC中,∠A=36°,∠C=72°,△ABC是XXXXXX 三角形(根据什么?).③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判断图5中等腰三角形有XXXXXX.④若已知AD=4cm,则BCXXXXXXcm.3.以问题形式引出推论lXXXXXX.4.以问题形式引出推论2XXXXXX.例:如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形.分析:引导学生根据题意作出图形,写出已知、求证,并分析证明.练习:5.(l)如图6,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点F,过F作DE//BC,交AB于点D,交AC于E.问图中哪些三角形是等腰三角形?(2)上题中,若去掉条件AB=AC,其他条件不变,图6中还有等腰三角形吗?练习:P53练习1、2、3。
方差与标准差教案
方差与标准差教案一、教学目标知识与技能:1. 理解方差的概念,掌握计算一组数据方差的方法。
2. 理解标准差的概念,掌握计算一组数据标准差的方法。
过程与方法:1. 通过实例分析,引导学生探究方差和标准差的计算方法。
2. 利用数学软件或calculator 计算一组数据的方差和标准差。
情感态度与价值观:1. 培养学生对数据的敏感性,提高学生分析数据、处理数据的能力。
2. 培养学生团队协作精神,提高学生沟通交流能力。
二、教学重点与难点重点:1. 方差的概念及其计算方法。
2. 标准差的概念及其计算方法。
难点:1. 方差、标准差的计算公式的推导。
2. 利用数学软件或calculator 计算一组数据的方差和标准差。
三、教学过程1. 导入:通过一组数据的波动情况,引发学生对数据波动性的思考,进而引入方差和标准差的概念。
2. 新课讲解:讲解方差和标准差的定义、计算方法,并通过实例进行分析。
3. 课堂互动:学生分组讨论,每组选取一组数据,计算其方差和标准差,并交流计算过程中的心得体会。
4. 练习巩固:布置适量练习题,让学生独立完成,检验对方差和标准差的理解和掌握程度。
四、课后作业2. 选择一组数据,计算其方差和标准差,并与同学进行交流。
五、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高学生对方差和标准差的理解和应用能力。
关注学生在课堂上的参与程度,激发学生的学习兴趣,提高教学质量。
六、教学策略与方法1. 采用案例分析法,通过具体实例让学生深入了解方差和标准差的概念及计算方法。
2. 利用数学软件或计算器,让学生亲自动手计算方差和标准差,提高实践操作能力。
3. 采用小组讨论法,培养学生的团队合作精神和沟通能力。
4. 运用对比分析法,引导学生对方差和标准差进行深入理解,并掌握它们之间的关系。
七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答情况,以及小组讨论中的表现。
《方差与标准差》优质课说课稿稿
《方差和标准差》说课稿一、教材分析本节课选自浙教版八年级数学下册第三章第三节,主要内容是方差和标准差。
本节内容是继平均数、中位数、众数之后出现的新统计量,它反应的是一组数据的离散程度,课本从选拔参加射击比赛的人员引入,通过“合作学习”让学生通过画图来判断两组数据的波动情况,形象直观,这样提出方差的概念,让学生比较自然的接授。
课本在本节中安排了一个例子,进行了有关方差的计算,其目的在于让学生能掌握算理和算法,并进一步让学生理解方差这一统计量是反应一组数据的稳定性。
二、学情分析:方差公式:比较复杂,学生理解和记忆这个公式都会有一定困难,以致应用时常常出现计算的错误,为突破这一难点,我安排了几个环节,将难点化解。
1.首先应使学生知道为什么要学习方差和方差公式,目的不明确学生很难对本节课内容产生兴趣和求知欲望。
教师在授课过程中可以多举几个生活中的小例子,比如:选择运动员、选择质量稳定的电器等。
学生从中可以体会到生活中为了更好的做出选择判断经常要去了解一组数据的波动程度,仅仅知道平均水平是不够的。
2.波动性可以通过什么方式表现出来?第一环节中点明了为什么去了解数据的波动性,第二环节则主要使学生知道描述数据,波动性的方法。
可以画折线图方法来反映这种波动大小,可是当波动大小区别不大时,仅用画折线图方法去描述恐怕不会准确,这自然希望可以出现一种数量来描述数据波动大小,这就引出方差产生的必要性。
3.第三环节教师可以直接对方差公式作分析和解释,波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。
所以方差公式是能够反映一组数据的波动大小的一个统计量。
构思:教师的“教”体现在创设情景-----组织探究----发现规律----熟练运用学生的“学”体现在通过对现实生活中的具体问题情境的分析和探究,发现了在实际生活应用中需要方差这样新的统计量:反映一组数据与其平均值的离散程度,也就是用来衡量一批数据的波动大小,在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定三、教法分析:情境法----对具体的实际情境进行分析和计算发现方差出现的必要性。
浙教版八年级数学上册方差和标准差2
方差和标准差一、教学目标:理解随机变量的方差和标准差的含义,会求随机变量的方差和标准差,并能解决有关实际问题。
二、教学重点:随机变量的方差和标准差难点:比较两个随机变量的期望与方差的大小,从而解决实际问题三、教学过程:1、离散型随机变量X 的方差:V (X )=i ni i p x 21)(∑=-μ=212μ-∑=ni i i p x = E(X 2)- E 2(X)2、离散型随机变量X 的标准差σ=)(X V3、例题:例1、求超几何分布H (5,10,30)的方差V(X)和标准差)(X V小结:(1)超几何分布的方差:V(X)= 例2、求二项分布B (10,0.05)的方差和标准差小结:(2)服从二项分布的方差:V(X)=例3、甲、乙两射手在同一条件下进行射击,分布列如下:射手甲击中环数8,9,10的概率分别为0.2,0.6,0.2;射手乙击中环数8,9,10的概率分别为0.4,0.2,0.24用击中环数的期望与方差比较两名射手的射击水平 解:180.290.6100.29E ξ=⨯+⨯+⨯=221(89)0.2(99)0.6D ξ=-⨯+-⨯+(10-9)4.02.02=⨯; 同理有8.0,922==ξξD E由上可知,21ξξE E =,12D D ξξ<所以,在射击之前,可以预测甲、乙两名射手所得的平均环数很接近,均在9环左右,但甲所得环数较集中,以9环居多,而乙得环数较分散,得8、10环地次数多些.例4、A 、B 两台机床同时加工零件,每生产一批数量较大的产品时,出次品的概率如下表所示:A 机床B 机床问哪一台机床加工质量较好解: E ξ1=0×0.7+1×0.2+2×0.06+3×0.04=0.44,E ξ2=0×0.8+1×0.06+2×0.04+3×0.10=0.44.它们的期望相同,再比较它们的方差D ξ1=(0-0.44)2×0.7+(1-0.44)2×0.2+(2-0.44)2×0.06+(3-0.44)2×0.04=0.6064,D ξ2=(0-0.44)2×0.8+(1-0.44)2×0.06+(2-0.44)2×0.04+(3-0.44)2×0.10=0.9264. ∴D ξ1< D ξ2 故A 机床加工较稳定、质量较好.课堂练习:1 .已知()~,,8, 1.6B n p E D ξξξ==,则,n p 的值分别是( )A .1000.08和;B .200.4和;C .100.2和;D .100.8和 答案:1.D2. 一盒中装有零件12个,其中有9个正品,3个次品,从中任取一个,如果每次取出次品就不再放回去,再取一个零件,直到取得正品为止.求在取得正品之前已取出次品数的期望.分析:涉及次品率;抽样是否放回的问题.本例采用不放回抽样,每次抽样后次品率将会发生变化,即各次抽样是不独立的.如果抽样采用放回抽样,则各次抽样的次品率不变,各次抽样是否抽出次品是完全独立的事件.解:设取得正品之前已取出的次品数为ξ,显然ξ所有可能取的值为0,1,2,3 当ξ=0时,即第一次取得正品,试验停止,则P (ξ=0)=43129=当ξ=1时,即第一次取出次品,第二次取得正品,试验停止,则P (ξ=1)=449119123=⨯当ξ=2时,即第一、二次取出次品,第三次取得正品,试验停止,则P (ξ=2)=2209109112123=⨯⨯当ξ=3时,即第一、二、三次取出次品,第四次取得正品,试验停止,则P (ξ=3)=220199101112123=⨯⨯⨯ 所以,E ξ=10322013220924491430=⨯+⨯+⨯+⨯ 3. 有一批数量很大的商品的次品率为1%,从中任意地连续取出200件商品,设其中次品数为ξ,求E ξ,D ξ分析:涉及产品数量很大,而且抽查次数又相对较少的产品抽查问题.由于产品数量很大,因而抽样时抽出次品与否对后面的抽样的次品率影响很小,所以可以认为各次抽查的结果是彼此独立的.解答本题,关键是理解清楚:抽200件商品可以看作200次独立重复试验,即ξ B (200,1%),从而可用公式:E ξ=np ,D ξ=npq(这里q=1-p)直接进行计算解:因为商品数量相当大,抽200件商品可以看作200次独立重复试验,所以ξ B (200,1%)因为E ξ=np ,D ξ=npq ,这里n=200,p=1%,q=99%,所以,E ξ=200×1%=2,D ξ=200×1%×99%=1.984. 设事件A 发生的概率为p ,证明事件A 在一次试验中发生次数ξ的方差不超过1/4 分析:这是一道纯数学问题.要求学生熟悉随机变量的期望与方差的计算方法,关键还是掌握随机变量的分布列.求出方差D ξ=P(1-P)后,我们知道D ξ是关于P(P ≥0)的二次函数,这里可用配方法,也可用重要不等式证明结论证明:因为ξ所有可能取的值为0,1且P (ξ=0)=1-p,P(ξ=1)=p, 所以,E ξ=0×(1-p)+1×p=p则 D ξ=(0-p )2×(1-p)+(1-p) 2×p=p(1-p) 412)p 1(p 2=⎪⎭⎫ ⎝⎛-+≤A B 120,试比较A 、B 两种钢筋哪一种质量较好分析: 两个随机变量ξA 和ξB &都以相同的概率0.1,0.2,0.4,0.1,0.2取5个不同的数值.ξA 取较为集中的数值110,120,125,130,135;ξB 取较为分散的数值100,115,125,130,145.直观上看,猜想A 种钢筋质量较好.但猜想不一定正确,需要通过计算来证明我们猜想的正确性解:先比较ξA 与ξB 的期望值,因为E ξA =110×0.1+120×0.2+125×0.4+130×0.1+135×0.2=125, E ξB =100×0.1+115×0.2+125×0.4十130×0.1+145×0.2=125.所以,它们的期望相同.再比较它们的方差.因为D ξA =(110-125)2×0.1+(120-125) 2 ×0.2+(130-125) 2×0.1+(135-125) 2×0.2=50, D ξB =(100-125)2×0.1+(110-125) 2 ×0.2+(130-125) 2×0.1+(145-125) 2×0.2=165.所以,D ξA < D ξB .因此,A 种钢筋质量较好6. 在有奖摸彩中,一期(发行10000张彩票为一期)有200个奖品是5元的,20个奖品是25元的,5个奖品是100元的.在不考虑获利的前提下,一张彩票的合理价格是多少元?分析:这是同学们身边常遇到的现实问题,比如福利彩票、足球彩票、奥运彩票等等.一般来说,出台各种彩票,政府要从中收取一部分资金用于公共福利事业,同时也要考虑工作人员的工资等问题.本题的“不考虑获利”的意思是指:所收资金全部用于奖品方面的费用解:设一张彩票中奖额为随机变量ξ,显然ξ所有可能取的值为0,5,25,100依题2.02000100500255054000E =⨯+⨯+⨯+⨯=ξ答:一张彩票的合理价格是0.2元. 课后作业:1.设ξ~B(n 、p)且E ξ=12 D ξ=4,求n 、p解:由二次分布的期望与方差性质可知E ξ=np ,D ξ= np (1-p )∴⎩⎨⎧=-=4)1(12p np np ∴⎪⎩⎪⎨⎧==3218p n2.已知随机变量ξ服从二项分布即ξ~B(6、31)求b (2;6,31)解:p(ξ=2)=c 62(31)2(32)43.已知甲、乙两名射手在一次射击中的得分为两个相互独立的随机变量ξ和η,已知ξ和η的分布列如下:(注得分越大,水平越高)试分析甲、乙技术状况0.3+0.3+b=1⇒a=0.4 ∴E ξ=2.3 , E η=2.0 D ξ=0.81 , D η=0.6 作业:课课练P57-58 1、 2、。
初二上学期数学方差和标准差说课稿范例浙教版
初二上学期数学方差和标准差说课稿范例浙教版
接下来就是初中频道为大家提供的初二上学期数学方差和标准差说课稿,请大家一定仔细阅读,会对大家的学习生活带来很大的帮助。
一、教学目标
(一)知识与技能目标
1.正确理解样本数据标准差的概念和作用,学会计算样本数据的标准差;
2.会用样本的基本数字特征估计总体的基本数字特征,形成对数据处理过程进行初步评价的意识.
(二)过程与方法目标
1.通过现实生活中的例子引导学生认识到:只描述平均位置的特征是不够的,还需要描述样本数据离散程度的特征,从而展开对描述数据离散程度的探索,并让学生亲身经历解决实际问题的过程.
2. 在解决统计问题的过程中,进一步体会用样本估计总体的思想.
(三)情感态度与价值观。
浙教八上4.4《方差和标准差》word案
4.4方差和标准差 学案本课重点:1、理解方差、标准差的意义和概念.2、学会方差、标准差的计算方法。
3、了解用样本方差去估计总体方差.经典题型1、填空题;(1)一组数据:2-,1-,0,x ,1的平均数是0,则x = .方差=2S .(2)如果样本方差[]242322212)2()2()2()2(41-+-+-+-=x x x x S ,那么这个样本的平均数为 .样本容量为 .(3)已知321,,x x x 的平均数=x 10,方差=2S 3,则3212,2,2x x x 的平均数为 ,方差为 .2、选择题:(1)样本方差的作用是( )A 、估计总体的平均水平B 、表示样本的平均水平C 、表示总体的波动大小D 、表示样本的波动大小,从而估计总体的波动大小(2)一个样本的方差是0,若中位数是a ,那么它的平均数是( )A 、等于aB 、不等于 aC 、大于 aD 、小于a(3)已知样本数据101,98,102,100,99,则这个样本的标准差是( )A 、0B 、1C 、2D 、2(4)如果给定数组中每一个数都减去同一非零常数,则数据的( )A 、平均数改变,方差不变B 、平均数改变,方差改变C 、平均数不变,方差不变 A 、平均数不变,方差改变3、为了考察甲、乙两种农作物的长势,分别从中抽取了10株苗,测得苗高如下:(单位:mm ) 甲:9,10,11,12,7,13,10,8,12,8乙:8,13,12,11,10,12,7,7,9,11请你经过计算后回答如下问题:(1)哪种农作物的10株苗长的比较高?(2)哪种农作物的10株苗长的比较整齐?拓展思考:某校要从甲、乙两名跳高运动员中挑选一人参加一项校际比赛,在最近的8次选拔赛中,他们的成绩(单位:m )如下:甲:1.70,1.65,1.68,1.69,1.72,1.73,1.68,1.67乙: 1.60,1.73,1.72,1.61,1.62,1.71,1.70,1.75(1)他们的平均成绩分别是多少?(2)哪个人的成绩更为稳定?(3)经预测,跳高1.65m就很可能获得冠军,该校为了获取跳高比赛冠军,可能选哪位运动员参赛?若预测跳高1.70m方可获得冠军呢?。
八年级数学方差和标准差教案 浙教版 教案
方差和标准差方差和标准差时间分配讲授练习20 20教材分析方差和标准差是反应一组数据离散程度的统计量。
课本从射击比赛的成绩(当然也可以从学生更熟悉的例子,如投篮)引入,提出问题,并让学生通过画图来判断两组数据的波动情况,形象直观,这样提出方差的概念就比较自然。
课本在本节和4.5节(包括相应的作业题)都安排了有关方差的计算,其目的在于让学生能掌握算理和算法。
计算过程可鼓励学生使用计算器,养成使用计算器的习惯。
本节的“探究活动”隐含着一种规律,可以让学生通过探究去发现这种规律,体会发现的乐趣。
教学目标1.了解方差、标准差的概念;2.会求一组数据的方差、标准差,并会用它们表示数据的离散程度;3.能用样本的方差来估计总体的方差。
教学难点重点重点:方差的概念和计算难点:方差如何表示数据的离散程度,学生不容易理解,是本节教学的难点。
教学方法小组讨论讲练结合课前准备制作多媒体课件准备计算器板书设计方差和标准差一般地,各数据与平均数的差的平方的平均数例1 投影区叫做这批数据的方差在样本容量相同的情况下,方差越大,例2说明数据的波动越大,越不稳定方差的算术平方根叫做标准差教学设计及媒体设计教学过程:一、新课引入问题一:要选拔射击手参加比赛,应该挑选测试成绩中曾达到最好成绩的选手,还是成绩最稳定的选手?二、新课讲授:甲、乙两名射击手的测试成绩统计如下:第一次第二次第三次第四次第五次甲命中环数7 8 8 8 9乙命中环数10 6 10 6 8我们先计算他们的平均数,发现平均数相同都是8,可见平均数不能反映两个选手成绩是否稳定。
甲、乙两人成绩与平均数的偏差是多少?甲:-1 0 0 0 1乙:2 -2 2 -2 0数据简单可看出甲稳定。
再看这样一个例子:一个农科站在8个面积相等的试验点对甲,乙两个早稻品种进行栽培对比试验,两个品种在各试验点的产量如下(单位:kg)甲:402,452,494.5,408.5,459.5,411,456,500.5乙:428,466,465,426.5,436,455,448.5,459哪个品种的产量比较稳定?计算它们的平均数都是448kg,再看偏差甲:-46 4 46.5 -39.5 11.5 -37 8 52.5 []222212)()()(1xxxxxxnSn-++-+-=[]22221)()()(1xxxxxxnSn-++-+-=。
-浙教版2005年浙江地区八年级数学第四章4.4方差与标准差[整理]
我的工资是1200元, 在公司算中等收入。
我们好几人工资 都是1100元。
职 员 D
职员C
该公司员工的月薪如下:
员工 经理 副经 理 职员 A 职员 B 职员 职员 C D 职员 职员 E F 职员 G
月薪
(元)
6000
4000
1700
1300
1200
1100
1100 1100
500
中位数
众数
一组数据中,出现次数最多的那个数 据叫做这组数据的众数 一组数据按大小顺序排列,位于最中间的 一个数据(当偶数个数据时,为最中间两 个数据的平均数)叫做这组数据的中位数
1.83 1.96 1.83 1.86 1.81 1.82 1.82 1.82 1.79 1.87 1.81 1.85
求这组数据中身高的平均数 ,中位数,众数 你觉得哪个数据能更好地反映中国女排队员 的身高情况?为什么?
某面包房在一天内销售面包100个.各类面包销售量如下: 面包种数 销售量(个) 奶油 巧克力 豆沙 稻香 三色 椰茸 10 15 25 5 15 30
在这个问题中,如果你是店主,你最关 心的是哪一个统计量?
通过这节课的学习,你有什么收获?
1.知识小结: 2.方法小结: 3.知识网络:
众位数
中位数
学以致用,体验成功
10位学生在家政课上进行包水饺比赛,在同有一 时间内包水饺 的个数分别为:15,17,14,10,15,19,17,16,14,12 求这10同学包水饺的 个数的中位数
求 4, 6, 7, 6, 5, 4 这组数据的众数 求 1, 2, 3, 4, 4, 3, 2, 1 这组数据的众数
4.3
中位数和众数
我公司员工的收 入很高,月平均 工资为2000元。
方差标准差课程设计
方差标准差课程设计一、课程目标知识目标:1. 学生能理解方差和标准差的概念,掌握其计算方法。
2. 学生能运用方差和标准差对一组数据进行描述性统计分析。
3. 学生了解方差和标准差在实际问题中的应用,如统计学、科学研究等领域。
技能目标:1. 学生能运用计算器或统计软件正确计算方差和标准差。
2. 学生能通过方差和标准差分析数据的波动情况和离散程度。
3. 学生能运用方差和标准差解决实际问题,提高数据分析能力。
情感态度价值观目标:1. 学生培养对数据的敏感性和探究精神,增强数据分析的兴趣。
2. 学生认识到方差和标准差在生活中的实际意义,提高学习的积极性。
3. 学生通过学习方差和标准差,培养严谨的科学态度和团队协作精神。
课程性质:本课程为数学学科的教学内容,旨在让学生掌握方差和标准差的基本概念、计算方法及应用。
学生特点:学生为八年级学生,具有一定的数学基础和数据分析能力,但对方差和标准差的了解较少。
教学要求:结合学生特点,采用直观、生动的教学手段,让学生在轻松愉快的氛围中掌握方差和标准差的知识,提高数据分析能力。
在教学过程中,注重引导学生发现规律,培养学生的观察力和思维能力。
同时,关注学生的情感态度,激发学习兴趣,提高学习积极性。
通过本课程的学习,使学生在知识、技能和情感态度价值观方面均取得具体、可衡量的学习成果。
二、教学内容1. 引入概念:通过实例引出方差和标准差的概念,让学生理解它们在描述数据分布特征中的作用。
- 方差的定义与性质- 标准差的定义与性质2. 计算方法:详细讲解方差和标准差的计算步骤,结合教材实例进行操作演示。
- 方差的计算步骤- 标准差的计算步骤3. 数据分析:运用方差和标准差对一组数据进行描述性分析,探讨其应用场景。
- 数据波动情况和离散程度的分析- 方差和标准差在实际问题中的应用案例4. 实际应用:结合教材实例,让学生动手计算方差和标准差,解决实际问题。
- 统计学中的方差和标准差应用- 科学研究中的方差和标准差应用5. 练习巩固:布置适量练习题,让学生巩固所学知识,提高计算和应用能力。
《方差与标准差》说课稿
《3.3方差和标准差》说课稿一、教材分析本节课选自浙教版八年级数学下册第三章第三节,主要内容是方差和标准差。
本节内容是继平均数、中位数、众数之后出现的新统计量,它反应的是一组数据的离散程度,课本从选拔参加射击比赛的人员引入,通过“合作学习”让学生通过画图来判断两组数据的波动情况,形象直观,这样提出方差的概念,让学生比较自然的接授。
课本在本节中安排了一个例子,进行了有关方差的计算,其目的在于让学生能掌握算理和算法,并进一步让学生理解方差这一统计量是反应一组数据的稳定性。
二、学情分析:方差公式:比较复杂,学生理解和记忆这个公式都会有一定困难,以致应用时常常出现计算的错误,为突破这一难点,我安排了几个环节,将难点化解。
1.首先应使学生知道为什么要学习方差和方差公式,目的不明确学生很难对本节课内容产生兴趣和求知欲望。
教师在授课过程中可以多举几个生活中的小例子,比如:选择运动员、选择质量稳定的电器等。
学生从中可以体会到生活中为了更好的做出选择判断经常要去了解一组数据的波动程度,仅仅知道平均水平是不够的。
2.波动性可以通过什么方式表现出来?第一环节中点明了为什么去了解数据的波动性,第二环节则主要使学生知道描述数据,波动性的方法。
可以画折线图方法来反映这种波动大小,可是当波动大小区别不大时,仅用画折线图方法去描述恐怕不会准确,这自然希望可以出现一种数量来描述数据波动大小,这就引出方差产生的必要性。
3.第三环节教师可以直接对方差公式作分析和解释,波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。
所以方差公式是能够反映一组数据的波动大小的一个统计量。
构思:教师的“教”体现在创设情景-----组织探究----发现规律----熟练运用学生的“学”体现在通过对现实生活中的具体问题情境的分析和探究,发现了在实际生活应用中需要方差这样新的统计量:反映一组数据与其平均值的离散程度,也就是用来衡量一批数据的波动大小,在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定三、教法分析:情境法----对具体的实际情境进行分析和计算发现方差出现的必要性。
《方差和标准差》word教案 (公开课获奖)2022浙教版
方差和标准差教材分析本节课选自浙教版八年级数学上册第四章第四节,主要内容是方差和标准差。
是在学习了如何抽样与抽样调查中所涉及到的概念,和用平均数,中位数,众数来表示数据集中程度的统计量后的另一种反映数据离散程度的统计量。
节课是七年纪上册“数据与图表〞内容的延续,用统计量来反映数据的特征和变化,在日常生活和实际生产中有着广泛的应用。
学情分析本节课的授课对象是八年级学生,他们正处于形象思维向抽象思维的过渡阶段,注意力水平不高,在教学中需要采用启发式教学。
在知识上,我们已经接触过统计方面的知识,有助于本节课的学习。
教学目标知识与技能:1、了解方差,标准差的公式的产生过程。
2、掌握方差和标准差的计算方法及其运用。
3、能通过实例学会用样本方差分析总体方差,用方差公式来分析数据离散程度。
情感态度价值观:1、通过合作交流,以面对面的互动形式,培养良好的团队合作精神,感受集体的力量。
2、以具体的例子出发,体会数学来源于生活,生活离不开数学,从来增加学习数学的兴趣。
教学重难点重点:方差和标准差的概念、计算及其运用。
难点:方差和标准差的计算及运用。
方差是各变量值相对于平均数的离差平方的平均数。
教学方法采用情景探究、小组合作,实施启发式教学。
教学手段以“教师为主导,学生为主体,探索为主线,思维为核心〞的教学思路,采用矛盾冲突教学方法,加以多媒体的使用,充实了教学内容,通过师生合作,生生合作以及学生自身的独立思考,探索获得方差的公式和标准差的合理出现。
教学过程一、创设情景引出课题师:同学们,谁看过射击实况转播?相信绝大多数同学都看过,今天老师要让你们自己想方法解决有关射击的问题。
问题一、为了从甲、乙两名学生中选拔一人参加射击比赛,学校决定对选拔方案进行招标。
如果你参与竞标,那么你将设计什么方案?生:让甲、乙二人在相同的条件下各射靶10次,选拔平均环数较多的学生。
师:这个方案不错。
可是如果两人的平均环数一样,怎么办?生:再比一次。
方差与标准差--浙教版
解: x1≈84.29 S1≈4.23
x2≈84.29 S2≈4.23
因S1<S2,所以一班选手的成绩比较稳定.
2、(探究题)已知数据x1、x2、x3、x4、x5的
平均数是2,方差是 1 , 那么另一组数据 3
2x1-1,2x1-1,2x1-1,2x1-1,2x1-1的
平均数和方差分别是( D )
A、2, 1 3
1
B、4,
3
C、2, 2 3
D、3,
3
总结:
若x1,x2,x3,x4,…,xn平均数为x, 则x1+a,x2+a,x3+a,x4+a,…,xn+a的 平均数是x+a,而ax1,ax2,ax3,ax4,…,axn 的平均数是ax。
若x1,x2,x3,x4,…,xn方差为S2, 则x1+a,x2+a,x3+a,x4+a,…,xn+a的 方差仍是S2,而ax1,ax2,ax3,ax4,…,axn的 方差是a2S2。
区别:
方差是用“先平均,再求差,然后平方,最后再平均”的 方法得到的结果,主要反映整组数据的波动情况,是反映 一组数据与其平均值离散程度的一个重要指标,每个数据 的变化都将影响方差的结果,是一个对整组数据波动情况 更敏感的指标。 在实际使用时,往往计算一组数据的方差,来衡量一组数 据的波动大小。 标准差实际是方差的一个变形,只是方差的单位是原数据 单位的平方,而标准差的单位与原数据单位相同。
1.平均数与方差的区别
①平均数是反映一组数据总体趋势的指标,方 差、标准差均是表示一组数据离散程度的指 标.
②计算方差的步骤可概括为“先平均,后求差, 平方后,再平均”.
2.方差和标准差的意义及计算方法
3.方差和标准差的区别与联系: 联系: 方差和标准差都是用来衡量(或描述)一组数据 偏离平均数的大小(即波动大小)的指标,常用来 比较两组数据的波动情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【教学目标】
一、知识和技能
1、了解方差、标准差的概念.
2、会求一组数据的方差、标准差,并会用他们表示数据的离散程度.
3、能用样本的方差来估计总体的方差.
二、过程与方法
会用方差、标准差表示数据的离散程度,通过实际情景,提出问题,并寻求解决问题的方法,培养学生应用数学的意识和能力.
三、情感、态度与价值观
通过主动思考与探究,体会到方差表示数据波动情况的合理性,感受到数学与实际的密切联系和巨大作用
【教学重难点】
重点:本节教学的重点是方差的概念和计算。
.
难点:方差如何表示数据的离散程度,学生不容易理解,是本节教学的难点.
【教学过程】
一、创设情景,提出问题
第一次第二次第三次第四次第五次
甲命中环数7 8 8 8 9
乙命中环数10 6 10 6 8
①请分别算出甲、乙两名射击手的平均成绩;
②请根据这两名射击手的成绩在图中画出折线图;
二、合作交流,感知问题
请根据统计图,思考问题:
①、甲、乙两名射击手他们每次射击成绩与他们的平均成绩比较,哪一个偏离程度较低?
②、射击成绩偏离平均数的程度与数据的离散程度与折线的波动情况有怎样的联系?
③、用怎样的特征数来表示数据的偏离程度?可否用各个数据与平均的差的累计数来表示数据的偏离程度?
④、是否可用各个数据与平均数的差的平方和来表示数据的偏离程度?
⑤、数据的偏离程度还与什么有关?要比较两组样本容量不相同的数据的偏离平均数的程度,
应如何比较?
三、概括总结,得出概念
1、 根据以上问题情景,在学生讨论,教师补充的基础上得出方差的概念、计算方法、及用方差来判断数据的稳定性。
2、 方差的单位和数据的单位不统一,引出标准差的概念 (注意:在比较两组数据特征时,应取相同的样本容量,计算过程可借助计数器)
3、 现要挑选一名射击手参加比赛,你认为挑选哪一位比较适宜?为什么?
(这个问题没有标准答案,要根据比赛的具体情况来分析,作出结论)
四、应用概念,巩固新知
1、 已知某样本的方差是4,则这个样本的标准差是 。
2、 已知一个样本1,3,2,X ,5,其平均数是3,则这个样本的标准差是 。
3、 甲、乙两名战士在射击训练中,打靶的次数相同,且中环的平均数X 甲=X 乙,如果甲的射击成绩比较稳定,那么方差的大小关系是S
2甲 S 2
乙 4、 已知一个样本的方差是S=5
1[(X 1—4)2+(X 2—4)2+…+(X 5—4)2],则这个样本的平均数是 ,样本的容量是 。
5、八年级(5)班要从黎明和张军两位侯选人中选出一人去参加学科竞赛,他们在平时的5次测试中成绩如下(单位:分)
黎明: 652 653 654 652 654
张军: 667 662 653 640 643
如果你是班主任,在收集了上述数据后,你将利用哪些统计的知识来决定这一个名额?(解题步骤:先求平均数,再求方差,然后判断得出结论)
五、巩固练习,反馈信息
1、课本“课内练习”第1题和第2题。
2、课本“作业题”第3题。
3、甲、乙两人在相同条件下各射靶 ( 1 )
10 次,每次射靶的成绩情况如图所示.
( 1 )请填写下表:
( 2 )请你就下列四个不同的角度对这次测试结果进行分析:
①从平均数和方差相结.合看,谁的成绩较好?
②从平均数和命中 9 环以上的次数相结合看,谁的成绩较好?
③从折线图上两人射击命中环数的走势看,谁更有潜力?
六、通过探究,找出规律
已知两组数据1,2,3,4,5和101,102,103,104,105。
1、求这两组数据的平均数、方差和标准差。
2、将这两组数据画成折线图,并用一条平行于横轴的直线来表示这两组数据的平均数,观察你画的两个图形,你发现了哪些有趣的结论?
3、若两组数据为1,2,3,4,5和3,6,9,12,15。
你要能发现哪些有趣的结论?
4、用你发现的结论来解决以下的问题:
已知数据X1,X2,X3,…X n的平均数为a,方差为b,标准差为c。
则
①数据X1+3,X2+3,X3+3…,X n+3的平均数为,方差为,标准差为。
②数据X1—3,X2—3,X3—3…X n—3的平均数为,方差为,标准差为。
③数据4X1,4X2,4X3,…4X n的平均数为,方差为,标准差为。
④数据2X1—3,2X2—3,2X3—3,…2X n—3的平均数为,方差为,标准差为。
七、小结回顾,反思提高
1、这节课我们学习了方差、标准差的概念,方差的实质是各数据与平均数的差的平方的平均数。
方差越大,说明数据的波动越大,越不稳定。
2、标准差是方差的一个派生概念,它的优点是单位和样本的数据单位保持一致,给计算和研究带来方便。
3、利用方差比较数据波动大小的方法和步骤:先求平均数,再求方差,然后判断得出结论。
八、分层作业,延伸拓展
1、必做题:作业本底页。
2、选做题:
在某旅游景区上山的一条小路上有一些断断续续的台阶,如下图是其中的甲、乙段台阶路的示意图(图中的数字表示每一级台阶的高度).请你用所学过的统计量(平均数、中位数、方差等)进行分析,回答下列问题: ( 1 )两段台阶路每级台阶的高度有哪些相同点和不同点? ( 2 )哪段台阶路走起来更舒服?为什么? ( 3 )为方便游客行走,需要重新整修上山的小路,对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.
板书设计。