《用树状图求概率》同步练习题

合集下载

北师版九年级初三上册数学《用树状图或表格求概率》同步练习题

北师版九年级初三上册数学《用树状图或表格求概率》同步练习题

3.1 用树状图或表格求概率第1课时 用树状图或表格求概率【基础练习】 一、选择题:同时掷两颗均匀的骰子,下列说法中正确的是( ).(1)“两颗的点数都是3”的概率比“两颗的点数都是6”的概率大;(2)“两颗的点数相同”的概率是16 ; (3)“两颗的点数都是1”的概率最大;(4)“两颗的点数之和为奇数”与“两颗的点数之和为偶数”的概率相同.A. (1)、(2)B. (3)、(4)C. (1)、(3)D. (2)、(4)二、填空题:用列表的方法求下列各事件发生的概率,并用所得的结果填空.1.从1、2、3、4、5这五个数字中,先随意抽取一个,然后从剩下的四个数中再抽取一个,则两次抽到的数字之和为偶数的概率是 ;2.有五条线段,其长度分别为1、3、5、7、9,从中任取三条,以这三条线段为边能够成一个三角形的概率是 ;3.现有10个型号相同的杯子,其中一等品7个,二等品2个,三等品1个,从中任取两个杯子都是一等品的概率是 .用画树状图的方法求下列各事件发生的概率,并用所得的结果填空.4.在两个布袋中分别装有三个小球,这三个小球的颜色分别为红色、白色、绿色,其他没有区别.把两袋小球都搅匀后,再分别从两袋中各取出一个小球,求取出两个相同颜色....小球的概率是_______.5.妞妞和她的爸爸玩“锤子、剪刀、布”游戏.每次用一只手可以出锤子、剪刀、布三种手势之一,规则是锤子赢剪刀、剪刀赢布、布赢锤子,若两人出相同手势,则算打平.妞妞和爸爸出相同手势的概率是___________.6.三个袋中各装有2个球,其中第一个袋和第二个袋中各有一个红球和一个黄球,第三个袋中有一个黄球和一个黑球,现从三个袋中各摸出一个球,则摸出的三个球中有2个黄球和一个红球的概率为_________.三、解答题:有两组卡片,第一组卡片共3张,分别写着2、2、3;第二组卡片共5张,分别写着1、2、2、3、3. 试用列表的方法求从每组中各抽取一张卡片,两张都是2的概率.【综合练习】有两个质量均匀、大小相同的正四面体,其中一个的四个面上分别写着数字1、2、3、4,另一个的四个面上分别写着数字5、6、7、8. 将这两个正四面体同时投掷到桌面上,并以它们底面上的数字之和来计分,问:(1)共能组成多少种不同的计分?(2)底面上的数字之和为素数的概率是多少?(3)底面上的数字之和为偶数的概率是多少?【探究练习】中国队和韩国队等9支球队参加奥运会足球预选赛亚洲区决赛,把9支球队任意地分成3组,试求中、韩两队恰好分在同一组的概率.答案:【基础练习】一、D.二、1. 25 ; 2. 310 ; 3. 715 ; 4.13 ;5.13; 6.14. 三、415. 【综合练习】(1)7;(2)14 ;(3)12. 【探究练习】14.课后小知识--------------------------------------------------------------------------------------------------小学生每日名人名言1、读书要三到:心到、眼到、口到2、一日不读口生,一日不写手生。

【初中数学】第2课时 用画树状图法求概率 [人教版九年级上册] (练习题)

【初中数学】第2课时 用画树状图法求概率 [人教版九年级上册] (练习题)

第2课时用画树状图法求概率[人教版九年级上册](2912)1.妙妙上学经过两个路口,如果每个路口可直接通过和需等待的可能性相等,那么妙妙上学时在这两个路口都直接通过的概率是()A.14B.13C.12D.342.小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是()A.12B.23C.16D.563.一个不透明的口袋中有两个完全相同的小球,把它们分别标号为1,2.随机摸取一个小球后,放回并摇匀,再随机摸取一个小球,两次取出的小球标号的和等于4的概率为.4.江苏省第20届运动会将在泰州举办,“泰宝”和“凤娃”是运动会吉祥物.在一次宣传活动中,组织者将分别印有这两种吉祥物图案的卡片各2张放在一个不透明的盒子中并搅匀,卡片除图案外其余均相同.小张从中随机抽取2张换取相应的吉祥物,抽取方式有两种:第一种是先抽取1张不放回,再抽取1张;第二种是一次性抽取2张.(1)两种抽取方式抽到不同图案卡片的概率(填“相同”或“不同”);(2)若小张用第一种方式抽取卡片,求抽到不同图案卡片的概率.5.小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种球各1个,这些球除颜色外无其他差别,从箱子中随机摸出1个球,然后放回箱子中,下一个人继续摸球.三人摸到球的颜色互不相同的概率是()A.127B.13C.19D.296.某市教育局为提高教师业务素质,扎实开展了“课内比教学”活动.在一次数学讲课比赛中,每个参赛选手都从两个分别标有“A”“B”内容的签中,随机抽出一个作为自己的讲课内容.某校有三个选手参加这次讲课比赛,则这三个选手中有两个抽中内容“A”,一个抽中内容“B”的概率是7.甲、乙、丙三人各自随机选择到A,B两个献血站进行爱心献血.求这三人在同一个献血站献血的概率.8.若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数.(1)请画出树状图并写出所有可能得到的三位数.(2)甲、乙二人玩一个游戏,游戏规则是若组成的三位数是“伞数”,则甲胜;否则乙胜.你认为这个游戏规则公平吗?试说明理由.9.为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋投放,其中A类指废电池、过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料、废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.10.完成下列各题。

25.2.2 用树状图求概率(课后练)-初中数学人教版九年级上册课前课中课后同步试题精编

25.2.2 用树状图求概率(课后练)-初中数学人教版九年级上册课前课中课后同步试题精编
∴配成紫色的概率为 ,
故答案为: .
【点睛】
本题考查了列表法与树状图法以及概率公式,正确画出树状图是解题的关键.
(2)请将条形统计图补充完整;
(3)学校从获得满分的四位同学甲、乙、丙、丁中选2名同学参加全市现场党史知识竞赛,选取规则如下:在一个不透明的口袋中,装有4个大小质地均相同的小球,分别标有数字1、2、3、4.从中摸出两个小球,若两个数字之和为奇数,则选甲乙;若两个数字之和为偶数,则选丙丁,请用树状图或列表法说明此规则是否合理.
(1)这次共抽取了_________名家长进行调查统计,扇形统计图中,D类所对应的扇形圆心角的大小是_________.
(2)将条形统计图补充完整;
(3)该学校共有2000名学生家长,估计该学校家长表示“支持”的(A类,B类的和)人数大约有多少人?
(4)D类不支持的家长中有两人是女性,一人是男性,现从这三个人中抽取两人,用树状图或者列表的方式求抽取的两人都是女性的概率.
(1)七年一班从3张卡片中随机抽取1张,抽到C卡片的概率为;
(2)七年一班从3张卡片中随机抽取1张,记下曲目后放回洗匀,七年二班再从中随机抽取1张,请用列表或画树状图的方法,求这两个班级恰好抽到同一首歌曲的概率.
8.不透明的口袋里装有红、黄两种颜色的小球(除颜色不同外,其它都相同),其中红球2个,现在从中任意摸出一个球,摸到黄球的概率为 .
参考答案
1.3
【分析】
分别假设放入的红球个数为1、2和3,画树状图列出此时所有等可能结果,从中找到摸出一红一黄和两个红球的结果数,从而验证红球的个数是否符合题意.
【详解】
解:(1)假设袋中红球个数为1,
此时袋中由1个黄球、1个红球,
搅匀后从中任意摸出两个球,P(摸出一红一黄)=1,P(摸出两红)=0,不符合题意.

【初中数学】人教版九年级上册课时作业(四十一) [25.2 第2课时 用画树状图法求概率](练习题)

【初中数学】人教版九年级上册课时作业(四十一) [25.2 第2课时 用画树状图法求概率](练习题)

人教版九年级上册课时作业(四十一)[25.2 第2课时用画树状图法求概率](375)1.在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一扇形区域内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.2.小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.(1)小明和小刚都在本周日上午去游玩的概率为;(2)求他们三人在同一个半天去游玩的概率.3.某市今年的理化生实验操作考试,采用学生抽签的方式决定自己的考试内容.规定:每位考生从三个物理实验题(题签分别用代码W1,W2,W3表示),三个化学实验题(题签分别用代码H1,H2,H3表示),两个生物实验题(题签分别用代码S1,S2表示)中分别抽取一个进行考试.小亮在看不到题签的情况下,从它们中随机地各抽取一个题签.(1)请你用画树状图的方法,写出他恰好抽到H2的情况;(2)求小亮抽到的题签代码的下标(例如“W2”的下标为“2”)之和为7的概率.4.某校在民族团结宣传活动中,采用了四种宣传形式:A唱歌,B舞蹈,C朗诵,D器乐.全校的每名学生都选择了一种宣传形式参与了活动,小明对同学们选用的宣传形式,进行了随机抽样调查,根据调查统计结果,绘制了如图两种不完整的统计图表:请结合统计图表,回答下列问题:(1)本次调查的学生共有人,a=,并将条形统计图补充完整;(2)如果该校学生有2000人,请你估计该校喜欢“唱歌”这种宣传形式的学生约有多少人;(3)学校采用调查方式让每班在A,B,C,D四种宣传形式中,随机抽取两种进行展示,请用画树状图或列表法,求某班抽到的两种形式恰好是“唱歌”和“舞蹈”的概率.5.掷一枚硬币两次,可能出现的结果有四种.我们可以利用如图所示的树状图来分析所有可能出现的结果.那么掷一枚硬币两次,至少有一次出现正面的概率是.6.同时抛掷三枚质地均匀的硬币,出现两枚正面向上,一枚正面向下的概率是.7.经过某十字路口的汽车,可直行,也可向左转或向右转,如果三种可能性大小相同,则两辆汽车经过该十字路口时都直行的概率是.8.如图所示,一只蚂蚁从A点出发到D,E,F处寻觅食物.假定蚂蚁在每个岔路口都等可能的随机选择一条向左下或右下的路径(比如A岔路口可以向左下到达B处,也可以向右下到达C处,其中A,B,C都是岔路口).那么,蚂蚁从A出发到达E处的概率是.9.我市初中毕业男生体育测试项目有四项,其中“立定跳远”“1000米跑”“肺活量测试”为必测项目,另外从“引体向上”或“推铅球”中选一项进行测试.小亮、小明和小刚从“引体向上”“推铅球”中选择同一个测试项目的概率是.10.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于4的概率是()A.16B.516C.13D.1211.某校举行以“激情五月,唱响青春”为主题的演讲比赛.决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学得前两名的概率是()A.12B.13C.14D.1612.同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是()A.38B.58C.23D.1213.在−2,−1,0,1,2这五个数中任取两数m,n,则抛物线y=(x−m)2+n的顶点在坐标轴上的概率为()A.25B.15C.14D.1214.三张背面完全相同的数字牌,它们的正面分别印有数字“1”“2”“3”,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a,b,c,则以a,b,c为边长正好构成等边三角形的概率是()A.19B.127C.59D.13参考答案1(1)【答案】画树状图:或列表:所以两数和共有12种等可能情况;(2)【答案】由(1)可知,两数和共有12种等可能的情况,其中和小于12的情况有6种,和大于12的情况有3种,∴李燕获胜的概率为612=12;刘凯获胜的概率为312=14.2(1)【答案】14【解析】:根据题意,画树状图如下:由树状图可知,三人随机选择本周日的上午或下午去游玩共有8种等可能的结果,其中小明和小刚都在本周日上午去游玩的结果有(上、上、上),(上、上、下)2种,∴小明和小刚都在本周日上午去游玩的概率为28=14(2)【答案】由(1)中树状图可知,他们三人在同一个半天去游玩的结果有(上、上、上),(下、下、下)这2种,∴他们三人在同一个半天去游玩的概率为28=143(1)【答案】画树状图如下:由图可知,恰好抽到H2的情况有如下6种:(W1,H2,S1),(W1,H2,S2),(W2,H2,S1),(W2,H2,S2),(W3,H2,S1),(W3,H2,S2)(2)【答案】∵由(1)知,下标之和为7的有3种情况,∴小亮抽到的题签代码的下标之和为7的概率为318=164(1)【答案】∵A类人数为105,占总人数的35%,∴本次调查的学生共有105÷35%=300(人);a=1−35%−25%−30%=10%;B类的人数为300×10%=30,补全条形统计图如图.【解析】:∵A类人数为105,占总人数的35%,∴本次调查的学生共有105÷35%= 300(人);a=1−35%−25%−30%=10%;B类的人数为300×10%=30,补全条形统计图如图.(2)【答案】2000×35%=700(人),所以估计该校喜欢“唱歌”这种宣传形式的学生约有700人。

3.1 用树状图或表格求概率 练习题 2024-2025学年北师大版九年级数学上册

3.1 用树状图或表格求概率 练习题 2024-2025学年北师大版九年级数学上册

3.1 用树状图或表格求概率一、单项选择题1.从1,2,3,4,5这五个数中任选两个数,其和为偶数的概率为( ) A .15 B .25 C .35 D .452.小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和白色围巾的概率是( ) A .12 B .23 C .16 D .563.如图所示的电路图,同时闭合两个开关能形成闭合电路的概率是( )A .13B .23C .12D .1 4.现有4张卡片,正面图案如图所示,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案恰好是“天问”和“九章”的概率是( )A .16B .18C .110D .1125.小李与小陈做猜拳游戏,规定每人每次至少要出一个手指(每次只能出一只手),若两人出拳的手指数之和为偶数时小李获胜,则小李获胜的概率为( )A .1325B .1225C .425D .126.小明与小刚一起玩抛掷两枚硬币的游戏,游戏规则:抛出两个正面——小明赢1分;抛出其他结果——小刚赢1分;谁先得到10分,谁就获胜.这是个不公平的游戏规则,要把它修改成公平的游戏,下列做法中错误的是( ) A .把“抛出两个正面”改为“抛出两个同面” B .把“抛出其他结果”改为“抛出两个反面” C .把“小明赢1分”改为“小明赢3分” D .把“小刚赢1分”改为“小刚赢3分”7.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )A .18B .16C .14D .128.转动两个转盘,当指针分别指向红色和蓝色时称为配紫色成功.如图,转动两个分别被均匀分成4等份和3等份的转盘各一次,配紫色成功的概率是( )A .12B .13C .14D .23二、填空题9.班长邀请A ,B ,C ,D 四位同学参加圆桌会议.如图,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则A,B两位同学座位相邻的概率是__________.10.端午节早上,小颖为全家人蒸了2个蛋黄粽,3个鲜肉粽,她从中随机挑选了两个孝敬爷爷奶奶,则爷爷奶奶吃到同类粽子的概率为____________.11.如图,管中放置着三根同样的绳子AA1,BB1,CC1,小明在左侧随机选两个绳头打一个结,小红在右侧也随机选两个绳头打一个结,则这三根绳子能连接成一根长绳的概率为____________.12.在拼图游戏中,从如图①所示的4张卡片中任取2张卡片,若能拼成如图②所示的“房子”,则小静赢,否则小敏赢.判断这个游戏对双方____________ (填“公平”或“不公平”).13.用图中两个可以自由转动的转盘做“配紫色”游戏,分别转动两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是______.14.甲、乙两人用如图所示的两个转盘(每个转盘分别分成面积相等的3个扇形)做游戏,游戏规则:转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.甲获胜的概率是_____.15.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为___.三、解答题16.甲、乙两位同学去食堂就餐,如图是食堂内的一张餐桌的示意图,甲、乙两位同学随机地坐在①,②,③,④这四个座位上,请用画树状图或列表的方法求甲、乙两位同学恰好坐在正对面的概率.17.小莉的爸爸买了一张某演唱会的门票,她和哥哥两人都很想去看,可门票只有一张,读九年级的哥哥想了一个抽牌游戏来决定谁去看演唱会:拿8张扑克牌,将数字为1,2,3,5的4张牌给小莉,将数字为4,6,7,8的4张牌留给自己,并按如下游戏规则进行:小莉和哥哥从各自的4张牌中随机抽出一张,然后将抽出的2张牌的数字相加,如果和为偶数,则小莉去;否则哥哥去.(1)请用画树状图或列表的方法求小莉去看演唱会的概率;(2)哥哥设计的这个游戏对双方公平吗?为什么?若不公平,请你修改这个游戏,使其对双方公平.18.在一次数学兴趣小组活动中,小明和小刚两位同学设计了如图所示的两个转盘做游戏,游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后(若指针停在分界线上,则重转),若指针所指区域内两数之和小于11,则小明获胜;若指针所指区域内两数之和等于11,则为平局;若指针所指区域内两数之和大于11,则小刚获胜.(1)请用列表或画树状图的方法表示出上述游戏中两数之和的所有可能出现的结果;(2)这个游戏规则公平吗?为什么?答案 一、1-8 BCBAA DCC 二、 9. 12 10. 2511. 2312. 不公平 13. 51214. 5915. 14三、16. 解:画树状图如下:由树状图可知共有12种等可能的结果,其中甲、乙两位同学恰好坐在正对面的结果共有①②,②①,③④,④③这4种,∴甲、乙两位同学恰好坐在正对面的概率为412 =1317. 解:(1)画树状图如下:由树状图可知共有16种等可能的结果,其中小莉去看演唱会的结果有6种,∴小莉去看演唱会的概率为616 =38(2)不公平,理由如下:∵哥哥去看演唱会的概率为1-38 =58 ,而38 <58 ,∴小莉去看演唱会的概率低于哥哥去看演唱会的概率,∴哥哥设计的这个游戏对双方不公平.修改游戏的方法不唯一,合理即可,如:把小莉的数字5的牌与哥哥数字4的牌对调 18. 解:(1)上述游戏中两数之和的所有可能出现的结果如如下的树状图所示:(2)不公平,理由如下:由树状图可知共有12种等可能的结果,其中小明获胜、小刚获胜的结果分别有5种、3种,∴小明获胜的概率为512 ,小刚获胜的概率为312 =14 .∵512 >14 ,∴这个游戏规则不公平。

3.1用树状图或表格求概率课时练习(含答案解析)

3.1用树状图或表格求概率课时练习(含答案解析)

第一节用树状图或表格求概率同步测试一、选择题1.某校有一个两层楼的餐厅,甲、乙、丙三名学生各自随机选择此中的某个楼层的餐厅用餐,则甲、乙、丙三名学生在同一个楼层餐厅用餐的概率为()1 3 1 3A. B. C. D.4 4 8 8答案: A分析:解答:设两层楼分别为 A , B,共有 8 种状况,在一层的共有 2 种状况,因此甲乙丙同在一层楼吃饭的概率是1.4应选 A剖析 :列举出所有状况,让甲、乙、丙三名学生在同一个楼层餐厅用餐的状况数即AAA,AAB,ABA,ABB,BAA,BAB,BBA,BBB,除以总状况数即为所求的概率.2.如下图的两个转盘,每个转盘均被分红四个相同的扇形,转动转盘时指针落在每一个扇形内的时机均等,同时转动两个转盘,则两个指针同时落在标有奇数扇形内的概率为()1 1 1 1A. B. C. D.2 3 4 8答案: C分析:解答:列表得:1共有 16 种状况,两个指针同时落在标有奇数扇形内的状况有4 种状况,因此概率是,故4选 C .剖析 :本题考察了树状图来求概率 ,列举出所有状况,看两个指针同时落在标有奇数扇形内的状况占总状况的多少即可.3.在一个口袋中有 3 个完整相同的小球,把它们分别标号为1, 2, 3,随机地摸取一个小球而后放回,再随机地摸出一个小球.则两次取的小球的标号相同的概率为()A.1 1 1 1 B.C.2D.369答案: A分析: 解答: 列表,得:因此共有 9 种状况,两次取的小球的标号相同的有3 种状况;因此两次取的小球的标号相同的概率为3 1 9 .3应选 A .剖析 :本题考察了列表法求概率 ,本题是抽取再放回 ,用表格列出所有的 9 种状况是解决问题的重点 .4.学校准备从甲、乙、丙、丁四位同学中选两位参加数学比赛,则同时选中甲、乙两位同学的概率是 ()1 B.1 1 1 A.C.2D.648答案: A分析: 解答: 解:画树状图得:∵共有 12 种等可能的结果,同时选中甲、乙两位同学的有 2 种状况,2 = 1 .因此选 A .∴同时选中甲、乙两位同学的概率是:12 6剖析 :第一依据题意画出树状图,而后由树状图求得所有等可能的结果与同时选中甲、乙两位同学的状况,再利用概率公式求解即可求得答案5.随机闭合开关S1、 S2、S3中的两个,能让灯泡⊙发光的概率是( )3 2 1 1A. B. C. D.4 3 2 3答案: B,应选 B.2分析:解答:随机闭合开关S1、S2、S3中的两个出现的状况列表得,因此概率为3开关S1 S2 S1 S3 S2S3,结果亮亮不亮剖析 :本题第一要明确 ,并联电路的特色 ,用列表法 ,求出三个开关的所有闭合状况,再剖析出灯泡亮的状况 ,即可解决问题 .6.小兰和小潭分别用掷 A 、 B 两枚骰子的方法来确立P(x, y)的地点,她们规定:小兰掷得的点数为 x,小谭掷得的点数为 y,那么,她们各掷一次所确立的点落在已知直线y=-2x+6 上的概率为 ()6 1 1 1A. B. C. D.36 18 12 9答案: B分析:解答:列表得:∴一共有 36 种状况,她们各掷一次所确立的点落在已知直线y=-2x+6 上的有( 1, 4),(2, 2).∴她们各掷一次所确立的点落在已知直线y=-2x+6 上的概率为2 136 .18应选 B剖析 :用列表法先列出所有的36 种坐标 ,而后再分别代入直线,找出知足分析式的点的坐标,问题即可获得解决.7小红上学要经过三个十字路口,每个路口碰到红、绿灯的时机都相同,小红希望上学时经过每个路口都是绿灯,但实质这样的时机是()1 1 1 1A. B. C. D.2 3 4 8答案: D分析:解答:解:画树状图,得∴共有 8 种状况,经过每个路口都是绿灯的有一种,∴实质这样的时机是 1 .8应选 D.剖析 :本题可理解为两步实验,用树状图列出这两步实验的所有状况8 种 ,问题即可获得解决 .8.在数 -1,1,2 中任取两个数作为点坐标,那么该点恰幸亏一次函数y=x-2 图象上的概率是()1 1 1 1A. B. C. D.2 3 4 6答案: D分析:解答:画树状图如上:共有 6 种等可能的结果,此中只有(1, -1)在一次函数y=x-2 图象上,1因此点在一次函数y=x-2 图象上的概率=.6应选 D.剖析 :用树状图列出这四个数作为点的坐标的所有状况,注意有次序性,再代入找出知足分析式的点 ,问题即可获得解决.9.一枚质地平均的昔通硬币重复掷两次,落地后两次都是正面向上的概率是( )1 1 1B. C. D.2 3 4答案: D分析:解答:共有 4 种状况,落地后两次都是正面向上的状况数有 1 种,因此概率为1.应选D.4剖析 :用树状图列出所有可能出现的状况(正正 ;正反 ;反正 ;反反 )这是解决问题的重点.10.任意掷一枚平均的硬币两次,则两次都不是正面向上的概率是()1 1 1B. C. D.4 3 3答案: B分析:解答:∵任意掷一枚平均的硬币两次,等可能的结果有:正正,正反,反正,反反,∴两次都不是正面向上的概率是1.应选 B.4剖析:第一利用列举法可得任意掷一枚平均的硬币两次,等可能的结果有:正正,正反,反正,反反,而后利用概率公式求解即可求得答案.11.将分别标有数字 1,2,3,4 的四张卡片洗匀后,反面向上,放在桌面上,随机抽取一张(不放回 ),接着再随机抽取一张,恰巧两张卡片上的数字相邻的概率为()111 1A. B. C. D.543 2答案: D分析:解答:第一次可有 4 种选择,那么第二次可有 3 种选择,那么知共有4×3=12 种可能,恰巧两张卡片上的数字相邻的有 6 种,因此概率是 6 = 1 ,应选D.12 2剖析 :第一利用列举法可得抽取不放回的等可能的结果有:12 种,相邻的有 6 种 ,而后利用概率公式求解即可求得答案.12.有三张正面分别写有数字-1, 1, 2 的卡片,它们反面完整相同,现将这三张卡片反面朝上洗匀后随机抽取一张,以其正面数字作为 a 的值,而后再从节余的两张卡片随机抽一张,以其正面的数字作为 b 的值,则点 (a, b)在第二象限的概率为()1 1 1 2A. B. C D.6 3 2 3答案: B分析:解答:解:依据题意,画出树状图如上:一共有 6 种状况,在第二象限的点有(-1,1)( -1, 2)共 2 个,因此, P= 2 1 = .6 3应选 B.剖析 :第一利用树形图可得等可能的结果有 6 种,而后利用概率公式求解即可求得答案.13.一个盒子中有 4 个除颜色外其他都相同的玻璃球, 1 个红色, 1 个绿色, 2 个白色,现随机从盒子中一次取出两个球,这两个球都是白球的概率为( )1B. 1C.1A.36 2答案: A分析:解答:共12 种等可能的状况, 2 次都是白球的状况数有 2 种,因此概率为.应选 A.剖析 :列举出所有状况,看这两个球都是白球的状况数占总状况数的多少即可.14.小明同时向上掷两枚质地平均、相同大小的正方体骰子,骰子的六个面上分别刻有 1 到 6 的点数,掷得面向上的点数之和是 3 的倍数的概率是 ( )1 1 8 5A. B. C. D.3 6 15 6答案: A分析:解答:明显和为 3 的倍数的概率为.应选 A.剖析 :本题可理解为两步实验,用列表法求出36 种所有可能的状况,而后找出和为 3 的倍数个数问题即可获得解决.15.甲、乙、丙、丁四位同学参加校田径运动会4×100 米接力跑比赛,假如任意安排四位同学的跑步次序,那么恰巧由甲将接力棒交给乙的概率是()1 1 1 5A. B. C. D.4 6 8 24答案: A分析:解答:画树状图得:一共有 24 种状况,恰巧由甲将接力棒交给乙的有甲乙丙丁、甲乙丁丙、丙甲乙丁、丁甲乙丙、丙丁甲乙、丁丙甲乙 6 种状况,∴恰巧由甲将接力棒交给乙的概率是6 = 1 ,应选 A.24 4剖析 :用树形图列举出所有状况,看恰巧由甲将接力棒交给乙的状况数占总状况数的多少即可.二、填空题16. 由 1, 2, 3 构成不重复的两位数,十位数字是 2 的概率是_____.答案:13分析:解答:由 1,2, 3 构成不重复的两位数有:则十位数字是 2 的状况有: 21、23 两种;12、 13、 21、 23、 31、 32 共六种状况;∴十位数字是 2 的概率是2÷6= 1.故答案为 1 .3 3剖析 :先依据题意列出切合条件的两位数有 6 种,此中十位数字是 2 的状况有 2 种,而后根据概率公式求解即可.17.如图,是两个能够自由转动的平均圆盘 A 和 B,A 、B 分别被平均的分红三等份和四等份.同时自由转动圆盘 A 和 B,圆盘停止后,指针分别指向的两个数字的积为偶数的概率是_____.答案:23分析:解答:画树状图得:∵由 12 种等可能的结果,指针分别指向的两个数字的积为偶数的有8 种状况,8 2∴指针分别指向的两个数字的积为偶数的概率是:.12 3故答案为:2.3剖析 :第一依据题意画出树状图,而后由树状图求得所有等可能的结果与指针分别指向的两个数字的积为偶数的状况,再利用概率公式求解即可求得答案.18.有四条线段,长度分别为1、 3 、 4 、5,任意取此中三条,能构成三角形的概率是_____答案:14分析:解答:四条线段,长度分别为1、3、4、5,任意取此中三条状况为:1, 3,4;1, 3,5; 1, 4, 5; 3, 4,5;能构成三角形的状况有:3,4, 5 只有 1 种状况,1 1则 P= .故答案为:4 4剖析 :找出四条选段,任意取此中三条的状况数,再找出能构成三角形的状况,即可求出所求的概率.19.从 1cm、3cm、5cm、7cm、9cm 的五条线段中,任选三条能够构成三角形的概率是_____.答案:310分析:解答:∵从 1cm、3cm、5cm、7cm、9cm 的五条线段中,任选三条,等可能的结果有:1cm、 3cm、 5cm, 1cm、 3cm、7cm, 1cm、 3cm、 9cm, 1cm、 5cm、 7cm, 1cm、5cm、 9cm,1cm、 7cm、 9cm, 3cm、 5cm、 7cm, 3cm、 5cm、 9cm, 3cm、 7cm、 9cm, 5cm、 7cm、 9cm 共 10 种,能构成三角形的有以上状况:3cm,5cm,7cm,3cm,7cm,9cm,5cm,7cm,9cm,3∴任选三条能够构成三角形的概率是:.10故答案为:3.10剖析 :第一利用列举法可得:任选三条,等可能的结果有:1cm、3cm、5cm,1cm、3cm、7cm,1cm、 3cm、 9cm, 1cm、 5cm、 7cm, 1cm、 5cm、 9cm, 1cm、 7cm、 9cm, 3cm、 5cm、7cm,3cm、5cm、9cm,3cm、7cm、9cm,5cm、7cm、9cm 共 10 种,能构成三角形的有以上状况:3cm, 5cm, 7cm, 3cm, 7cm, 9cm, 5cm, 7cm, 9cm,再利用概率公式即可求得答案.20.假如有两组牌,它们牌面数字分别为1、 2、3,那么从每组牌中各摸出一张牌,两张牌的牌面数字和等于 4 的牌概率是 ____ .1答案:3分析:解答:解:画树状图如上:共有 9 种状况,两张牌的牌面数字和等于 4 的牌有 3 种,∴P(两张牌的牌面数字和等于4) = 3 1 .故答案为:1.9 3 3剖析 :用树形图按两步实验的方法列出9 种状况 ,数字之和等于 4 的有 3 种,即可得出答案 . 概率三.解答题21.有两组牌,每组牌都是 4 张,牌面数字分别是 1, 2, 3, 4,从每组牌中任取一张,求抽取的两张牌的数字之和等于 5 的概率,并画出树状图.答案:解:,共有 16 种等可能的状况,和为 5 的状况有 4 种,∴ P(和为 5) = 1.4分析:剖析 :画出树状图.列举出所有状况,看抽取的两张牌的数字之和等于 5 的状况占所有状况的多少即可.22.一个不透明的盒子中放有四张分别写有数字1,2,3,4 的红色卡片和三张分别写有数字1, 2, 3 的蓝色卡片,卡片除颜色和数字外完整相同.(1) 从中任意抽取一张卡片,求该卡片上写有数字 1 的概率;答案: 27(2)将 3 张蓝色卡片取出后放入此外一个不透明的盒子内,而后在两个盒子内各任意抽取一张卡片,以红色卡片上的数字作为十位数,蓝色卡片上的数字作为个位数构成一个两位数,求这个两位数大于 22 的概率.答案:712分析:解答:( 1)∵在 7 张卡片中共有两张卡片写有数字1,∴从中任意抽取一张卡片,卡片上写有数字1 的概率是 2 ;7(2)构成的所有两位数列表为:十位数1 2 3 4个位数1 11 21 31 412 12 22 32 423 13 23 33 43或列树状图为:7∴这个两位数大于22 的概率为.12剖析 :本题考察的是用列表法或画树状图法求概率.列表法或画树状图法能够不重复不遗漏的列出所有可能的结果,合适于两步达成的事件.用到的知识点为:概率 =所讨状况数与总状况数之比.依照题意先用列表法或画树状图法剖析所有等可能和出现所有结果的可能,而后依据概率公式求出该事件的概率.23.现将红、黄、蓝各一球放入不透明的盒子中,这三个球除颜色外完整相同,每次摇匀后,从中摸出一个球记录颜色并放回,共摸两次,求摸到同种颜色球的概率.答案:解:由树状图可知共有3×3=9 种可能,摸到同种颜色球的有 3 种,因此概率是3 1.9 3图法分析:剖析 :用树形图 ,先求出摸两次所有可能出现的状况共9 种 ,再找出同颜色的有 3 种 ,计算即可得到答案 .24.“十一”黄金周时期,小明要与父亲母亲出门游乐,带了 2 件上衣和 3 条长裤 (把衣服和裤子分别装在两个袋子里),上衣颜色有红色、黄色,长裤有红色、黑色、黄色.问题为:(1)小明任意取出一条裤子和一件上衣配成一套,用( 画树状图或列表格 )中的一种列出所有可能出现结果;答案: 6 种;(2)配好一套衣服,小明正好拿到黑色长裤的概率是多少;答案:13(3)他任意取出一件上衣和一条长裤穿上的颜色正好相同的概率是多少?答案:13分析:解答:解:( 1)列表如上:裤子红色黑色黄色上衣红色红色,红色红色,黑色红色,黄色黄色黄色,红色黄色,黑色黄色,黄色因此小明任意取出一条裤子和一件上衣配成一套,所有可能出现的结果有 6 种;(2)黑色长裤的有两种,因此概率是 1 ;3(3)颜色相同的占两种,因此概率是 1 .3剖析 :因为本题需要两步达成,因此采纳列表法或许采纳树状图法都比较简单;解题时要注意是放回实验仍是不放回实验.本题属于放回实验.(1)依据表格可得所有状况;(2)找到黑色长裤占所有状况的多少;(3)颜色相同的状况占所有状况的多少.25.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其他都相同),此中白球有 2 个,黄球有 1 个,现从中任意摸出一个是白球的概率为 1 .2(1)试求袋中蓝球的个数;答案: 1 个.(2)第一次任意摸一个球 (不放回 ),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.答案:1 6分析:解答:( 1)设蓝球个数为x 个,则由题意得 2 = 1, x=12+ 1+ x 2 答:蓝球有 1 个;(2)∴两次摸到都是白球的概率=2=1.12 6剖析 :求概率时要理解概率值等于出现的次数比上总的次数,因为给出了概率求个数,因此可列方程解之 .。

人教版九年级数学上册第25章25.2.2 用树状图法求概率 同步练习题(含答案,教师版)

人教版九年级数学上册第25章25.2.2 用树状图法求概率 同步练习题(含答案,教师版)

人教版九年级数学上册第25章25.2.2 用树状图法求概率同步练习题一、选择题1.有3张纸牌,分别是红桃2,红桃3,黑桃A,把纸牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张,则两人抽的纸牌均为红桃的概率是(A)A.49B.59C.13D.232.一个不透明的盒子里装有除颜色外其他都相同的四个球,其中1个白球、1个黑球、2个红球,搅匀后随机从盒子中摸出两个球,则摸出两个红球的概率是(C)A.12B.14C.16D.193.衣橱中挂着3套不同颜色的服装,同一套服装的上衣与裤子的颜色相同.若从衣橱里各任取一件上衣和一条裤子,则它们取自同一套的概率是(D)A.127B.19C.16D.134.小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种球各1个,这些球除颜色外无其他差别,从箱子中随机摸出1个球,然后放回箱子中,轮到下一个人摸球,三人摸到球的颜色都不相同的概率是(D)A.127B.13C.19D.295.不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为(D)A.23B.12C.13D.146.一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于5的概率为(C)A.15B.25C.35D.457.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率为(A)图1 图2A.23B.12C.13D .1 8.从1,2,3,4四个数中随机选取两个不同的数,分别记为a ,c ,则关于x 的一元二次方程ax 2+4x +c =0有实数解的概率为(C)A.14B.13C.12D.23二、填空题9.甲口袋装有2个相同的小球,分别写有字母a 和b ;乙口袋中装有3个相同的小球,分别写有字母c ,d 和e.从两个口袋中各随机取出一个小球,恰好是一个元音和一个辅音字母的概率是12.(字母a 和e 是元音,字母b ,c 和d 是辅音) 10.从甲、乙2名医生和丙、丁2名护士中任意抽取2人参加医疗队,那么抽取的2人恰好是一名医生和一名护士的概率为23. 11.在一个不透明的布袋中装有标着数字2,3,4,5的4个小球,这4个小球的材质、大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于9的概率为23. 12.有两个不透明的盒子,第一个盒子中有3张卡片,上面的数字分别为1,2,2;第二个盒子中有5张卡片,上面的数字分别为1,2,2,3,3.这些卡片除了数字不同外,其他都相同,从每个盒子中各抽出一张,都抽到卡片数字是2的概率为415. 三、解答题 13.经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用画树状图法,求两人之中至少有一人直行的概率.解:画树状图如下:由树状图可知所有等可能的结果有9种,其中两人之中至少有一人直行的结果有5种,所以P(两人之中至少有一人直行)=59. 14.某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样:A :菜包,B :面包,C :鸡蛋,D :油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.(1)按约定,“某顾客在该天早餐得到两个鸡蛋”是不可能事件(填“随机”“必然”或“不可能”);(2)请用画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.解:画树状图如下:由树状图知共有12种等可能的情况,其中早餐刚好得到菜包和油条的情况有2种,所以P(某顾客该天早餐刚好得到菜包和油条)=212=16. 15.现有A ,B ,C 三个不透明的盒子,A 盒中装有红球、黄球、蓝球各1个,B 盒中装有红球、黄球各1个,C 盒中装有红球、蓝球各1个,这些球除颜色外都相同.现分别从A ,B ,C 三个盒子中任意摸出一个球.(1)从A 盒中摸出红球的概率为13; (2)用画树状图的方法,求摸出的三个球中至少有一个红球的概率. 解:画树状图如图所示:共有12种等可能的结果,摸出的三个球中至少有一个红球的结果有10种,∴摸出的三个球中至少有一个红球的概率为1012=56. 16.小颖参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道题有3个选项,第二道题有4个选项,这两道题小颖都不会,不过小颖还有一个“求助”没有使用(使用“求助”可让主持人去掉其中一题中的一个错误选项).(1)若小颖第一道题不使用“求助”,则小颖答对第一道题的概率是13; (2)若小颖将“求助”留在第二道题使用,求小颖顺利通关的概率;(3)从概率的角度分析,你会建议小颖在答第几道题时使用“求助”?解:(2)画树状图如下:(用Z 表示正确选项,C 表示错误选项)第一题:第二题:由树状图可知,共有9种等可能的结果,其中小颖顺利通关的结果有1种,∴小颖将“求助”留在第二道题使用时,P(小颖顺利通关)=19. (3)若小颖将“求助”在第一道题使用,画树状图如下:(用Z 表示正确选项,C 表示错误选项)第一题:第二题:由树状图可知,共有8种等可能的结果,其中小颖顺利通关的结果有1种,∴小颖将“求助”在第一道题使用时,P(小颖顺利通关)=18. ∵18>19, ∴建议小颖在答第一道题时使用“求助”.。

初三数学用树状图计算概率试题

初三数学用树状图计算概率试题

初三数学用树状图计算概率试题1.甲、乙玩猜数字游戏,游戏规则如下:有四个数字0、1、2、3,先由甲心中任选一个数字,记为m,再由乙猜甲刚才所选的数字,记为n.若m、n满足|m﹣n|≤1,则称甲、乙两人“心有灵犀”,则甲、乙两人“心有灵犀”的概率是.【答案】【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与m、n满足|m﹣n|≤1的情况,再利用概率公式即可求得答案.解:画树状图得:∵共有16种等可能的结果,m、n满足|m﹣n|≤1的有10种情况,∴甲、乙两人“心有灵犀”的概率是:=.故答案为:.2.有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.(1)请用列表或画树状图的方法表示出上述事件所有可能的结果;(2)求一次打开锁的概率.【答案】解:(1)分别用A与B表示锁,用A、B、C、D表示钥匙,画树状图得:则可得共有8种等可能的结果;(2)∵一次打开锁的有2种情况,∴一次打开锁的概率为:=.【解析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)中的树状图,可求得一次打开锁的情况,再利用概率公式求解即可求得答案.3.在一个不透明的袋子里,有2个白球和2个红球,它们只有颜色上的区别,从袋子里随机摸出一个球记下颜色放回,再随机地摸出一个球,则两次都摸到白球的概率为()A.B.C.D.【答案】C【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到白球的情况,再利用概率公式求解即可求得答案.解:画树状图得:∵共有16种等可能的结果,两次都摸到白球的有4种情况,∴两次都摸到白球的概率为:=.故选C.4.2013年“五•一”期间,小明与小亮两家准备从东营港、黄河入海口、龙悦湖中选择一景点游玩,小明与小亮通过抽签方式确定景点,则两家抽到同一景点的概率是()A.B.C.D.【答案】A【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两家抽到同一景点的情况,再利用概率公式求解即可求得答案.解:用A、B、C表示:东营港、黄河入海口、龙悦湖;画树状图得:∵共有9种等可能的结果,则两家抽到同一景点的有3种情况,∴则两家抽到同一景点的概率是:=.故选A.5.义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是()A.B.C.D.【答案】B【解析】首先将一名只会翻译阿拉伯语用A表示,三名只会翻译英语都用B表示,一名两种语言都会翻译用C表示,即可画树状图,由树状图即可求得所有等可能的结果与能够翻译上述两种语言的情况,利用概率公式即可求得答案.解:将一名只会翻译阿拉伯语用A表示,三名只会翻译英语都用B表示,一名两种语言都会翻译用C表示,画树状图得:∵共有20种等可能的结果,该组能够翻译上述两种语言的有14种情况,∴该组能够翻译上述两种语言的概率为:=.故选B.6.中考体育男生抽测项目规则是:从立定跳远、实心球、引体向上中随机抽取一项;从50米、50×2米、100米中随机抽取一项.恰好抽中实心球和50米的概率是()A.B.C.D.【答案】D【解析】首先画出树状图,然后根据树状图即可求得所有等可能的结果与恰好抽中实心球和50米的情况,利用概率公式即可求得答案.解:画树状图得:∵共有9种等可能的结果,恰好抽中实心球和50米的有1种情况,∴恰好抽中实心球和50米的概率是:.故选D.7.从﹣2,2,3这三个数中任取两个不同的数相乘,积为负数的概率是()A.B.C.D.【答案】B【解析】首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果与积为负数的情况,再利用概率公式求解即可求得答案.解:画树状图得:∵共有6中等可能的结果,积为负数的有4种情况,∴积为负数的概率是:=.故选B.8.5月19日为中国旅游日,衢州推出“读万卷书,行万里路,游衢州景”的主题系列旅游惠民活动,市民王先生准备在优惠日当天上午从孔氏南宗家庙、烂柯山、龙游石窟中随机选择一个地点;下午从江郎山、三衢石林、开化根博园中随机选择一个地点游玩,则王先生恰好上午选中孔氏南宗家庙,下午选中江郎山这两个地的概率是()A.B.C.D.【答案】A【解析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.使用树状图分析时,一定要做到不重不漏.解:画树状图得:∴一共有9种等可能的结果,王先生恰好上午选中孔氏南宗家庙,下午选中江郎山这两个地的有一种情况,∴王先生恰好上午选中孔氏南宗家庙,下午选中江郎山这两个地的概率是.故选A.9.某校甲、乙、丙、丁四名同学在运动会上参加4×100米接力比赛,其中甲跑第一棒,乙跑第二棒的概率是()A.B.C.D.【答案】B【解析】列举出所有情况,看乙跑第二棒的情况数占总情况数的多少即可.解:甲跑第一棒有6种情况,同理,乙丙丁跑第一棒也各有6种情况,共有24种情况,其中甲跑第一棒,乙跑第二棒的情况数有2种,所以概率为=.故选B.10.在一个口袋中有4个完全相同的小球,把它们分别标号为 1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球.则两次摸出的小球的标号的和等于6的概率为()A.B.C.D.【答案】C【解析】列举出所有情况,看两次摸出的小球的标号的和等于6的情况数占总情况数的多少即可.解:共16种情况,和为6的情况数有3种,所以概率为.故选C.。

《3.1用树状图或表格求概率》同步练习含答案解析

《3.1用树状图或表格求概率》同步练习含答案解析

《3.1用树状图或表格求概率》同步练习含答案解析《3.1 用树状图或表格求概率》一、选择题1.甲、乙、丙三人站成一排拍照,则甲站在中间的概率是( )A .B .C .D .2.同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是( )A .B .C .D .3.一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为( )A .B .C .D .4.三张背面完全相同的数字牌,它们的正面分别印有数字“1”、“2”、“3”,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a 、b 、c ,则以a 、b 、c 为边长正好构成等边三角形的概率是( )A .B .C .D .5.有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6,随机抽取一张后,放回并混在一起,再随机抽取一张,两次抽取的数字的积为奇数的概率是( )A .B .C .D .6.质地均匀的骰子六个面分别刻有1到6的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生可能性最大的是( ) A .点数都是偶数 B .点数的和为奇数 C .点数的和小于13 D .点数的和小于27.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球,则两次摸出的小球的标号之和等于5的概率是( )A .B .C .D .8.某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是( )A.B.C.D.9.甲箱内有4颗球,颜色分别为红、黄、绿、蓝;乙箱内有3颗球,颜色分别为红、黄、黑.小赖打算同时从甲、乙两个箱子中各抽出一颗球,若同一箱中每球被抽出的机会相等,则小赖抽出的两颗球颜色相同的机率为何?()A.B.C.D.10.三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A.B.C.D.11.某学校在八年级开设了数学史、诗词赏析、陶艺三门校本课程,若小波和小睿两名同学每人随机选择其中一门课程,则小波和小睿选到同一课程的概率是()A.B.C. D.12.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是()A.B.C.D.13.有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6,若任意抛掷一次骰子,朝上的面的点数记为x,计算|x﹣4|,则其结果恰为2的概率是()A.B.C.D.14.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于4的概率是()A.B.C.D.15.小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为()A.B.C.D.二、填空题16.掷两枚质地均匀的骰子,其点数之和大于10的概率为.17.同时投掷两个骰子,它们点数之和不大于4的概率是.18.在一个不透明的箱子中装有4件同型号的产品,其中合格品3件、不合格品1件,现在从这4件产品中随机抽取2件检测,则抽到的都是合格品的概率是.19.一个布袋内只装有一个红球和2个黄球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黄球的概率是.20.如图所示,一只蚂蚁从A点出发到D,E,F处寻觅食物.假定蚂蚁在每个岔路口都等可能的随机选择一条向左下或右下的路径(比如A岔路口可以向左下到达B处,也可以向右下到达C处,其中A,B,C都是岔路口).那么,蚂蚁从A出发到达E处的概率是.21.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.22.同时掷两枚均匀的硬币,则两枚都出现反面朝上的概率是.23.一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是.24.在一个不透明的空袋子里,放入仅颜色不同的2个红球和1个白球,从中随机摸出1个球后不放回,再从中随机摸出1个球,两次都摸到红球的概率是.25.如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”、“2”、“3”三个数字,指针的位置固定不动,让转盘自由转动两次,当每次转盘停止后,记录指针指向的数(当指针指向分割线时,视其指向分割线左边的区域),则两次指针指向的数都是奇数的概率为.三、解答题26.甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;(2)求出两个数字之和能被3整除的概率.27.甲、乙两人都握有分别标记为A、B、C的三张牌,两人做游戏,游戏规则是:若两人出的牌不同,则A胜B,B胜C,C胜A;若两人出的牌相同,则为平局.(1)用树状图或列表等方法,列出甲、乙两人一次游戏的所有可能的结果;(2)求出现平局的概率.28.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为.(1)求袋子中白球的个数;(请通过列式或列方程解答)(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)《3.1 用树状图或表格求概率》参考答案与试题解析一、选择题1.甲、乙、丙三人站成一排拍照,则甲站在中间的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】画树状图展示所有6种等可能的结果数,再找出甲站在中间的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有6种等可能的结果数,其中甲站在中间的结果数为2,所以甲站在中间的概率==.故选:B.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.2.同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是()A.B.C.D.【考点】列表法与树状图法.【专题】统计与概率.【分析】根据题意,通过列树状图的方法可以写出所有可能性,从而可以得到至少有两枚硬币正面向上的概率.【解答】解:由题意可得,所有的可能性为:∴至少有两枚硬币正面向上的概率是: =, 故选D .【点评】本题考查列表法与树状图法,解题的关键是明确题意,写出所有的可能性.3.一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为( )A .B .C .D .【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与取到的是一个红球、一个白球的情况,再利用概率公式求解即可求得答案. 【解答】解:画树状图得:∵共有20种等可能的结果,取到的是一个红球、一个白球的有12种情况,∴取到的是一个红球、一个白球的概率为: =.故选C .【点评】此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.4.三张背面完全相同的数字牌,它们的正面分别印有数字“1”、“2”、“3”,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a 、b 、c ,则以a 、b 、c 为边长正好构成等边三角形的概率是( )A.B.C.D.【考点】列表法与树状图法;等边三角形的判定.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与构成等边三角形的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有27种等可能的结果,构成等边三角形的有3种情况,∴以a、b、c为边长正好构成等边三角形的概率是: =.故选A.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.5.有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6,随机抽取一张后,放回并混在一起,再随机抽取一张,两次抽取的数字的积为奇数的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】画树状图展示所有36种等可能的结果数,再找出两次抽取的数字的积为奇数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有36种等可能的结果数,其中两次抽取的数字的积为奇数的结果数为9,所以随机抽取一张,两次抽取的数字的积为奇数的概率==.故选B.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.6.质地均匀的骰子六个面分别刻有1到6的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生可能性最大的是()A.点数都是偶数 B.点数的和为奇数C.点数的和小于13 D.点数的和小于2【考点】列表法与树状图法;可能性的大小.【分析】先画树状图展示36种等可能的结果数,然后找出各事件发生的结果数,然后分别计算它们的概率,然后比较概率的大小即可.【解答】解:画树状图为:共有36种等可能的结果数,其中点数都是偶数的结果数为9,点数的和为奇数的结果数为18,点数和小于13的结果数为36,点数和小于2的结果数为0,所以点数都是偶数的概率==,点数的和为奇数的概率==,点数和小于13的概率=1,点数和小于2的概率=0,所以发生可能性最大的是点数的和小于13.故选C.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.7.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球,则两次摸出的小球的标号之和等于5的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球的标号之和等于5的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两次摸出的小球的标号之和等于5的有4种情况,∴两次摸出的小球的标号之和等于5的概率是:.故选C.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.8.某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()A.B.C.D.【考点】列表法与树状图法.【专题】计算题.【分析】画树状图展示所有12种等可能的结果数,再找出恰好抽到1班和2班的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有12种等可能的结果数,其中恰好抽到1班和2班的结果数为2,所以恰好抽到1班和2班的概率==.故选B.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.9.甲箱内有4颗球,颜色分别为红、黄、绿、蓝;乙箱内有3颗球,颜色分别为红、黄、黑.小赖打算同时从甲、乙两个箱子中各抽出一颗球,若同一箱中每球被抽出的机会相等,则小赖抽出的两颗球颜色相同的机率为何?()A.B.C.D.【考点】列表法与树状图法.【分析】画出树状图,得出共有12种等可能的结果,颜色相同的有2种情形,即可得出结果.【解答】解:树状图如图所示:共有12种等可能的结果,颜色相同的有2种情形,故小赖抽出的两颗球颜色相同的机率==;故选:B.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.10.三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两张卡片上的数字恰好都小于3的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,∴两张卡片上的数字恰好都小于3概率==.故选A.【点评】此题考查的是用列表法或树状图法求概率.解题的关键是要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.11.某学校在八年级开设了数学史、诗词赏析、陶艺三门校本课程,若小波和小睿两名同学每人随机选择其中一门课程,则小波和小睿选到同一课程的概率是()A.B.C.D.【考点】列表法与树状图法.【专题】计算题.【分析】先画树状图(数学史、诗词赏析、陶艺三门校本课程分别用A、B、C表示)展示所有9种等可能的结果数,再找出小波和小睿选到同一课程的结果数,然后根据概率公式求解.【解答】解:画树状图为:(数学史、诗词赏析、陶艺三门校本课程分别用A、B、C表示)共有9种等可能的结果数,其中小波和小睿选到同一课程的结果数为3,所以小波和小睿选到同一课程的概率==.故选B.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.12.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是()A.B.C.D.【考点】列表法与树状图法.【专题】统计与概率.【分析】根据题意可以通过列表的方法写出所有的可能性,从而可以得到所得结果之和为9的概率.【解答】解:由题意可得,同时投掷这两枚骰子,所得的所有结果是:(1,1)、(1,2)、(1,3)、(1,4)、(1,5)、(1,6)、(2,1)、(2,2)、(2,3)、(2,4)、(2,5)、(2,6)、(3,1)、(3,2)、(3,3)、(3,4)、(3,5)、(3,6)、(4,1)、(4,2)、(4,3)、(4,4)、(4,5)、(4,6)、(5,1)、(5,2)、(5,3)、(5,4)、(5,5)、(5,6)、(6,1)、(6,2)、(6,3)、(6,4)、(6,5)、(6,6),则所有结果之和是:2、3、4、5、6、7、3、4、5、6、7、8、4、5、6、7、8、9、5、6、7、8、9、10、6、7、8、9、10、11、7、8、9、10、11、12,∴所得结果之和为9的概率是:,故选C.【点评】本题考查列表法和树状图法,解题的关键是明确题意,列出相应的表格,计算出相应的概率.13.有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6,若任意抛掷一次骰子,朝上的面的点数记为x,计算|x﹣4|,则其结果恰为2的概率是()A.B.C.D.【考点】列表法与树状图法;绝对值;概率的意义.【分析】先求出绝对值方程|x﹣4|=2的解,即可解决问题.【解答】解:∵|x﹣4|=2,∴x=2或6.∴其结果恰为2的概率==.故选C.【点评】本题考查概率的定义、绝对值方程等知识,解题的关键是理解题意,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,属于中考常考题型.14.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于4的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号的积小于4的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,两次摸出的小球标号的积小于4的有4种情况,∴两次摸出的小球标号的积小于4的概率是: =.故选C.【点评】此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.15.小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为()A.B.C.D.【考点】列表法与树状图法.【分析】列表得出所有等可能的情况数,找出小明、小华两名学生参加社会实践活动的情况数,即可求出所求的概率;【解答】解:可能出现的结果小明打扫社区卫生打扫社区卫生参加社会调查参加社会调查小华打扫社区卫生参加社会调查参加社会调查打扫社区卫生由上表可知,可能的结果共有4种,且他们都是等可能的,其中两人同时选择“参加社会调查”的结果有1种,=,则所求概率P1故选:A.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.二、填空题16.掷两枚质地均匀的骰子,其点数之和大于10的概率为.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其点数之和大于10的情况,再利用概率公式求解即可求得答案.【解答】解:列表如下:1 2 3 4 5 61 2 3 4 5 6 72 3 4 5 6 7 83 4 5 6 7 8 94 5 6 7 8 9 105 6 7 8 9 10 116 7 8 9 10 11 12∵两次抛掷骰子总共有36种情况,而和大于10的只有:(5,6),(6,5),(6,6)三种情况,∴点数之和大于10的概率为:.故答案为:.【点评】此题考查了列表法或树状图法求概率.注意此题是放回实验.用到的知识点为:概率=所求情况数与总情况数之比.17.同时投掷两个骰子,它们点数之和不大于4的概率是.【考点】列表法与树状图法.【分析】根据题意,设第一颗骰子的点数为x,第二颗骰子的点数为y,用(x,y)表示抛掷两个骰子的点数情况,由分步计数原理可得(x,y)的情况数目,由列举法可得其中x+y≤4的情况数目,进而由等可能事件的概率公式计算可得答案.【解答】解:设第一颗骰子的点数为x,第二颗骰子的点数为y,用(x,y)表示抛掷两个骰子的点数情况,x、y都有6种情况,则(x,y)共有6×6=36种情况,而其中点数之和不大于4即x+y≤4的情况有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共6种情况,则其概率为=.故答案为.【点评】本题考查等可能事件的概率计算,注意用列举法分析点数之和不大于4的情况时,做到不重不漏是解题的关键.18.在一个不透明的箱子中装有4件同型号的产品,其中合格品3件、不合格品1件,现在从这4件产品中随机抽取2件检测,则抽到的都是合格品的概率是.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽到的都是合格品的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,抽到的都是合格品的有6种情况,∴抽到的都是合格品的概率是: =.故答案为:.【点评】此题考查了列表法或树状图法求概率.此题属于不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.19.一个布袋内只装有一个红球和2个黄球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黄球的概率是.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是黄球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,两次摸出的球都是黄球的有4种情况,∴两次摸出的球都是黄球的概率是,故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.20.如图所示,一只蚂蚁从A点出发到D,E,F处寻觅食物.假定蚂蚁在每个岔路口都等可能的随机选择一条向左下或右下的路径(比如A岔路口可以向左下到达B处,也可以向右下到达C处,其中A,B,C都是岔路口).那么,蚂蚁从A出发到达E处的概率是.【考点】列表法与树状图法.【分析】首先根据题意可得共有4种等可能的结果,蚂蚁从A出发到达E处的2种情况,然后直接利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有4种等可能的结果,蚂蚁从A出发到达E处的2种情况,∴蚂蚁从A出发到达E处的概率是: =.故答案为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.21.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.【考点】列表法与树状图法;概率公式.【分析】可以根据画树状图的方法,先画树状图,再求得两次摸到同一个小球的概率.【解答】解:画树状图如下:∴P(两次摸到同一个小球)==故答案为:【点评】本题主要考查了概率,解决问题的关键是掌握树状图法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.22.同时掷两枚均匀的硬币,则两枚都出现反面朝上的概率是.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两枚都出现反面朝上的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有4种等可能的结果,两枚都出现反面朝上的有1种情况,∴两枚都出现反面朝上的概率是:.故答案为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是.【考点】列表法与树状图法.【分析】根据树状图判断出蚂蚁一共有多少种路可以选择,有几种可能可以获取食物即可解决问题.【解答】解:根据树状图,蚂蚁获取食物的概率是=.故答案为.【点评】本题考查树状图、概率等知识,记住概率的定义是解决问题的关键,考虑问题要全面,属于中考常考题型.24.在一个不透明的空袋子里,放入仅颜色不同的2个红球和1个白球,从中随机摸出1个球后不放回,再从中随机摸出1个球,两次都摸到红球的概率是.【考点】列表法与树状图法.【专题】计算题.【分析】先画树状图展示所有6种等可能的结果数,再找出两次都摸到红球的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有6种等可能的结果数,其中两次都摸到红球的结果数为2,所以随机摸出1个球,两次都摸到红球的概率==.故答案为.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.。

用树状图或表格求概率(习题)

用树状图或表格求概率(习题)

3.1用树状图或表格求概率分层训练提分要义【基础题】1.国家出台全面二孩政策,自2016年1月1日起家庭生育无需审批.如果一个家庭已有一个孩子,再生一个孩子,那么两个都是女孩的概率是()A.12B.13C.14D.182.随机掷一枚硬币,落地后其反面朝上的概率是()A.1 B.12C.13D.143.一个不透明的盒子中装有5个红球和3个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件;B.摸到白球是不可能事件;C.摸到红球和摸到白球的可能性相等;D.摸到红球比摸到白球的可能性大.4.从箱子中摸出红球的概率为14,已知口袋中红球有4个,则袋中共有球( )个A.24B.16C.8D.45.“彩缕碧筠粽,香梗白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣烷4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是().A.211B.411C.511D.6116.一个不透明的盒子中装有4个形状、大小质地完全相同的小球,这些小球上分别标有数字-1、0、2和3.从中随机地摸取一个小球,则这个小球所标数字是正数的概率为()A.14B.13C.12D.347.工厂从三名男工人和两名女工人中,选出两人参加技能大赛,则这两名工人恰好都是男工人的概率为()A.35B.15C.310D.258.有一枚质地均匀的正方体骰子,六个面上分别刻有1到6的点数.将它投掷两次,则两次掷得骰子朝上一面的点数之和为5的概率是( ) A .19B .16C .14D .139.某轨道列车共有3节车厢,设乘客从任意一节车厢上车的机会均等,某天甲、乙两位乘客同时乘同一列轨道列车,则甲和乙从同一节车厢上车的概率是( ) A .15B .14C .13D .1210.现有4盒同一品牌的牛奶,其中2盒已过期,随机抽取2盒,至少有一盒过期的概率是( ) A .12B .23C .34D .5611.A 、B 、C 、D 四个人玩扑克牌游戏,他们先取出两张红桃和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色扑克牌的两个人为游戏搭档,若A 、B 两人各抽取了一张扑克牌,则两人恰好成为游戏搭档的概率为( ) A .16B .13C .12D .3412.从红,黄,蓝三顶不同颜色的帽子和黑,白两条不同颜色的围巾中,任取一顶帽子和一条围巾搭配,恰好取到红帽子和黑围巾的概率是( ) A .16B .14C .13D .1213.某中学有5名教师自愿献血,其中2人A 型血,2人B 型血,1人O 型血,现从他们当中随机挑选2人参与献血,抽到的两人血型不同的概率为( ) A .25B .35C .45D .7814.现有四张正面分别标有数字﹣2,0,1,3的不透明卡片(形状与材质相同),将它们正面朝下洗均匀,随机抽取一张记下数字后放回(设数字为a ),再次正面朝下洗均匀,再随机抽取一张记下数字(设数字为b ),则关于x 的不等式组0x ab x >⎧⎨≤⎩有解的概率是( )A .12B .14C .716D .111615.三个不透明的口袋中各有三个相同的乒乓球,将每个口袋中的三个乒乓球分别标号为1,2,3.从这三个口袋中分别摸出一个乒乓球,出现的数字正好是等腰三角形三边长的概率是( ) A .49B .59C .1727D .7916.如图,直线//a b ,直线c 与a 、b 都相交,从所标识的1∠、2∠、3∠、4∠、5∠这五个角中任意选取两个角,则所选取的两个角互为补角的概率是( )A .35B .25C .15D .2317.取一个数作为n 的值,则点P(m ,n)在平面直角坐标系中第四象限内的概率是( ) A .25B .15C .14D .1218.在两个暗盒中,各自装有编号为1、2的二个球,二个球除编号外无其它区别,则在两个暗盒中各取一个球,两球上的编号的积为偶数的概率为( ) A .14B .12C .34D .1319.有四根长度分别为2cm 、3cm 、4cm 、5cm 的木棒,从中任取三根,并将它们首尾相连,能组成三角形的概率为( ) A .14B .23C .34D .1220.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在阴影部分的概率是( )A .38B .12C .59D .5821.在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出两个小球,则摸出的两个小球标号之和大于4的概率是( ) A .38B .12C .58D .2322.在一个不透明的口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个球,记下标号后放回,再随机摸出一个,则两次标号之和为5的概率是( ) A .12B .13C .14D .116【中档题】23.如图,在一次游园活动中,数学小组制作了一面“赵爽弦图锣”,其中90ABC ∠=︒,50cm AC =,30cm AB =,小明蒙上眼睛用棍子击中了锣面,他击中阴影部分的概率是_____________.24.现将正面分别写有“道路自信”“理论自信”“制度自信”和“文化自信”的四张卡片(注:这四张卡片除卡片正面的内容不同外,其余完全相同)背面朝上放在桌面上,洗匀后从中随机抽取两张卡片,则恰好抽到写有“文化自信”和“理论自信”的卡片的概率是___.25.甲袋中装有3个相同的小球,分别写有数字1,2,3;乙袋中装有2个相同的小球,分别写有数字1,2.现从两个袋子中各随机取出1个小球,则取出的两个小球上数字之和为3的概率是______.26.一个不透明盒子里有3张形状大小质地完全相同的卡片,上面分别标有数字1,2,3.从中随机抽出一张后不放回,再从盒中随机抽出一张,则两次抽出的卡片都是奇数的概率为______.【综合题】27.2020年,新冠肺炎疫情突如其来,各大中小幼学校延期开学,实行“停课不停教不停学”,网络直播教学成为其中最常见的教学方式,某区为了解九年级老师使用线上授课软件情况,在4月份某天随机抽查了若干名老师进行调查,其中A 表示“一起中学”,B 表示“腾讯会议”,C 表示“腾讯课堂”,D 表示“QQ 群课堂”,E 表示“钉钉”,现将调查结果绘制成两种不完整的统计图表:组别使用人数(人)占调查人数的百分率A 3 5%B 12 20%C a 35%D 15 cE b 15%请根据图表中的信息解答下列问题:(1)b=,并将频数分布直方图补充完整;(2)已知该区共有九年级老师500人,请你估计该区使用“QQ群课堂”有多少人?(3)该区计划在A组随机抽取两人了解使用情况,已知A组有理科老师2人,文科老师1人,请用列举法求出抽取两名老师都是理科老师的概率.28.某中学为了解本校九年级女生“一分钟仰卧起坐”项目的成绩情况,从九年级随机抽取部分女生进行该项目测试,并将测试的成绩(x 次)数据,绘制成频数分布表和扇形统计图.部分信息如下,根据提供的信息解答下列问题: 组号 分组频数 ① 2028x ≤< 3 ② 2836x ≤< 15③ 3644x ≤< m④ 4452x ≤< 10 ⑤5260x ≤<2(1)m =______,在扇形统计图中第③小组对应的扇形的圆心角度数为______︒; (2)若测试九年级女生“一分钟仰卧起坐”次数不低于44次的成绩为优秀,本校九年级女生共有360人,请估算该校九年级女生“一分钟仰卧起坐”成绩为优秀的人数;(3)把在第①小组内的三个女生分别记为:1a 、2a 、3a ,把在第⑤小组内的两个女生分别记为:1b 、2b ,从第①小组和第⑤小组总共5个女生中随机抽取2个女生进行“你对中考体育考试选项的看法”的问卷调查,求第①小组和第⑤小组都有1个女生被选中的概率.29.一只不透明的袋子中装有1个红球和若干个白球,这些球除颜色外都相同,摇匀后从中任意摸出2个球.(1)若这个袋子中共有4个球,求摸出红球的概率;n 且n为正整数)个球,则摸出红球的概率是__________(用(2)若这个袋子中共有n(1含n的代数式表示).30.中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如图尚不完整的统计图.请根据以上信息,解决下列问题:(1)扇形统计图中“4部”所在扇形的圆心角为______度;(2)请将条形统计图补充完整;(3)没有读过四大古典名著的两名学生准备从中各自随机选择一部来阅读,请用列表或画树状图的方法求他们]恰好选中同一名著的概率.。

3.1+用树状图或表格求概率 同步练习 +2024—2025学年北师大版数学九年级上册

3.1+用树状图或表格求概率 同步练习 +2024—2025学年北师大版数学九年级上册

1 用树状图或表格求概率课时1用树状图或表格求概率过基础知识点 1 用列表法求概率1“敬老爱老”是中华民族的优秀传统美德. 小刚、小强计划利用暑期从A ,B ,C 三处养老服务中心中,随机选择一处参加志愿服务活动,则两人恰好选到同一处的概率是( )A 12B 13C 16D 292某校即将举行田径运动会,“体育达人”小明从“跳高”“跳远”“100 米”“400米”四个项目中,随机选择两项,则他选择“100米”与“400米”两个项目的概率是( )A 12B 14C 16D 1123 投掷两枚骰子,朝上一面的点数之和为7 的概率是 .4某校七年级举行了国庆手抄报比赛,七(1)班要从获得一等奖的4名学生作品中随机抽取2 份进行展览,已知这4 名学生中,男生和女生各2 名,求所抽2 份作品恰好是来自1 名男生和1 名女生的概率.知识点2用画树状图法求概率5山西省有三处世界文化遗产:①平遥古城;②云冈石窟;③五台山.哥哥和妹妹从中分别随机选取一个在五一期间参观,则正好选五台山和云冈石窟的概率为 ( )A 13B 29C 49D 236在6,7,8,9 四个数字中任意选取两个数字,则这两个数字之和为奇数的概率是 ( ) A 13 B 12 C 23 D 147将一副扑克牌中的两张牌红桃 A 和黑桃2 都从中间剪开,分成四块,这四块背面完全一样,将它们背面朝上,洗匀后,任取两块,恰好能拼成一张完整的牌的概率是 .8某校组织学生去敬老院表演节目,表演形式有舞蹈、情景剧和唱歌3 种类型.小明、小丽2 人积极报名参加,从3 种类型中随机挑选一种类型.求小明、小丽选择不同类型的概率.过能力1 从甲、乙、丙、丁4 名同学中随机抽取2 名同学参加图书节志愿服务活动,其中甲同学是女生,乙、丙、丁同学都是男生,被抽到的2 名同学都是男生的概率为 ( )A 13B 12C 23D 342随着信息化的发展,二维码已经走进我们的日常生活,其图案主要由黑、白两种小正方形组成. 现对由三个小正方形组成的“□□”进行涂色,每个小正方形随机涂成黑色或白色,恰好是两个黑色小正方形和一个白色小正方形的概率为 ( )A 13B 38C 12D 233在一个不透明的口袋中装有3个完全一样的小球,小球上分别标有数字1,2,3.先摸出一个小球,上面的数字记为a ,放回袋子中摇匀后再摸出一个小球,上面的数字记为c ,则使得关于x 的一元二次方程 ax²+4x +c =0有实数解的概率为 ( )A 16B 13C 12D 23 4 如图所示的电路图,同时闭合两个开关能形成闭合电路的概率是 ( )A 13B 23C 12 D.15端午节早上,小颖为全家人蒸了2个蛋黄粽,3个鲜肉粽,她从中随机挑选了两个孝敬爷爷奶奶,请问爷爷奶奶吃到同类粽子的概率是 .6有同型号的A ,B 两把锁和同型号的a ,b ,c 三把钥匙,其中a 钥匙只能打开A 锁,b 钥匙只能打开 B 锁,c 钥匙不能打开这两把锁.(1)从三把钥匙中随机取出一把钥匙,取出c 钥匙的概率等于 ;(2)从两把锁中随机取出一把锁,从三把钥匙中随机取出一把钥匙,求取出的钥匙恰好能打开取出的锁的概率.7 骰子六个面上的点数分别是1,2,3,4,5,6.如图,正六边形ABCDEF 顶点处各有一个圈,跳圈游戏的规则为:游戏者掷一次骰子,骰子向上一面的点数是几,就沿正六边形的边按顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得的点数为3,就顺时针连续跳3个边长,落到圈D;若第二次掷得的点数为2,就从圈 D 开始顺时针连续跳2个边长,落到圈F……设游戏者从圈A 起跳.(1)小明随机掷一次骰子,求落回到圈A 的概率P₁;(2)小亮随机掷两次骰子,用列表法或画树状图法求最后落回到圈 A 的概率P₂,并指出他与小明落回到圈A 的可能性一样吗?课时2 利用概率判断游戏的公平性过能力1 如图是两个可以自由转动的质地均匀的转盘A,B,每个转盘被分成3个相同的扇形,游戏规定:小美与小丽分别转动转盘 A,B,指针指向的数字较大者获胜. 你认为这个规则 ( )A.公平B.对小美有利C.对小丽有利D.无法确定对谁有利2甲,乙两名同学玩“石头、剪子、布”的游戏,随机出手一次,甲获胜的概率是 .3小明和小刚一起做游戏,先制定游戏规则:每人事先从1,2,…,12这12个数中任意选一个数,然后两人各掷一枚质地均匀的骰子,谁事先选择的数恰好等于二人掷出的点数之和,谁就获胜.如果两人选择的数都不等于所掷点数之和,就再做一次上述游戏,直到决出胜负.小明根据所学习的概率知识知道一定不能选择1,那他应该选择哪个数更合适呢? 请说明理由.4甲、乙两位同学相约打乒乓球.(1)有款式完全相同的4 个乒乓球拍(分别记为A,B,C,D),若甲先从中随机选取1个,乙再从余下的球拍中随机选取1 个,求乙选中球拍C的概率.(2)双方约定:两人各投掷一枚质地均匀的硬币,如果两枚硬币全部正面向上或全部反面向上,那么甲先发球,否则乙先发球.这个约定是否公平? 为什么?课时3 利用概率玩“配紫色”游戏过能力1小明要用如图所示的两个转盘做“配紫色(红色和蓝色在一起能配成紫色)”游戏,每个转盘均被等分成若干个扇形,他同时转动两个转盘,停止时指针所指的颜色恰好能配成紫色的概率为( )A16 B14C13D 122用如图所示的两个可以自由转动的转盘做“配紫色”游戏,分别转动两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,则可配成紫色的概率是 ( )A12 B14C512D723 小明和小亮用如图所示的两个可以自由转动的转盘做“配紫色”游戏,同时随机转动两个转盘,若配成紫色,则小明胜,否则小亮胜,这个游戏对双方公平吗? 请用列表法或画树状图法说明理由.4如图,三个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.小强和小亮用转盘 A 和转盘 B 做一个转盘游戏:同时转动两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,则小强获胜;若两个转盘转出的颜色相同,则小亮获胜;在其他情况下,小强和小亮不分胜负.(1)用画树状图或列表的方法表示此游戏所有可能出现的结果;(2)小强认为此游戏不公平,请你帮他说明理由;(3)请你在转盘C 的空白处,涂上适当颜色,使得用转盘C 替换转盘 B 后,游戏对小强和小亮是公平的(在空白处填写表示颜色的文字即可,不要求说明理由,只需给出一种结果即可).。

3.1用树状图或表格求概率(第1课时)-北师大版九年级数学上册同步练习

3.1用树状图或表格求概率(第1课时)-北师大版九年级数学上册同步练习

北师大版数学九年级上册第三章第1节用树状图或表格求概率(第1课时)一.选择题(共10小题)1.在两个不透明的口袋中分别装有两把不同的钥匙和三把锁,其中两把钥匙分别能打开两把锁,且不能打开第三把锁,随机取出一把钥匙和一把锁,能打开的概率是( ) A .12B .13C .14D .162.在“众志成城,共战疫情”党员志愿者进社区服务活动中,小晴和小霞分别从“A ,B ,C 三个社区”中随机选择一个参加活动,两人恰好选择同一社区的概率是( ) A .13B .23C .19D .293.如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向3的概率为( )A .12B .14C .18D .1164.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同,从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是( ) A .13B .49C .35D .235.在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.若随机摸出一个小球后不放回,再随机摸出一个小球,则两次取出小球标号的和等于5的概率为( ) A .14B .23C .13D .3166.某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是( ) A .13B .14C .16D .187.一个不透明袋子中装有1个红球,2个绿球,除颜色外无其他差别.从中随机摸出一个球,然后放回摇匀,再随机摸出一个.下列说法中,错误的是( ) A .第一次摸出的球是红球,第二次摸出的球一定是绿球B .第一次摸出的球是红球,第二次摸出的不一定是红球C .第一次摸出的球是红球的概率是13D .两次摸出的球都是红球的概率是198.不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是( ) A .49B .29C .23D .139.某校组织社团活动,小明和小刚从“数学社团”、“航模社团”、“文艺社团”三个社团中,随机选择一个社团参加活动,两人恰好选择同一个社团的概率是( ) A .13B .23C .19D .2910.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字5,6,7,8.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时重转),记录第一次转到的数当成一个两位数的个位,第二次转到的数字记为十位,则记录的数字是偶数的概率为( )A .18B .16C .14D .12二.填空题(共6小题)11.2020年某校将迎来70周年校庆,学校安排3位男老师和2位女老师一起筹办大型文艺晚会,并随机地从中抽取2位老师主持晚会,则最后确定的主持人是一男一女的概率为 .12.一个不透明的布袋里装有2个白球,1个黑球,它们除颜色外其余都相同.从中任意摸出1个球.不放回.再摸出1个球,则两次摸到的球都是白球的概率是 .13.不透明的袋子中装有红、蓝小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到相同颜色的小球的概率是.14.经过人民中路十字路口红绿灯处的两辆汽车,可能直行,也可能向左转,如果这两种可能性大小相同,则至少有一辆向左转的概率是.15.某校团委决定从4名学生会干部(小明、小华、小丽和小颖)中抽签确定2名同学去进行宣传活动,抽签规则:将4名同学姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,既然从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.则小明被抽中的概率是.16.某校开展以“我和我的祖国”为主题的“大合唱”活动,七年级准备从小明、小东、小聪三名男生和小红、小慧两名女生中各随机选出一名男生和一名女生担任领唱,则小聪和小慧被同时选中的概率是.三.解答题(共6小题)17.一个不透明的袋中装有白、黄、红三种颜色的球共20个,它们除颜色外完全相同,其中红球个数比黄球个数的3倍还多2个,且从袋中摸出一个球是白球的概率为1 10.(1)求袋中白、黄、红三种颜色的球的个数;(2)求摸出一个球是黄球的概率;(3)若再向袋中放入4个黄球,求摸出一个球是黄球的概率.18.某商场文具专柜为了吸引顾客,设立了一个可以自由转动的转盘(转盘被等分成16份),如图所示,并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、蓝色、绿色区域,顾客获得的奖品分别为玩具熊、童话书、彩色笔、文具盒.若甲顾客购物消费125元,乙顾客购物消费89元,请解答以下问题:(1)甲顾客获得一次转动转盘机会的概率为,乙顾客获得一次转动转盘机会的概率为.(2)甲顾客获得哪种奖品的概率最大?请说明理由.19.某校组织开展运动会,小明和扎西两名同学准备从100米短跑(记为项目A),800米中长跑(记为项目B),跳远(记为项目C),跳高(记为项目D),即从A,B,C,D四个项目中,分别选择一个项目参加比赛.请用画树状图或列表法求两名同学选到相同项目的概率.20.某校计划组建航模、摄影、乐器、舞蹈四个课外活动小组,要求每名同学必须参加,并且只能选择其中一个小组.为了解学生对四个课外活动小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把此次调查结果整理并绘制成如图两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次被调查的学生有人;(2)请补全条形统计图,并求出扇形统计图中“航模”所对应的圆心角的度数;(3)通过了解,喜爱“航模”的学生中有2名男生和2名女生曾在市航模比赛中获奖,现从这4个人中随机选取2人参加省青少年航模比赛,请用列表或画树状图的方法求出所选的2人恰好是1名男生和1名女生的概率.21.甲、乙两人去超市选购奶制品,有两个品牌的奶制品可供选购,其中蒙牛品牌有两个种类的奶制品:A.纯牛奶,B.核桃奶;伊利品牌有三个种类的奶制品:C.纯牛奶,D.酸奶,E.核桃奶.(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是;(2)若甲喜爱蒙牛品牌的奶制品,乙喜爱伊利品牌的奶制品,甲、乙两人从各自喜爱的品牌中随机选购一种奶制品,请利用画树状图或列表的方法求出两人选购到同一种类奶制品的概率.22.建荣同学收集了我省三张著名旅游景点图片(大小、形状及背面完全相同):周祖陵森林公园、庆城县博物馆、潜夫山森林公园,把这三张图片洗匀后背面朝上放置在桌面上(三张图片分别用A,B,C 表示).(1)建荣同学随机抽取一张图片,则抽取到博物馆图片是事件;(2)随机抽取两张图片,求同时抽取到森林公园图片的概率有多大(请你用列表或画树状图的方法分析).答案一.选择题(共10小题)1.B2.A3.D 4.B 5.C 6.C 7.A 8.A 9.A 10.D二.填空题(共6小题) 11.3512.1313.1214.3415.1216.16三.解答题(共6小题)17.解:(1)∵从袋中摸出一个球是白球的概率为,∴不透明的袋中白球的个数是20×=2个,设袋中有黄球x 个,则红球有(3x +2)个,根据题意得: 2+x +3x +2=20, 解得:x =4,3x +2=3×4+2=14(个),答:白球2个,黄球4个,红球有14个;(2)∵黄球有4个,∴摸出一个球是黄球的概率是=;(3)再向袋中放入4个黄球,则黄球共有8个,袋中球的个数为20+4=24个,所以摸出一个球是黄球的概率为=.18.解:(1)∵顾客每购买100元的商品,就能获得一次转动转盘的机会,又∵甲顾客购物消费125元,乙顾客购物消费89元,∴甲顾客获得一次转动转盘机会的概率为1,乙顾客获得一次转动转盘机会的概率0;故答案为:1,0;(2)∵转盘被等分成16份,红色区域有1份,∴顾客获得的玩具熊的概率是;∵黄色区域有1份,∴顾客获得的童话书的概率是;∵蓝色区域有2份,∴顾客获得的彩色笔的概率是=;∵绿色区域有4份,∴顾客获得的文具盒的概率是=,∵>>,∴甲顾客获得文具盒的概率最大.19.解:画树状图得:∵共有16种等可能的结果,两名同学选到相同项目的为4种情况,∴P(两名同学选到相同项目)==.20.解:(1)本次被调查的学生有:9÷15%=60(人);故答案为:60;(2)航模的人数有:60﹣9﹣15﹣12=24(人),补全条形统计图如图:“航模”所对应的圆心角的度数是:360°×=144°;(3)设两名男生分别为男1,男2,两名女生分别为女1,女2,列表如下:男1男2女1女2男1(男2,男1)(女1,男1)(女2,男1)男2(男1,男2)(女1,男2)(女2,男2)女1(男1,女1)(男2,女1)(女2,女1)女2(男1,女2)(男2,女2)(女1,女2)由表格可以看出,所有可能出现的结果有12种,并且它们出现的可能性相等,其中恰好是1名男生和1名女生的情况有8种.则所选的2人恰好是1名男生和1名女生的概率是=.21.解:(1)∵蒙牛品牌有两个种类的奶制品:A.纯牛奶,B.核桃奶;伊利品牌有三个种类的奶制品:C.纯牛奶,D.酸奶,E.核桃奶,∴甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是:;故答案为:;(2)根据题意画树状图如下:共有6种等可能的情况数,其中两人选购到同一种类奶制品的有2种,则两人选购到同一种类奶制品的概率是=.22.解:(1)∵三张图片洗匀后背面朝上放置在桌面上,∴建荣同学随机抽取一张图片,则抽取到博物馆图片是随机事件;(2)列表如下:A B CA(B,A)(C,A)B(A,B)(C,B)C(A,C)(B,C)所有等可能的情况数为6种,其中同时抽取到森林公园图片的结果有2种,则P(抽到森林公园图片)==.。

用树状图或表格求概率—游戏的公平性练习题

用树状图或表格求概率—游戏的公平性练习题

∴甲甲随机投掷两次骰子,最终落回到圈 A 的概率为 .




∵ ≠ ,∴这个游戏规则不公平.

数学
11.(核心素养——数学建模)四张完全相同的卡片如图①所示,正面分别标有数字2,2,3,6.将卡
片洗匀后,背面朝上放置在桌面上.
(1)求随机抽取一张卡片,恰好抽到数字2的概率.

解:(1)P(恰好抽到数字 2)= = .
规则一:将游戏规则中的 32 换成 26.
规则二:抽到的两位数不超过 32 的得 3 分,超过 32 的得 5 分.
规则三:组成的两位数中,若个位数字是 2,则小贝胜,反之小晶胜.
数学
数学
第2课时
用树状图或表格求概率——游戏的公平性
1.如图所示,若干位同学玩扔石子进筐游戏,图①、图②分别是两种站立方式,关于这两种方式的
“公平性”有下列说法,其中正确的是(
D

A.两种均公平
B.两种均不公平
C.仅图①公平
D.仅图②公平
)

数学
2.在如图所示的圆形图案中,黑白两色的直角三角形都全等.甲、乙两人将它作为一个游戏盘,游








∴P(小华获胜)= ,P(小林获胜)= .∵ ≠ ,
∴这个游戏规则对双方不公平.
数学
4.如图所示,甲、乙用4张扑克牌玩游戏,他俩将扑克牌洗匀后背面朝上,放置在桌面上,每人抽
一张,甲先抽,乙后抽,抽出的牌不放回.甲、乙约定:只有甲抽到的牌面数字比乙大时,甲才胜;
否则,乙胜.请你用树状图或表格说明甲、乙获胜的机会是否相同.
66
数学
共有 16 种结果,每种结果出现的可能性相同,其中,组成的两位数不超过 32 的结果有 10 种,超过 32 的

北师大版九年级数学上册第三章《概率的进一步认识》用树状图或表格求概率同步练习及答案

北师大版九年级数学上册第三章《概率的进一步认识》用树状图或表格求概率同步练习及答案

用树状图或表格求概率(典型题汇总)知识点 1 利用列表法求概率1.将一枚质地均匀的硬币先后抛掷两次,则至少出现一次正面向上的概率为( )A.14B.12C.34D.232.国家出台全面二孩政策,自2016年1月1日起家庭生育无须审批.如果一个家庭已有一个孩子,再生一个孩子,那么两个都是女孩的概率是( )A.12B.13C.14D.无法确定3.一个不透明的口袋中有三个小球,上面分别标有字母a,b,c,每个小球除字母不同外其余均相同,小园同学从口袋中随机摸出一个小球,记下字母后放回且搅匀,再从该口袋中随机摸出一个小球记下字母.用列表的方法,求小园同学两次摸出的小球上的字母相同的概率.知识点 2 利用画树状图法求概率4.小明和小亮在玩“石头、剪刀、布”的游戏,两人一起做同样手势的概率是( )A.12B.13C.14D.155.同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是( )A.38B.58C.23D.126.三名九年级学生坐在仅有的三个座位上,起身后重新就座,恰好有两名同学没有坐回原座位的概率为( )A.19B.16C.14D.127.在一个不透明的盒子里,装有三个分别写有数字1,2,3的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树状图或列表的方法,求下列事件的概率:(1)两次取出小球上的数字相同的概率;(2)两次取出小球上的数字之和大于3的概率.8.为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.9.从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的2倍的概率是( )A.13B.12C.14D.1610.假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,那么三只雏鸟中恰有两只雌鸟的概率是( )A.16B.38C.58D.2311.在一个不透明的袋子中装有四个小球,它们除分别标有的号码1,2,3,4不同外,其他完全相同.任意从袋子中摸出一球后不放回,再任意摸出一球,则第二次摸出球的号码比第一次摸出球的号码大的概率是( )A.13B.12C.23D.16图3-1-112.如图3-1-1,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是________.13.如图3-1-2,管中放置着三根同样的绳子AA1,BB1,CC1.小明在左侧选两个打一个结,小红在右侧选两个打一个结,则这三根绳子能连接成一根长绳的概率为__________.图3-1-214.如图3-1-3是“密室逃脱俱乐部”的通路俯视图,一同学进入入口后,可任选一条通道过关.(1)他进入A密室或B密室的可能性哪个大?请说明理由(利用画树状图或列表法来求解);(2)求该同学从中间通道进入A密室的概率.图3-1-315.端午节的早晨,小文妈妈为小文准备了四个粽子做早点:一个枣馅粽、一个肉馅粽、两个花生馅粽,四个粽子除内部馅料不同外,其他均相同.(1)小文吃前两个粽子刚好都是花生馅粽的概率为________;(2)若妈妈在早点中给小文再增加一个花生馅的粽子,则小文吃前两个粽子都是花生馅粽的可能性是否会增大?请利用列表或画树状图的方法来说明理由.详解1.C2.C [解析] 列表如下:∵共有4种等可能的结果,两个都是女孩的有1种情况,∴两个都是女孩的概率是14.故选C.3.解:列表如下:所有等可能的情况有9种,其中两次摸出的小球上的字母相同的情况有3种. 所以小园同学两次摸出的小球上的字母相同的概率为39=13.4.B [解析] 画树状图如下:共有9种等可能的结果数,其中两人随机同时出手一次,做同样手势的结果数为3种,故两人一起做同样手势的概率是39=13.故选B.5.D [解析] 画树状图如下:∴至少有两枚硬币正面向上的概率是48=12.6.D [解析] 画树状图为(用A ,B ,C 表示三位同学,用a ,b ,c 表示他们原来的座位):共有6种等可能的结果数,其中恰好有两名同学没有坐回原座位的结果数为3种, 所以恰好有两名同学没有坐回原座位的概率=36=12.故选D.7.解:(1)画树状图如下:共有9种等可能的结果数,其中两次取出小球上的数字相同的结果数为3种, 所以两次取出小球上的数字相同的概率=39=13.(2)由(1)中树状图可知:两次取出小球上的数字之和大于3的结果数为6种, 所以两次取出小球上的数字之和大于3的概率=69=23.8.解:(1)小丽从中随机抽取一个比赛项目,恰好抽中“三字经”的概率为14.(2)画树状图如下:共有12种等可能的结果,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率为112.9.A [解析] 画树状图如下:∵共有12种等可能的结果,其中一个数是另一个数的2倍的有4种情况, ∴其中一个数是另一个数的2倍的概率是:412=13.故选A.10.B [解析] 画树状图如图所示:因为所有等可能的情况有8种,其中三只雏鸟中恰有两只雌鸟的情况有3种,所以三只雏鸟中恰有两只雌鸟的概率是38.11.B [解析] 画树状图如下:共有12种等可能的结果数,其中第二次摸出球的号码比第一次摸出球的号码大的结果数为6种,所以第二次摸出球的号码比第一次摸出球的号码大的概率=612=12.故选B.12.1513.23 [解析] 小明在左侧选两个打一个结有三种可能:AB ,AC ,BC ,小红在右侧选两个打一个结有三种可能:A 1B 1,A 1C 1,B 1C 1,画树状图如下:共有9种等可能的结果数,其中这三根绳子能连接成一根长绳的结果数为6种, 所以这三根绳子能连接成一根长绳的概率=69=23.故答案为23.14.解:(1)该同学进入B 密室的可能性大. 理由如下:画树状图如图:共有6个等可能的结果,∴P (进入A 密室)=26=13,P (进入B 密室)=46=23,∴该同学进入B 密室的可能性大.(2)由(1)中的树状图可知该同学从中间通道进入A 密室的概率为16.15.解:(1)16(2)会增大.理由:分别用A ,B 表示一个枣馅粽、一个肉馅粽,用C 1,C 2,C 3表示三个花生馅粽,画树状图如下:∵共有20种等可能的结果,两个都是花生馅粽的有6种情况, ∴小文吃前两个粽子都是花生馅粽的概率为620=310>16,∴给小文再增加一个花生馅的粽子,则小文吃前两个粽子都是花生馅粽的可能性会增大.。

【初中数学】人教版九年级上册第2课时 用树状图法求概率(练习题)

【初中数学】人教版九年级上册第2课时  用树状图法求概率(练习题)

人教版九年级上册第2课时用树状图法求概率(353)1.某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.(1)按约定,“小李同学在该天早餐得到两个油饼”是事件(填“可能”“必然”或“不可能”);(2)请用树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率2.小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.(1)小明和小刚都在本周日上午去游玩的概率为;(2)求他们三人在同一个半天去游玩的概率.3.A,B,C三人玩篮球传球游戏,游戏规则:第一次传球由A将球随机地传给B,C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率4.定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V 数”,如“947”就是一个“V数”.若十位上的数字为5,则从4,6,8中任选两数,能与5组成“V数”的概率是()A.16B.14C.13D.235.十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上的数字为7,则从3,4,5,6,8,9中任选两数,与7组成“中高数”的概率是()A.12B.23C.25D.356.定义一种“各个数位上的数字从左向右逐渐减小”的数叫做“下降数”,如876就是一个“下降数”.在一个不透明的布袋中有三个质地相同的小球,小球上分别标有1,2,3三个数字.随机从中摸出一球,记下数字作为百位数字,然后放回摇匀.重复上面的操作两次,记下数字分别作为十位数字和个位数字,求三次摸球后得到的三位数是“下降数”的概率7.一张圆桌旁有四个坐位,A先坐在如图所示的坐位上,B、C、D三人随机坐到其他三个坐位上.则A与B不相邻而坐的概率是.8.假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,那么三只雏鸟中恰有两只雌鸟的概率是()A.16B.38C.58D.239.如图,有一个均匀的圆铁片,两面上分别写有1,2,有一个均匀的三棱锥旋转器和一个均匀的四棱锥旋转器,它们的侧面上分别写有1,2,3和1,2,3,4.在桌面上同时旋转这三件器物,停下来后,面向桌面的三个数字的积为奇数的概率是()A.12B.13C.16D.1810.掷一枚硬币三次,其中有两次正面朝上、一次反面朝上的概率为11.小刚、小强、小红利用假期到某个社区参加义务劳动,为决定到哪个社区,他们约定用“剪刀、石头、布”的方式确定,在同一回合中,三人都出“剪刀”的概率是12.学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,则小明与小红同车的概率是()A.19B.16C.13D.12参考答案1(1)【答案】不可能(2)【答案】解:画树状图如下:由树状图可知,共有12种等可能的结果,其中刚好得到猪肉包和油饼的结果有2种,故小张同学该天早晨刚好得到猪肉包和油饼的概率为212=162(1)【答案】14【解析】:根据题意,画树状图如下:由树状图可知,三人随机选择本周日的上午或下午去游玩共有8种等可能的结果,其中小明和小刚都在本周日上午去游玩的结果有(上、上、上),(上、上、下)2种,∴小明和小刚都在本周日上午去游玩的概率为28=14(2)【答案】由(1)中树状图可知,他们三人在同一个半天去游玩的结果有(上、上、上),(下、下、下)这2种,∴他们三人在同一个半天去游玩的概率为28=144.【答案】:C【解析】:根据题意,画树状图如下:共有6种等可能的结果,能与5组成“V数”的有2种(即658,856),所以从4,6,8中任选两数,能与5组成“V数”的概率为26=135.【答案】:C【解析】:列表:从表格中可以看出所有可能的结果共有30种,个位和百位上的数字都小于7的有12种结果,因此是“中高数”的概率为1230=25.故选C6.【答案】:解:根据题意,画树状图如下:由树状图可知共有27种等可能的结果,其中组成的“下降数”只有1个,即321,∴三次摸球后得到的三位数是“下降数”(记为事件A)的概率P(A)=1277.【答案】:13【解析】:由题意可画出下列树形图:从上面的树形图可以看出,所有可能性的结果共有6个,其中A与B不相邻而坐的有2个结果,所以其概率为13.8.【答案】:B【解析】:画树状图如图所示:因为所有等可能的情况有8种,其中三只雏鸟中恰有两只雌鸟的情况有3种,所以三只雏鸟中恰有两只雌鸟的概率是389.【答案】:C【解析】:画树状图如下:共有24种等可能情况,面向桌面的三个数字的积为奇数的情况有4种,所以概率为1610.【答案】:38【解析】:画树状图得:∵共有8种等可能的结果,其中有两次正面朝上的情况有3种,∴掷一枚硬币三次,其中有两次正面朝上、一次反面朝上的概率为3811.【答案】:127【解析】:根据题意画出树状图如下:一共有27种等可能情况,三人都出“剪刀”的情况只有1种,所以P(三人都出“剪刀”)=12712.【答案】:C【解析】:用A,B,C分别表示给九年级安排的三辆车,根据题意,可以画出如下的树状图.∵共有9种等可能的结果,小明与小红同车有3种情况,∴小明与小红同车的概率是39=13。

2020年3.1 用树状图或表格求概率秋《练闯考》同步练习(含答案)

2020年3.1 用树状图或表格求概率秋《练闯考》同步练习(含答案)

3.1 用树状图或表格求概率第1课时 用树状图或表格求简单事件的概率利用__树状图__或__表格__,我们可以不重复、不遗漏地列出所有可能的结果,从而比较方便地求出某些事件发生的概率.知识点:用树状图或表格求概率1.一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④,随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是( C )A.116B.316C.14D.5162.(2014·玉林)一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( C )A.12B.14C.16D.1123.一枚质地均匀的正方体骰子,连续抛掷两次,两次点数相同的概率是( D ) A.12 B.13 C.14 D.164.暑假即将来临,小明和小亮每人要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动.那么两人选到同一社区参加实践活动的概率是( B )A.12B.13C.16D.195.现有四张完全相同的卡片,上面分别标有数字-1、-2、3、4,将卡片背面朝上洗匀,然后从中随机地抽取两张,则这两张卡片上数字之积为负数的概率是__23__.6.现有四个外观完全一样的粽子,其中有且只有一个有蛋黄,若从中一次随机抽取两个,则这两个粽子都没有蛋黄的概率是__12__.7.(2014·齐齐哈尔)从2、3、4这三个数中任取两个数字组成一个两位数,其中能被3整除的两位数的概率是__13__.8.有双白手套和一双黑手套(不分左右),小明夜里出门,因天气寒冷要戴手套,可恰好停电,则小明左手戴白手套,右手戴黑手套的概率是__13__.9.小明与甲、乙两人一起玩“手心手背”的游戏.他们约定:如果三人中仅有一人出“手心”或“手背”,则这个人获胜;如果三人都出“手心”或“手背”,则不分胜负,那么在一个回合中,如果小明出“手心”,则他获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)解:画树状图:∵小明出的是手心,甲、乙两人出手心、手背的所有可能有4种,其中都是手背的情况只有1种,∴P (小明获胜)=1410.在盒子里放有三张分别写有整式a +1,a +2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是( B )A.13B.23C.16D.3411.中考体育男生抽测项目是:从立定跳远、实心球、引体向上中随机抽取一项;从50米、50米×2米、100米中随机抽取一项.恰好抽中实心球和50米的概率是( D )A.13B.16C.23D.1912.有三张正面分别标有数字-2,3,4的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后,从中任取一张(不放回),再从剩余的卡片中任取一张,则两次抽取的卡片中的数字之积为正偶数的概率是( C )A.49B.112C.13D.1613.有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a 的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b 的值,则点(a ,b )在第二象限的概率为( B )A.16B.13C.12D.2314.某校举行以“保护环境,从我做起”为主题的比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.前两名都是九年级同学的概率是__16__.15.在重阳节敬老爱老活动中,某校计划组织志愿者服务小组到“夕阳红”敬老院为老人服务,准备从九(1)班中的3名男生小亮、小明、小伟和2名女生小丽、小敏中选取一名男生和一名女生参加学校志愿者服务小组.(1)若随机选取一名男生和一名女生参加志愿者服务小组,请用树状图或列表法写出所有可能出现的结果;(2)求出恰好选中男生小明与女生小丽的概率.解:(1)即出现了6种结果:小亮、小丽,小亮、小敏,小明、小丽,小明、小敏,小伟、小丽,小伟、小敏 (2)P (小明、小丽)=1616.在一个不透明的布袋里装有4个大小、质地都相同的乒乓球,球面上分别标有数字1,-2,3,-4,小明先从中随机摸出一个乒乓球(不放回),再从剩下的三个球中随机摸出第二个乒乓球.(1)共有__12__种可能的结果;(2)请求出两次摸出乒乓球数字之积为奇数的概率. 解:(2)画树状图得P (两次摸出球之积为奇数)=212=1617.田忌赛马为我们所熟知,小亮与小明学习了概率初步知识后,设计了如下的游戏:小亮手中有方块10,8,6三张牌,小明手中有方块9,7,5三张牌,每人从各自的手中取一张牌比较,数字大的为“本局”获胜,每次取的牌不放回.(1)若每人随机取手中的一张牌进行比赛,求小明“本局”获胜的概率;(2)若比赛采用三局两胜制,即胜2局或3局者胜.当小亮的出牌顺序为6,8,10时,小明随机出牌应对,求小明比赛获胜的概率.解:(1)画树状图得P (小明胜)=39=13(2)画树状图得:P (小明胜)=16第2课时 判断游戏是否公平若某游戏不计得分情况,当双方获胜的概率__相等__,则游戏公平;当双方获胜的概率__不相等__,则游戏不公平.知识点一:求较复杂事件的概率1.若从长度是3,5,6,9的四条线段中任取三条,则能构成三角形的概率是( A ) A.12 B.34 C.13 D.142.在x 2□4x □4的空格中,任意填上“+”或“-”,在所得到的整式中,恰好是完全平方式的概率是( B )A .1 B.12 C.13 D.143.假定鸟蛋孵化后,雏鸟为雌与雄时概率相同,如果三枚蛋全部成功孵化,则三只雏鸟中恰有两只雄鸟的概率是( B )A.16B.38C.58D.234.我市辖区内景点较多,李老师和刚高中毕业的儿子准备从A ,B ,C 列三个景点去游玩.如果他们各自在这三个景点中任选一个作为游玩的第一站,那么他们都选择B 景点的概率是__19__.5.从甲地到乙地有A 1,A 2两条路线,从乙地到丙地有B 1,B 2,B 3三条路线,从丙地到丁地有C 1,C 2两条路线,一个人任意选了一条从甲地经乙地、丙地到丁地的路线,求他选到B 2路线的概率.解:画树状图得:∴P (恰好选到B 2路线)=412=13知识点二:判断游戏的公平性6.甲、乙两人用两个骰子做游戏,将两个骰子同时抛出,如果出现两个5点,那么甲赢;如果出现一个4点和一个6点,那么乙赢;如果出现其他情况,那么重新抛掷.你对这个游戏公平性的评价是__对乙有利__.(填“公平”“对甲有利”或“对乙有利”)7.甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5,6,7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张.若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽的两张牌面数字的积为偶数,则乙胜.这个游戏__不公平__.(填“公平”或不公平)8.(2014·云南)某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;(2)你认为这个规则公平吗?请说明理由.解:(1)画树状图:(2)P (和为奇数)=816=12,P (和为偶数)=816=12,P (小明)=P (小亮),故这个游戏对双方是公平9.(2014·泰安)在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于4的概率是( C )A.38B.12C.58D.3410.小明和小亮做游戏,先是各自背着对方在纸上写一个正整数,然后都拿给对方看.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;若两个人所写的数一个是奇数,另一个是偶数,则小亮获胜.这个游戏( C )A .对小明有利B .对小亮有利C .游戏公平D .无法确定对谁有利11.(2014·舟山)有三辆车按1,2,3编号,舟舟和嘉嘉两人可任意选坐一辆车.则两人同坐3号车的概率为__19__.12.(2014·南宁)第45届世界体操锦标赛于2014年10月3日至12日在南宁市隆重举行,某校从小记者团内负责体育赛事报道的3名同学(2男1女)中任选2名前往采访,那么选出的2名同学恰好是一男一女的概率是__23__.13.(2014·南京)从甲、乙、丙3名同学中随机抽取环保志愿者,求下列事件的概率; (1)抽取1名,恰好是甲; (2)抽取2名,甲在其中.解:(1)∵从甲、乙、丙3名同学中随机抽取环保志愿者,∴抽取1名,恰好是甲的概率为13 (2)∵抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,∴抽取2名,甲在其中的概率为2314.(2014·徐州)某学习小组由3名男生和1名女生组成,在一次合作学习后,开始进行成果展示.(1)如果随机抽取1名同学单独展示,那么女生展示的概率为__14__;(2)如果随机抽取2名同学共同展示,求同为男生的概率. 解:(2)列表如下:男 男 男 女 男 —— (男,男) (男,男) (女,男) 男 (男,男) —— (男,男) (女,男) 男 (男,男) (男,男) —— (女,男) 女(男,女)(男,女)(男,女)——所有等可能的情况有12种,其中同为男生的情况有6种,则P =612=1215.若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数.(1)请画出树状图并写出所有可能得到的三位数;(2)甲、乙二人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜.你认为这个游戏公平吗?试说明理由.解:(1)树状图如下:所有得到的三位数有24个,分别为:123,124,132,134,142,143,213,214,231,234,241,243,312,314,321,324,341,342,412,413,421,423,431,432 (2)这个游戏不公平.理由:组成的三位数中有“伞数”的有:132,142,143,231,241,243,341,342,其有8个,所以,甲胜的概率为824=13,而乙胜的概率为1624=23.所以这个游戏不公平第3课时 利用概率玩“配紫色”游戏用树状图或列表的方法求概率时应注意各种结果出现的可能性务必__相同__.“配紫色”游戏体现了概率模型的思想,它启示我们:__概率__是对随机现象的一种数学,它可以帮助我们更好地认识随机现象,并对生活中的一些不确定情况作出自己的决策.知识点:用树状图或列表的方法求“配紫色”的概率1.用如图的两个转盘(均匀分成五等份)进行“配紫色”游戏,配成紫色(也就是两个转盘分别转出的一个是红,一个是蓝)的概率是( A )A.1325B.625C.3625D.652.如图,随机闭合开关K 1,K 2,K 3中的两个,则能让两盏灯泡同时发光的概率为( B ) A.16 B.13 C.12 D.23,第2题图) ,第3题图)3.如图,是一个可以自由转动的转盘,它被分成三个面积相等的扇形,任意转动转盘两次,当转盘停止后,指针所指颜色相同的概率为( A )A.13B.23C.19D.164.经过某十字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为( C )A.13B.23C.19D.125.定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V 数”,如“947”就是一个“V 数”.若十位上的数字为2,则从1,3,4,5中任选两数,能与2组成“V 数”的概率是( C )A.14B.310C.12D.346.(2014·襄阳)从长度分别为2,4,6,7的四条线段中随机抽取三条,能构成三角形的概率是__12__.7.如图是两个可以自由转动的转盘,每个转盘被分成了三个相等的扇形,小明和小亮用它们做配紫色(红色与蓝色能配成紫色)游戏,你认为配成紫色与配不成紫色的概率相同吗?解:画树状图如下:结果:(红,红)(红,蓝)(红,蓝)(红,红)(红,蓝)(红,蓝)(蓝,红)(蓝,蓝)(蓝,蓝),所以P (配成紫色)=59,P (配不成紫色)=49,所以配成紫色与配不成紫色的概率不相同8.(2014·枣庄)一个盒子里有完全相同的三个小球,球上分别标有数字-1,1,2.随机摸出一个小球(不放回),其数字记为P ,再随机摸出另一个小球其数字记为q ,则满足关于x 的方程x 2+px +q =0有实数根的概率是( A )A.12B.13C.23D.569.小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x ,乙立方体朝上一面上的数字为y ,这样就确定点P 的一个坐标(x ,y ),那么点P 落在双曲线y =6x上的概率为( C )A.118B.112C.19D.1610.形状大小一样、背面相同的四张卡片,其中三张卡片正面分别标有数字“2”“3”“4”,小明和小亮各抽一张,前一个人随机抽一张记下数字后放回,混合均匀,后一个人再随机抽一张记下数字算一次,如果两人抽一次的数字之和是8的概率为316,则第四张卡片正面标的数字是__5或6__.11.(2014·扬州)商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率是__14__;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.解:(2)画树状图得:∵共有12种等可能的结果,他恰好买到雪碧和奶汁的有2种情况,∴他恰好买到雪碧和奶汁的概率为:212=1 612.小英和小丽用两个转盘玩“配紫色”的游戏,配成紫色小英赢,否则小丽赢,这个游戏对双方公平吗?请说明理由.(注:红色+蓝色=紫色)解:列表如下:转盘2转盘1红红黄蓝红(红,红)(红,红)(红,黄)(红,蓝)黄(黄,红)(黄,红)(黄,黄)(黄,蓝)蓝(蓝,红)(蓝,红)(蓝,黄)(蓝,蓝)∵P(小英)=312=14,P(小丽)=912=34,∴P(小英)≠P(小丽),∴这个游戏对双方是不公平的13.在一个不透明的口袋里装有白、红、黑三种颜色的小球,其中白球2只,红球1只,黑球1只,它们除了颜色之外没有其他区别.从袋中随机地摸出1只球,记录下颜色后放回搅匀,再摸出第二个球并记录颜色.求两次都摸出白球的概率.解:画树状图如下:∵共有16种等可能情况,两次都摸出白球的情况有4种,∴两次都摸出白球的概率为416=1414.某校九年级举行毕业典礼,需要从九(1)班的2名男生1名女生、九(2)的1名男生1名女生共5人中选出2名主持人.(1)用树状图或列表法列出所有可能情形; (2)求2名主持人来自不同班级的概率; (3)求2名主持人恰好1男1女的概率.解:(1)九(1)班的男生用a 11,a 12表示,九(1)班的女生用b 1表示,九(2)班的男生用a 2表示,九(2)班的女生用b 2表示,画树状图如下:(2)总共有20种等可能的结果,2名主持人来自不同班级的结果数有12个,P (2名主持人来自不同班级)=1220=35 (3)总共有20种等可能的结果,2名主持人恰好1男1女的结果数有12个,P (2名主持人恰好1男1女)=1220=35专题(七) 概率与放回、不放回问题1.(2014·昆明)九年级某班同学在毕业晚会中进行抽奖活动.在一个不透明的口袋中有三个完全相同的小球,把它们分别标号1,2,3.随机摸出一个小球记下标号后,放回摇匀,再从中随机摸出一个小球记下标号.(1)请用列表或画树状图的方法(只选其中一种),表示两次摸出小球上的标号的所有结果;(2)规定当两次摸出的小球标号相同时中奖,求中奖的概率. 解:(1)画树状图:(2)可能出现的结果共有9种,两次摸出标号相同的有(1,1)(2,2)(3,3)3种,∴P (中奖)=39=132.(2014·陕西)小英与她的父亲、母亲计划外出旅游,初步选择了延安、西安、汉中、安康四个城市.由于时间仓促,他们只能去其中一个城市,到底去哪个城市三个人意见不统一.在这种情况下,小英父亲建议,用小英学过的摸球游戏来决定,规则如下:①在一个不透明的袋子中装一个红球(延安)、一个白球(西安)、一个黄球(汉中)和一个黑球(安康),这四个球除颜色不同外,其余完全相同;②小英父亲先将袋中球摇匀,让小英从袋中随机摸出一球,父亲记录下其颜色,并将这个球放回袋中摇匀,然后让小英母亲从袋中随机摸出一球,父亲记录下它的颜色;③若两人所摸出球的颜色相同,则去该球所表示的城市旅游,否则前面的记录作废,按规则②重新摸球,直到两人所摸出球的颜色相同为止.请回答下面的问题:(1)已知小英的理想旅游城市是西安,小英和母亲随机各摸球一次,均摸出白球的概率是多少?(2)已知小英母亲的理想旅游城市是汉中,小英和母亲随机各摸球一次,至少有一人摸出黄球的概率是多少?解:(1)由题意共有16种等可能的结果,其中母女都摸出白球的结果有1种,∴P (都是白球)=116(2)画树状图得:∴P(至少有一人摸出黄球)=7 163.(2014·武汉)袋中装有大小相同的2个红球和2个绿球.(1)先从袋中摸出1个球后放回,混合均匀后再摸出1个球.①求第一次摸到绿球,第二次摸到红球的概率;②求两次摸到的球中有1个绿球和1个红球的概率;(2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.解:(1)分别用R1,R2表示2个红球,G1,G2表示两个绿球,列表如下:第一次第二次R1R2G1G2R1R1R1R2R1G1R1G2R1R2R1R2R2R2G1R2G2R2G1R1G1R2G1G1G1G2G1G2R1G2R2G2G1G2G2G2摸到红球)=416=14,②P(一个绿球,一个红球)=816=12(2)23专题(八) 概率与方程、不等式、函数一、概率与方程1.(2014·黄石)已知甲同学手中藏有三张分别标有数字12,14,1的卡片,乙同学手中藏有三张分别标有数字1,2,3的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为a ,b.(1)请你用树状图或列表法列出所有可能的结果;(2)现制定这样一个游戏规则:若所选出的a ,b 能使得ax 2+bx +1=0有两个不相等的实数根,则称甲获胜;否则称乙获胜.请问这样的游戏规则公平吗?请你用概率知识解释.解:(1)画树状图如图所示,故所有可能的结果为(12,1),(12,3),(12,2),(14,1),(14,3),(14,2),(1,1),(1,3),(1,2) (2)这样的游戏规则不公平.∵P (甲获胜)=59,P (乙获胜)=49,∴P (甲获胜)>P (乙获胜),∴这样的游戏规则不公平二、概率与不等式2.(2014·重庆)从-1,1,2这三个数字中随机抽取一个数记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形面积为14,且使关于x 的不等式组⎩⎪⎨⎪⎧x +2≤a ,1-x≤2a 有解的概率为__13__.3.小华和小丽两人玩数字游戏,先由小丽心中任意想一个数字记为x ,再由小华猜小丽刚才想的数字,把小华猜的数字记为y ,且他们想和猜的数字只能在1,2,3,4这四个数中选择.(1)请用树状图或列表法表示了他们想和猜所有的情况;(2)如果他们想和猜的数相同,则称他们“心有灵通”,求他们“心有灵通”的概率; (3)如果他们想和猜的数字满足|x -y |≤1,则称他们“心有灵犀”,求他们“心有灵犀”的概率.解:(1)画树状图得:(2)由图知共有16种等可能的结果,其中相同的有4种,∴P (心有灵通)=416=14(3)P (心有灵犀)=1016=58三、概率与函数4.一个不透明的袋子里装有编号分别为1,2,3的球(除编号以外,其余都相同),其中1号球1个,3号球3个,从中随机摸出一个球是2号球的概率为13.(1)求袋子里2号球的个数;(2)甲、乙两人分别从袋中摸出一个球(不放回),甲摸出球的编号记为x ,乙摸出球的编号记为y ,用列表法求点A (x ,y )在直线y =x 下方的概率.解:(1)设袋中2号球有x 个,则x 1+3+x =13,x =2,经检验x =2是原方程的解,即2号球有2个 (2)列表:下方)=1130。

3.1 用树状图或表格求概率(分层练习)(解析版)

3.1 用树状图或表格求概率(分层练习)(解析版)

3.1用树状图或表格求概率分层练习考查题型一列表法或树状图法求概率(1)求:吉祥物“冰墩墩(2)求:吉祥物“冰墩墩【详解】(1)吉祥物1故答案为:考查题型二判断游戏公平性1.小董利用均匀的骰子和同桌做游戏,规则如下:①两人同时做游戏,各自投掷一枚骰子,也可以连续投掷几次骰子;②当掷出的点数和不超过10,如果决定停止投掷,那么你的得分就是掷出的点数和;当掷出的点数和超过10,必须停止投掷,并且你的得分为0;(1)随机地摸出一张,求摸出牌面图形是轴对称图形的概率;(2)小华和小明玩游戏,规则是:随机地摸出一张,放回洗匀后再摸一张.若摸出两张牌面图形都是轴对称图形的纸牌,则小华赢;否则,小明赢.你认为该游戏公平吗?请用画树状图或列表法说明理由.用A,B,C表示)【详解】(1)解:由题意,随机地摸出一张共有3种等可能的结果,其中摸出牌面图形是轴对称图形的结果有纸牌,A B,共2种,则摸出牌面图形是轴对称图形的概率为23 P=.由图可知,摸出两张牌共有9种等可能的结果,其中摸出两张牌面图形都是轴对称图形的结果有考查题型三概率在转盘游戏的应用(1)转得非负数的概率是多少?(2)转得整数的概率是多少?(3)若小丽和妈妈做游戏,请说明理由.【详解】(1)解:由题意可知,转盘中有所以转得非负数的概率为(2)解∶由题意可知,转盘中有9所以转得整数的概率为(1)求转动一次转盘获得购物券的概率;(1)请你用列表法(或画树状图法)求两款转盘指针分别指向一红区和一蓝区的概率.(2)如果一名顾客当天在本店购物满200【详解】解:(1)整个圆周被分成了∴获得一等奖的概率为:整个圆周被分成了16份,黄色为∴获得二等奖的概率为:1.“田忌赛马”的故事闪烁着我国古代先贤的智慧光芒.该故事的大意是:齐王有上、中、下三匹马111,,A B C ,田忌也有上、中、下三匹马222,,A B C ,且这六匹马在比赛中的胜负可用不等式表示如下:121212A A B B C C >>>>>(注:A B >表示A 马与B 马比赛,A 马获胜).一天,齐王找田忌赛马,约定:每匹马都出场比赛一局,共赛三局,胜两局者获得整场比赛的胜利.面对劣势,田忌事先了解到齐王三局比赛的“出马”顺序为上马、中马、下马,并采用孙膑的策略:分别用下马、上马、中马与齐王的上马、中马、下马比赛,即借助对阵(212121,,C A A B B C )获得了整场比赛的胜利,创造了以弱胜强的经典案例.假设齐王事先不打探田忌的“出马”情况,试回答以下问题:(1)如果田忌事先只打探到齐王首局将出“上马”,他首局应出哪种马才可能获得整场比赛的胜利?并求其获胜的概率;。

人教版九年级数学上册用树状图求概率同步练习题

人教版九年级数学上册用树状图求概率同步练习题

第2课时 用树状图求概率1.在一个暗箱里放入除颜色外其他都相同的3个红球和11个黄球,搅拌均匀后随机任取一个球,取到红球..的概率是( ). A .113 B .118C .1411D .1432.号码锁上有3个拨盘,每个拨盘上有0~9共10个数字,能打开锁的号码只有一个.任意拨一个号码,能打开锁的概率是( ). A .1B .101 C .1001 D .10001 3.在一个布口袋中装着只有颜色不同,其他都相同的白、红、黑三种颜色的小球各1只,甲乙两人进行摸球游戏;甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球. (1)试用树状图(或列表法)表示摸球游戏所有可能的结果; (2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为负,试求乙在游戏中获胜的概率.4.一个袋子中装有红、黄、蓝三个小球,它们除颜色外均相同. (1)如果从中随机摸出一个小球,那么摸到蓝色小球的概率是多少?(2)小王和小李玩摸球游戏,游戏规则如下:先由小王随机摸出一个小球,记下颜色后放回,小李再随机摸出一个小球,记下颜色.当两个小球的颜色相同时,小王赢;当两个小球的颜色不同时,小李赢.请你分析这个游戏规则对双方是否公平?并用列表法或画树状图法加以说明.5.如图,两个转盘中指针落在每个数字上的机会相等,现同时转动A 、B 两个转盘,停止后,指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.你认为这个游戏公平吗?请你利用列举法说明理由.6.“石头、剪刀、布”是广为流传的游戏,游戏时比赛各方做“石头”、“剪刀”、“布”手势中的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,同种手势或三种手势循环不分胜负继续比赛,假定甲、乙、丙三人都是等可能地做这三种手势,那么: (1)一次比赛中三人不分胜负的概率是多少? (2)比赛中一人胜,二人负的概率是多少?7.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,三辆汽车经过这个十字路口,求下列事件的概率:(1)三辆车全部直行;(2)两辆车向右转,一辆车向左转;(3)至少有两辆车向左转. 8.“五一”期间,梁先生驾驶汽车从甲地经过乙地到丙地游玩.甲地到乙地有两条公路,乙地到丙地有三条公路.每一条公路的长度如图所示(单位:km),梁先生任选一条从甲地到丙地的路线,这条路线正好是最短路线的概率是______.9.同时掷两枚普通的骰子,“出现数字之积为奇数”与“出现数字之积为偶数”的概率分别是______,______.10.银行为储户提供的储蓄卡的密码由0,1,2,…,9中的6个数字组成.某储户的储蓄卡被盗,盗贼如果随意按下6个数字,可以取出钱的概率是______.11.小明和小颖做游戏:桌面上放有5支铅笔,每次取1支或2支,由小明先取,最后取完铅笔的人获胜.如果小明获胜的概率为1,那么小明第一次应取走______支.12.有三条带子,第一条的一头是黑色,另一头是黄色,第二条的一头是黄色,另一头是白色,第三条的一头是白色,另一头是黑色.若任意选取这三条带子的一头,颜色各不相同的概率是( ).A .31 B .41 C .51 D .6113.某校九年级学生中有5人在省数学竞赛中获奖,其中3人获一等奖,2人获二等奖.老师从5人中选2人向全校学生介绍学好数学的经验,则选出的2人中恰好一人是一等奖获得者,一人是二等奖获得者的概率是( ).A .51 B .52 C .53 D .54 14.口袋里有红、绿、黄三种颜色的球,除颜色外其余都相同.其中有红球4个,绿球5个,任意摸出1个绿球的概率是 31求:(1)口袋里黄球的个数;(2)任意摸出1个红球的概率.15.小明走进迷宫,迷宫中的每一个门都相同,第一道关口有四个门,只有第三个门有开关,第二道关口有两个门,只有第一个门有开关,他一次就能走出迷宫的概率是______. 16.请你设计一种均匀的正方体骰子,使得它掷出后满足下列所有条件:(1)奇数点朝上的概率为;31(2)大于6的点数与小于3的点数朝上的概率相同.高频考点强化训练:三视图的有关判断及计算时间:30分钟 分数:50分 得分:________ 一、选择题(每小题4分,共24分)乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )2.(2016·贵阳中考)如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是【易错6】( )3.如图所示的主视图、左视图、俯视图是下列哪个物体的三视图( )4.如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是( )5.一个长方体的主视图、俯视图如图所示(单位:cm),则其左视图的面积为( )A .36cm 2B .40cm 2乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..C.90cm2 D.36cm2或40cm2第5题图第6题图6.(2016·承德模拟)由一些大小相同的小正方体组成的几何体的俯视图和左视图如图所示,那么组成这个几何体的小正方体个数可能有( )A.8个 B.6个 C.4个 D.12个二、填空题(每小题4分,共16分)7.下列几何体中:①正方体;②长方体;③圆柱;④球.其中,三个视图形状相同的几何体有________个,分别是________(填几何体的序号).8.如图,水平放置的长方体的底面是边长为3和5的长方形,它的左视图的面积为12,则长方体的体积等于________.9.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是________.第8题图第9题图第10题图10.(2016·秦皇岛卢龙县模拟)由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则x 的值为________,y 的值为________.三、解答题(10分)11.如图所示的是某个几何体的三视图. (1)说出这个几何体的名称;(2)根据图中的有关数据,求这个几何体的表面积.中考必考点强化训练专题:简单三视图的识别◆类型一 简单几何体的三视图1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..第1 题图 第2题图 第3题图 2.(2016·抚顺中考)如图所示几何体的主视图是( )3.(2016·南陵县模拟)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是( )4.(2016·肥城市一模)如图所示的四个几何体中,它们各自的主视图与俯视图不相同的几何体的个数是( )A .1个B .2个C .3个D .4个5.(2016·宁波中考)如图所示的几何体的主视图为( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..6.(2016·鄂州中考)一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是( )7.(2016·菏泽中考)如图所示,该几何体的俯视图是( )◆类型二 简单组合体的三视图8.(2016·黔西南州中考)如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是( )9.(2016·营口中考)如图所示的物体是由两个紧靠在一起的圆柱体组成,小明准备画出它的三视图,那么他所画的三视图中的主视图应该是( )10.(2016·日照中考)如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是( )11.(2016·烟台中考)如图,圆柱体中挖去一个小圆柱,那么乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________……………………密………………………………….封……………………….线…………………………………………………………………………..这个几何体的主视图和俯视图分别为( )。

最新用树状图求概率练习题

最新用树状图求概率练习题

用树状图求概率练习题
1:(海南中考)
某校开展“文明小卫士”活动,从学生会“督查部”的 3 名学生(2 男 1 女)中随机选 两名进行督导,则恰好选中两名男学生的概率是
A
21 B 94 C 32 D 9
2
2:(临沂中考)一天晚上,小丽在清洗两只颜色分别为粉色和白色的有盖茶杯时,突然停电了,小丽只好把杯盖和茶杯随机地搭配在一起,则其颜色搭配一致的概率为 A 41 B 2
1 C 43 D1
3:经过某十字路口的汽车,可能直行,也可能左转或者右转,如果这三种可能性大小相同,则经过这个十字路口的两辆汽车一辆左转,一辆右转的概率是
A 7
4 B 94 C 92 D 91
4:(益阳中考)甲乙丙三位好朋友随机站成一排照合影,甲没有站在中间的概率为_______________
5:有三辆车按1,2,3编号,周周和嘉嘉两人可任意选坐一辆车,则两人同坐3号车的概率为_______________
6:(滨州中考)用2,3,4三个数字排成一个三位数,则排出的数是偶数的概率为__________
7:(泰州中考)
一只不透明袋子中装有1个红球、2个黄球,这些球除颜色外都相同。

小明搅匀后从中意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球。

用画树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是红球的概率。

8:(常州中考)甲乙丙三位学生进入了“校园朗诵比赛”冠军,亚军和季军的决赛,他们将通过抽签来决定比赛的出场顺序。

(1)求甲第一个出场的概率;
(2)求甲比乙先出场的概率。

九年级数学: 25.2.2用树状图法求概率训练题含答案

九年级数学: 25.2.2用树状图法求概率训练题含答案

第25章 概率初步 25.2.2 用树状图法求概率 同步训练题1. 小明和小华玩“石头”“剪子”“布”的游戏.若随机出手一次,则小华获胜的概率是( )A.23B.12C.13D.292. 将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“孔孟”的概率是( )A.18B.16C.14D.123. 甲盒子中有编号为1、2、3的3个白色乒乓球,乙盒子中有编号为4、5、6的3个黄色乒乓球,现分别从两个盒子中随机地取出1个乒乓球,则取出乒乓球的编号之和能被3整除的概率为( )A.49B.59C.13D.794. 抛掷一枚质地均匀的硬币,如果每掷一次出现正面与反面的可能性相同,那么连掷三次硬币,出现“一次正面,两次反面”的概率为( )A.18B.14C.38D.125. 九(1)班第5学习小组共有2位女生和3位男生.一次数学课上,老师随机让该学习小组的2位同学上台演示解题过程(每个同学上台演示的可能性相同),则上台演示解题过程的2位同学都是女生的概率等于( )A.25B.110C.425D.126. 两个正四面体骰子的各面上分别标有数字1、2、3、4,如同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为( )A.14B.316C.34D.387. 一个不透明的袋子中只装有1个红球和2个蓝球,它们除颜色外其余都相同.现随机从袋中摸出两个球,颜色是一红一蓝的概率是 .8. 从标有1、2、3的三张卡片中随机抽取两张,和为奇数的概率是 .9.甲、乙、丙三人站成一排合影留念,则甲、乙两人相邻的概率是 .10. 甲盒装有3个乒乓球,分别标号为1、2、3;乙盒装有2个乒乓球,分别标号为1、2.现分别从两个盒中各随机地取出1个球,则取出的两球标号之和为4的概率是 .11. 经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同,那么三辆汽车经过这个十字路口,至少有两辆车向左转的概率是 .12. 一个口袋中有3个大小相同的小球,球面上分别写有数字1、2、3,从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.(1)请用画树状图法列举出两次摸出的球上数字的所有可能结果;(2)求两次摸出的球上的数字和为偶数的概率.13. 在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.14. 商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率是;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用画树状图法或列表法求出他恰好买到雪碧和奶汁的概率.参考答案;1---6 CBCCB A7. 238. 239. 2310. 1311. 72712. 解:(1)画树状图如答图,共有9种等可能的结果:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3).(2)由(1)得:两次摸出的球上的数字和为偶数的结果有5种,即(1,1),(1,3),(2,2),(3,1),(3,3),故两次摸出的球上的数字和为偶数的概率是59. 13. 解:如图:所有可能的结果有9种,甲、乙抽中同一篇文章的情况有3种,概率为39=13. 14. (1) 14解:(2)画树状图如下:共有12种等可能的结果,他恰好买到雪碧和奶汁的结果有2种,故他恰好买到雪碧和奶汁的概率为212=16.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时 用树状图求概率
1.在一个暗箱里放入除颜色外其他都相同的3个红球和11个黄球,搅拌均匀后随机任取一个球,取到红球..
的概率是( ). A .
113 B .11
8 C .1411 D .143 2.号码锁上有3个拨盘,每个拨盘上有0~9共10个数字,能打开锁的号码只有一个.任意拨一个号码,能打开锁的概率是( ). A .1 B .
101 C .1001 D .1000
1 3.在一个布口袋中装着只有颜色不同,其他都相同的白、红、黑三种颜色的小球各1只,甲乙两人进行摸球游戏;甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球.
(1)试用树状图(或列表法)表示摸球游戏所有可能的结果;
(2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为负,试求乙在游戏中获胜的概率.
4.一个袋子中装有红、黄、蓝三个小球,它们除颜色外均相同.
(1)如果从中随机摸出一个小球,那么摸到蓝色小球的概率是多少?
(2)小王和小李玩摸球游戏,游戏规则如下:先由小王随机摸出一个小球,记下颜色后放回,小李再随机摸出一个小球,记下颜色.当两个小球的颜色相同时,小王赢;当两个小球的颜色不同时,小李赢.请你分析这个游戏规则对双方是否公平?并用列表法或画树状图法加以说明.
5.如图,两个转盘中指针落在每个数字上的机会相等,现同时转动A 、B 两个转盘,停止后,指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.你认为这个游戏公平吗?请你利用列举法说明理由.
6.“石头、剪刀、布”是广为流传的游戏,游戏时比赛各方做“石头”、“剪刀”、“布”手势中的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,同种手势或三种手势循环不分胜负继续比赛,假定甲、乙、丙三人都是等可能地做这三种手势,那么:
(1)一次比赛中三人不分胜负的概率是多少?
(2)比赛中一人胜,二人负的概率是多少?
7.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,三辆汽车经过这个十字路口,求下列事件的概率:
(1)三辆车全部直行;(2)两辆车向右转,一辆车向左转;(3)至少有两辆车向左转.
8.“五一”期间,梁先生驾驶汽车从甲地经过乙地到丙地游玩.甲地到乙地有两条公路,乙
地到丙地有三条公路.每一条公路的长度如图所示(单位:km),梁先生任选一条从甲地到丙地的路线,这条路线正好是最短路线的概率是______.
9.同时掷两枚普通的骰子,“出现数字之积为奇数”与“出现数字之积为偶数”的概率分别是______,______.
10.银行为储户提供的储蓄卡的密码由0,1,2,…,9中的6个数字组成.某储户的储蓄
卡被盗,盗贼如果随意按下6个数字,可以取出钱的概率是______.
11.小明和小颖做游戏:桌面上放有5支铅笔,每次取1支或2支,由小明先取,最后取完
铅笔的人获胜.如果小明获胜的概率为1,那么小明第一次应取走______支.
12.有三条带子,第一条的一头是黑色,另一头是黄色,第二条的一头是黄色,另一头是白色,第三条的一头是白色,另一头是黑色.若任意选取这三条带子的一头,颜色各不相同的概率是( ).
A .3
1 B .41 C .51 D .61 13.某校九年级学生中有5人在省数学竞赛中获奖,其中3人获一等奖,2人获二等奖.老师从5人中选2人向全校学生介绍学好数学的经验,则选出的2人中恰好一人是一等奖获得者,一人是二等奖获得者的概率是( ).
A .
51 B .52 C .53 D .5
4 14.口袋里有红、绿、黄三种颜色的球,除颜色外其余都相同.其中有红球4个,绿球5个,任意摸出1个绿球的概率是 3
1 求:(1)口袋里黄球的个数;(2)任意摸出1个红球的概率.
15.小明走进迷宫,迷宫中的每一个门都相同,第一道关口有四个门,只有第三个门有开关,
第二道关口有两个门,只有第一个门有开关,他一次就能走出迷宫的概率是______.
16.请你设计一种均匀的正方体骰子,使得它掷出后满足下列所有条件:
(1)奇数点朝上的概率为;31
(2)大于6的点数与小于3的点数朝上的概率相同.。

相关文档
最新文档