(北师大版)八年级数学上学期期末试卷及答案

合集下载

北师大版数学八年级上学期《期末考试题》附答案

北师大版数学八年级上学期《期末考试题》附答案
选手




方差(s2)
0.020
0.019
0.021
0.022
A.甲B.乙C.丙D.丁
[答案]B
[解析]
分析]
方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
[详解]解:∵s2丁>s2丙>s2甲>s2乙,
方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
(1)求点 的坐标;
(2)点 在直线 上,且位于 轴的上方,将 沿直线 翻折得到 ,若点 恰好落在直线 上,求点 的坐标和直线 的解析式;
(3)设点 在直线 上,点 在直线 上,当 为等边三角形时,求点 坐标.
答案与解析
A卷(100分)
一、选择题.(每小题3分,共30分)
1.下列各数中,是无理数的是()
(1)求证: ;
(2)如图2,若 , ,折叠纸片,使点 与点 重合,折痕为 ,且 .
①求证: ;
②点 是线段 上一点,连接 ,一动点 从点 出发,沿线段 以每秒1个单位的速度运动到点 ,再沿线段 以每秒 个单位的速度运动到 后停止,点 在整个运动过程中用时最少多少秒?
28.如图,点 ,过点 做直线 平行于 轴,点 关于直线 对称点 .
[分析]
平移时k的值不变,只有b发生变化.
[详解]解:原直线的k=-3,b=0;向上平移5个单位得到了新直线,那么新直线的k=-3,b=0+5=5.
∴新直线的解析式为y=-3x+5.
故答案为y=-3x+5.
[点睛]求直线平移后的解析式时要注意平移时k和b的值的变化,掌握这点很重要.

北师大版八年级(上)期末数学试卷(含答案) (共四套)

北师大版八年级(上)期末数学试卷(含答案) (共四套)

北师大版八年级上期末测试卷(1)一、选择题:(每小题3分,共18分。

) 1、下列命题是真命题的是( )A;如果a 2=b 2,则a=b B:两边一角对应相等的两个三角形全等。

C ;81的算术平方根是9 D:x=2 y=1是方程2x-y=3的解。

2、414 ,226 15三个数的大小关系是( ) A: 414<`15<`226 B:226<`15<`414C: 414<`226<15 D:15< 226 <4143、以方程组{12+=+-=x y x y 的解为坐标的点在( )A 第一象限B 第二象限C 第三象限D 第四象限 4、如图,AD ⊥ BC,三角形ABD 和三角形CDE都是等腰三角形 , 且BC=17,DE=5 那么线段AC=( )A:5, B:7, C:12, D:135、在平面直角坐标系中,O 为原点,直线y=kx+b 交 X 轴于A (-2,0),交y 轴于B ,且三角形AOB 的面积为8,则k=( ) A:1 B: 2 C: -2或4, D:-4或46、某班七个合作学习小组人数如下,4, 5, 5, x , 6, 7, 8, 已知这组数据的平均数为6,则这组数据的中位数和众数是( )A :5, 5B :6, 5C :6, 5和6,D :6, 5和7二填空题(每小题3分,共24分。

)7、在△ABC 中,如果BC :AC :AB=1:3:2,则∠A :∠B :∠C=……………… 8、直线y=ax-2与直线y=bx+1的交点在x 轴上,则a:b=……………9、已知实数x y 满足y=xx 221616---+2,则x-y=…………----------10、已知A (m,-2) B (3, m-1)且AB ∥x 轴,则线段AB= ---------11、函数y=-3x+2的图象上有一点P,且P 点到x 轴的距离为3,则P 点坐标为… 12、等边△ABC 的两个顶点为A (2,0) B(-4,0)则顶点C 坐标为………13、已知直线y=mx-1上有一点P (1,n)到原点的距离为10,则直线与两轴所围成的三角形面积为………………14、在y=kx+b 中,当x=5时y=6,当x=-1时y=-2,当x=2时y=……… 三、简答题15(10分)解方程组(1) ⎩⎨⎧=-=+②①7211y x y x (2)⎩⎨⎧=+=.13y 2x 11,3y -4x .16.化简:(10分) (1)31318)62(-⨯-.(2)计算: 34827++)32)(32(-+17(6分)如图,将一副直角三角尺如图放置,已知AE ∥BC ,试求∠AFD 的度数。

北师大版八年级上册数学期末考试试卷及答案

北师大版八年级上册数学期末考试试卷及答案

北师大版八年级上册数学期末考试试题一、单选题1.下列实数中,是无理数的是()A B .3-C .0.101001D .132.如图,直线a ,b 被直线c 所截,下列条件中,不能判定a ∥b 的是()A .∠2=∠5B .∠1=∠3C .∠5=∠4D .∠1+∠5=180°3.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则()A .2k <B .2k >C .0k >D .0k <4.快要到新年了,某鞋店老板要进一批新年鞋,他一定会参考下面的调查数据,他最关注的是()A .中位数B .平均数C .加权平均数D .众数5.下列各命题中,属于假命题的是()A .若a -b =0,则a =b =0B .若a -b >0,则a >bC .若a -b <0,则a <bD .若a -b≠0,则a≠b6.二元一次方程组22x y x y +=⎧⎨-=-⎩的解是()A .02x y =⎧⎨=-⎩B .02x y =⎧⎨=⎩C .20x y =⎧⎨=⎩D .20x y =-⎧⎨=⎩7.已知正比例函数y =kx 的函数值y 随x 的增大而减小,则一次函数y =kx -k 的图象大致是()A .B .C .D .8.如图,已知函数y =ax+b 和y =kx 的图象交于点P ,则根据图象可得关于x ,y 的二元一次方程组y ax by kx=+⎧⎨=⎩的解是()A.24xy=-⎧⎨=-⎩B.42xy=-⎧⎨=-⎩C.24xy=⎧⎨=-⎩D.42xy=-⎧⎨=⎩9.如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC等于()A.95°B.120°C.135°D.无法确定10.如图,∠AFD=65°,CD∥EB,则BÐ的度数为()A.115°B.110°C.105°D.65°二、填空题11.甲、乙两地7月上旬的日平均气温如图所示,则甲,乙两地这10天中日平均气温的方差S2甲与S2乙的大小关系是S2甲_______S2乙.(填“>”或“<”)12.小明某学期数学平时成绩为70分,期中考试成绩为80分,期末考试成绩为90分,计算学期总评成绩的方法:平时占30%,期中占30%,期末占40%,则小明这学期的总评成绩是________分.13.若|3x﹣0,则xy的算术平方根是_____.14.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是_____.15.如图,已知∠1=100°,∠2=140°,那么∠3=________度.16.如图,在Rt△ABC中,∠C=90°,AC=3,BC=5,分别以点A、B为圆心,大于1AB2的长为半径画弧,两弧交点分别为点P、Q,过P、Q两点作直线交BC于点D,则CD的长是_____.17.如图,在直角坐标系中,点A,B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A,B,C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是____________.18.如图,在△ABC 中,∠A=40°,点D 是∠ABC 和∠ACB 角平分线的交点,则∠BDC 为________三、解答题1901323(21)2-+20.解下列方程组:569745x y x y -=⎧⎨-=-⎩21.某单位750名职工积极参加向贫困地区学校捐书活动,为了解职工的捐数量,采用随机抽样的方法抽取30名职工作为样本,对他们的捐书量进行统计,统计结果共有4本、5本、6本、7本、8本五类,分别用A ,B ,C ,D ,E 表示,根据统计数据绘制成了如图所示的不完整的条形统计图,由图中给出的信息解答下列问题:(1)补全条形统计图;(2)这30名职工捐书本数的众数是本,中位数是本;(3)求这30名职工捐书本数的平均数是多少本?并估计该单位750名职工共捐书多少本?22.如图,已知12l l //,且3l 与1l ,2l 分别交于A ,B 两点,点P 在直线AB 上.(1)当点P 在A ,B 两点之间运动时,求1∠,2∠,3∠之间的数量关系,并说明理由.(2)如果点P 在A ,B 两点外侧运动,试探究1∠,2∠,3∠之间的数量关系(点P 与A ,B 不重合),并说明理由.23.某市推出电脑上网包月制,每月收取费用y (元)与上网时间x (小时)的函数关系如图所示,其中BA 是线段,且BA ∥x 轴,AC 是射线.(1)若小李11月份上网20小时,他应付多少元的上网费用?(2)当x≥30,求y 与x 之间的函数关系式;(3)若小李12月份上网费用为135元,则他在该月份的上网时间是多少?24.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,将△ACB 沿CD 折叠,使点A 恰好落在BC 边上的点E 处.(1)求△BDE 的周长;(2)若∠B =37°,求∠CDE 的度数.25.某水果店11月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.12月份,这两种水果的进价上调为:甲种水果10元/千克,乙种水果20元/千克.(1)若该店12月份购进这两种水果的数量与11月份都相同,将多支付货款300元,求该店11月份购进甲、乙两种水果分别是多少千克?(2)若12月份将这两种水果进货总量减少到120千克,设购进甲种水果a千克,需要支付的货款为w元,求w与a的函数关系式;(3)在(2)的条件下,若甲种水果不超过90千克,则12月份该店需要支付这两种水果的货款最少应是多少元?26.甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟________米,乙在A地时距地面的高度b为________米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式(写出自变量范围);(3)登山多长时间时,甲、乙两人距地面的高度差为70米?参考答案1.A2.B3.B4.D 5.A 6.B 7.C 8.B 9.C 10.A 11.> 12.81 1314.x=2 15.6016.8 517.(0,3)18.110°【详解】解:∵D点是∠ABC和∠ACB角平分线的交点,∴∠CBD=∠ABD=12∠ABC,∠BCD=∠ACD=12∠ACB,∵∠A=40°,∴∠ABC+∠ACB=180°−40°=140°,∴∠DBC+∠DCB=70°,∴∠BDC=180°−70°=110°,故答案为:110°.191.1)1=+1=.20.34xy=-⎧⎨=-⎩.【详解】解:569745x y x y -=⎧⎨-=-⎩①②,①×2-②×3,得-11x=33,解得x=-3,把x=-3代入①,得-15-6y=9,解得y=-4,故方程组的解为34x y =-⎧⎨=-⎩.21.(1)补全图形见解析;(2)6,6;(3)6本;4500本.【详解】解:(1)D 组人数=30﹣4﹣6﹣9﹣3=8.(2)众数是6本中位数是6本.故答案为6,6.(3)平均数=6(本),该单位750名职工共捐书约4500本.22.(1)123∠+∠=∠,见解析;(2)123∠-∠=∠或213∠-∠=∠,见解析.【详解】(1)123∠+∠=∠.理由如下:如图所示,过点P 作1//PQ l .12//l l ,12////l l PQ ∴,14∴∠=∠,25∠=∠.453∠+∠=∠ ,123∴∠+∠=∠.(2)123∠-∠=∠或213∠-∠=∠.理由如下:当点P 在下侧时,过点P 作1l 的平行线PQ ,如图所示,12//l l ,12////l l PQ ∴,24∴∠=∠,134∠=∠+∠,123∴∠-∠=∠.当点P 在上侧时,如图所示,12//l l ,24∴∠=∠,又413∠=∠+∠,213∴∠-∠=∠.23.(1)60元;(2)y =3x ﹣30;(3)55个小时.【详解】解:(1)根据题意,从图象上看,30小时以内的上网费用都是60元;(2)当x≥30时,设函数关系式为y =kx+b ,则30604090k b k b +=⎧⎨+=⎩,解得k 3b 30=⎧⎨=-⎩,故函数关系式为y =3x ﹣30;(3)由135=3x ﹣30解得x =55,故12月份上网55个小时.24.(1)△BDE 的周长为12;(2)∠CDE 的度数为82°.【分析】(1)由折叠的性质可知,DE=AD ,CE=AC ,则△BDE 的周长=BD+DE+BE=BD+BE+AD=AB+BE ,先求出BE 的长,再利用勾股定理求出AB 的长即可;(2)由折叠的性质可知:∠ACD=∠BCD ,∠A=∠CED ,再利用三角形内角和定理求解即可.【详解】解:(1)由折叠的性质可知,DE=AD ,CE=AC ,∴△BDE 的周长=BD+DE+BE=BD+BE+AD=AB+BE ,∵∠ACB=90°,AC=6,BC=8,∴BE=BC-CE=BC-AC=2,10AB =,∴△BDE 的周长=AB+BE=10+2=12;(2)由折叠的性质可知:∠ACD=∠BCD ,∠A=∠CED ,∵∠ACB=90°,∠B=37°,∴∠A=∠CED=53°,1452ECD ACB ==o ∠,∴=180=82CDE BCD CED --o o ∠∠∠.25.(1)该店5月份购进甲种水果100千克,购进乙种水果50千克;(2)w =﹣10a+2400;(3)12月份该店需要支付这两种水果的货款最少应是1500元.【分析】(1)设该店5月份进甲种水果x千克,购进乙种水果y千克,根据总价=单价×购进数星,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120-a)千克,根据总价=单价×购进数量,即可得出w关于a的函数关系式;(3)根据甲种水果不超过90千克,可得出a的取值范固,再利用一次函数的性质即可解决最值问题.【详解】解:(1)设该店11月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:8181700 10201700300 x yx y+=⎧⎨+=+⎩,解得10050xy=⎧⎨=⎩,答:该店5月份购进甲种水果100千克,购进乙种水果50千克;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,根据题意得:w=10a+20(120﹣a)=﹣10a+2400;(3)根据题意得,a≤90,由(2)得,w=﹣10a+2400,∵﹣10<0,w随a的增大而减小,∴a=90时,w有最小值w最小=﹣10×90+2400=1500(元).答:12月份该店需要支付这两种水果的货款最少应是1500元.【点睛】本题考查了二元一次方程组的应用、以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组:(2)根据各数之间的关系,找出w关于a的函数关系式. 26.(1)10;30;(2)15(02)3030(211)x xyx x≤<⎧=⎨-≤≤⎩;(3)登山3分钟或10分钟或13分钟时,甲、乙两人距地面的高度差为70米.【分析】(1)根据速度=高度÷时间即可算出甲登山上升的速度;根据高度=速度×时间即可算出乙在A地时距地面的高度b的值;(2)分0≤x<2和x≥2两种情况,根据高度=初始高度+速度×时间即可得出y关于x的函数关系;(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者作差等于70得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度-甲登山全程中y 关于x 的函数关系式=70,得出关于x 的一元一次方程,解之可求出x 值.综上即可得出结论.(1)解:甲登山上升的速度是:(300-100)÷20=10(米/分钟),b=15÷1×2=30.故答案为:10;30;(2)解:当0≤x <2时,y=15x ;当x≥2时,y=30+10×3(x-2)=30x-30.当y=30x-30=300时,x=11.∴乙登山全程中,距地面的高度y 与登山时间x 之间的函数关系式为:15(02)3030(211)x x y x x ≤<⎧=⎨-≤≤⎩;(3)解:甲登山全程中,距地面的高度y 与登山时间之间的函数关系式为y=kx+b (k≠0),把(0,100)和(20,300)代入解析式得:10020300b k b =⎧⎨+=⎩,解得:10100k b =⎧⎨=⎩,∴甲登山全程中,距地面的高度y 与登山时间之间的函数关系式为y=10x+100(0≤x≤20),当10x+100-(30x-30)=70时,解得:x=3;当30x-30-(10x+100)=70时,解得:x=10;当300-(10x+100)=70时,解得:x=13.答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米.。

北师大版八年级(上)期末数学试卷(含解析)

北师大版八年级(上)期末数学试卷(含解析)

北师大版八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂1.下列实数中,无理数是()A.3.14B.2.12122C.D.2.下列四组数据,能作为直角三角形的三边长的是()A.2、4、6B.2、3、4C.5、7、12D.8、15、173.根据下列表述,能确定一个点位置的是()A.北偏东40°B.某地江滨路C.光明电影院6排D.东经116°,北纬42°4.下列代数式能作为二次根式被开方数的是()A.3﹣πB.a C.a2+1D.2x+45.已知一次函数y=kx+3的图象经过点A,且函数值y随x的增大而增大,则点A的坐标不可能是()A.(2,4)B.(﹣1,2)C.(5,1)D.(﹣1,﹣4)6.老师随机抽查了学生读课外书册数的情况,绘制成两幅统计图,其中条形统计图被遮盖了一部分,则被遮盖的数是()A.5B.9C.15D.227.方程组的解为,则a、b的值分别为()A.1,2B.5,1C.2,1D.2,38.下列四个命题中,真命题的是()A.同角的补角相等B.相等的角是对顶角C.三角形的一个外角大于任何一个内角D.两条直线被第三条直线所截.内错角相等9.已知m=,则以下对m的值估算正确的()A.2<m<3B.3<m<4C.4<m<5D.5<m<610.如图,直线y1=ax(a≠0)与y2=x+b交于点P,有四个结论:①a<0;②b<0;③当x>0时,y1>0;④当x<﹣2时,y1>y2,其中正确的是()A.①②B.①③C.①④D..②③二、填空题(本大题共6小题,每小题4分,共24分,请将答案填入答题卡的相应位置11.16的平方根是.12.若y=3x n﹣1是正比例函数,则n=.13.若P(a﹣2,a+1)在x轴上,则a的值是.14.计算5个数据的方差时,得s2=[(5﹣)2+(8﹣)2+(7﹣)2+(4﹣)2+(6﹣)2],则的值为.15.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,则∠1+∠2的度数为.16.双察下列等式:,,,…则第n个等式为.(用含n的式子表示)三、解答题[本大题共9小题,共86分.请在答题卡的相应位置解答17.(8分)解二元一次方程组:18.(8分)计算:.19.(8分)我国古代数学著作《增删算法统宗》记载“官兵分布”问题:“一千官军一千布,一官四疋无零数,四军才分布一疋,请问官军多少数.”其大意为:今有1000官兵分1000匹布,1官分4匹,4兵分1匹.问官和兵各几人?20.(8分)求证:三角形三个内角的和等于180°.21.(8分)某种优质蜜柚,投入市场销售时,经调查,该蜜柚每天销售量y(千克)与销售单价x (元/千克)之间符合一次函数关系,如图所示.(1)求y与x的函数关系式;(2)某农户今年共采摘该蜜柚4500千克,其保质期为40天,若以18元/千克销售,问能否在保质期内销售完这批蜜柚?请说明理由.22.(10分)如图,把△ABC放置在每个小正方形边长为1的网格中,点A,B,C均在格点上,建立适当的平面直角坐标系xOy,使点A(1,4),△ABC与△A'B'C'关于y轴对称.(1)画出该平面直角坐标系与△A'B'C';(2)在y轴上找点P,使PC+PB'的值最小,求点P的坐标与PC+PB'的最小值.23.(10分)每年4月23日是世界读书日,某校为了解学生课外阅读情况,随机抽取20名学生,对每人每周用于课外阅读的平均时间(单位:min)进行调查,过程如下:收集数据:30608150401101301469010060811201407081102010081整理数据:课外阅读平均时间x(min)0≤x<4040≤x<8080≤x<120120≤x<160等级D C B A人数3a8b分析数据:平均数中位数众数80m n请根据以上提供的信息,解答下列问题:(1)填空:a=,b=;m=,n=;(2)已知该校学生500人,若每人每周用于课外阅读的平均时间不少于80min为达标,请估计达标的学生数;(3)设阅读一本课外书的平均时间为260min,请选择适当的统计量,估计该校学生每人一年(按52周计)平均阅读多少本课外书?24.(12分)如图,在△ABC中,∠ACB=90°,点E,F在边AB上,将边AC沿CE翻折,使点A落在AB上的点D处,再将边BC沿CF翻折,使点B落在CD的延长线上的点B'处.(1)求∠ECF的度数;(2)若CE=4,B'F=1,求线段BC的长和△ABC的面积.25.(14分)已知等边△AOB的边长为4,以O为坐标原点,OB所在直线为x轴建立如图所示的平面直角坐标系.(1)求点A的坐标;(2)若直线y=kx(k>0)与线段AB有交点,求k的取值范围;(3)若点C在x轴正半轴上,以线段AC为边在第一象限内作等边△ACD,求直线BD的解析式.参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂1.下列实数中,无理数是()A.3.14B.2.12122C.D.【分析】根据无理数的三种形式,结合选项找出无理数的选项.【解答】解:无理数是,故选:C.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.2.下列四组数据,能作为直角三角形的三边长的是()A.2、4、6B.2、3、4C.5、7、12D.8、15、17【分析】分别求每个选项中数字的平方,根据其中两个数字的平方和等于第三个数字即可解题.【解答】解:22+42≠62,故A错误;22+32≠42,故B错误;52+72≠122,故C错误;82+152=172,故D正确;故选:D.【点评】本题考查了勾股数的计算,其中2个数字的平方和等于第三个数字的平方,则这3个数字为勾股数.3.根据下列表述,能确定一个点位置的是()A.北偏东40°B.某地江滨路C.光明电影院6排D.东经116°,北纬42°【分析】根据各个选项中的语句可以判断哪个选项是正确的,本题得以解决.【解答】解:根据题意可得,北偏东40°无法确定位置,故选项A错误;某地江滨路无法确定位置,故选项B错误;光明电影院6排无法确定位置,故选项C错误;东经116°,北纬42°可以确定一点的位置,故选项D正确,故选:D.【点评】本题考查坐标位置的确定,解题的关键是明确题意,可以判断选项中的各个语句哪一个可以确定一点的位置.4.下列代数式能作为二次根式被开方数的是()A.3﹣πB.a C.a2+1D.2x+4【分析】直接利用二次根式的定义分别分析得出答案.【解答】解:A、3﹣π<0,则3﹣a不能作为二次根式被开方数,故此选项错误;B、a的符号不能确定,则a不能作为二次根式被开方数,故此选项错误;C、a2+1一定大于0,能作为二次根式被开方数,故此选项正确;D、2x+4的符号不能确定,则a不能作为二次根式被开方数,故此选项错误;故选:C.【点评】此题主要考查了二次根式的定义,正确把握二次根式的定义是解题关键.5.已知一次函数y=kx+3的图象经过点A,且函数值y随x的增大而增大,则点A的坐标不可能是()A.(2,4)B.(﹣1,2)C.(5,1)D.(﹣1,﹣4)【分析】先根据一次函数的增减性判断出k的符号,再对各选项进行逐一分析即可.【解答】解:∵一次函数y=kx+2(k≠0)的函数值y随x的增大而增大,∴k>0.A、∵当x=2,y=4时,2k+3=4,解得k=0.5>0,∴此点符合题意,故本选项错误;B、∵当x=﹣1,y=2时,﹣k+3=2,解得k=1>0,∴此点符合题意,故本选项错误;C、∵当x=5,y=1时,5k+3=1,解得k=﹣0.4<0,∴此点不符合题意,故本选项正确;D、∵当x=﹣1,y=﹣4时,﹣k+3=﹣4,解得k=7>0,∴此点符合题意,故本选项错误.故选:C.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数的增减性是解答此题的关键.6.老师随机抽查了学生读课外书册数的情况,绘制成两幅统计图,其中条形统计图被遮盖了一部分,则被遮盖的数是()A.5B.9C.15D.22【分析】求出确定总人数,再求出被遮盖的数即可.【解答】解:由题意,总人数=6÷25%=24(人),∴被遮盖的数=24﹣5﹣6﹣4=9(人),故选:B.【点评】本题考查条形统计图,扇形统计图等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.方程组的解为,则a、b的值分别为()A.1,2B.5,1C.2,1D.2,3【分析】把代入方程组,即可解答.【解答】解:把代入方程组得:解得:故选:B.【点评】本题主要考查了二元一次方程组的解,解题的关键是用代入法进行求解.8.下列四个命题中,真命题的是()A.同角的补角相等B.相等的角是对顶角C.三角形的一个外角大于任何一个内角D.两条直线被第三条直线所截.内错角相等【分析】根据补角的性质、对顶角的概念、三角形的外角的性质、平行线的性质判断即可.【解答】解:同角的补角相等,A是真命题;相等的角不一定是对顶角,B是假命题;三角形的一个外角大于任何一个与它不相邻的内角,C是假命题;两条平行线被第三条直线所截.内错角相等,D是假命题;故选:A.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.已知m=,则以下对m的值估算正确的()A.2<m<3B.3<m<4C.4<m<5D.5<m<6【分析】估算确定出m的范围即可.【解答】解:m=+=2+,∵1<3<4,∴1<<2,即3<2+<4,则m的范围为3<m<4,故选:B.【点评】此题考查了估算无理数的大小,弄清估算的方法是解本题的关键.10.如图,直线y1=ax(a≠0)与y2=x+b交于点P,有四个结论:①a<0;②b<0;③当x>0时,y1>0;④当x<﹣2时,y1>y2,其中正确的是()A.①②B.①③C.①④D..②③【分析】根据正比例函数和一次函数的性质判断即可.【解答】解:因为正比例函数y1=ax经过二、四象限,所以a<0,①正确;一次函数y2=x+b经过一、二、三象限,所以b>0,②错误;由图象可得:当x>0时,y1<0,③错误;当x<﹣2时,y1>y2,④正确;故选:C.【点评】此题考查一次函数与一元一次不等式,关键是根据正比例函数和一次函数的性质判断.二、填空题(本大题共6小题,每小题4分,共24分,请将答案填入答题卡的相应位置11.16的平方根是±4.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.若y=3x n﹣1是正比例函数,则n=2.【分析】根据正比例函数的定义可以列出关于n是方程n﹣1=1,据此可以求得n的值.【解答】解:∵y=3x n﹣1是正比例函数,∴n﹣1=1,∴n=2,故答案是:2.【点评】本题考查了正比例函数的定义.正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.13.若P(a﹣2,a+1)在x轴上,则a的值是﹣1.【分析】直接利用x轴上点的坐标特点得出a+1=0,进而得出答案.【解答】解:∵P(a﹣2,a+1)在x轴上,∴a+1=0,解得:a=﹣1.故答案为:﹣1.【点评】此题主要考查了点的坐标,正确掌握x轴上点的坐标特点是解题关键.14.计算5个数据的方差时,得s2=[(5﹣)2+(8﹣)2+(7﹣)2+(4﹣)2+(6﹣)2],则的值为6.【分析】根据平均数的定义计算即可.【解答】解:==6故答案为6.【点评】本题考查方差,平均数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,则∠1+∠2的度数为45°.【分析】首先过点B作BD∥l,由直线l∥m,可得BD∥l∥m,由两直线平行,内错角相等,可得出∠2=∠3,∠1=∠4,故∠1+∠2=∠3+∠4,由此即可得出结论.【解答】解:过点B作BD∥l,∵直线l∥m,∴BD∥l∥m,∴∠4=∠1,∠2=∠3,∴∠1+∠2=∠3+∠4=∠ABC,∵∠ABC=45°,∴∠1+∠2=45°.故答案为:45°.【点评】此题考查了平行线的性质.此题难度不大,注意辅助线的作法,注意掌握两直线平行,内错角相等定理的应用.16.双察下列等式:,,,…则第n个等式为=.(用含n的式子表示)【分析】探究规律后,写出第n个等式即可求解.【解答】解:,,,…则第n个等式为=.故答案为:=.【点评】本题考查算术平方根的定义,解题的关键是探究规律,利用规律解决问题,属于中考常考题型.三、解答题[本大题共9小题,共86分.请在答题卡的相应位置解答17.(8分)解二元一次方程组:【分析】利用加减消元法求解可得.【解答】解:①+②,得:5x=5,解得:x=1,将x=1代入①,得:3+y=6,解得y=3,所以方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(8分)计算:.【分析】先根据二次根式的除法法则运算,再利用平方差公式计算,然后合并即可.【解答】解:原式=﹣+4﹣5=﹣﹣1=﹣1.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.19.(8分)我国古代数学著作《增删算法统宗》记载“官兵分布”问题:“一千官军一千布,一官四疋无零数,四军才分布一疋,请问官军多少数.”其大意为:今有1000官兵分1000匹布,1官分4匹,4兵分1匹.问官和兵各几人?【分析】设官有x人,兵有y人,根据1000官兵正好分1000匹布,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设官有x人,兵有y人,依题意,得:,解得:.答:官有200人,兵有800人.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.(8分)求证:三角形三个内角的和等于180°.【分析】画出图形,写出已知,求证,过点A作直线MN∥BC,根据平行线性质得出∠MAB=∠B,∠NAC=∠C,代入∠MAB+∠BAC+∠NAC=180°即可求出答案.【解答】已知:△ABC,如图:求证:∠A+∠B+∠C=180°证明:过点A作直线MN∥BC,∵MN∥BC,∴∠MAB=∠B,∠NAC=∠C(两直线平行,同位角相等),∵∠MAB+∠BAC+∠NAC=180°(平角的定义),∴∠B+∠BAC+∠C=180°(等量代换),即:三角形三个内角的和等于180°.【点评】本题考查了平行线性质的应用,主要考查学生的推理能力,关键是正确作出辅助线.21.(8分)某种优质蜜柚,投入市场销售时,经调查,该蜜柚每天销售量y(千克)与销售单价x (元/千克)之间符合一次函数关系,如图所示.(1)求y与x的函数关系式;(2)某农户今年共采摘该蜜柚4500千克,其保质期为40天,若以18元/千克销售,问能否在保质期内销售完这批蜜柚?请说明理由.【分析】(1)根据题意和函数图象中的数据,可以求得y与x的函数关系式;(2)将x=18代入(1)的函数解析式,求出相应的y的值,从而可以求得40天的销售量,然后与4500比较大小即可解答本题.【解答】解:(1)设y与x的函数关系式为y=kx+b,,得,即y与x的函数关系式为y=﹣10x+300;(2)能在保质期内销售完这批蜜柚,理由:将x=18代入y=﹣10x+300,得y=﹣10×18+300=120,∵120×40=4800>4500,∴能在保质期内销售完这批蜜柚.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.22.(10分)如图,把△ABC放置在每个小正方形边长为1的网格中,点A,B,C均在格点上,建立适当的平面直角坐标系xOy,使点A(1,4),△ABC与△A'B'C'关于y轴对称.(1)画出该平面直角坐标系与△A'B'C';(2)在y轴上找点P,使PC+PB'的值最小,求点P的坐标与PC+PB'的最小值.【分析】(1)直接利用A点坐标画出平面直角坐标系进而利用关于y轴对称点的性质得出答案;(2)直接利用轴对称求最短路线的方法以及勾股定理得出答案.【解答】解:(1)如图所示:△A'B'C',即为所求;(2)如图所示:点P,即为所求,点P的坐标为:(0,1),PC+PB'的最小值为:=2.【点评】此题主要考查了轴对称变换以及勾股定理,正确得出对应点位置是解题关键.23.(10分)每年4月23日是世界读书日,某校为了解学生课外阅读情况,随机抽取20名学生,对每人每周用于课外阅读的平均时间(单位:min)进行调查,过程如下:收集数据:30608150401101301469010060811201407081102010081整理数据:课外阅读平均时间x(min)0≤x<4040≤x<8080≤x<120120≤x<160等级D C B A人数3a8b 分析数据:平均数中位数众数80m n 请根据以上提供的信息,解答下列问题:(1)填空:a=5,b=4;m=81,n=81;(2)已知该校学生500人,若每人每周用于课外阅读的平均时间不少于80min为达标,请估计达标的学生数;(3)设阅读一本课外书的平均时间为260min,请选择适当的统计量,估计该校学生每人一年(按52周计)平均阅读多少本课外书?【分析】(1)根据统计表收集数据可求a,b,再根据中位数、众数的定义可求m,n;(2)达标的学生人数=总人数×达标率,依此即可求解;(3)本题需先求出阅读课外书的总时间,再除以平均阅读一本课外书的时间即可得出结果.【解答】解:(1)由统计表收集数据可知a=5,b=4,m=81,n=81;(2)500×=300(人).答:估计达标的学生有300人;(3)80×52÷260=16(本).答:估计该校学生每人一年(按52周计算)平均阅读16本课外书.【点评】此题主要考查数据的统计和分析的知识.准确把握三数(平均数、中位数、众数)和理解样本和总体的关系是关键.24.(12分)如图,在△ABC中,∠ACB=90°,点E,F在边AB上,将边AC沿CE翻折,使点A落在AB上的点D处,再将边BC沿CF翻折,使点B落在CD的延长线上的点B'处.(1)求∠ECF的度数;(2)若CE=4,B'F=1,求线段BC的长和△ABC的面积.【分析】(1)由折叠可得,∠ACE=∠DCE=∠ACD,∠BCF=∠B'CF=∠BCB',再根据∠ACB=90°,即可得出∠ECF=45°;(2)在Rt△BCE中,根据勾股定理可得BC==,设AE=x,则AB=x+5,根据勾股定理可得AE2+CE2=AB2﹣BC2,即x2+42=(x+5)2﹣41,求得x=,即可得出S△ABC =AB×CE=.【解答】解:(1)由折叠可得,∠ACE=∠DCE=∠ACD,∠BCF=∠B'CF=∠BCB',又∵∠ACB=90°,∴∠ACD+∠BCB'=90°,∴∠ECD+∠FCD=×90°=45°,即∠ECF=45°;(2)由折叠可得,∠DEC=∠AEC=90°,BF=B'F=1,∴∠EFC=45°=∠ECF,∴CE=EF=4,∴BE=4+1=5,∴Rt△BCE中,BC==,设AE=x,则AB=x+5,∵Rt△ACE中,AC2=AE2+CE2,Rt△ABC中,AC2=AB2﹣BC2,∴AE2+CE2=AB2﹣BC2,即x2+42=(x+5)2﹣41,解得x=,∴S=AB×CE=(+5)×4=.△ABC【点评】本题主要考查了折叠问题,解题时常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.25.(14分)已知等边△AOB的边长为4,以O为坐标原点,OB所在直线为x轴建立如图所示的平面直角坐标系.(1)求点A的坐标;(2)若直线y=kx(k>0)与线段AB有交点,求k的取值范围;(3)若点C在x轴正半轴上,以线段AC为边在第一象限内作等边△ACD,求直线BD的解析式.【分析】(1)如下图所示,过点A作AD⊥x轴于点D,则AD=OA sin∠AOB=4sin60°=2,同理OA=2,即可求解;(2)若直线y=kx(k>0)与线段AB有交点,当直线过点A时,将点A坐标代入直线的表达式得:2k=2,解得:k=,即可求解;(3)证明△ACO≌△ADB(SAS),则OB=BD=4,而∠DBC=180°﹣∠ABO﹣∠ABD=180°﹣60°﹣60°=60°,即可求解.【解答】解:(1)如下图所示,过点A作AD⊥x轴于点D,则AD=OA sin∠AOB=4sin60°=2,同理OA=2,故点A的坐标为(2,2);(2)若直线y=kx(k>0)与线段AB有交点,当直线过点A时,将点A坐标代入直线的表达式得:2k=2,解得:k=,直线OB的表达式为:y=0,而k>0,故:k的取值范围为:0<k≤;(3)如下图所示,连接BD,∵△OAB是等边三角形,∴AO=AB,∵△ADC为等边三角形,∴AD=AC,∠OAC=∠OAB+∠CAB=60°+∠CAB=∠DAC+∠CAB=∠DAB,∴△ACO≌△ADB(SAS),∴OB=BD=4,∴∠AOB=∠ABD=60°,∴∠DBC=180°﹣∠ABO﹣∠ABD=180°﹣60°﹣60°=60°,故直线BD表达式的k值为tan60,设直线BD的表达式为:y=x+b,将点B(4,0)代入上式并解得:b=﹣4,故:直线BD的表达式为:y=x﹣4.【点评】本题考查的是一次函数的综合运用,涉及到三角形全等、解直角三角形等知识,其中(3)利用三角形全等,确定直线BD的倾斜角本题的难点.。

北师大版数学八年级上学期《期末测试卷》及答案

北师大版数学八年级上学期《期末测试卷》及答案
23.如图在平面直角坐标系中,O是坐标原点,长方形OACB的顶点A,B分别在x,y轴上,已知OA=3,点D为y轴上一点,其坐标为(0,1),CD=5,点P从点A出发以每秒1个单位的速度沿线段A﹣C﹣B的方向运动,当点P与点B重合时停止运动,运动时间为t秒
(1)求B,C两点坐标;
(2)①求△OPD的面积S关于t的函数关系式;
A 2.5mB.2mC.1.5mD.1m
[答案]C
[解析]
[分析]
根据图形分别求得二人的速度,相减后即可确定正确的选项.
[详解]观察图象知:甲跑64米用时8秒,速度为8m/s,
①把 向上平移5个单位后得到对应的 ,画出 ,并写出 的坐标;
②以原点 为对称中心,再画出与 关于原点 对称的 ,并写出点 的坐标.
五、本大题共2小题,每小题10分,满分20分.
19.某水果种植场今年收获的“妃子笑”和“无核Ⅰ号”两种荔枝共3200千克,全部售出后卖了30400元.已知“妃子笑”荔枝每千克售价8元,“无核Ⅰ号”荔枝每千克售价12元,问该种植场今年这两种荔枝各收获多少千克?
=4,故B符合题意,
故选B.
[点睛]本题考查了算术平方根,利用乘方求一个正数的算术平方根,注意一个正数只有一个算术平方根.
2.下列实数中是无理数的是()
A. B.πC.0.141414D.﹣
[答案]B
[解析]
[分析]
根据无理数是无限不循环小数,可得答案.
[详解]A、 =2是有理数,故A错误;
B、π是无理数,故B正确;
七、本题满分12分.
22.直线AB:y=﹣x+b分别与x,y轴交于A(6,0)、B两点,过点B的直线交x轴负半轴于C,且OB:OC=3:1.
(1)求点B 坐标.

北师大版数学八年级上册期末考试试卷含答案

北师大版数学八年级上册期末考试试卷含答案

北师大版数学八年级上册期末考试试题一.选择题(共10小题,满分30分,每小题3分)1.在下列各数:,0.2,,,,中,无理数的个数()A.2个B.3个C.4个D.5个2.如图,AB∥CD,∠A=30°,∠F=40°,则∠C=()A.65°B.70°C.75°D.80°3.下列四组数据不能作为直角三角形的三边长的是()A.9,12,15 B.7,24,25 C.15,36,39 D.12,15,20 4.下列说法错误的有()A.5是25的算术平方根B.负数有一个负的立方根C.(﹣4)2的平方根是﹣4D.0的平方根与算术平方根都是05.下列一次函数中,函数图象不经过第三象限的是()A.y=2x﹣3 B.y=x+3 C.y=﹣5x+1 D.y=﹣2x﹣1 6.某中学八(1)班8个同学在课间进行一分钟跳绳比赛,成绩(单位:个)如下:115,138,126,143,134,126,157,118.这组数据的众数和中位数分别是()A.126,126 B.126,130 C.130,134 D.118,1347.下面命题:①同位角相等;②对顶角相等;③若x2=y2,则x=y;④互补的角是邻补角.其中真命题有()个.A.1 B.2 C.3 D.48.给出一组数据:80,85,90,75,90,小兰在记录这组数据时不小心把最小数据记录成了70,则计算结果不受影响的是()A.中位数B.平均数C.方差D.极差9.在平面直角坐标系中,将直线y=﹣2x+2关于平行于y轴的一条直线对称后得到直线AB,若直线AB恰好过点(6,2),则直线AB的表达式为()A.y=2x﹣10 B.y=﹣2x+14 C.y=2x+2 D.y=﹣x+5 10.关于一次函数有如下说法:①函数y=﹣2x的图象从左到右下降,随着x的增大,y反而减小;②函数y=5x+1的图象与y轴的交点坐标是(0,1);③函数y=3x﹣1的图象经过第一、二、三象限;则说法正确的是()A.①②B.①③C.②③D.①②③二.填空题(共4小题,满分12分,每小题3分)11.若≈1.414,≈4.472,则≈.12.在平面直角坐标系xOy中,直线y=kx(k>0)与直线y=﹣x+3,直线y=﹣x﹣3分别交于A、B两点.若点A,B的纵坐标分别为y1,y2,则y1+y2的值为.13.如图中的平面图形由多条直线组成,计算∠1+∠2+∠3+∠4+∠5=.14.已知AD是△ABC的中线,∠ADC=45°,把△ADC沿AD所在直线对折,点C落在点E的位置(如图),则∠EBC等于度.三.解答题(共11小题,满分78分)15.(5分)计算:(1).(2).16.(5分)解方程组(1)(2)17.(5分)如图,在正方形网格中,点A、B、C、M、N都在格点上.(1)作△ABC关于直线MN对称的图形△A'B'C'.(2)若网格中最小正方形的边长为1,求△ABC的面积.(3)点P在直线MN上,当△PAC周长最小时,P点在什么位置,在图中标出P点.18.(5分)将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°).(1)如图1,①若∠DCE=40°,求∠ACB的度数;②若∠ACB=150°,直接写出∠DCE的度数是度.(2)由(1)猜想∠ACB与∠DCE满足的数量关系是.(3)若固定△ACD,将△BCE绕点C旋转,①当旋转至BE∥AC(如图2)时,直接写出∠ACE的度数是度.②继续旋转至BC∥DA(如图3)时,求∠ACE的度数.19.(7分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣2,﹣1),B(2,0),C(0,3),AC交x轴于点D,AB交y轴于点E.(1)△ABC的面积为;(2)点E的坐标为;(3)若点P的坐标为(0,m),①线段EP的长为(用含m的式子表示);②当S△PAB=S△ABC时,求m的值.20.(7分)按要求完成下列证明:已知:如图,在△ABC中,CD⊥AB于点D,E是AC上一点,且∠1+∠2=90°.求证:DE∥BC.证明:∵CD⊥AB(已知).∴∠ADC=.(垂直的定义)∴∠1+=90°.∵∠1+∠2=90°(已知).∴=∠2().∴DE∥BC().21.(7分)如图,直线l1的解析式为y=﹣x+2,l1与x轴交于点B,直线l2经过点D(0,5),与直线l1交于点C(﹣1,m),且与x轴交于点A.(1)求点C的坐标及直线l2的解析式;(2)连接BD,求△BCD的面积.22.(7分)元旦期间,小黄自驾游去了离家156千米的黄石矿博园,右图是小黄离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求小黄出发0.5小时时,离家的距离;(2)求出AB段的图象的函数解析式;(3)小黄出发1.5小时时,离目的地还有多少千米?23.(8分)某公司想招聘一名新职员,对甲、乙、丙三名应试者进行了面试、笔试和才艺三个方面的量化考核,他们的各项得分(百分制,单位:分)如表所示:应试者面试成绩笔试成绩才艺甲86 79 90乙84 81 75丙80 90 73 (1)请通过计算三项得分的平均分,从低到高确定应聘者的排名顺序;(2)公司规定:面试、笔试、才艺得分分别不得低于80分、80分、70分,并按照50%、40%,10%的比例计入个人总分,请你确定谁会被录用?并说明理由.24.(10分)随着5G网络技术的快速发展,市场对5G产品的需求越来越大.某5G产品生产厂家承接了27000个电子元件的生产任务,计划安排甲、乙两个车间共50名工人,合作生产20天完成.已知甲车间每人每天生产25个,乙车间每人每天生产30个.(1)求甲、乙两个车间各有多少名工人将参与生产?(2)为提前完成生产任务,该厂家设计了两种生产方案:方案1:甲车间租用先进生产设备,工人的工作效率可提高20%,乙车间维持不变;方案2:乙车间再临时招聘若干名工人(工作效率与原工人相同),甲车间维持不变.若设计的这两种生产方案,厂家完成生产任务的时间相同,求乙车间需要临时招聘的工人数.25.(12分)快车和慢车分别从A市和B市两地同时出发,匀速行驶,先相向而行,慢车到达A市后停止行驶,快车到达B市后,立即按原路原速度返回A市(调头时间忽略不计),结果与慢车同时到达A市.快、慢两车距B市的路程y1、y2(单位:km)与出发时间x(单位:h)之间的函数图象如图所示.(1)A市和B市之间的路程是km;(2)求a的值,并解释图中点M的横坐标、纵坐标的实际意义;(3)快车与慢车迎面相遇以后,再经过多长时间两车相距20km?参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:,,故无理数有,,共2个.故选:A.2.解:∵∠A=30°,∠F=40°,∴∠FEB=∠A+∠F=30°+40°=70°,∵AB∥CD,∴∠C=∠FEB=70°,故选:B.3.解:92+122=152,故选项A不符合题意;72+242=252,故选项B不符合题意;152+362=392,故选项C不符合题意;122+152≠202,故选项D符合题意;故选:D.4.解:A、5是25的算术平方根,不符合题意;B、负数有一个负的立方根,不符合题意;C、(﹣4)2的平方根是±4,符合题意;D、0的平方根与算术平方根都是0,不符合题意;故选:C.5.解:函数y=2x﹣3的图象经过第一、三、四象限,故选项A不符合题意;函数y=x+3的图象经过第一、二、三象限,故选项B不符合题意;函数y=﹣5x+1的图象经过第一、二、四象限,故选项C符合题意;函数y=﹣2x﹣1的图象经过第二、三、四象限,故选项D不符合题意;故选:C.6.解:将这组数据重新排列为115,118,126,126,134,138,143,157,所以这组数据的众数为126,中位数为=130,故选:B.7.解:①两直线平行,同位角相等,原命题是假命题;②对顶角相等,是真命题;③若x2=y2,则x=y或x=﹣y,原命题是假命题;④互补的角不一定是邻补角,原命题是假命题;故选:A.8.解:原数据75,80,85,90,90的中位数为85、平均数为=84,方差为×[(75﹣84)2+(80﹣84)2+(85﹣84)2+2×(90﹣84)2]=34,极差为90﹣75=15;新数据70,80,85,90,90的中位数为85,平均数为=83,方差为×[(70﹣83)2+(80﹣83)2+(85﹣83)2+2×(90﹣83)2]=56,极差为90﹣70=20;所以计算结果不受影响的是中位数,故选:A.9.解:由题意得,直线AB的解析式为y=2x+b,∵直线AB恰好过点(6,2),∴2=2×6+b,解得b=﹣10,∴直线AB的表达式为y=2x﹣10,故选:A.10.解:①∵k=﹣2<0,∴函数y=﹣2x的图象从左到右下降,随着x的增大,y反而减小,故正确;②令x=0,则y=1,∴函数y=5x+1的图象与y轴的交点坐标是(0,1),故正确;③∵k=3,b=﹣1,∴函数y=3x﹣1的图象经过第一、三、四象限,故错误;故选:A.二.填空题(共4小题,满分12分,每小题3分)11.解:≈44.72.故答案是:44.72.12.解:∵直线y=﹣x+3、直线y=﹣x﹣3关于原点对称,∴点A,点B关于原点对称,∴y1+y2=0,故答案为:0.13.解:由图可知,∠1+∠2+∠3+∠4+∠5=360°.故答案为:360°.14.解:根据翻折不变性,可知△ADC≌△ADE,∴DE=DC,∠ADE=∠ADC=45°,∴∠EDC=90°,又∵AD是△ABC的中线,∴BD=CD,于是,BD=DE,∴∠EBC=45°.故答案为45°.三.解答题(共11小题,满分78分)15.解:(1)原式=3﹣5+=﹣;(2)原式=3﹣5+3﹣﹣2=﹣2.16.解:(1),①×2+②得:﹣9y=﹣9,解得:y=1,把y=1代入②得:x=1,则方程组的解为;(2)方程组整理得:,①×2+②得:11x=22,解得:x=2,把x=2代入①得:y=3,则方程组的解为.17.解:(1)如图,△A'B'C'即为所求;(2)△ABC的面积为:3×2=3;(3)因为点A关于MN的对称点为A′,连接A′C交直线MN于点P,此时△PAC周长最小.所以点P即为所求.18.解:(1)①∵∠DCE=40°,∴∠ACE=∠ACD﹣∠DCE=50°,∴∠ACB=∠ACE+∠ECB=50°+90°=140°;②∵∠ACB=150°,∠ACD=90°,∴∠ACE=150°﹣90°=60°,∴∠DCE=∠ACD﹣∠ACE=90°﹣60°=30°,故答案为:30;(2)∵∠ACB=∠ACD+∠BCE﹣∠DCE=90°+90°﹣∠DCE,∴∠ACB+∠DCE=180°,故答案为:∠ACB+∠DCE=180°;(3)①∵BE∥AC,∴∠ACE=∠E=45°,故答案为:45°;②∵BC∥DA,∴∠A+∠ACB=180°,又∵∠A=60°,∴∠ACB=180°﹣60°=120°,∵∠BCE=90°,∴∠BCD=∠ACB﹣∠ECB=120°﹣90°=30°.19.解:(1)过C作MN⊥y轴,过B作BG⊥MN于G,过A作AH⊥MN于H,如图所示:∵A(﹣2,﹣1),B(2,0),C(0,3),∴GH=2+2=4,BG=3,AH=1+3=4,∴S△ABC=S﹣S△ACH﹣S△BCG=×(3+4)×4+×4×2﹣×2×3=7,梯形ABGH故答案为:7;(2)设E(0,a),∵A(﹣2,﹣1)、B(2,0)、C(0,3),∴S△ABC=S△ACE+S△BCE=×(3﹣a)×2+×(3﹣a)×2=7,解得:a=﹣,∴E(0,﹣),故答案为:(0,﹣);(3)①∵点P的坐标为(0,m),∴线段EP的长|﹣﹣m|=|+m|,故答案为:|+m|;②∵S△PAB=S△ABC,∴×|+m|×(2+2)=×7,∴m=或m=﹣.20.解:证明:∵CD⊥AB(已知),∴∠ADC=90°(垂直的定义),∴∠1+∠CDE=90°,∵∠1+∠2=90°(已知),∴∠CDE=∠2(同角的余角相等),∴DE∥BC(内错角相等,两直线平行),故答案为:90°;∠CDE;∠CDE,同角的余角相等;内错角相等,两直线平行.21.解:(1)∵直线l1的解析式为y=﹣x+2经过点C(﹣1,m),∴m=1+2=3,∴C(﹣1,3),设直线l2的解析式为y=kx+b,∵经过点D(0,5),C(﹣1,3),∴,解得,∴直线l2的解析式为y=2x+5;(2)当x=0时,y=2,∴直线BC与y轴的交点坐标为(0,2),当y=0时,﹣x+2=0,解得x=2,则B(2,0),∴△BCD的面积:×(5﹣2)×(1+2)=.22.解:(1)设OA段图象的函数表达式为y=kx.∵当x=0.8时,y=48,∴0.8k=48,∴k=60.∴y=60x(0≤x≤0.8),∴当x=0.5时,y=60×0.5=30.故小黄出发0.5小时时,离家30千米;(2)设AB段图象的函数表达式为y=k′x+b.∵A(0.8,48),B(2,156)在AB上,,解得,∴y=90x﹣24(0.8≤x≤2);(3)∵当x=1.5时,y=90×1.5﹣24=111,∴156﹣111=45.故小黄出发1.5小时时,离目的地还有45千米.23.解:(1)=×(86+79+90)=85(分),甲=×(84+81+75)=80(分),乙=×(80+90+73)=81(分),丙从低到高确定应聘者的排名顺序为乙、丙、甲;(2)由题意可知,只有甲不符合规定,乙的加权平均数:84×50%+81×40%+75×10%=81.9(分),丙的加权平均数:80×50%+90×40%+73×10%=83.3(分),所以录用丙.24.解:(1)设甲车间有x名工人参与生产,乙车间有y名工人参与生产,依题意得:,解得:.答:甲车间有30名工人参与生产,乙车间有20名工人参与生产.(2)设乙车间需要临时招聘m名工人,依题意得:=,解得:m=5,经检验,m=5是原方程的解,且符合题意.答:乙车间需要临时招聘5名工人.25.解:(1)由图可知,A市和B市之间的路程是360km,故答案为:360;(2)根据题意可知快车速度是慢车速度的2倍,设慢车速度为x km/h,则快车速度为2x km/h,2(x+2x)=360,解得,x=602×60=120,则a=120,点M的横坐标、纵坐标的实际意义是两车出发2小时时,在距B市120km处相遇;(3)快车速度为120 km/h,到达B市的时间为360÷120=3(h),方法一:当0≤x≤3时,y1=﹣120x+360,当3<x≤6时,y1=120x﹣360,y2=60x,当0≤x≤3时,y2﹣y1=20,即60x﹣(﹣120x+360)=20,解得,x=,﹣2=,当3<x≤6时,y2﹣y1=20,即60x﹣(120x﹣360)=20,解得,x=,﹣2=,所以,快车与慢车迎面相遇以后,再经过或h两车相距20km.方法二:设快车与慢车迎面相遇以后,再经过t h两车相距20 km,当0≤t≤3时,60t+120t=20,解得,t=;当3<t≤6时,60(t+2)﹣20=120(t+2)﹣360,解得,t=.所以,快车与慢车迎面相遇以后,再经过或h两车相距20 km.。

北师大版八年级上册数学期末考试试题及答案

北师大版八年级上册数学期末考试试题及答案

北师大版八年级上册数学期末考试试卷一、单选题1.在ABC 中,90C A B C ∠=︒∠∠∠,,,的对应边分别是a b c ,,,则下列式子成立的是 A .222+=a b c B .222a c b += C .222a c b -= D .222b c a +=2.如图,在ABC 中,90ACB ∠=︒,CD AB ⊥,垂足为D .若3AC =,4BC =,则CD 的长为( )A .2.4B .2.5C .4.8D .53.估计3 )A .在6和7之间B .在7和8之间C .在8和9之间D .在9和10之间 4.下列各组二次根式中,属于同类二次根式的是( )A .B C .D5.在平面直角坐标系中,若点()P m m n -,与点()21Q ,关于原点对称,则点()M m n ,在( ) A .第一象限B .第二象限C .第三象限D .第四象限6.已知点A 的坐标为()23,,直线AB y ∥轴,且5AB =,则点B 的坐标为( ) A .()28,B .()28,或()22-,C .()73,D .()73,或()33-, 7.一次函数1y ax b 与正比例函数2y bx =-在同一坐标系中的图象大致是( )A .B .C .D .8.如图,某电信公司手机的收费标准有A B ,两类,已知每月应缴费用S (元)与通话时间t (分)之间的关系如图所示,当通话时间为50分钟时,按这两类收费标准缴费的差为( )A .30元B .20元C .15元D .10元9.八(1)班同学参加社会实践活动,在王伯伯的指导下,要围一个如图所示的长方形菜园ABCD ,莱园的一边利用足够长的墙,用篱笆围成的另外三边的总长恰好为12m ,设边BC的长为x m ,边AB 的长为y m ()x y >.则y 与x 之间的函数表达式为( )A .212(012)y x x =-+<<B .()164122y x x =-+<< C .212(012)y x x =-<< D .16(412)2y x x =-<< 10.下列方程组中是二元一次方程组的是( )A .23124x y x y ⎧+=⎨-=⎩ B .225xy x y =⎧⎨+=⎩ C .63a b b c -=⎧⎨+=⎩ D .310521m n m n +=⎧⎨-=⎩11.古代数学问题:“今有木,不知长短,引绳度之,余绳五尺四寸:屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余5.4尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为( )A . 5.412y x x y -=⎧⎪⎨-=⎪⎩B . 5.412x y y x -=⎧⎪⎨-=⎪⎩C . 5.412y x y x -=⎧⎪⎨-=⎪⎩D . 5.412x y xy -=⎧⎪⎨-=⎪⎩12.若324432a ba b x y ++--=是关于x ,y 的二元一次方程,则2a b +的值为( )A .0B .-3C .3D .413.在一次投篮训练中,甲、乙、丙、丁四人各进行10次投篮,每人投篮成绩的平均数都是8,方差分别为S 甲2=0.24,S 乙2=0.42,S 丙2=0.56,S 丁2=0.75,成绩最稳定的是() A .甲.B .乙C .丙D .丁14.如图,在ABC 中,1268AD BC C ⊥∠=∠∠=︒,,.则BAC ∠的度数为( )A .68°B .67°C .77°D .78°15.如图,AB CD ∥,EF BD ⊥于点E ,50ABM ∠=︒,则CFE ∠的度数为( )A .130︒B .140︒C .145︒D .150︒二、填空题16______,338的算术平方根是______.17.已知Rt△ABC 中,AB =8,BC =10,△BAC =90°,则图中阴影部分面积为 _____.18.已知()115P a -,和()221P b -,关于x 轴对称,则()2022a b +的值为______.19.若点()()1232A y B y -,,,都在一次函数1yx =-+的图象上,则1y ______2y .(填“>”或“<”)20.一个三位数,十位数字比个位数字大1,百位数字是个位数字的2倍,把百位数字与个位数字对调,得到的三位数比原来的三位数小297,则原三位数为______.三、解答题21.用适当的方法解下列方程组:(1)524x yx y+=⎧⎨-=⎩;(2)12343314312 x yx y++⎧=⎪⎪⎨--⎪-=⎪⎩22.学校运动会开设了“抢收抢种”项目,八(5)班甲、乙两个小组都想代表班级参赛,为了选择一个比较好的队伍,八(5)班的班委组织了一次选拔赛,甲、乙两组各10人的比赛成绩如下表:(1)甲组的平均成绩是____分;(2)计算乙组的平均成绩和方差;(3)已知甲组成绩的方差是1.4,如果你是老师,你将选择哪组代表八(5)班参加学校比赛?说说你的理由.23.如图,在四边形ABCD中,20AB=,15AD=,7CD=,24BC=,90A∠=︒,求证:△C=90°.24.某移动公司设了两类通讯业务,A类收费标准为不管通话时间多长使用者都应缴50元月租费,然后每通话1分钟,付0.4元,B类收费标准为用户不缴月租费,每通话1分钟,付话费0.6元,若一个月通讯x分钟,两种方式费用分别是A y,B y元.(1)分别写出A y ,B y 与x 之间的函数关系式.(2)某人估计一个月通话时间为300分钟,应选哪种通讯方式合算些,请书写计算过程. (3)小明用的A 卡,他计算了一下,若是B 卡,他本月话费将会比现在多100元,请你算一下小明实际话费是多少元?25.在平面直角坐标系xOy 中,对于P ,Q 两点给出如下定义:|P|表示点P 到x 、y 轴的距离中的最大值,|Q|表示点Q 到x 、y 轴的距离中的最大值,若P Q =,则称P ,Q 两点为“等距点”.例如:如图中的P (3,3),Q (﹣3,﹣2)两点,有|P|=|Q|=3,所以P 、Q 两点为“等距点”.(1)已知点A 的坐标为(﹣3,1),△则点A 到x 、y 轴的距离中的最大值|A|= ;△在点E (0,3),F (3,﹣3),G (2,﹣5)中,为点A 的“等距点”的是 ; △若点B 的坐标为B (m ,m+6),且A ,B 两点为“等距点”,则点B 的坐标为 ;(2)若()113T k --,-,()2443T k -,且|4k ﹣3|≤4,两点为“等距点”,求k 的值.261==;==2==.请解决下列问题: (1)=______; (2)=______;(3)....27.如图,已知12AB CD ∠=∠∥,.(1)求证:EF NP ∥;(2)若FH 平分EFG ∠,交CD 于点H ,交NP 于点O ,且14010FHG ∠=︒∠=︒,,求FGD ∠的度数.参考答案1.A【分析】根据题意,可得c 为斜边,,a b 为直角边,根据勾股定理即可求解. 【详解】解:△在ABC 中,90C A B C ∠=︒∠∠∠,,,的对应边分别是a b c ,,, △c 为斜边,,a b 为直角边, △222+=a b c ,故选:A .【点睛】本题考查了勾股定理,掌握勾股定理是解题的关键. 2.A【分析】先由勾股定理求出AB 的长,再运用等面积法求得CD 的长即可. 【详解】解:△在Rt ABC △中,90ACB ∠=︒,3AC =,4BC =,△AB 5==,CD AB ⊥△1122AB CD AC BC ⋅=⋅,即342.45AC BC CD AB ⋅⨯===. 故选A .【点睛】本题主要考查了勾股定理、等面积法等知识点,掌握运用等面积法求三角形的高是解题的关键. 3.B3 【详解】解:△161725<<,△45<,△738<+,△37和8之间, 故选:B .【点睛】此题考查了无理数的估算,正确掌握各平方数及无理数估算的方法是解题的关键. 4.B【分析】将各项先化为最简二次根式,再根据同类二次根式的定义逐项判断即可.【详解】A. ,不是同类二次根式,故该选项不符合题意;B. =C. =D.=故选:B .【点睛】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式,掌握同类二次根式的定义是解题的关键. 5.C【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,求得,m n 的值,即可求解.【详解】解:△点()P m m n -,与点()21Q ,关于原点对称, △2,1m m n =--=-,△()2,1M --在第三象限, 故选:C .【点睛】本题考查了关于原点对称的两个点,横坐标、纵坐标分别互为相反数,判断点所在的象限,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键. 6.B【分析】根据平行于y 轴的直线上的点的横坐标相等求出点B 的纵坐标,再分点B 在点A 的上面与下面两种情况求出点B 的纵坐标,即可得解.【详解】解:△AB y ∥轴,点A 的坐标为()23,, △点B 的横坐标为2, △5AB =,△点B 在点A 的下面时,纵坐标为352-=-, 点B 在点A 的上面时,纵坐标为358+=,△点B 的坐标为()28,或()22-,. 故选:B .【点睛】本题考查了平面直角坐标系中点的坐标特点,利用了平行于y 轴的直线是上的点的横坐标相等的性质,难点在于要分情况讨论. 7.C【分析】根据一次函数和正比例函数的性质逐一判断即可得答案. 【详解】A.△一次函数经过一、二、三象限, △a >0,b >0, △-b <0,△正比例函数应经过二、四象限,故本选项不符合题意, B.△一次函数经过一、三、四象限, △a >0,b <0, △-b >0,△正比例函数应经过一、三象限,故本选项不符合题意, C.△一次函数经过二、三、四象限, △a <0,b <0,△正比例函数应经过一、三象限,故本选项符合题意, D.△一次函数经过二、三、四象限, △a <0,b <0, △-b >0,△正比例函数经过一、三象限,故本选项不符合题意, 故选:C .【点睛】本题考查一次函数和正比例函数的性质,对于一次函数y=kx+b ,当k >0时,图象经过一、三象限,当k <0时,图象经过二、四象限;当b >0时,图象与y 轴交于正半轴;当b <0时,图象与y 轴交于负半轴;熟练掌握相关性质是解题关键. 8.D【分析】根据题意,待定系数法求得解析式,分别令50x =,求得S 是的值,进而即可求解. 【详解】解:设A 类收费的解析式为AS ax b =+,代入()0,20 ,()100,30,得2010030b a b =⎧⎨+=⎩, 解得11020a b ⎧=⎪⎨⎪=⎩, △12010A S x =+, B 类收费的解析式为BS kx =,代入()100,30,得30100k =, 解得310k =, △310B S x =, △当50x =时,150202510A S =⨯+=,3501510B S =⨯=, △251510-=(元), 故选:D .【点睛】本题考查了一次函数的应用,待定系数法求解析式,求得解析式是解题的关键.9.B【分析】根据菜园的三边的和为12m ,即可得出一个x 与y 的关系式. 【详解】解:根据题意得,菜园三边长度的和为12m ,212y x ∴+=,162y x ∴=-+,0y >,x y >,∴1602162x x x ⎧-+>⎪⎪⎨⎪>-+⎪⎩,解得412x <<,16(412)2y x x ∴=-+<<,故选:B .【点睛】本题考查一次函数的应用,理解题目中的数量关系,即菜园三边的长度和为12m ,列出关于x ,y 的方程是解决问题的关键. 10.D【分析】二元一次方程组是指含有两个未知数,且未知数的次数都是1的一次整式方程组成的方程组,据此求解即可.【详解】解:A 、23124x y x y ⎧+=⎨-=⎩未知数的最高次不是1,不是二元一次方程组,不符合题意;B 、225xy x y =⎧⎨+=⎩xy 的次数不是1,不是二元一次方程组,不符合题意; C 、63a b b c -=⎧⎨+=⎩含有3个未知数,不是二元一次方程组,不符合题意;D 、310521m n m n +=⎧⎨-=⎩是二元一次方程组,符合题意;故选D .【点睛】本题主要考查了二元一次方程组的定义,熟知二元一次方程组的定义是解题的关键. 11.C【分析】设木条长x 尺,绳子长y 尺,根据用一根绳子去量一根木条,绳子剩余5.4尺;将绳子对折再量木条,木条剩余1尺,列出二元一次方程组,即可求解.【详解】设木条长x 尺,绳子长y 尺,可列方程组为5.412y x y x -=⎧⎪⎨-=⎪⎩, 故选:C .【点睛】本题考查了列二元一次方程组,根据题意列出方程组是解题的关键.12.D【分析】根据二元一次方程的定义,得出1a b +=,3241a b +-=,解出a b 、的值,然后把a b 、的值代入2a b +,计算即可得出结果.【详解】解:△324432a b a b x y ++--=是关于x ,y 的二元一次方程,△可得:13241a b a b +=⎧⎨+-=⎩, 解得:32a b =⎧⎨=-⎩, 把32a b =⎧⎨=-⎩代入2a b +, 可得:22324a b +=⨯-=.故选:D【点睛】本题考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:方程中只含有2个未知数;含未知数项的最高次数为一次;方程是整式方程.13.A【分析】根据方差的意义,即可求解.【详解】解:△S 甲2=0.24,S 乙2=0.42,S 丙2=0.56,S 丁2=0.75△2222甲乙丁丙<<<S S S S△成绩最稳定的是甲故选A【点睛】此题考查了方差的意义,方差反应一组数据的波动情况,方差越小数据越稳定,理解方差的意义是解题的关键.14.B【分析】根据垂直的定义,直角三角形的两个锐角互余,可得145,22DAC ∠=︒∠=︒,即可求解.【详解】解:△1268AD BC C ⊥∠=∠∠=︒,,,△90ADB ADC ∠=∠=︒,△1245∠=∠=°,90906822DAC C ∠=︒-∠=︒-︒=︒,△1452267BAC DAC ∠=∠+∠=︒+︒=︒,故选:B .【点睛】本题考查了直角三角形的两个锐角互余,求得145,22DAC ∠=︒∠=︒是解题的关键.15.B【分析】根据题意和平行线的性质得=50D ABM ∠∠=︒,根据垂直得=90DEF ∠︒,运用三角形内角和定理求出=40EFD ∠︒,即可得.【详解】解:△AB CD ∥,50ABM ∠=︒,△=50D ABM ∠∠=︒,△EF BD ⊥,△=90DEF ∠︒,△=180=1805090=40EFD D DEF ∠︒∠∠︒︒︒︒----,△180=18040=140CFE EFD ∠=︒-∠︒-︒︒,故选:B .【点睛】本题考查了平行线的性质,三角形内角和定理,解题的关键是掌握这些知识点.16. 2± 【分析】根据平方根和算术平方根的定义求解即可.【详解】4,△4的平方根是2±,,即338故答案为:2± 【点睛】本题考查的是平方根、算术平方根的计算,如果一个数的平方等于a ,这个数就叫a 的平方根,如果一个正数的平方等于a ,这个数就叫a 的算术平方根,0的算术平方根是0.掌握定义是解题的关键.17.24【分析】根据阴影部分面积等于以,AB AC 为直径的半圆的面积与ABC 的面积的和减去以BC 为直径的半圆面积即可求解.【详解】解:Rt△ABC 中,AB =8,BC =10,△BAC =90°,6AC ∴==,222111111=+222222ABC S AB AC BC S πππ⎛⎫⎛⎫⎛⎫∴+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭△阴影部分 ABC S =△1862=⨯⨯ =24.故答案为:24.【点睛】本题考查了勾股定理,掌握勾股定理是解题的关键.18.1【分析】根据关于x 轴对称的两个点,横坐标相等,纵坐标互为相反数,求得,a b 的值,进而代入代数式即可求解.【详解】解:△()115P a -,和()221P b -,关于x 轴对称, △12,510a b -=+-=,解得3,4a b ==-,△()2022a b +()2022341=-=,故答案为:1.【点睛】本题考查了关于x 轴对称的两个点的坐标特征,掌握关于x 轴对称的两个点,横坐标相等,纵坐标互为相反数是解题的关键.19.>【分析】根据解析式中10k =-<,可得y 随x 的增大而减小,即可求解.【详解】解:△在1y x =-+中,10k =-<,△y 随x 的增大而减小,△32-<,点()()1232A y B y -,,,都在一次函数1yx =-+的图象上, △12y y >,故答案为:>.【点睛】本题考查了一次函数的性质以及一次函数图象上点的坐标特征,解题的关键是牢记当0k >时,y 随x 的增大而增大;当0k <时,y 随x 的增大而减小.20.643【分析】设原三位数的个位数字为x ,十位数字为y ,则百位数字为2x ,由题意:十位数字比个位数字大1,把百位数字与个位数字对调,得到的三位数比原来的三位数小297,列出二元一次方程组,解方程组即可.【详解】解:设原三位数的个位数字为x ,十位数字为y ,则百位数字为2x ,由题意得:1100210(100102)297y x x y x x y x =+⎧⎨⨯++-++=⎩, 解得:34x y =⎧⎨=⎩, △26x =,即原三位数为643,故答案为:643.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.21.(1)32x y =⎧⎨=⎩(2)22x y =⎧⎨=⎩【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【详解】(1)解:524x y x y +=⎧⎨-=⎩①②△+△得: 3x=9,解得: x=3,把x=3代入△得:3+y=5得 y=2,则方程组的解为32x y =⎧⎨=⎩ ; (2)12343314312x y x y ++⎧=⎪⎪⎨--⎪-=⎪⎩ 方程组整理得:432342x y x y -=⎧⎨-=-⎩①② 由△×4-△×3得: 7x=14,解得: x=2,把x=2代入△得:4×2-3y=2得 y=2,则方程组的解为22x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.(1)9(2)乙组的平均成绩为9,方差为1(3)选择乙组,理由见解析【分析】(1)根据平均数的计算公式求得平均数即可求解;(2)一组数据:123n x x x x ⋯,,,,,则它们的平均数1232n x x x x x ++++=,方差是()()()()2222212312n s x x x x x x x x ⎡⎤=-+-+-+++-⎣⎦; (3)根据一组数据的方差越大,则数据的波动就越大,进行判断即可.【详解】(1)甲组的平均成绩是:()1789710109101010910+++++++++=, (2)乙组的平均成绩是:()110879810109109910+++++++++=, 方差是:()()()()22221109897999110⎡⎤-+-+-++-=⎣⎦; (3)选择乙组,理由如下,△1.41>,且平均成绩都为9,△乙组的方差较小,应该选择乙组.【点睛】本题考查了求平均数,求方程,以及根据方差做决策,掌握平均数,方差是解题的关键.23.见解析【分析】连接BD ,勾股定理求得BD 的值,进而根据222CD BC BD +=,即可得证.【详解】解:如图,连接BD ,△20AB =,15AD =,90A ∠=︒,△25BD =,△7CD =,24BC =,△22224957662525CD BC BD +=+===,△CDB △是直角三角形,且90C ∠=︒.【点睛】本题考查了勾股定理及其逆定理,掌握勾股定理及其逆定理是解题的关键. 24.(1)500.4A y x =+,0.6B y x =(2)选择A 类(3)350元【分析】(1)A 类应缴50元月租费,每通话1分钟,付0.4元,则费用是月租费加上通话费;B 类不缴月租费,每通话1分钟,付话费0.6元,则费用是通话费与时间的乘积,通讯x 分钟,由此即可求解;(2)由(1)的结论可知,当300x =时,170A y =元,180B y =元,由此即可求解; (3)由题意可知选择A 卡的费用比选择B 卡的费用少100元,由此可列出等量关系100A B y y +=,由此即可求解.【详解】(1)解:根据题意得,A 类的费用是月租费加上通话费,即500.4Ay x =+; B 类的费用是通话费与时间的乘积,即0.6B y x =,△500.4A y x =+,0.6B y x =.(2)解:通话时间为300分钟,根据(1)中的结论得,500.4500.4300170A y x =+=+⨯=(元),0.60.6300180B y x ==⨯=(元) △A B y y <,△选择A 类.(3)解:根据题意得,100A B y y +=,△500.41000.6x x ++=,解方程得,750x =,即小明打电话的时间为750分钟, △500.4500.4750350A y x =+=+⨯=(元),△小明实际话费是350元.【点睛】本题主要考查一次函数在实际中的运用,解题的关键是理解两类缴费的方式,A 类的费用是月租费加上通话费,B 类的费用是通话费与时间的乘积.25.(1)△3;△E ;F ;△(−3,3)(2)k 的值是1【分析】(1)△找到x 、y 轴距离最大为3的点即可;△先分析出直线上的点到x 、y 轴距离中有3的点,再根据“等距点”概念进行解答即可; △根据A ,B 两点为“等距点”得出点B 的坐标即可;(2)根据“等距点”概念对4k−3分类讨论,进行解答即可.【详解】(1)解:△点A (−3,1)到x 、y 轴的距离中最大值为|A|=3,故答案为:3.△△点A (−3,1)到x 、y 轴的距离中最大值为3,△与点A 的“等距点”的是E ,F ,故答案为:E ;F .△当点B 坐标中到x 、y 轴距离其中至少有一个为3的点有(3,9)、(−3,3)、(−9,−3),这些点中与A 符合“等距点”的是(−3,3).故答案为:(−3,3).(2)解:()113T k --,-,()2443T k -,两点为“等距点”, △4=−k−3或−4=−k−3,解得:k =−7或k =1,△当k =−7时,43314k -=>,△k =−7不符合题意舍去,根据“等距点”的定义知,k =1符合题意,△k 的值是1.【点睛】:本题主要考查了平面直角坐标系的知识,此题属于阅读理解类型题目,解题的关键是读懂“等距点”的定义,而后根据概念解决问题.26.(1)21【分析】(1)先找出有理化因式2,根据平方差公式求出即可;(2(3)先分母有理化,再合并即可.【详解】(1-故答案为:2;(2(3...+⋅⋅⋅1.【点睛】本题考查了分母有理化,能正确分母有理化是解此题的关键.27.(1)见解析(2)60︒【分析】(1)根据平行线的性质及等量代换得出1BNP ∠=∠,即可判定EF NP ∥; (2)过点F 作FM AB ∥,根据平行公理得出AB FM CD ∥∥,根据平行线的性质及角平分线定义得到50GFH EFH ∠=∠=︒,根据三角形外角性质求解即可.【详解】(1)证明:△AB CD ∥,50GFH EFH ∠=∠=︒△2BNP ∠=∠,△12∠=∠,△1BNP ∠=∠,△EF NP ∥;(2)解:如图,过点F 作FM AB ∥,△AB CD ∥,△AB FM CD ∥∥,△14010EFM HFM FHG ∠=∠=︒∠=∠=︒,,△50EFH EFM HFM ∠=∠+∠=︒,△FH 平分EFG ∠,△50GFH EFH ∠=∠=︒,△60FGD GHF HFG ∠=∠+∠=︒.。

北师大版八年级(上)期末数学试卷(含答案)

北师大版八年级(上)期末数学试卷(含答案)

图1AB C D3412图2B CBC北师大版八年级(上)期末数学试卷及答案一选择题。

(每小题3分,共24分)下列各小题均有四个选项,其中只有一项符合题目要求,将符合题目要求的选项前面字母填入题后括号内。

1、下列式子正确的是()A. 1)1(33-=- B. 525±= C. 9)9(2-=- D. 2)2(2-=-2、二元一次方程12=-yx有无数多个解,下列四组值中不是..该方程的解是()A.⎩⎨⎧==11yxB.⎩⎨⎧-=-=21yxC.⎩⎨⎧-=-=31yxD.⎩⎨⎧==32yx3、如图1,相对灯塔O而言,小岛A的位置是()A. 北偏东60 °B. 距灯塔2km处C. 北偏东30°且距灯塔2km处D. 北偏东60°且距灯塔2km处4、下列说法正确的是()A. 数据0,5,-7,-5,7的中位数和平均数都是0;B. 数据0,1,2,5,a的中位数是2;C. 一组数据的众数和中位数不可能相等;D. 数据-1,0,1,2,3的方差是4。

5、已知正比例函数kxy=的函数值xy随的增大而减小,则一次函数kkxy+=的图象大致是()6、如图2在△ABC中,∠1=∠2,∠3=∠4,若∠D=25°,则∠A等于()A. 25°B. 50°C. 65°D. 75°7、小强每天从家到学校上学行走的路程为900m,某天他从家去上学时以每分30m的速度行走了450m,为了不迟到他加快了速度,以每分45m的速度行走完剩下的路程,那么小强离学校的路D程s (m)与他行走的时间t (min)之间的函数关系用图象表示正确的是( )8、如图3,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则 ∠ABC 的度数为( )A. 90°B. 60°C. 45°D. 30° 二、填空题(每小题3分,共21分) 9、64的算术平方根是___________。

北师大版八年级上册数学期末考试试卷含答案

北师大版八年级上册数学期末考试试卷含答案

北师大版八年级上册数学期末考试试题一、单选题1.下列各数中,无理数是()A .0.101001B .0CD .23-2.在平面直角坐标系中,点P (﹣2020,2019)所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限3.若直线y kx b =+经过第一、二、四象限,则函数y bx k =-的大致图像是()A .B .C .D .4.如果将一组数据中的每个数都减去5,那么所得的一组新数据()A .众数改变,方差改变B .众数不变,平均数改变C .中位数改变,方差不变D .中位数不变,平均数不变5.某船顺水航行45千米需要3小时,逆水航行65千米需要5小时,若设船在静水中的速度为x 千米/时,水流速度为y 千米/时,则根据题意,可列方程组()A .()()345565x y x y ⎧+=⎪⎨-=⎪⎩B .()()345565x y x y ⎧-=⎪⎨+=⎪⎩C .()()345565y x y x ⎧+=⎪⎨-=⎪⎩D .()()345565y x y x ⎧-=⎪⎨+=⎪⎩6.如图,已知DC‖EG ,∠C=40°,∠A=70°,则∠AFE 的度数为()A .140°B .110°C .90°D .30°7.下列命题中是真命题的是()A .相等的角是对顶角B .数轴上的点与实数一一对应C .同旁内角互补D .无理数就是开方开不尽得数8.如图所示,下列推理及括号中所注明的推理依据错误的是()A .13∠=∠ ,//AB CD ∴(内错角相等,两直线平行)B .//AB CD ,180BCD ABC ∴∠+∠=︒(两直线平行,同旁内角互补)C .//AD BC ,180BAD D ∴∠+∠=︒(两直线平行,同旁内角互补)D .DAM CBM ∠=∠ ,//AD BC ∴(同位角相等,两直线平行)9.若关于x ,y 的二元一次方程组25125x y k x y k +=+⎧⎨-=-⎩的解满足7x y +=,则k 的值是()A .1B .2C .3D .410.如图是由两个直角三角形和三个正方形组成的图形,其中阴影部分的面积是()A .16B .25C .144D .169二、填空题11.-1的立方根是____________12.已知点A 到x 轴的距离等于2,则点A 的坐标是____.(写出一个即可)13.点(,)a b 在直线23y x =-+上,则421a b +-=_________.14.甲和乙同时加工一种产品,他们的工作量与工作时间的关系如图所示,则当甲加工了这种产品70件时,乙加工了______件.15.如图,△ABC 中,∠A=55°,将△ABC 沿DE 翻折后,点A 落在BC 边上的点A′处.如果∠A′EC=70°,那么∠A′DB 的度数为______.16.已知:如图,BC ⊥AC 于点C ,CD ⊥AB 于点D ,BE ∥CD .若∠EBC =50°,则∠A =____.17.如图,已知CD 是ABC 的边AB 上的高,若3CD =,1AD =,2AB AC =,则BC 的长为_____.三、解答题18.方程组15x x y =⎧⎨+=⎩的解是______.1963+246|32-.20.解方程组:3435x y x y -=⎧⎨+=⎩①②.21.为全面落实“双减”政策,某中学调查本校学生周末平均每天做作业所用时间的情况,随机调查了50名同学,如图是根据调查所得数据绘制的统计图的一部分,请根据以上信息,解答下列问题.(1)请你补全条形统计图;(2)在这次调查的数据中,做作业所用时间的众数是______小时,中位数是______小时,平均数是______小时;(3)若该校共有2000名学生,根据以上调查结果估计该校全体学生每天作业时间在3小时内(含3小时)的同学共有多少人?22.如图所示,一架梯子AB 斜靠在墙面上,且AB 的长为2.5米.(1)若梯子底端离墙角的距离OB 为1.5米,求这个梯子的顶端A 距地面有多高?(2)在(1)的条件下,如果梯子的顶端A 下滑0.5米到点A',那么梯子的底端B 在水平方向滑动的距离BB'为多少米?23.在直角坐标系中,△ABC 的三个顶点的位置如图所示.(1)请画出△ABC 关于y 轴对称的A B C '''V (其中,,A B C '''分别是A ,B ,C 的对应点,不写画法).(2)求∆ABC 的面积.24.如图,MN BC ∥,BD DC ⊥,1260∠=∠=︒,DC 是NDE ∠的平分线(1)AB 与DE 平行吗?请说明理由;(2)试说明ABC C ∠=∠;(3)求ABD ∠的度数.25.如图,直线y =kx+4与x 轴相交于点A ,与y 轴相交于点B ,且AB =5(1)求点A 的坐标;(2)求k 的值;(3)C 为OB 的中点,过点C 作直线AB 的垂线,垂足为D ,交x 轴正半轴于点P ,试求点P 的坐标及直线CP 的函数表达式.26.如图1,点A、B分别在射线OM、ON上运动(不与点O重合),AC、BC分别是∠BAO 和∠ABO的角平分线,BC延长线交OM于点G.(1)若∠MON=60°,则∠ACG=;(直接写出答案)(2)若∠MON=n°,求出∠ACG的度数;(用含n的代数式表示)(3)如图2,若∠MON=80°,过点C作CF∥OA交AB于点F,求∠BGO与∠ACF的数量关系.参考答案1.C【分析】A、B、C、D分别根据无理数、有理数的定义来求解即可判定.【详解】A、B、D中0.101001,0,23 是有理数,C故选:C.【点睛】此题主要考查了无理数的定义.注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π0.8080080008…(每两个8之间依次多1个0)等形式.2.B【分析】根据点的横纵坐标的符号可得所在象限.【详解】解:∵点P(﹣2020,2019)的横坐标是负数,纵坐标是正数,∴点P(﹣2020,2019)所在的象限是第二象限,故选:B.【点睛】本题考查平面直角坐标系中各个象限的点的坐标的符号特点.掌握各个象限内点的符号特点是解题的关键.3.B=+的图像经过第一、二、四象限,可以得到k和b的正负,然【分析】根据一次函数y kx b=-图像经过哪几个象限,从而可以解答后根据一次函数的性质,即可得到一次函数y bx k本题.=+的图像经过第一、二、四象限,【详解】 一次函数y kx bb>,k∴<,0k->,∴>,0b∴一次函数y bx k=-图像第一、二、三象限,故选:B.【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.4.C【分析】由每个数都减去5,那么所得的一组新数据的众数、中位数、平均数都减少5,方差不变,据此可得答案.【详解】解:如果将一组数据中的每个数都减去5,那么所得的一组新数据的众数、中位数、平均数都减少5,方差不变,故选:C.【点评】本题主要考查方差,解题的关键是掌握方差、众数、中位数和平均数的定义.5.A【分析】根据:顺水航行速度=船在静水中航行速度+水流速度、逆水航行速度=船在静水中航行速度-水流速度及路程公式可得方程组.【详解】解:设船在静水中的速度为x 千米时,水流速度为y 千米时,根据题意,可列方程组3()455()65x y x y +=⎧⎨-=⎩,故选:A .6.B【分析】先根据三角形外角的性质可求∠ABD ,再根据平行线的性质可求∠AFE 的度数.【详解】∵∠C=40°,∠A=70°,∴∠ABD=40°+70°=110°,∵DC ∥EG ,∴∠AFE=110°.故选:B .7.B【详解】解:A 、相等的角不一定是对顶角,故此命题是假命题;B 、数轴上的点与实数一一对应,故此命题是真命题;C 、两直线平行,同旁内角互补,故此命题是假命题;D 、π是无理数,但不是开方开不尽的数,故此命题是假命题;.故选B .8.C【分析】依据内错角相等,两直线平行;两直线平行,内错角相等;两直线平行,同旁内角互补;同位角相等,两直线平行进行判断即可.【详解】解:A .13∠=∠ ,//AB CD ∴(内错角相等,两直线平行),正确;B .//AB CD ,180BCD ABC ∴∠+∠=︒(两直线平行,同旁内角互补),正确;C .//AD BC ,180BCD D ∴∠+∠=︒(两直线平行,同旁内角互补),故C 选项错误;D .DAM CBM ∠=∠ ,//AD BC ∴(同位角相等,两直线平行),正确;故选:C .9.B【分析】利用加减法,先用含k 的代数式表示出x+y ,根据x+y=7,得到关于k 的一元一次方程,求解即可.【详解】解:2511252 x y kx y k+=+⎧⎨-=-⎩()()(1)×2+(2),得3x+3y=12k-3,∴x+y=4k-1,∴4k-1=7,解得k=2.故选:B.10.B【分析】根据勾股定理解答即可.【详解】解:根据勾股定理得出:,∴EF=AB=5,∴阴影部分面积是25,故选:B.11.-1.【分析】原式利用立方根定义计算即可.【详解】∵()31-=-1,∴-1的立方根是-1.故答案为-1.12.(1,2)【分析】根据点到x轴的距离等于纵坐标的长度,只有所写点的纵坐标的绝对值是2即可.【详解】解:∵点A到x轴的距离等于2,∴点A的纵坐标的绝对值是2,∴点A的坐标可以是(1,2).故答案为:(1,2)答案不唯一.13.5【分析】利用点(,)a b 在直线23y x =-+上,得到23a b +=,然后利用整体代入的方法即可计算421a b +-的值.【详解】∵点(,)a b 在直线23y x =-+上,∴23b a =-+,即23a b +=,∴()4212212315a b a b +-=+-=⨯-=.故答案为:5.14.280【分析】由题意根据图象可以求出甲、乙的工作效率,乙的用时与甲加工70件所用的时间相等,再根据工作量=工作效率×工作时间,求出答案.【详解】解:甲的工作效率为:50÷5=10件/分,乙的工作效率为:80÷2=40件/分,因此:40×(70÷10)=280件,故答案为:28015.40°【分析】由翻折的性质可知:∠ADE=∠EDA′,∠AED=∠A′ED=12(180°-70°)=55°,求出∠ADE 即可解决问题.【详解】解:由翻折的性质可知:∠ADE=∠EDA′,∠AED=∠A′ED=12(180°-70°)=55°,∵∠A=55°,∴∠ADE=∠EDA′=180°-55°-55°=70°,∴∠A′DB=180°-140°=40°,故答案为:40°.16.50°.【分析】根据平行线的性质得到∠EBC =∠BCD ,根据垂直的定义得到∠BCD+∠DCA =∠A+∠DCA ,等量代换即可得到结论.【详解】∵BE ∥CD ,∠EBC =50°,∴∠BCD =∠EBC =50°,∵BC ⊥AC ,∴∠ACB =90°,∴∠ACD =90°﹣50°=40°,∵CD ⊥AB ,∴∠ACD=90°,∴∠A=90°﹣∠ACD=90°﹣40°=50°,故答案为50°.17.【分析】本题可由勾股定理算出AC的长度,再由AB=2AC得AB的长度,最后再通过勾股定理得BC的长度.【详解】解:∵CD是△ABC的边AB上的高,∴△ADC,△BDC是直角三角形,在Rt△ADC中,由勾股定理得:AC=2,∵AB=2AC,∴AB=4,BD=AB+AD=4+1=5,在Rt△BDC中,由勾股定理得:BC故答案为:18.14 xy=⎧⎨=⎩【分析】利用代入消元法将x=1代入到x+y=5中,解出y即可.【详解】解:15 xx y=⎧⎨+=⎩,将x=1代入到x+y=5中,解得:y=4,∴方程的解为:14 xy=⎧⎨=⎩,故答案为:14 xy=⎧⎨=⎩.19.2.﹣=+2﹣=2.20.21 xy=⎧⎨=-⎩【详解】解:3435x yx y-=⎧⎨+=⎩①②,①3⨯+②,得714x=,解得2x=,把2x=代入①,得23y-=,解得1y=-.故方程组的解为21 xy=⎧⎨=-⎩.21.(1)见解析;(2)3小时、3小时、3小时;(3)1360人.【分析】(1)用样本容量减已知各部分的人数,求出平均每天作业用时是4小时的人数,然后补全统计图;(2)利用众数,中位数,平均数的定义即可求解;(3)利用总人数2000乘以每天做作业时间在3小时内(含3小时)的同学所占的比例,即可求解.(1)每天作业用时是4小时的人数是:506121688----=(人),补全条形统计图如图所示:(2)∵每天作业用时是3小时的人数最多,是16人,∴众数是3小时;∵从小到大排列后排在第25和第26位的都是每天作业用时是3小时的人,∴中位数是3小时;平均数是61221638485350+⨯+⨯+⨯+⨯=(小时),故答案为:3小时、3小时、3小时;(3)612162000136050++⨯=(人),故估计该校全体学生每天作业时间在3小时内(含3小时)的同学共有1360人.22.(1)梯子距离地面的高度为2米;(2)梯子的底端水平后移了0.5米.【详解】解:(1)根据勾股定理:所以梯子距离地面的高度为:AO 2==米;(2)梯子下滑了0.5米即梯子距离地面的高度为OA′=(2.5﹣0.5)=2米,根据勾股定理:OB′=2米,所以当梯子的顶端下滑0.5米时,梯子的底端水平后移了2﹣1.5=0.5米,答:当梯子的顶端下滑0.5米时,梯子的底端水平后移了0.5米.23.【详解】解:(1)如图,A B C '''V 是所求作的三角形,(2)11145123534 5.5.222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯= 24.(1)AB DE ∥,见解析(2)见解析(3)30°【分析】(1)首先根据平行线的性质,两直线平行,内错角相等即可证得∠ABC=∠1=60°,进而证明∠ABC=∠2,根据同位角相等,两直线平行,即可证得;(2)根据平行线的性质,两直线平行,同旁内角互补求得∠NDE的度数,然后根据角平分线的定义,以及平行线的性质即可求得∠C的度数,从而判断;(3)先求得∠ADB的度数,根据平行求出∠DBC的度数,然后求得∠ABD的度数,即可证得.(1)解:AB DE∥,理由如下:∵MN BC∥,∴∠ABC=∠1=60°.又∵∠1=∠2,∴∠ABC=∠2,∴AB∥DE.(2)解:∵MN∥BC,∴∠NDE+∠2=180°,∴∠NDE=180°-∠2=180°-60°=120°.∵DC是∠NDE的平分线,∴1602∠=∠=∠=︒EDC NDC NDE.∵MN∥BC,∴∠C=∠NDC=60°,∴∠ABC=∠C.(3)解:∠ADC=180°-∠NDC=180°-60°=120°,∵BD⊥DC,∴∠BDC=90°,∴∠ADB=∠ADC-∠BDC=120°-90°=30°.∵MN ∥BC ,∴∠DBC=∠ADB=30°,∵∠ABC=∠C=60°,∴∠ABD=30°【点睛】本题考查了平行线的性质和判定定理,垂线的性质,解题关键是熟练运用平行线的性质与判定进行推理证明和计算.25.(1)()2,0A -;(2)2k =;(3)()4,0P ,直线CP 的解析式为122y x =-+【分析】(1)由题意可把x=0代入直线解析式求得点B 的坐标,则有OB=4,然后根据勾股定理可得OA=2,则可得点A 的坐标;(2)由(1)可把点A 的坐标代入解析式求解即可;(3)由题意易得OC=OA=2,然后可证△AOB ≌△COP ,进而可得OP=OB=4,最后问题可求解.【详解】解:(1)把x=0代入直线y =kx+4可得:y =4,∴()0,4B ,∴OB=4,在Rt △AOB 中,AB =2OA ==,∴()2,0A -;(2)由(1)可把点()2,0A -代入直线y =kx+4得:240k -+=,解得:2k =;(3)∵点C 为OB 的中点,OB=4,∴2OC =,∴OC OA =,∵90AOB COP ∠=∠=︒,DP AB ⊥,∴90BAO ABO BAO CPO ∠+∠=∠+∠=︒,∴ABO CPO ∠=∠,又∵∠AOB=∠COP=90°,∴△AOB ≌△COP (AAS ),∴OP=OB=4,∴()4,0P ,设直线CP 的解析式为y ax c =+,则把点()4,0P ,()0,2C 代入得:∴240c a c =⎧⎨+=⎩,解得:212c a =⎧⎪⎨=-⎪⎩,∴直线CP 的解析式为122y x =-+.【点睛】本题主要考查一次函数与几何的综合及勾股定理,熟练掌握一次函数与几何的综合及勾股定理是解题的关键.26.(1)60°;(2)90°-12n°;(3)∠BGO-∠ACF=50°【分析】(1)根据三角形内角和定理求出∠BAO+∠ABO ,根据角平分线的定义、三角形的外角性质计算,得到答案;(2)仿照(1)的解法解答;(3)根据平行线的性质得到∠ACF=∠CAG ,根据(2)的结论解答.【详解】解:(1)∵∠MON=60°,∴∠BAO+∠ABO=120°,∵AC 、BC 分别是∠BAO 和∠ABO 的角平分线,∴∠CBA=12∠ABO ,∠CAB=12∠BAO ,∴∠CBA+∠CAB=12(∠ABO+∠BAO )=60°,∴∠ACG=∠CBA+∠CAB=60°,故答案为:60°;(2)∵∠MON=n°,∴∠BAO+∠ABO=180°-n°,∵AC 、BC 分别是∠BAO 和∠ABO 的角平分线,∴∠CBA=12∠ABO ,∠CAB=12∠BAO ,∴∠CBA+∠CAB=12(∠ABO+∠BAO )=90°-12n°,∴∠ACG=∠CBA+∠CAB=90°-12n°;(3)∵CF ∥OA ,∴∠ACF=∠CAG ,∴∠BGO-∠ACF=∠BGO-∠CAG=∠ACG,由(2)得:∠ACG=90°-12×80°=50°.∴∠BGO-∠ACF=50°.。

2023-2024学年北师大版八年级上学期期末测试数学试卷(含答案)

2023-2024学年北师大版八年级上学期期末测试数学试卷(含答案)

八年级上学期期末综合测评卷时间:100分钟 满分:120分一、选择题(共10小题,每小题3分,共30分.每小题有四个选项,其中只有一个选项符合题意)1.在下列四个实数中,最大的实数是( )A.-2B.2C.12D.02.寒冷的冬天里我们在利用空调制热调控室内温度的过程中,空调的每小时用电量随开机设置温度的高低而变化,这个问题中自变量是( )A.每小时用电量B.室内温度C.设置温度D.用电时间3.甲、乙两名学生在相同条件下各射靶10次,两人命中环数的平均数均为7,经过计算知,s 2甲=3,s 2乙=1.2,则射靶技术较稳定的是( )A.乙B.甲C.甲、乙一样稳定D.不能确定4.若点A (-3,m )与B (n ,-2)关于y 轴对称,则m+n 的值是( )A.1B.2C.5D.-15.在满足下列条件的△ABC 中,不是直角三角形的是( )A.AB ∶AC ∶BC=1∶2∶3B.BC 2-AB 2=AC 2C.∠A ∶∠B ∶∠C=3∶4∶5D.∠A-∠B=∠C 6.已知a ,b 满足方程组2a +b =6,a +2b =3,则a+b 的值为( )A.1B.-1C.-3D.37.已知图形A 在y 轴的右侧,如果将图形A 上的所有点的横坐标都乘-1,纵坐标不变得到图形B ,则( )A.两个图形关于x 轴对称B.两个图形关于y 轴对称C.两个图形重合D.两个图形不关于任何一条直线对称8.如图,在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个格点三角形中不是直角三角形的是( )A. B.C. D.9.如图,点D在AC上,点F,G分别在AC,BC的延长线上,CE平分∠ACB分别交BD,AB于点O,E,且∠EOD+∠OBF=180°,∠F=∠G.则图中与∠ECB一定相等的角有( )A.6个B.5个C.4个D.3个10.如图(1),在平面直角坐标系中,长方形ABCD在第一象限,且AB∥y轴.直线y=-x 沿x轴正方向平移,如果被长方形ABCD截得的线段EF的长度l与平移的距离a 之间的函数图象如图(2)所示,那么长方形ABCD的面积为( ) 图(1) 图(2)A.10B.12C.15D.18二、填空题(共5小题,每小题3分,共15分)11.“三角形三个内角中最多只能有一个直角”,这个命题是 命题.(填“真”或“假”)12.小明八年级上学期数学期中成绩是110分,期末成绩是115分,若这学期的总评成绩根据如图所示的权重计算,则小明该学期的数学总评成绩为 分.13.已知方程组2x -y +3=0,ax -y +c =0的解为x =-1,y =1,则一次函数y=2x+3与y=ax+c 的图象的交点坐标是 .14.如图,AB ∥CD ,AE ⊥CE 于点E ,∠1=125°,则∠C= .(第14题) (第15题)15.如图所示,ABCD 是长方形地面,长AB=16 m,宽AD=9 m,中间竖有一堵砖墙,墙高MN=1 m .一只蚂蚁从A 点爬到C 点,它必须翻过中间那堵墙,则它至少要爬 m 的路程.三、解答题(共8小题,共75分)16.(共2小题,每小题4分,共8分)计算:(1)8+182-16.(2)316+(22-3)2-2×12.17.(8分)数学课上,同学们用代入消元法解二元一次方程组2x -y=5, ①8x-3y=20, ②下面是两位同学的解答思路,请你认真阅读并完成相应的任务.小彬:由①,得y= , ③将③代入②,得……小颖:由①,得2x= , ③将③代入②,得……任务:(1)按照小彬的思路,第一步要用含x的代数式表示y,得到方程③,即y= ;第二步将③代入②,可消去未知数y.(2)按照小颖的思路,第一步要用含y的代数式表示2x,得到方程③,即2x= ;第二步将“2x”看作整体,将③代入②,可消去未知数x.(3)请从下面A,B两题中任选一题作答.我选择 题.A.按照小彬的思路求此方程组的解.B.按照小颖的思路求此方程组的解.18.(8分)如图,MN∥BC,BD⊥DC,∠1=∠2=60°.(1)求证:AB∥DE.(2)若DC是∠NDE的平分线,求证:BD是∠ABC的平分线.19.(9分)小王剪了两张直角三角形纸片,进行了如下操作.操作一:如图(1),将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.(1)如果AC=6 cm,BC=8 cm,可求得△ACD的周长为 ;(2)如果∠CAD∶∠BAD=4∶7,可求得∠B为 °.操作二:如图(2),小王拿出另一张直角三角形纸片,将Rt△ABC沿直线AD折叠,使直角边AC落在斜边AB上,且与AE重合,若AC=9 cm,BC=12 cm,请求出CD的长. 图(1) 图(2)20.(9分)践行文化自信,让中华文化走向世界.某市甲、乙两校的学生人数基本相同,为了解这两所学校学生的中华文化知识水平,在同一次知识竞赛中,从两校各随机抽取了30名学生的竞赛成绩进行调查分析,其中甲校已经绘制好了条形统计图,乙校只完成了一部分(如图).甲校:93 82 76 77 76 89 89 89 8394 84 76 69 83 92 87 88 8984 92 87 89 79 54 88 98 9087 68 76乙校:85 61 79 91 84 92 92 84 6390 89 71 92 87 92 73 76 9284 57 87 89 88 94 83 85 8094 72 90(1)请根据乙校的数据补全条形统计图.(2)两组样本数据的平均数、中位数、众数如下表所示,请补全表格:平均数中位数众数甲校83.6 乙校83.28692(3)请判断哪所学校学生的中华文化知识水平更高一些,并根据(2)中的数据说明理由.(4)为进一步提高两所学校学生的中华文化知识水平,请你提出一条合理化建议.21.(10分)某工厂承接了一批纸箱加工任务,用如图(1)所示的长方形和正方形纸板(长方形的宽与正方形的边长相等)加工成如图所示的竖式与横式两种无盖的长方形纸箱.(加工时接缝材料不计)(1)若该厂购进正方形纸板1 000张,长方形纸板2 000张.问竖式、横式纸盒各加工多少个,恰好能将购进的纸板全部用完.(2)该工厂某一天使用的材料清单上显示,这天一共使用正方形纸板50张,长方形纸板a张,全部加工成上述两种纸盒,且120<n<136,且一个竖式纸箱成本300元,一个横式纸箱成本200元,试求在这一天加工两种纸箱时,a的所有可能值中,成本最低花费多少元. 图(1) 图(2)22.(11分)在一次机器“猫”抓机器“鼠”的展演测试中,“鼠”先从起点出发,1 min后,“猫”从同一起点出发去追“鼠”,抓住“鼠”并稍作停留后,“猫”抓着“鼠”沿原路返回.“鼠”“猫”距起点的距离y(m)与时间x(min)之间的关系如图所示.(1)在“猫”追“鼠”的过程中,“猫”的平均速度与“鼠”的平均速度的差是 m/min;(2)求AB所在直线的函数表达式;(3)求“猫”从起点出发到返回至起点所用的时间.23.(12分)如图,在平面直角坐标系中,一次函数y=k1x+b的图象与x轴交于点A(-3,0),与y轴交于点B,且与正比例函数y=k2x的图象的交点为C(3,4).(1)求正比例函数与一次函数的表达式.(2)求△OBC的面积.(3)在y轴上是否存在一点P,使△POC为等腰三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.八年级上学期期末综合测评卷12345678910B CAA CDBCBC11.真12.11313.(-1,1)14.35°15.951.B2.C ∵空调的每小时用电量随开机设置温度的高低而变化,∴自变量是设置温度.3.A4.A ∵点A (-3,m )与B (n ,-2)关于y 轴对称,∴n=3,m=-2∴m+n=-2+3=1.5.C A 选项中,设AB=k ,则AC=2k ,BC=3k ,∵AB 2+AC 2=k 2+2k 2=3k 2=BC 2,∴△ABC 是直角三角形;B 选项中,∵BC 2-AB 2=AC 2,∴AB 2+AC 2=BC 2,∴△ABC 是直角三角形;C 选项中,∵∠A ∶∠B ∶∠C=3∶4∶5,∴∠C=53+4+5×180°=75°≠90°,∴△ABC 不是直角三角形;D 选项中,∵∠A-∠B=∠C ,∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC 是直角三角形.6.D 2a +b =6,①a +2b =3,②①+②得3a+3b=9,∴a+b=3.7.B ∵将图形A 上的所有点的横坐标都乘-1,纵坐标不变,∴横坐标变为相反数,纵坐标不变,∴得到的图形B 与A 关于y 轴对称.8.C 设网格中每个小正方形的边长都是1.逐项分析如下.选项分析判断A各边长为2,4,25,22+42=(25)2是直角三角形B各边长为2,22,10,(2)2+(22)2=(10)2是直角三角形C各边长为5,10,17,(5)2+(10)2≠(17)2不是直角三角形D各边长为5,2 5,5,(5)2+(2 5)2=52是直角三角形9.B ∵∠EOD=∠BOC ,∠EOD+∠OBF=180°,∴∠BOC+∠OBF=180°,∴EC ∥BF ,∴∠ECD=∠F ,∠ECB=∠CBF.∵CE 平分∠ACB ,∴∠ECD=∠ECB.∵∠F=∠G ,∴∠G=∠ECB ,∴DG ∥CE ,∴∠CDG=∠DCE ,∴∠CDG=∠G=∠F=∠DCE=∠CBF=∠ECB.10.C (特殊值法)由图象和题意可知,当直线y=-x 沿x 轴平移的距离为1时,沿y 轴平移的距离也为1,即直线y=-x+1经过点A ,且与x 轴,y 轴分别交于点(1,0),(0,1),假设点A 的坐标为(12,12).同理,当直线y=-x 沿x 轴平移的距离为4时,直线为y=-x+4,经过点B (12,72),所以AB=72-12=3.同理,当直线y=-x 沿x 轴平移的距离为6时,直线为y=-x+6,经过点D (112,12),所以AD=112-12=5.所以长方形ABCD 的面积=AB×AD=3×5=15.11.真 因为三角形内角和为180°,所以三角形三个内角中最多只能有一个直角,所以命题“三角形三个内角中最多只能有一个直角”为真命题.12.113 根据题意得110×40%+115×60%=44+69=113(分),则小明该学期的数学总评成绩为113分.13.(-1,1) ∵方程组2x -y +3=0,ax -y +c =0的解为x =-1,y =1,∴一次函数y=2x+3与y=ax+c 的图象的交点坐标是(-1,1).14.35° 如图,过点E 作EF ∥AB ,∴∠BAE=∠AEF.∵AB ∥CD ,∴EF ∥CD ,∴∠C=∠CEF.∵AE ⊥CE ,∴∠AEC=90°,即∠AEF+∠CEF=90°,∴∠BAE+∠C=90°.∵∠1=125°,∠1+∠BAE=180°,∴∠BAE=180°-125°=55°,∴∠C=90°-55°=35°.15.9 5如图所示,将图展开,新图形长度增加了2个MN 的长度,即新图形中AB 的长度增加2米,∴AB=16+2=18(米).连接AC ,∵四边形ABCD 是长方形,AB=18米,AD=9米,在Rt △ABC 中,由勾股定理得AC=AB 2+BC 2=182+92=9 5(米),∴蚂蚁从A 点爬到C 点,它至少要爬9 5米的路程.16.(1)原式=82+182-4(2分)=2+3-4=1.(4分)(2)原式=62+8-4 6+3-2 6(2分)=11-1162.(4分)17.(1)2x-5(2分)(2)5+y (4分)(3)解法一:A 由①,得y=2x-5, ③把③代入②,得8x-3(2x-5)=20,解得x=2.5,把x=2.5代入③,得y=0.故原方程组的解为x =2.5,y =0.(8分)解法二:B由①,得2x=5+y , ③把③代入②,得4(5+y )-3y=20,解得y=0,把y=0代入③,得2x=5,解得x=2.5.故原方程组的解为x =2.5,y =0.(8分)18.(1)证明:∵MN ∥BC ,∴∠ABC=∠1=60°.又∠1=∠2,∴∠ABC=∠2,∴AB ∥DE. (3分)(2)证明:∵DC 是∠NDE 的平分线,∴∠EDC=∠NDC.∵BD ⊥DC ,∴∠BDE+∠EDC=90°,∠ADB+∠NDC=90°,∴∠BDE=∠ADB.∵MN ∥BC ,∴∠DBC=∠ADB ,∴∠BDE=∠DBC.∵AB ∥DE ,∴∠ABD=∠BDE ,∴∠ABD=∠DBC ,∴BD 是∠ABC 的平分线.(8分)19.操作一:(1)14 cm(2分)(2)35(4分)操作二:由折叠知,AE=AC=9 cm,DE ⊥AB ,设CD=DE=x cm,则BD=(12-x )cm .在Rt △ABC 中,AB 2=AC 2+BC 2=81+144=225,∴AB=15 cm,∴BE=15-9=6(cm).(6分)又在Rt △BDE 中,BD 2=DE 2+BE 2,∴(12-x )2=x 2+36,解得x=92,即CD=92 cm .(9分)20.(1)由题意可得乙校竞赛成绩在70~79分的有5人,在60~69分的有2人,补全条形统计图,如图.(2分)(2)87 89(4分)解法提示:甲校数据按照从小到大排列是54,68,69,76,76,76,76,77,79,82,83,83,84,84,87,87,87,88,88,89,89,89,89,89,90,92,92,9 3,94,98,∴这组数据的中位数m=87+872=87,众数n=89.(3)甲校学生的中华文化知识水平更高一些.理由:甲校成绩的平均数高于乙校,说明总成绩甲校高于乙校,甲校成绩的中位数高于乙校,说明甲校一半以上的学生成绩较好.(7分) (4)为进一步提高两所学校学生的中华文化知识水平,建议在课后多开展中华文化知识活动.(9分)21.(1)设加工竖式纸盒x个,加工横式纸盒y个,根据题意得x+2y=1000,4x+3y=2000,解得x=200,y=400.答:加工竖式纸盒200个,加工横式纸盒400个,恰好能将购进的纸板全部用完.(4分) (2)设加工竖式纸盒m个,加工横式纸盒n个,根据题意得m+2n=50,4m+3n=a,∴n=40-a5.(6分)∵n,a为正整数,∴a为5的倍数.又∵120<a<136,∴满足条件的a为125,130,135.(8分)当a=125时,n=15,m=20,成本费为300×20+200×15=9 000(元);当a=130时,n=14,m=22,成本费为300×22+200×14=9 400(元);当a=135时,n=13,m=24,成本费为300×24+200×13=9 800(元).∵9 000<9 400<9 800,∴a的所有可能值中,成本最低花费9 000元.(10分)22.(1)1(2分)解法提示:由题图可知,“鼠”的平均速度为30÷6=5(m/min),“猫”的平均速度为30÷(6-1)=6(m/min),故“猫”的平均速度与“鼠”的平均速度的差是6-5=1(m/min).(2)设AB所在直线的函数表达式为y=kx+b(k≠0),将A(7,30),B(10,18)代入得30=7k+b,18=10k+b,解得k=-4, b=58,故AB所在直线的函数表达式为y=-4x+58.(6分) (3)在y=-4x+58中,令y=0,则-4x+58=0,解得x=14.5.14.5-1=13.5(min).故“猫”从起点出发到返回至起点所用的时间为13.5 min.(11分) 23.(1)∵正比例函数y=k2x的图象经过点C(3,4),∴4=3k2,解得k2=43,∴正比例函数的表达式为y=43x.(2分)∵一次函数y=k1x+b的图象经过点A(-3,0),C(3,4),∴-3k1+b=0,3k1+b=4,解得k1=23,b=2.∴一次函数的表达式为y=23x+2.(4分)(2)在y=23x+2中,令x=0,则y=2,∴B(0,2),∴S△OBC=12×2×3=3.(7分) (3)假设存在满足条件的点P,设P(0,m).∵C(3,4),∴OP=|m|,OC=5,CP=(0-3)2+(m-4)2=9+(m-4)2.(8分)①当OP=OC时,|m|=5,∴m=±5,∴P(0,5)或P(0,-5).②当CP=CO时,9+(m-4)2=5,解得m=8或m=0(舍去),∴P(0,8).③当CP=PO 时,|m|=9+(m -4)2,∴m=258,∴P (0,258).综上,存在满足条件的点P ,且点P 的坐标为(0,5),(0,-5),(0,8)或(0,258).(12分)。

北师大版八年级上册数学期末考试试卷及答案

北师大版八年级上册数学期末考试试卷及答案

北师大版八年级上册数学期末考试试题一、单选题1.下列各数中,为无理数的是( )A.13B C D 2.在平面直角坐标系中,点P (2,﹣3)在( ) A .第一象限B .第二象限C .第三象限D .第四象限3.下列各式中正确的是( )A2=±B 3=-C 2D4.下列长度的各组线段中,不能构成直角三角形的是( )A .4、5、6B .5、12、13C .3、4、5D .15.下列命题中是假命题的是( )A .两直线平行,同位角互补B .对顶角相等C .直角三角形两锐角互余D .平行于同一直线的两条直线平行6.已知方程组03mx y x ny +=⎧⎨+=⎩的解是12x y =⎧⎨=-⎩,则2m n +的值为( )A .1B .2C .3D .07.某学校为了了解九年级学生的体育达标情况,随机抽取50名九年级学生进行测试,测试成绩如表:则本次抽查中体育测试成绩的中位数和众数分别是( )A .26和25B .25和26C .25.5和25D .25和25 8.已知点A (﹣6,y 1)和B (﹣2,y 2)都在直线13y x b =-+上,则y 1,y 2满足( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .大小不确定9.如图,BC∥DE ,若∥A=35°,∥C=24°,则∥E 等于( )A .24°B .59°C .60°D .69°10.一工坊用铁皮制作糖果盒,每张铁皮可制作盒身20个,或制作盒底30个,一个盒身与两个盒底配成一套糖果盒.现有35张铁皮,设用x 张制作盒身,y 张制作盒底,恰好配套制成糖果盒、则下列方程组中符合题意的是( )A .352x y y x +=⎧⎨=⎩B .3520230x y x y +=⎧⎨=⨯⎩C .3522030x y x y +=⎧⎪⎨=⎪⎩D .3530202x y y x +=⎧⎪⎨=⎪⎩二、填空题11.已知x ,y 为两个连续的整数,且xy ,则5x+y 的平方根为_____.12.已知a ,b 满足方程组21228a b a b -=⎧⎨+=⎩,则3a b +的值为______.13.已知点(,2)A m -,(3,1)B m -,且直线ABx 轴,则m 的值是_____.14.已知直线1l :1y x =+与直线2l :y mx n =+相交于点()2,P b -,则关于x ,y 的方程组100x y mx y n -+=⎧⎨-+=⎩的解是______. 15.若多项式210x x k ++是一个完全平方式,则k =____;16.如图,在∥ABC 中,∥C =90°,AC =12,BC =9,AD 是∥BAC 的平分线.若射线AC 上有一点P ,且∥CPD =∥B ,则AP 的长为 _____.17.如图,已知∥1=∥2,∥B =35°,则∥3=________°.18.如图,函数y =5﹣x 与y =2x ﹣1的图象交于点A ,关于x 、y 的方程组521x y x y +=⎧⎨-=⎩的解是 _____.三、解答题1913-.20.解方程组:43524x y x y +=⎧⎨-=⎩.21.如图,∥ABC 的三个顶点都在方格纸的格点上,其中A 点的坐标是(﹣1,0),B 点的坐标是(﹣3,1),C 点的坐标是(﹣2,3).(1)作∥ABC 关于y 轴对称的图形∥DEF ,点A 、B 、C 的对应点分别为D 、E 、F ; (2)在(1)的条件下,点P 为x 轴上的动点,当∥PDE 为等腰三角形时,请直接写出点P 的横坐标.22.如图,已知直线l1:y=kx+2与x轴交于点B,与y轴交于点C,与直线l2:y=5x+20交于点P(-3,a),直线l2与x轴交于点A.(1)求直线l1的解析式;(2)求四边形OAPC的面积.23.我市某小区准备用5400元购买医用口罩和洗手液发放给本小区住户,若医用口罩买800个,洗手液买120瓶,则钱还缺200元;若医用口罩买1200个,洗手液买80瓶,则钱恰好用完.(1)求医用口罩和洗手液的单价;(2)由于实际需要,除购买医用口罩和洗手液外,还需购买单价为6元的N95口罩m个.若需购买医用口罩和N95口罩共1200个,且100<m<200,剩余的钱全部用来购买洗手液,恰好用完5400元,求m的值.∥,直线AD与直线BC交于点E,∥AEC=110°.24.已知:直线AB CD(1)如图∥,BF平分∥ABE交AD于F,DG平分∥CDE交BC于G,求∥AFB+∥CGD的度数;∥PCB时,(2)如图∥,∥ABC=30°,在∥BAE的平分线上取一点P,连接PC,当∥PCD=12直接写出∥APC的度数.25.对于一个四位正整数,设其千位、百位、十位、个位上的数字分别为a、b、c、d,我们将这个四位正整数记作:abcd,若满足b+c=2(a+d),则称该四位正整数为“希望数”.例如:四位正整数3975,百位数字与十位数字之和是16,千位数字与个位数字之和是8,而16是8的两倍,则称四位正整数3975为“希望数”,类似的,四位正整数3060也是“希望数”.根据题中所给材料,解答以下问题:(1)若一个四位正整数375x为“希望数”,则x=(直接填空);的值;(2)两个四位正整数91x y和28x y都是“希望数”,求x y(3)最大的“希望数”是:(直接填空);(4)对一个各个数位数字均不超过6的“希望数”m,设m=abcd,当个位数字是千位数字的2倍,且十位数字和百位数字均是2的倍数时,这个“希望数”m可能的最大值与最小值分别是(直接填空).26.如图,已知直线y=2x+9与y轴交于点A,与x轴交于点B,直线CD与x轴交于点D (6,0),与直线AB相交于点C(﹣3,n).(1)求直线CD的解折式;(2)点E为直线CD上任意一点,过点E作EF∥x轴交直线AB于点F,作EG∥y轴于点G,当EF=2EG时,设点E的横坐标为m,直接写出m的值;(3)连接CO,点M为x轴上一点,点N在线段CO上(不与点O重合).当∥CMN=45°,且∥CMN 为等腰三角形时,直接写出点M 的横坐标.27.某校八年级全体同学参加了爱心捐款活动,随机抽查了部分同学捐款的情况,统计数据如图1和图2所示.(1)本次抽查的学生人数是______;众数是______;中位数是______;图2中B 类捐款的扇形圆心角度数为______. (2)补全条形统计图.(3)该校八年级有1000名学生,请估计该校八年级学生总共捐款多少元?参考答案1.C【分析】利用有理数概念及相关运算解题即可.【详解】解:132=3是无理数.故选C .【点睛】本题考查了有理数及其运算. 2.D【分析】根据各象限内点的坐标特征解答即可.【详解】解:∥横坐标为正,纵坐标为负,∥点P(2,﹣3)在第四象限,故选:D.【点睛】本题考查的是点的坐标与象限的关系,熟记各象限内点的坐标特征是解答本题的关键.3.D【分析】分别根据算术平方根、立方根的性质化简,利用二次根式加减法则计算即可判断.【详解】解:A2=,故选项A不合题意;3,故选项B不合题意;2,故选项C不合题意;D符合题意.故选D.【点睛】本题主要考查了算术平方根和立方根的定义,二次根式的加减,熟练掌握算术平方根和立方根的性质和二次根式的加减法则是解答本题的关键.4.A【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、因为52+42≠62,所以不能组成直角三角形;B、因为122+52=132,所以能组成直角三角形;C、因为32+42=52,所以能组成直角三角形;D、因为12+)22,所以能组成直角三角形.故选:A.【点睛】此题考查勾股定理的逆定理,解题关键在于利用勾股定理进行计算.5.A【分析】根据平行线、相交线、三角形内角和等性质,对选项逐个判断即可.【详解】A:两直线平行,同位角相等,同旁内角互补,选项错误,符合题意;B:对顶角相等,为真命题,故选项不符合题意;C:直角三角形两锐角相加为90︒,即互余,为真命题,故选项不符合题意;D:平行于同一直线的两条直线平行,为真命题,故选项不符合题意;故选A .【点睛】此题主要考查了真假命题,涉及到平行线、相交线、三角形内角和、平行公理等内容,熟练掌握相关几何性质是解题的关键. 6.C【分析】将12x y =⎧⎨=-⎩代入03mx y x ny +=⎧⎨+=⎩求出m 、n 的值,再计算2m n +的值即可.【详解】将12x y =⎧⎨=-⎩代入03mx y x ny +=⎧⎨+=⎩可得21m n =⎧⎨=-⎩,则222(1)3m n +=⨯+-=. 故选C.【点睛】本题考查方程组的解,解题的关键是将将12x y =⎧⎨=-⎩代入03mx y x ny +=⎧⎨+=⎩求出m 、n 的值.7.C【分析】根据中位数的定义和众数的定义即可得出结论.【详解】解:由表格可知:从小到大排列后,第25人的成绩为25分,26人的成绩为26分,测试成绩为25分的人数最多本次抽查中体育测试成绩的中位数为(25+26)÷2=25.5 本次抽查中体育测试成绩的众数为25 故选C .【点睛】此题考查的是求中位数和众数,掌握中位数和众数的定义是解题关键. 8.A【分析】先根据一次函数的解析式判断出函数的增减性,再根据-6<-2即可得出结论.【详解】解:∥一次函数y=13-x+b 中,k=13-<0,∥y 随x 的增大而减小, ∥-6<-2, ∥y 1>y 2. 故选:A .【点睛】本题考查了利用一次函数性质比较函数值的大小,先根据题意判断出一次函数的增减性是解答此题的关键.9.B【详解】∥∥A=35°,∥C=24°, ∥∥CBE=∥A+∥C=59°, ∥BC∥DE , ∥∥E=∥CBE=59°; 故选B . 10.D【分析】根据题意可知,本题中的相等关系是:(1)盒身的个数×2=盒底的个数;(2)制作盒身的铁皮张数+制作盒底的铁皮张数=35,再列出方程组即可. 【详解】解:设用x 张制作盒身,y 张制作盒底,恰好配套制成糖果盒, 根据题意可列方程组:3530202x y y x +=⎧⎪⎨=⎪⎩, 故选:D .【点睛】本题考查从实际问题中抽出二元一次方程组,根据题目给出的条件,找出合适的等量关系注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”. 11.±5【分析】2416=,2525=,4与5之间,可得x ,y 的值,代数计算即可. 【详解】∥45, ∥x =4,y =5, ∥5x+y =25,∥5x+y 的平方根是±5, 故答案为:±5【点睛】本题考查平方根运算,理解掌握平方根运算是解答关键. 12.20【分析】通过观察已知方程组中x ,y 的系数,根据加减法,即可得答案.【详解】由 21228a b a b -=⎧⎨+=⎩,两式相加,可得320a b +=,故答案为:20 .【点睛】本题考查了解二元一次方程组,利用等式的性质把两式相加是解题的关键.13.1-【分析】根据平行于x轴的直线上的点的纵坐标相同,列出方程求解即可.【详解】解:∥点A(m,﹣2),B(3,m﹣1),直线AB∥x轴,∥m﹣1=﹣2,解得m=﹣1.故答案为:﹣1.【点睛】本题考查了坐标与图形性质,熟记平行于x轴的直线上的点的纵坐标相同是解题的关键.14.21 xy=-⎧⎨=-⎩【分析】首先利用待定系数法求出b的值,进而得到P点坐标,再根据两函数图象的交点就是两函数组成的二元一次去方程组的解可得答案.【详解】解:∥直线y=x+1经过点P(-2,b),∥b=-2+1,解得b=-1,∥P(-2,-1),∥关于x,y的方程组10x ymx y n-+=⎧⎨-+=⎩的解是21xy=-⎧⎨=-⎩,故答案为:21xy=-⎧⎨=-⎩.【点睛】此题主要考查了二元一次去方程组与一次函数的关系,关键是掌握两函数图象的交点就是两函数组成的二元一次去方程组的解.15.25【分析】根据完全平方式的定义可知,k的值为一次项系数一半的平方.【详解】根据完全平方式的定义,k=(102)2=52=25.故答案为:25.【点睛】本题考查了完全平方式,要知道,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.16.9或15【分析】分两种情况讨论:∥点P在线段AC上;∥点P在线段AC的延长线上.过点D作DE∥AB于E,利用角平分线的性质可得DE=DC,进而证明∥CDP∥∥EDB,根据勾股定理求出AP的长.【详解】解:如图,过点D作DE∥AB于E,∥在∥ABC中,∥C=90°,AC=12,BC=9,∥AB=15,分两种情况讨论:情况∥:当点P在线段AC上时,∥AD是∥BAC的平分线,∥DE=CD,AE=AC=12,∥BE=AB-AE=15-12=3,在∥CDP和∥EDB中,90DCP DEBCPD BCD DE∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∥∥CDP∥∥EDB(AAS),∥CP=BE=3,∥AP=AC-CP=12-3=9;情况∥:当点P在线段AC的延长线上时,同理可得∥CDP'∥∥EDB(AAS),∥CP'=BE=3,∥AP'=AC+CP'=12+3=15,综上所述,AP 的长为9或15.故答案为:9或15.【点睛】本题考查了全等三角形的性质和判定,角平分线的性质,勾股定理,关键是灵活运用这些性质解决问题.17.35【分析】根据“平行线的判定和性质”结合“已知条件”分析解答即可.【详解】∥∥1=∥2,∥AB∥CE ,∥∥3=∥B=35°.故答案为35.【点睛】熟记“平行线的判定方法和性质”是解答本题的关键.18.23x y =⎧⎨=⎩【分析】根据一次函数和二元一次方程的性质,得函数y =5﹣x ,即5x y +=,函数y =2x﹣1,即21x y -=,从而推导得关于x 、y 的方程组521x y x y +=⎧⎨-=⎩的解,即为函数y =5﹣x 与y =2x ﹣1图象的交点坐标的横坐标和纵坐标值,从而完成求解.【详解】函数y =5﹣x ,即5x y +=;函数y =2x ﹣1,即21x y -=∥关于x 、y 的方程组521x y x y +=⎧⎨-=⎩的解,即为函数y =5﹣x 与y =2x ﹣1图象的交点坐标的横坐标和纵坐标值根据题意,得函数y =5﹣x 与y =2x ﹣1图象的交点坐标()2,3A∥关于x 、y 的方程组521x y x y +=⎧⎨-=⎩的解是:23x y =⎧⎨=⎩故答案为:23x y =⎧⎨=⎩. 【点睛】本题考查了一次函数、二元一次方程组的知识;解题的关键是熟练掌握一次函数图像的性质,从而完成求解.19.-22=-,1-=减法法则运算即可.【详解】解:原式()32=+-2=2=-20.21x y =⎧⎨=-⎩ 【分析】方程组利用加减消元法求出解即可.【详解】解:43524x y x y +=⎧⎨-=⎩①②, ∥﹣∥×4得:11y =﹣11,即y =﹣1,把y =﹣1代入∥得:x =2,则方程组的解为21x y =⎧⎨=-⎩. 21.(1)图形见解析(2)5或194【分析】(1)将A 、B 、C 分别关于y 轴的对称点D 、E 、F 坐标求出来,再连接D 、E 、F 三点即可得到∥DEF ;(2)分P 、D 、E 分别为等腰三角形的顶角三种情况讨论;当D 为顶角时,相当于以D 点为圆心,DE 为半径作圆,该圆与x 轴交点即为所求P 点;同理,E 为顶角时类似;当P 为顶角时,设P(x ,0),然后根据PE=PF ,利用两点之间距离公式求出x 即可.(1)解:A(-1,0)关于y 轴对称点D 坐标为(1,0),B(-3,1)关于y 轴对称点E 坐标为(3,1),A(-2,3)关于y 轴对称点F 坐标为(-2,3),如下图所示,∥DEF 即为所求:(2)解:分三种情况讨论:情况一:当E为等腰∥EDP的顶角时,ED=EP,相当于以E点为圆心,ED为半径作圆,该圆与x轴的交点即为P点坐标,如下图所示:此时由对称性可知:P点坐标为(5,0);情况二:当D为等腰∥EDP的顶角时,DE=DP,相当于以D点为圆心,ED为半径作圆,该圆与x轴的交点即为P点坐标,如下图中P1和P2所示:由图可知:DE=DP1=DP2(1),P1);∥P情况三:当P为等腰∥EDP的顶角时,PE=PD,设P(x,0),∥PE²=(x-3)²+(0-1)²=x²-6x+10,PD²=(x-1)² =x²-2x+1,∥x²-6x+10= x²-2x+1,解得:x=94,此时P点坐标为(94,0);综上所述:P点的横坐标为5或194.【点睛】本题考查了点关于坐标轴的对称点的画法、等腰三角形的存在性问题、勾股定理求线段长等,本题的关键是第(2)问中要注意分类讨论思想.22.(1)y=-x+2(2)13【分析】(1)由直线l2:y=5x+20求得P的坐标,代入y=kx+2即可得到结论;(2)由直线l1的解析式求得B、C的坐标,由直线l2:y=5x+20求得A的坐标,然后根据四边形OAPC的面积等于∥PAB的面积减去∥OBC的面积即可得到结论.(1)解:∥直线l2:y=5x+20过点P(-3,a),∥a=5×(-3)+20=5,∥P(-3,5),把P(-3,5)代入y=kx+2得5=-3k+2,解得:k=-1,∥直线l1的函数表达式为:y=-x+2.(2)解:把y=0代入y=-x+2得:-x+2=0,解得x=2,∥B(0,2),把x=0代入y=-x+2得:y=2,∥C(0,2),∥OB=2,OC=2,把y=0时代入y=5x+20得:5x+20=0,∥x=-4,∥A(-4,0),∥AB=6,过P点作PH∥x轴于H,如下图所示:23.(1)医用口罩的单价为2.5 元/个,洗手液的单价为30元/瓶;(2)120或者180.【分析】(1)设医用口罩的单价为x元/个,洗手液的单价为y元/瓶,根据题意得出方程组,解方程组即可;(2)设增加购买N95口罩m个,洗手液b瓶,则医用口罩(1200−m)个,根据题意得6m+2.5(1200−m)+30b=5400,解得b=80−760m,可得m为60的倍数,且100<m<200,进而得出结论.(1)设医用口罩的单价为x元/个,洗手液的单价为y元/瓶,根据题意得:8001205400200 1200805400x yx y++⎧⎨+⎩==,解得:2.530xy⎧⎨⎩==,答:医用口罩的单价为2.5元/个,洗手液的单价为30元/瓶;(2)设增加购买N95口罩m个,洗手液b瓶,则医用口罩(1200−m)个,根据题意得:6m+2.5(1200−m)+30b=5400,化简,得:7m+60b=4800,∥b=80−760m,∥m,b都为正整数,∥m为60的倍数,100<m<200,∥12066mb⎧⎨⎩==,18059mb⎧⎨⎩==,∥m的值为120或者180.24.(1)195°(2)50°或10°【分析】(1)过点E作MN∥AB.利用平行线的判定和性质并结合角平分线的概念分析求解;(2)分P点在BC的左侧、P在BC的右侧且在CD上方、P在BC的右侧且在CD下方三种情况讨论,结合角度的倍数关系和平行线的性质分析求解.(1)解:过点E作MN∥AB,如下图∥所示:∥AB∥CD,MN∥AB,∥AB∥MN∥CD,∥∥BAE=∥AEM,∥DCE=∥CEM,∥ABE=∥BEN,∥NED=∥EDC,∥∥AEC=110°,∥∥BED=110°,∥∥BAE+∥DCE=∥AEM+∥CEM=∥AEC=110°,∥ABE+∥CDE=∥BEN+∥NED=∥BED=110°,∥BF平分∥ABE,DG平分∥CDE,∥∥ABF=12∥ABE,∥CDG=12∥CDE,∥∥AFB+∥CGD=180°-(∥BAE+∥ABF)+180°-(∥DCE+∥CDG)=180°-∥BAE-12∥ABE+180°-∥DCE-12∥CDE=360°-(∥BAE+∥DCE)-(∥ABE+∥CDE)=360°-110°-12×110°=195°,∥∥AFB+∥CGD的度数为195°.(2)解:分类讨论:情况一:当点P位于BC左侧时,如下图∥所示:此时∥PCD=12∥PCB不可能成立,故此情况不存在;情况二:当点P位于BC右侧且位于CD上方时,过点P作PM∥AB,如下图∥所示:∥∥AEC=110°,∥ABC=30°,∥∥BAE=110°-30°=80°,∥AB∥CD,MP∥AB,∥AB∥MP∥CD,∥∥APM=∥BAP=12∥BAE=40°,∥ABC=∥BCD=30°,又∥∥PCD=12∥PCB,∥∥PCD=13∥BCD=10°,∥∥MPC=∥PCD=10°,∥∥APC=∥MPC+∥APM=10°+40°=50°;情况三:当点P位于BC右侧且位于CD下方时,过点P作PM∥AB,如下图∥所示:∥∥AEC=110°,∥ABC=30°,∥∥BAE=110°-30°=80°,∥AB∥CD,MP∥AB,∥AB∥MP∥CD,∥∥APM=∥BAP=12∥BAE=40°,∥ABC=∥BCD=30°,又∥∥PCD=12∥PCB,∥∥PCD=∥BCD=30°,∥∥MPC=∥PCD=30°,∥∥APC=∥APM-∥MPC=40°-30°=10°,综上,∥APC的度数为50°或10°.【点睛】本题考查平行线的判定和性质、三角形的外角性质、角平分线的定义、对顶角相等等知识,属于中考常考题型,掌握平行线的判定和性质,正确添加辅助线是解题关键.25.(1)9(2)11(3)9990(4)2664和1062【分析】(1)根据“希望数”的定义得到:72(35)+=+x即可求解;(2)根据“希望数”的定义得到关于x y、的二元一次方程组即可求解;(3)设最大的希望数为abcd,根据b c d、、均为非负整数,a为正整数,得到018<+≤b c,09<+≤a d,再根据“希望数”的定义及千位数越大整个数就越大可知,取9a=即可求解;(4)根据=m abcd,2d a=且b c、均是2的倍数且m为“希望数”得到03a<≤,由此得到a的最小值为1,最大值为3即可求解.(1)解:∥375x 为“希望数”,由“希望数”的定义可知:72(35)+=+x , 解出:9x =.故答案为:9(2)解:∥正整数91x y 和28x y 都是“希望数”,∥92(1)82(2)+=+⎧⎨+=+⎩y x x y ,解得:65x y =⎧⎨=⎩,∥11x y +=.(3)解:设最大的“希望数”为abcd , ∥abcd 为“希望数”,∥2()+=+b c a d ,∥b c d 、、均为非负整数,a 为正整数,∥018<+≤b c ,即得到:09<+≤a d ,∥一个四位数千位越大则这个数就越大,∥9,0==a d ,此时9b c ==,∥最大的“希望数”为9990.(4) 解:由题意可知:=m abcd ,2d a =且b c 、均是2的倍数, ∥=m abcd 是“希望数”,∥2()2(2)6+=+=+=b c a d a a a ,由题意可知:各个数位数字均不超过6,且千位不为0, ∥026<=≤d a ,∥03a <≤,∥a 的最小值为1,最大值为3,当1a =时,22d a ==,66+==b c a , ∥=m abcd 最小,∥0,6==b c ,∥m 的最小值为1062;当3a =时,26==d a ,618+==b c a , ∥=m abcd 最大,∥9,9==b c ,此时不满足b c 、均是2的倍数,舍去;当2a =时,24==d a ,612+==b c a , ∥=m abcd 最大,且,b c 不超过6,∥6b c ==,∥m 的最大值为2664;综上所述:m 的最大值与最小值分别是2664和1062.【点睛】本题借助“希望数”这个新定义考查了二元一次方程组的解法,不等式求参数的取值范围,本题的关键是读懂题意,理解新定义,找出a 、b 、c 、d 之间的关系.26.(1)y=−13x+2; (2)m=-2113或-21; (3)点M 的横坐标为-3或-【分析】(1)先求出点C 的坐标,再运用待定系数法求得答案;(2)如图1,设点E 的横坐标为m ,可得:E (m ,−13m+2),F (m ,2m+9),G (0,−13m+2),进而得出:EF=|73m+7|,EG=|m|,根据EF=2EG ,建立方程求解即可; (3)如图2,分三种情况:∥当CN=MN 时,则∥MCN=∥CMN=45°,推出∥CMO=90°,即CM∥x 轴,故点M 的横坐标为-3;∥当CM 2=M 2N 2时,则∥M 2CN 2=∥M 2N 2C=67.5°,推出:∥M2CN 2=∥CM 2O ,OM 2M 的横坐标为-∥当CN=CM 时,∥CMN=∥CNM=45°,此时,点N 必与点O 重合,不符合题意.(1)∥点C (-3,n )在直线y=2x+9上,∥n=2×(-3)+9=3,∥C(-3,3),设直线CD的解析式为y=kx+b,∥C(-3,3),D(6,0),∥33 60k bk b-+⎧⎨+⎩==,解得:132kb⎧-⎪⎨⎪⎩==,∥直线CD的解析式为y=−13x+2;(2)如图1,设点E的横坐标为m,∥点E在直线CD上,EF∥x轴交直线AB于点F,EG∥y轴于点G,∥E(m,−13m+2),F(m,2m+9),G(0,−13m+2),∥EF=|(2m+9)-(−13m+2)|=|73m+7|,EG=|m|,∥EF=2EG,∥|73m+7|=|m|,∥m=-2113或-21;(3)如图2,∥∥CMN=45°,且∥CMN为等腰三角形,∥CN=MN或CM=MN或CN=CM,∥当CN=MN时,则∥MCN=∥CMN=45°,∥C(-3,3),∥∥COM=45°,∥∥CMO=90°,即CM∥x轴,∥M1(-3,0),即点M的横坐标为-3;∥当CM2=M2N2时,则∥M2CN2=∥M2N2C=67.5°,∥∥OM2N2=∥M2N2C-∥COM2=67.5°-45°=22.5°,∥∥CM2O=∥CM2N2+∥OM2N2=45°+22.5°=67.5°,∥∥M2CN2=∥CM2O,∥OM2,∥M2(-,0),即点M的横坐标为-;∥当CN=CM时,∥CMN=∥CNM=45°,∥∥MCN=90°,此时,点N必与点O重合,不符合题意;综上所述,点M的横坐标为-3或-.27.(1)50;10元;12.5元;115.2°(2)见解析(3)估计该校八年级学生总共捐款13100元【分析】(1)根据捐款20元的人数和所占的百分比,可以计算出本次共抽查的学生人数;结合条形统计图,根据众数,中位数的定义可得结果;用360°×B类捐款所占比例可得B类捐款的扇形圆心角度数;(2)根据(1)的结论计算出捐款10元的人数,从而可以将条形统计图补充完整;(3)根据条形统计图中的数据,可以得到七年级800名学生共捐款多少元.(1)解:本次共抽查学生:7÷14%=50(人),由条形统计图可得,捐款金额的众数是10元,由于捐款25元和20元的学生共有11人,捐款15元的学生有14人,所以从大到小排列,第25、26位的捐款数为15元和10元,所以中位数是(10+15)÷2=12.5(元),B类捐款的扇形圆心角度数为:360°×1650=115.2°;故答案为:50,10,12.5,115.2°;(2)解:捐款10元的学生有:50-9-14-7-4=16(人),补全的条形统计图如图所示:(3)解:150×(5×9+10×16+15×14+20×7+25×4)×1000=150×655×1000=13100(元),即估计七年级1000名学生共捐款13100元.。

北师大版八年级(上)期末数学试卷(含答案)

北师大版八年级(上)期末数学试卷(含答案)

北师大版八年级(上)期末数学试卷及答案一、选择题(每小题3分,共18分)1.(3分)﹣的倒数是()A.B.3C.﹣3D.﹣2.(3分)在直角三角形中,斜边与较小直角边的和、差分别为8、2,则较长直角边长为()A.5B.4C.3D.23.(3分)已知点P(m,n)在第四象限,则直线y=nx+m图象大致是下列的()A.B.C.D.4.(3分)若方程(a+3)x+3y|a|﹣2=1是关于x,y的二元一次方程,则a的值为()A.﹣3B.±2C.±3D.35.(3分)如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31°B.28°C.62°D.56°6.(3分)已知关于x、y的方程组,则下列结论中正确的是()①当a=1时,方程组的解也是方程x+y=2的解;②当x=y时,a=﹣;③不论a取什么实数,2x+y的值始终不变.A.①②B.①②③C.②③D.②二、填空题。

(每小题3分,共18分)7.(3分)函数中,自变量x的取值范围是.8.(3分)的平方根是.9.(3分)若a,b,c分别是△ABC的三条边长,且a2﹣6a+b2﹣10c+c2=8b﹣50,则这个三角形的形状是.10.(3分)的整数部分是,小数部分是.11.(3分)如果二元一次方程组的解适合方程3x+y=﹣8,则k=.12.(3分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间(t)分之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了30分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有360米.其中正确的结论有.(填序号)三、解答题。

(5×6分+3×8分+2×9分+12分=84分)13.(6分)计算:(1);(2).14.(6分)(1)已知点P(2m﹣6,m+2),若点P在y轴上,求点P的坐标.(2)已知点Q,若点Q在过点A(2,3)且与x轴平行的直线上,AQ=3,求点Q的坐标.15.(6分)解方程组.16.(6分)如图,在平面直角坐标系xOy中,一次函数y=﹣x+5的图象l1分别与x轴、y轴交于A、B两点,若正比例函数的图象l2与l1交于点C(m,4).(1)求m的值;(2)求△AOC的面积;(3)一次函数y=kx+1的图象为l3,且l1、l2、l3不能围成三角形,请写出k的值.17.(6分)如图在平面直角坐标系中,△ABC各顶点的坐标分别为:A(4,0),B(﹣1,4),C(﹣3,1)(1)在图中作△A′B′C′使△A′B′C′和△ABC关于x轴对称;(2)写出点A′,B′,C′的坐标.18.(8分)如图,在平面直角坐标系中,一次函数y=2x﹣3的图象分别交x轴,y轴于点A、B,将直线AB绕点B 顺时针方向旋转45°,交x轴于点C,求直线BC的函数表达式.19.(8分)如图,圆柱形容器的高为120cm,底面周长为100cm,在容器内壁离容器底部40cm的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿40cm与蚊子相对的点A处,求壁虎捕捉蚊子的最短距离.20.(8分)某学校在体育周活动中组织了一次体育知识竞赛,每班选25名同学参加比赛,成绩分别为A、B、C、D四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,学校将八年级一班和二班的成绩整理并绘制成统计图,如图所示:(1)把八年级一班竞赛成绩统计图补充完整;(2)求出下表中a、b、c的值:平均数/分中位数/分众数/分方差一班a b90106.24二班87.680c138.24(3)根据上面图表数据,请你对这次竞赛成绩的结果进行分析.(至少写两条)21.(9分)材料阅读:如图(1)所示的图形,像我们常见的学习用品—圆规,我们常把这样的图形叫做“规形图”.(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的数量关系,并说明理由;(2)请你利用此结论,解决以下两个问题:Ⅰ.如图(2),把一个三角尺DEF放置在△ABC上,使三角尺的两条直角边DE,DF恰好经过点B,C,若∠A =30°,则∠ABD+∠ACD=.Ⅱ.如图(3),BD平分∠ABP,CD平分∠ACP,若∠A=50°,∠BPC=130°,求∠BDC的度数.22.(9分)在《二元一次方程组》这一章的复习课上,王老师让同学们根据下列条件探索还能求出哪些量:在我市“精准扶贫”工作中,甲、乙两个工程队先后接力为扶贫村庄修建条335米长的公路,甲队每天修建20米,乙队每天修建25米,一共用15天完成.(1)小红同学根据题意,列出了一个尚不完整的方程组请写出小红所列方程组中未知数x,y表示的意义:x表示,y表示;并写出该方程组中?处的数应是,*处的数应是;(2)小芳同学的思路是想设甲工程队一共修建了x米公路,乙工程队一共修建了y米公路.下面请你按照小芳的设想列出方程组,并求出乙队修建了多少天?23.(12分)6月份以来,猪肉价格一路上涨,为平抑猪肉价格,某省积极组织货源,计划由A、B、C三市分别组织10辆,10辆和8辆运输车向D、E两市运送猪肉,现决定派往D、E两地的运输分别是18辆、10辆.已知一辆运输车从A市到D、E两市的运费分别为200元和800元,从B市到D、E两市的运费分别为300元和700元,从C市到D、E两市的运费分别为400元和500元.若从A、B两市都派x辆车到D市,当这28辆运输车全部派出时,①求总运费W(元)与x(辆)之间的关系式,并写出x的取值范围;②求总运费W最低时的车辆派出方案.参考答案与试题解析一、选择题。

北师大版八年级上册数学期末考试试卷及答案

北师大版八年级上册数学期末考试试卷及答案

北师大版八年级上册数学期末考试试题一、单选题1.下列一组数:﹣8、27、2π、3.14、0.1010010001…(相邻两个1之间依次增加1个0),其中无理数的个数为( )A .0B .1C .2D .3 2.下列选项中不是勾股数的是( )A .7,24,25B .4,5,6C .3,4,5D .9,12,15 3.在平面直角坐标系中,下列各点在第四象限的是( )A .(﹣2,3)B .(2,0)C .(0,﹣3)D .(3,﹣5) 42的值在( )A .﹣1到0之间B .0到1之间C .1到2之间D .2到3之间 5.若点(,3),(7,)M a N b --关于x 轴对称,则a b 、的值分别为( )A .7-,3B .7,3--C .7,3D .7,3- 6.下列命题是假命题的是( ) AB .若点A (-2,a ),B (3,b )在直线y=-2x+1,则a>bC .数轴上的点与有理数一一对应D .点A (2,5)关于y 轴的对称点的坐标是(-2,5) 7.以下是二元一次方程2x+3y =8的正整数解有( )A .40x y =⎧⎨=⎩B .243x y =⎧⎪⎨=⎪⎩C .12x y =⎧⎨=⎩ D .13x y =⎧⎨=⎩ 8. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A .523220x y x y +=⎧⎨+=⎩B .522320x y x y +=⎧⎨+=⎩C .202352x y x y +=⎧⎨+=⎩D .203252x y x y +=⎧⎨+=⎩9.已知点A 的坐标是(1,2),则点A 关于x 轴的对称点的坐标是( ) A .(1,﹣2) B .(﹣1,2) C .(﹣1,﹣2) D .(2,1) 11.下列条件中,不能判断△ABC 为直角三角形的是( ) A .a =5,b =12,c =13 B .a :b :c =3:4:5C .△A+△B =80°D .△A :△B :△C =1:1:212.如图,直线y =kx+b (k≠0)与x 轴交于点(﹣5,0),下列说法正确的是( )A .k >0,b <0B .直线y =bx+k 经过第四象限C .关于x 的方程kx+b =0的解为x =﹣5D .若(x 1,y 1),(x 2,y 2)是直线y =kx+b 上的两点,若x 1<x 2,则y 1>y 210.某商场销售A ,B ,C ,D 四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是( )A .19.5元B .21.5元C .22.5元D .27.5元 二、填空题13.0.81的算术平方根是 _____.14.直线y=3x -2不经过第________________象限.15.某班7个兴趣小组的人数如下:5,6,6,x ,7,8,9,已知这组数据的平均数为7,则这组数据的中位数是______________.16.如图,一副三角板AOC 和BCD 如图摆放,则△BOC 的度数为________°.17.如图:在平面直角坐标系中,已知正比例函数34y x =与一次函数211y x =-+的图象交于点A ,设x 轴上有一点P 作x 轴的垂线(垂足位于点A 的右侧),分别交34y x =和211y x =-+的图象于点B 、C ,连接OC ,若115BC OA =,则△OBC 的面积为__________.18.如图,一架秋千静止时,踏板离地的垂直高度DE =0.5m ,将它往前推送1.5m (水平距离BC =1.5m )时,秋千的踏板离地的垂直高度BF =1m ,秋千的绳索始终拉直,则绳索AD 的长是 _____m .三、解答题19.计算:20201|2-+-.20.解二元一次方程组:4250930x y x y -+=⎧⎨+=⎩.21.如图,在直角坐标系中,△ABC 的三个顶点坐标分别为A (1,4),B (4,2),C (3,5),请回答下列问题:(1)作出△ABC 关于x 轴的对称图形△A 1B 1C 1,并直接写出△A 1B 1C 1的顶点坐标. (2)求△A 1B 1C 1的面积.22.如图,已知等腰△ABC 的底边BC =13,D 是腰AB 上一点,且CD =12,BD =5. (1)求证:△BDC 是直角三角形; (2)求AC 的长.23.已知一次函数y =﹣12x+b 的图象与y 轴交于点A ,与x 轴交于点B ,与正比例函数y=2x 的图象交于点C (1,a ).(1)求a ,b 的值;(2)方程组2012x y x y b -=⎧⎪⎨+=⎪⎩的解为 .(3)在y =2x 的图象上是否存在点P ,使得△BOP 的面积比△AOP 的面积大5?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.24.某市举行知识大赛,A 校,B 校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示. (1)根据图示填写如表:(2)结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好.∥,25.如图,E,G分别是AB,AC上的点,F,D是BC上的点,连接EF,AD,DG,已知AB DG∠+∠=︒.12180(1)求证:AD EF∥;∠=︒,求△B的度数.(2)若DG是△ADC的平分线,214526.为庆祝“中国共产党的百年华诞”,某校请广告公司为其制作“童心向党”文艺活动的展板、宣传册和横幅,其中制作宣传册的数量是展板数量的5倍,广告公司制作每件产品所需时间和利润如下表:(1)若制作三种产品共计需要25小时,所获利润为450元,求制作展板、宣传册和横幅的数量;(2)若广告公司所获利润为700元,且三种产品均有制作.求制作三种产品总量的最小值.27.如图,在直角坐标系中,A (1,4),B (1,1),C (5,1),点D 是x 轴上的动点.(1)四边形ABDC 的面积是 ;(2)当直线AD 平分△ABC 的面积时,求此时直线的表达式; (3)当△ACD 的面积是10时,直接写出点D 的坐标.参考答案1.C【分析】根据无理数的定义(无限不循环小数,不能写作成两整数之比)即可得. 【详解】解:,0.10100100012π是无理数,即共有2个,故选:C .【点睛】本题考查了无理数,熟记定义是解题关键. 2.B【分析】根据勾股数的定义以及性质对各项进行判断即可.【详解】解:A 、22272425+=,是勾股数,故选项错误,不符合题意; B 、222456+≠,不是勾股数,故选项正确,符合题意; C 、222345+=,是勾股数,故选项错误,不符合题意; D 、22291215+=,是勾股数,故选项错误,不符合题意. 故选:B .【点睛】此题考查了判断勾股数的问题,解题的关键是掌握勾股数的定义以及性质. 3.D【分析】根据第四象限点的坐标特点为横坐标为正,纵坐标为负,即可得出结论. 【详解】解:A .(﹣2,3)在第二象限,故不符合题意; B .(2,0)在x 轴上,故不符合题意; C .(0,﹣3)在y 轴上,故不符合题意; D .(3,﹣5)在第四象限,故符合题意. 故选D .【点睛】本题考查的知识点是各象限内点的坐标的符号特征,解题关键是记住各象限内点的坐标的符号. 4.A的取值范围,然后根据不等式的基本性质进而得出答案.【详解】解:△1<2,△1-22<2-2,△-12<0,2的值在-1和0之间. 故选:A .5.A【分析】平面直角坐标系中任意一点P (x ,y ),关于x 轴的对称点的坐标是(x ,−y ),据此即可求解.【详解】解:△点(,3),(7,)M a N b --关于x 轴对称, △a=-7,b=3 故选:A .【点睛】本题考查了关于x 轴对称的点的坐标,利用关于x 轴对称的点的横坐标相等,纵坐标互为相反数是解题关键. 6.C【分析】根据最简二次根式、一次函数及不等式、数轴及实数、轴对称和坐标的性质,对各个选项逐个分析,即可得到答案.A 正确; △若点A (-2,a ),B (3,b )在直线y=-2x+1,△()221231a b ⎧-⨯-+=⎨-⨯+=⎩△55a b =⎧⎨=-⎩ △a b >,即B 正确; △数轴上的点与实数一一对应 △C 不正确;△点A (2,5)关于y 轴的对称点的坐标是(-2,5) △D 正确; 故选:C .【点睛】本题考查了最简二次根式、一次函数、不等式、数轴、实数、轴对称、坐标的知识;解题的关键是熟练掌握最简二次根式、一次函数、数轴、实数、轴对称的性质,从而完成求解. 7.C【分析】由题意得:342x y =-,而,x y 为正整数,可得y 为正偶数,从而排除A ,B ,D ,再检验C ,从而可得答案. 【详解】解: 2x+3y =8,,x y 为正整数,y ∴为正偶数,所以A ,B ,D 不符合题意, 当2y =时,则1,x = 故C 符合题意; 故选C 8.D【分析】要列方程(组),首先要根据题意找出存在的等量关系.本题等量关系为:△男女生共20人;△男女生共植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.【详解】解:依题意列出方程组:20 3252x yx y+=⎧⎨+=⎩.故选D.9.A【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直接得到答案.【详解】解:点A的坐标是(1,2),则点A关于x轴的对称点的坐标是(1,-2),故选:A.【点睛】此题主要考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.10.C【分析】根据加权平均数定义即可求出这天销售的四种商品的平均单价.【详解】这天销售的四种商品的平均单价是:50×10%+30×15%+20×55%+10×20%=22.5(元),故选:C.【点睛】本题考查了加权平均数的求法,是统计和概率部分的简单题型,根据各单价分别乘以所占百分比即可获得平均单价.11.C【分析】根据勾股定理的逆定理即可判断选项A和选项B,根据三角形的内角和定理求出最大角的度数,即可判断选项C和选项D.【详解】解:A.△a=5,b=12,c=13,△a2+b2=52+122=25+144=169,c2=132=169,△a2+b2=c2,△△ABC是直角三角形,故本选项不符合题意;B.△a:b:c=3:4:5,△a2+b2=c2,△△ABC是直角三角形,故本选项不符合题意;C.△△A+△B=80°,△△C=180°-(△A+△B)=100°>90°,△△ABC不是直角三角形,故本选项符合题意;D.△△A:△B:△C=1:1:2,△A+△B+△C=180°,△最大角△C=12×180°=90°,△△ABC 是直角三角形,故本选项不符合题意; 故选:C .【点睛】本题考查了三角形的内角和定理和勾股定理的逆定理,能熟记勾股定理的逆定理和三角形的内角和定理是解此题的关键. 12.C【分析】由一次函数的图象经过一,二,三象限,所以0,0,k b >>从而可判断A ,B ,由直线y =kx+b (k≠0)与x 轴交于点(﹣5,0),可判断C ,由0k >结合一次函数的性质可判断D ,从而可得答案.【详解】解:由一次函数的图象经过一,二,三象限,所以0,0,k b >> 故A 不符合题意; 直线y =bx+k 经过一,二,三象限,故B 不符合题意; 直线y =kx+b (k≠0)与x 轴交于点(﹣5,0),∴ 关于x 的方程kx+b =0的解为x =﹣5,故C 符合题意;若(x 1,y 1),(x 2,y 2)是直线y =kx+b 上的两点,而0,k > y 随x 的增大而增大, 若x 1<x 2,则y 1<y 2,故D 不符合题意; 故选C【点睛】本题考查的是一次函数的图象与性质,一次函数与一元一次方程的关系,掌握“一次函数的图象与性质”是解本题的关键. 13.0.9【分析】根据算术平方根的概念求解即可. 【详解】解:0.81的算术平方根是:0.9. 故答案为:0.9.【点睛】本题考查了算术平方根,注意一个正数的平方根有两个,正的平方根就是算术平方根. 14.二【分析】根据已知求得k ,b 的符号,再判断直线y=3x -2经过的象限. 【详解】解:△k=3>0,图象过一三象限,b=-2<0过第四象限 △这条直线一定不经过第二象限. 故答案为二【点睛】此题考查一次函数的性质,一次函数y=kx+b 的图象有四种情况:△当k >0,b >0,函数y=kx+b 的图象经过第一、二、三象限,y 的值随x 的值增大而增大; △当k >0,b <0,函数y=kx+b 的图象经过第一、三、四象限,y 的值随x 的值增大而增大; △当k <0,b >0时,函数y=kx+b 的图象经过第一、二、四象限,y 的值随x 的值增大而减小;△当k <0,b <0时,函数y=kx+b 的图象经过第二、三、四象限,y 的值随x 的值增大而减小.15.7【分析】根据平均数求出x 的值,再根据中位数定义求出答案.【详解】由题意得:56678977x ++++++=⨯,解得x=8,将数据重新排列为:5、6、6、7、8、8、9,△这组数据的中位数是7,故答案为:7.【点睛】此题考查平均数的计算公式,中位数的定义,求一组数据的中位数.16.105【分析】利用三角形的外角△BOC=△BDC+△OCD ,可得答案.【详解】△△BDC =60°,△OCD=45°,△△BOC=△BDC+△OCD=60°+45°=105°.故答案为:105.【点睛】本题考查的是三角形的外角的相关知识,掌握三角形外角的性质是解题的关键. 17.44 【分析】构建方程组21134y x y x =-+⎧⎪⎨=⎪⎩求解可得点A 的坐标,设B (a ,34a ),C (a ,-2a+11),可得BC=|34a -(-2a+11)|=115×5,求出a 即可解决问题. 【详解】解:由21134y x y x =-+⎧⎪⎨=⎪⎩,解得43x y ==⎧⎨⎩, △A (4,3).△OA=5,△P (a ,0),△B (a ,34a ),C (a ,-a+7), △BC=|34a -(-2a+11)|=115×5, 解得a=8或0(舍弃),△PO=8,BC=11△S △OBC =12×8×11=44. 故答案为:44【点睛】本题考查两直线相交或平行问题,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题.18.2.5【分析】设绳索AD 的长为x m ,则AB=AD=x m ,AC=AD -CD=(x -0.5)m ,再由勾股定理得出方程,解方程即可.【详解】解:△BF△EF ,AE△EF ,BC△AE ,90,CEF EFB FBC BCE ACB ∴∠=∠=∠=∠=∠=︒,,BC EF CE BF ∴ 由平行线间距离处处相等可得:CE=BF=1m ,△CD=CE -DE=1-0.5=0.5(m ),而 1.5,BC设绳索AD 的长为x m , 则AB=AD=x m ,AC=AD -CD=(x -0.5)m ,在Rt△ABC 中,由勾股定理得:AC 2+BC 2=AB 2,即(x -0.5)2+1.52=x 2, 解得:x=2.5(m ),即绳索AD 的长是2.5m ,故答案为:2.5.19【分析】先计算乘方、开方与绝对值,再计算加减.【详解】解:20201|2-+,1522=-+-,=【点睛】此题考查了实数的综合混合运算能力,解题的关键是能确定正确的运算顺序,并能准确运用各种计算法则进行运算.20.1232x y ⎧=-⎪⎪⎨⎪=⎪⎩【分析】将方程整理,得52230x y x y ⎧-=-⎪⎨⎪+=⎩①②,然后利用加减消元法解二元一次方程组即可. 【详解】解:整理,得52230x y x y ⎧-=-⎪⎨⎪+=⎩①②△+△,得552x =- 解得:12x =- 将12x =-代入△,得15222y ⎛⎫⨯--=- ⎪⎝⎭解得:32y = △该二元一次方程组的解为1232x y ⎧=-⎪⎪⎨⎪=⎪⎩. 【点睛】此题考查的是解二元一次方程组,掌握利用加减消元法解二元一次方程组是解题关键.21.(1)见解析,A 1(1,﹣4),B 1(4,﹣2),C 1(3,﹣5)(2)3.5【分析】(1)依据关于x 轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,即可得出△111A B C 的位置以及顶点坐标.(2)依据割补法进行计算,即可得出△111A B C 的面积.(1)解:如图所示,ABC ∆关于x 轴的对称图形△111A B C 的顶点坐标为:14(1,)A -,1(4,2)B -,1(3,5)C -.(2)解:ABC ∆的面积为:1113312132391 1.53 3.5222⨯-⨯⨯-⨯⨯-⨯⨯=---=. 【点睛】本题主要考查了利用轴对称变换作图,解题的关键是依据轴对称的性质得出对称点的位置.22.(1)见解析;(2)AC =16.9【分析】(1)由BC =13,CD =12,BD =5,知道BC 2=BD 2+CD 2,所以△BDC 为直角三角形,(2)由(1)可求出AC 的长.【详解】证明:(1)△BC =13,CD =12,BD =5,52+122=132,△BC 2=BD 2+CD 2,△△BDC 为直角三角形;(2)设AB =x ,△△ABC 是等腰三角形,△AB =AC =x ,△AC 2=AD 2+CD 2,即x 2=(x ﹣5)2+122,解得:x =16.9,△AC =16.9.【点睛】此题考查等腰三角形的性质、勾股定理以及逆定理的应用,关键是勾股定理的逆定理解答.23.(1)a =2,b =2.5(2)12 xy=⎧⎨=⎩(3)存在,48(,)33或48,33⎛⎫--⎪⎝⎭【分析】(1)把点C(1,a)分别代入y=2x和y=12x b-+中,即可求得a,b的值.(2)根据两函数的交点坐标,即可求得方程组的解.(3)设点P 的坐标为(x,2x),求出点A的坐标和点B的坐标,作PM△x轴于点M,PN△y 轴于点N,根据三角形面积公式列方程求得x的值,即可得出点P的坐标.(1)解:由题知,点C(1,a)在y=2x的图象上,△a=1×2=2,△点C 的坐标为(1,2),△点C(1,2)在y=12x b-+的图象上,所以,2=﹣12+b,所以,b=2.5;(2)解:△一次函数y=﹣12x+b的图象与正比例函数y=2x的图象交于点C(1,2)△方程组2012x yx y b-=⎧⎪⎨+=⎪⎩的解为12xy=⎧⎨=⎩故答案为12xy=⎧⎨=⎩;(3)解:存在,理由:△点P在在y=2x的图象上,△设点P 的坐标为(x,2x),△一次函数为12.52y x=-+△点A的坐标为(0,2.5),点B的坐标为(5,0),作PM△x轴于点M,PN△y轴于点N,△△BOP的面积为115|2|5|| 22OB PM x x⨯⨯=⨯⨯=,△AOP的面积为1152.5|||| 224OA PN x x⨯⨯=⨯⨯=,当5|x|=5||54x+时,解得4||3x=,△43x=±,△点P的坐标为48(,)33或48,33⎛⎫--⎪⎝⎭.24.(1)85、85、85、80;(2)A学校的决赛成绩较好,理由见解析【分析】(1)先根据条形统计图得出A、B学校5位选手的具体成绩,再根据平均数、中位数及众数的定义求解即可;(2)在平均数相等的前提下,根据中位数越大高分人数越多求解即可.(1)解:由图知,A校5位选手的成绩为75、80、85、85、100,B校5位选手的成绩为70、75、80、100、100,A校5名选手成绩的平均数为:75808585100855++++=,中位数是85,85学生数最多,则众数为85;B校5名选手成绩的中位数为80.故答案为:85、85、85、80;(2)解:A学校的决赛成绩较好,理由如下:由表知,A、B两校选手成绩的平均数相等,而A校选手成绩的中位数大于B校,所以A 学校的决赛成绩较好.【点睛】本题主要考查了平均数、中位数、众数的意义,正确理解相关概念是解答本题的关键.25.(1)见解析(2)35°【分析】(1)由两直线平行,内错角相等得出1BAD ∠=∠,再根据题意可得出2180BAD ∠+∠=︒,最后根据同旁内角互补,两直线平行,即可得出//AD EF ;(2)根据题意可求出1∠的大小,再根据角平分线的定义,得出1GDC ∠=∠,最后根据两直线平行,同位角相等,即可求出B 的大小.(1)证明:△//AB DG ,△1BAD ∠=∠.又△12180∠+∠=︒,2180BAD ∠+∠=︒.△//AD EF .(2)△12180∠+∠=︒,2145∠=︒,△118014535∠=-︒=︒.又△DG 是△ADC 的平分线,△135GDC ∠=∠=︒.△//AB DG ,△35B GDC ∠=∠=︒.26.(1)制作展板、宣传册和横幅的数量分别是:10,50,10;(2)制作三种产品总量的最小值为75.【分析】(1)设展板数量为x ,则宣传册数量为5x ,横幅数量为y ,根据等量关系,列出二元一次方程组,即可求解;(2)设展板数量为x ,则宣传册数量为5x ,横幅数量为y ,可得10072x y -=,结合x ,y 取正整数,可得制作三种产品总量的最小值.【详解】(1)解:设展板数量为x ,则宣传册数量为5x ,横幅数量为y , 根据题意得:2035104501152552x x y x x y +⨯+=⎧⎪⎨+⨯+=⎪⎩,解得:1010x y =⎧⎨=⎩, 5×10=50,答:制作展板、宣传册和横幅的数量分别是:10,50,10;(2)设展板数量为x ,则宣传册数量为5x ,横幅数量为y ,制作三种产品总量为w , 由题意得:203510700x x y +⨯+=,即:72100x y +=, △14072x y -=, △w=1407140555670222x x x x y x x -+++=+==+, △x ,y 取正整数, △x 可取的最小整数为2, △w=5702x +的最小值=55,即:制作三种产品总量的最小值为75.27.(1)8. (2)直线AF 的解析式为31122y x =-+. (3)点D 的坐标为(13,0)或1,03⎛⎫- ⎪⎝⎭. 【分析】(1)过点D 作DE△BC 于点E ,则四边形ABDC 的面积=△ABC 的面积+△BDC 的面积,根据三角形面积公式求解即可;(2)当直线AD 过边BC 的中点F 时,直线AD 平分△ABC 的面积,求出点F 的坐标,将点A 和点F 的坐标代入求解即可;(3)延长AC 交x 轴于点G ,则△ACD 的面积=△ADG 的面积﹣△CDG 的面积,设出点D 的坐标,表示面积,建立方程,求解即可.(1)解:如图,过点D 作DE△BC 于点E ,△A (1,4),B (1,1),C (5,1),△AB =3,BC =4,且AB△BC ,DE =1,△△ABC 的面积=12×3×4=6,△BDC 的面积=12×4×1=2,△四边形ABDC的面积=△ABC的面积+△BDC的面积=8.故答案为:8.(2)解:当直线AD过边BC的中点F时,直线AD平分△ABC的面积,△B(1,1),C(5,1),△F(3,1),设直线AF的解析式为y=kx+b,△直线AF的解析式为31122y x=-+.(3)解:如图,延长AC交x轴于点G,设直线AC的解析式为:y=mx+n,△A(1,4),C(5,1),△直线AC的解析式为:31944y x.令y=0,则x=193.设点D的坐标为(t,0),则DG=193t,△△ACD的面积=△ADG的面积﹣△CDG的面积=31910 23t,解得t=13或t=13 -.△点D的坐标为(13,0)或1,03⎛⎫- ⎪⎝⎭.。

北师大版八年级上册数学期末考试试卷含答案

北师大版八年级上册数学期末考试试卷含答案

北师大版八年级上册数学期末考试试题一、单选题1.在实数227-,0,506,π,0.7171171117…(相邻两个7之间1的个数逐次加1)中,无理数的个数是()A .2个B .3个C .4个D .5个2.将具有下列长度的三条线段首尾顺次相连,能组成直角三角形的是()A .1,2,3B .5,12,13C .4,5,7D .9,80,813.点P (-3,4)到坐标原点的距离是()A .3B .4C .-4D .54.下列命题中真命题有几个()①三角形的任意两边之和都大于第三边;②三角形的任意两角之和都大于第三个角;③同位角都相等;④若a =b ,则a b =;⑤相等的角都是直角;⑥同角的补角不一定相等;A .1个B .2个C .3个D .4个5.如图,AB ∥CD ,∠A=35°,∠C=80°,那么∠E 等于()A .35°B .45°C .55°D .75°6.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是()A .13B .26C .34D .477.点A (3,1y )和点B (-2,2y )都在直线y =-2x +3上,则1y 和2y 的大小关系是()A .12y y =B .12y y >C .12y y <D .不能确定8.如果关于x ,y 的方程组45x by ax =⎧⎨+=⎩与72x y bx ay +=⎧⎨+=⎩的解相同,则a b +的值()A .1B .2C .-1D .09.甲、乙两车从A 城出发匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示.则下列结论:①A ,B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,54t =或154.其中正确的结论有()A .1个B .2个C .3个D .4个10.已知正比例函数y=kx 的图象经过第一、三象限,则一次函数y=kx ﹣k 的图象可能是下图中的()A .B .C .D .二、填空题11.-8的立方根是____=____________.12_____0.5(用“>”或“<”填空).13.甲、乙、丙三个芭蕾舞团各有10名女演员,她们的平均身高都是165cm ,其方差分别为21.5S =甲,22.5S =乙,20.8S =丙,则________团女演员身高更整齐(填甲、乙、丙中一个).14.如果函数y=(m+1)x+m2﹣1是正比例函数.则m的值是___.15.已知二元一次方程组522x yx y-=-⎧⎨+=-⎩的解为41xy=-⎧⎨=⎩,则在同一平面直角坐标系中,直线l1:y=x+5与直线l2:y=-12x-1的交点坐标为____.16.若一直角三角形的两边长为4、5,则第三边的长为________.17.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD对折,使它落在斜边AB上,且与AE重合,CD的长为______.18.如图,△A1B1A2,△A2B2A3,△A3B3A4,…△AnBnAn+1都是等腰直角三角形,其中点A1,A2,…,An在x轴上,点B1,B2,…,Bn在直线y=x上,已知OA1=1,则OA2021的长为______.三、解答题19.计算:2(2)2+-+20.解方程组:(1)4 25 x yx y-=⎧⎨+=⎩(2)4=52 232 x yx y--⎧⎨+=⎩21.如图,在平面直角坐标系中,A(-1,5),B(-1,0),C(-4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1(2)写出点A1,B1,C1的坐标.22.如图,把一块直角三角形△ABC,(∠ACB=90°)土地划出一个三角形△ADC后,测得CD=3米,AD=4米,BC=12米,AB=13米,求图中阴影部分土地的面积.23.某单位用汽车和火车向疫区用输两批防疫物资,具体运输情况如下表所示,求每辆汽车和每节火车车厢平均各装物资多少吨?所用汽车数量(辆)所用火车车厢数量(节)运输物资总量(吨)第一批52140第二批3422424.某中学数学活动小组为了调查居民的用水情况,从某社区的1500户家庭中随机抽取了30户家庭的月用水量,结果如下表所示:月用水量(吨)34578910户数43511421(1)求这30户家庭月用水量的平均数、众数和中位数;(2)根据上述数据,试估计该社区的月用水量;(3)由于我国水资源缺乏,许多城市常利用分段计费的办法引导人们节约用水,即规定每个家庭的月基本用水量为m(吨),家庭月用水量不超过m(吨)的部分按原价收费,超过m(吨)的部分加倍收费.你认为上述问题中的平均数、众数和中位数中哪一个量作为月基本用水量比较合理?简述理由.25.如图,直线EF分别与直线AB,CD交于点E,F.EM平分∠BEF,FN平分∠CFE,且EM∥FN.求证:AB∥CD.26.疫情过后,地摊经济迅速兴起.小李以每千克2元的价格购进某种水果若干千克,销售一部分后,根据市场行情降价销售,销售额y(元)与销售量x(千克)之间的关系如图所示.(1)求降价后销售额y(元)与销售量x(千克)之间的函数表达式;(2)当销售量为多少千克时,小李销售此种水果的利润为150元?27.某实验中学八年级甲、乙两班分别选5名同学参加“学雷锋读书活动”演讲比赛其预赛成绩如图:(1)根据上图填写下表平均数中位数众数方差甲班8.58.5________________乙班8.5_______10 1.6(2)根据上表中的平均数和中位数你认为哪班的成绩较好?并说明你的理由参考答案1.B2.B3.D4.B5.B6.D7.C8.A9.B10.D11.-242【分析】根据立方根、平方根、算术平方根解决此题.【详解】解:-82=-.4=.4=,42=.故答案为:2-,4,2.【点睛】本题主要考查了立方根、平方根、算术平方根,熟练掌握立方根、平方根、算术平方根是解决本题的关键.12.>【分析】由459<<,得23,故112<与0.5的大小关系.【详解】解: 459<<,23,21131∴--<,即112-<,1122>,故答案为:>【点睛】本题主要考查算术平方根的性质以及不等式的性质,熟练掌握算术平方根的性质以及不等式的性质是解题的关键.13.丙【分析】根据方差越小数据越稳定解答即可.【详解】解:∵21.5S =甲,22.5S =乙,20.8S =丙,∴<<222丙甲乙S S S ,∴丙团女演员身高更整齐,故答案为:丙.【点睛】本题考查方差,熟知方差越小数据越稳定是解答的关键.14.1【详解】解:由正比例函数的定义可得:m2﹣1=0,且m+1≠0,解得,m=1;故答案为:1.【点睛】此题主要考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.15.(-4,1)【详解】试题分析:∵二元一次方程组5{22x yx y-=-+=-的解为4{1xy=-=,∴直线l1:y=x+5与直线l2:112y x=--的交点坐标为(﹣4,1),故答案为(﹣4,1).考点:一次函数与二元一次方程(组).16或3##3【详解】解:当4和5=;当53==;和3.17.3cm【分析】由勾股定理求得AB=10cm,然后由翻折的性质求得BE=4cm,设DC=xcm,则BD=(8-x)cm,DE=xcm,在△BDE中,利用勾股定理列方程求解即可.【详解】解:∵在Rt△ABC中,两直角边AC=6cm,BC=8cm,10AB cm∴===().由折叠的性质可知:DC=DE,AC=AE=6cm,∠DEA=∠C=90°,∴BE=AB-AE=10-6=4(cm),∠DEB=90°,设DC=xcm,则BD=(8-x)cm,DE=xcm,在Rt△BED中,由勾股定理得:BE2+DE2=BD2,即42+x2=(8-x)2,解得:x=3.故答案为3cm.18.20202【分析】根据△A1B1A2为等腰直角三角形,得出A1B1⊥OA2,∠B1A2O=45°,根据点B1在直线y=x上,∠B1Ox=45°=∠B1A2O,OA1=A1A2,即点A1为OA2的中点,根据OA1=1,得出OA2=2OA1=2,根据△A2B2A3为等腰直角三角形,得出A2B2⊥OA2,∠B2A3O=45°=∠B2OA3,得出OA2=A2A3=2,可求OA3=OA2+A2A3=2+2=4=22,根据△A3B3A4,…△AnBnAn+1都是等腰直角三角形,可得∠B3A4O=…=∠BnAn+1O=45°=∠BnOAn,B3A3⊥OA4,…,Bn-1An-1⊥OAn,得出OA4=2OA3=2×4=8=23,…OA n=2OAn-1=2×2n-2=2n-1,当n=2021时,代入求值即可.【详解】解:∵△A1B1A2为等腰直角三角形,∴A1B1⊥OA2,∠B1A2O=45°,又∵点B1在直线y=x上,∴∠B1Ox=45°=∠B1A2O∴OA1=A1A2,即点A1为OA2的中点,又∵OA1=1,∴A1B1=A1A2=1.OA2=2OA1=2,∵△A2B2A3为等腰直角三角形,点B2在直线y=x上,∴A2B2⊥OA2,∠B2A3O=45°=∠B2OA3,∴OA2=A2A3=2,∴OA3=OA2+A2A3=2+2=4=22,∵△A3B3A4,…△AnBnAn+1都是等腰直角三角形,点B3,Bn在直线y=x上,∴∠B3A4O=…=∠BnAn+1O=45°=∠B3OA4=∠BnOAn,B3A3⊥OA4,…,Bn-1An-1⊥OAn,∴OA4=2OA3=2×4=8=23,…∴OA n=2OAn-1=2×2n-2=2n-1当n=2021时,∴OA2021=22021-1=22020.故答案为:22020.【点睛】本题主要考查一次函数图象上点的坐标特征,规律型:图形的变化类,等腰直角三角形性质.19.(1)1(2)-2【分析】(1)将二次根式化简,合并同类二次根式,计算除法,最后计算减法即可;(2)根据平方差公式和完全平方公式去括号,再合并同类二次根式.(1)22-=3-2=1;(2)解:原式=222⎡⎤+-⎣-⎦=3-(3++2)=3-3-2=--2.【点睛】此题考查了二次根式的混合运算,正确掌握运算顺序及运算法则及公式是解题的关键.20.(1)31x y =⎧⎨=-⎩(2)86x y =-⎧⎨=⎩【分析】(1)用加法消元法求解;(2)用减法消元法求解.(1)∵425x y x y -=⎧⎨+=⎩①②①+②得:39x =,3x =,将x =3代入①中得:34y -=,得1y =-,∴原方程组的解是31x y =⎧⎨=-⎩.(2)将方程组变形为452232x y x y +=-⎧⎨+=⎩①②,②2⨯,得464x y +=③,③-①,得6y =,把6y =代入②,得8x =-.∴原方程组的解是86x y =-⎧⎨=⎩.21.(1)见解析(2)A 1(1,5),B 1(1,0),C 1(4,3)【分析】(1)分别作出A ,B ,C 的对应点A 1,B 1,C 1即可.(2)根据A 1,B 1,C 1的位置写出坐标即可.(1)解:所作图形△A 1B 1C 1如下所示:(2)解:根据所作图形知:A 1(1,5),B 1(1,0),C 1(4,3).【点睛】本题考查作图-轴对称变换,解题的关键是熟练掌握基本知识.关于y 轴对称的点,纵坐标相同,横坐标互为相反数.22.阴影部分土地的面积为24平方米.【分析】先由勾股定理求出AC=5米,再由勾股定理的逆定理证出∠ADC=90°,最后由三角形面积公式求解即可.【详解】解:∵∠ACB =90°,BC =12,AB =13,∴AC =5,∵32+42=52,CD =3,AD =4,AC =5,即CD 2+AD 2=AC 2,∴∠ADC =90°,∴S 阴影=-ABC ACD S S =1122AC BC CD AD ⨯-⨯11512342422=⨯⨯-⨯⨯=(平方米).【点睛】本题考查了勾股定理的应用以及勾股定理的逆定理;熟练掌握勾股定理和勾股定理的逆定理是解题的关键.23.每辆汽车平均装物资8吨,每节火车车厢平均装物资50吨【分析】设每辆汽车平均装物资x 吨,每节火车车厢平均装物资y 吨,列方程得5214034224x y x y +=⎧⎨+=⎩,计算即可.【详解】解:设每辆汽车平均装物资x 吨,每节火车车厢平均装物资y 吨根据题意得:5214034224x y x y +=⎧⎨+=⎩,解得:850x y =⎧⎨=⎩.答:每辆汽车平均装物资8吨,每节火车车厢平均装物资50吨.【点睛】此题考查了二元一次方程组的实际应用,正确理解题意是解题的关键.24.(1)众数是7,中位数是7;(2)9300吨;(3)以中位数或众数作为月基本用水量较为合理.【分析】(1)根据中位数和众数的定义求解即可,(2)用社区的总户数乘以平均数列出算式计算即可,(3)根据平均数、众数、中位数的意义,结合题意选择合适的量即可.【详解】(1)解:1(3443557118492101) 6.230x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=,众数是7,中位数是7(2)1500 6.29300⨯=(吨)∴该社区月用水量约为9300吨(3)以中位数或众数作为月基本用水量较为合理.因为这样既可满足大多数家庭的月用水量,也可以引导用水量高于7吨的家庭节约用水.25.见解析【分析】根据平行线的性质以及角平分线的定义,即可得到∠FEB=∠EFC ,进而得出AB ∥CD .【详解】解:证明:∵EM ∥FN ,∴∠FEM=∠EFN ,又∵EM 平分∠BEF ,FN 平分∠CFE ,∴∠BEF=2∠FEM ,∠EFC=2∠EFN ,∴∠FEB=∠EFC ,∴AB ∥CD .【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟记角平分线的定义和平行线的性质.26.(1) 2.560(40)y x x =+>;(2)180千克【分析】(1)根据函数图象中的数据,可以得到降价后销售额y (元)与销售量x (千克)之间的函数表达式;(2)根据(1)中的函数关系式和题意,可以列出相应的方程,从而可以得到当销售量为多少千克时,小李销售此种水果的利润为150元.【详解】解:(1)设降价后销售额y (元)与销售量x (千克)之间的函数表达式是y kx b =+,AB 段过点(40,160),(80,260),∴4016080260k b k b +=⎧⎨+=⎩,解得, 2.560k b =⎧⎨=⎩,即降价后销售额y (元)与销售量x (千克)之间的函数表达式是 2.560(40)y x x =+>;(2)设当销售量为a 千克时,小李销售此种水果的利润为150元,2.5602150a a +-=,解得,180a =,答:当销售量为180千克时,小李销售此种水果的利润为150元.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.27.(1)8.5;0.7;8;(2)甲班的成绩较好.【分析】(1)根据众数、方差和中位数的定义及公式分别进行解答即可;(2)从平均数、中位数两个角度分别进行分析即可;【详解】解:(1)甲班的众数是8.5;甲班的方差是:0.7;乙班的中位数是8;(2)因为甲、乙两班成绩的平均数相同,而甲班成绩的中位数高于乙班的中位数,所以甲班的成绩较好.。

北师大版数学八年级上册期末考试试卷有答案

北师大版数学八年级上册期末考试试卷有答案

北师大版数学八年级上册期末考试试题一、选择题(每小题3分,共30分,每小题只有一项符合题目要求)1.(3分)数4的算术平方根是()A.2 B.﹣2 C.±2 D.2.(3分)下列实数中的无理数是()A.0 B.C.πD.1.01010101…3.(3分)与最接近的整数是()A.9 B.8 C.7 D.64.(3分)下列等式成立的是()A.3+4=7B.=C.÷=2D.=3 5.(3分)下列命题是假命题的是()A.对顶角相等B.两直线平行,同位角相等C.内错角相等,两直线平行D.三角形的外角大于内角6.(3分)已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A.(﹣1,2)B.(1,﹣2)C.(2,3)D.(3,4)7.(3分)用加减消元法解二元一次方程组时,下列方法中无法消元的是()A.①×2﹣②B.②×(﹣3)﹣①C.①×(﹣2)+②D.①﹣②×3 8.(3分)将一副直角三角板(∠A=∠FDE=90°,∠F=45°,∠C=60°,点D在边AB上)按图中所示位置摆放,两条斜边为EF,BC,且EF∥BC,则∠ADF等于()A.70°B.75°C.80°D.85°9.(3分)数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b 相交于点P,根据图象可知,关于x的方程x+5=ax+b的解是()A.x=5 B.x=15 C.x=20 D.x=2510.(3分)如图,正方形ABCD的边长为1,其面积标记为S1,以AB为斜边向外作等腰直角三角形,再以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S7的值为()A.B.C.D.二、填空题(本大题4个小题,每小题4分,共16分)11.(4分)实数2﹣的倒数是.12.(4分)点P(a,b)在函数y=3x+2的图象上,则代数式6a﹣2b的值等于.13.(4分)如图,在x轴,y轴上分别截取OA,OB,使OA=OB,再分别以点A,B为圆心,以大于AB长为半径画弧,两弧交于点P.若点P的坐标为(a,2a﹣3),则a 的值为.14.(4分)《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为.三、解答题(本大题共6个小题,满分54分)15.(10分)(1)计算:﹣+﹣|2﹣3|;(2)计算:÷3×.16.(10分)(1)解方程组:;(2)解方程组:.17.(8分)某校开展了“学习新思想,做好接班人”主题阅读活动月.请根据统计图表中的信息,解答下列问题:(1)被抽查的学生人数是人,表中m=;(2)被抽查的学生阅读文章篇数的中位数是,众数是;(3)若该校共有1600名学生,请估计该校学生在主题阅读活动月内文章阅读的篇数为4篇的有多少人?阅读篇数 3 4 5 6 7及以上人数20 25 m 15 1018.(6分)大学生运动会将在成都召开,大批的大学生报名参与志愿者服务工作.某大学计划组织本校大学生志愿者乘车去了解比赛场馆情况,若单独调配36座(不含司机)新能源客车若干辆,则有2人没有座位;若只调配22座(不含司机)新能源客车,则用车数量将增加4辆,并空出2个座位.求计划调配36座新能源客车多少辆?该大学共有多少名大学生志愿者?19.(10分)如图,平面直角坐标系中,△ABC的顶点坐标分别为A(4,1),B(3,4),C(1,2).(1)画出△ABC关于y轴对称的△A1B1C1,并写出顶点C1的坐标;(2)若点P在x轴上,且满足PA+PC1最小,求点P的坐标及PA+PC1的最小值.20.(10分)已知,△ABC和△DCE都是等边三角形,点B,C,E三点不在一条直线上(如图1).(1)求证:BD=AE;(2)若∠ADC=30°,AD=4,CD=5,求BD的长;(3)若点B,C,E三点在一条直线上(如图2),且△ABC和△DCE的边长分别为3和5,求AD的长.一、填空题(每小题4分,共20分)21.(4分)计算•(﹣)+•(﹣)的结果是.22.(4分)某小组数学综合练习得分如表:得分130 140 145人数 5 3 2 则该小组的平均得分是分.23.(4分)如图,线段AB,BC的垂直平分线l1,l2相交于点O,若∠B=50°,则∠AOC =.24.(4分)如图,点A(﹣2,0),直线l:y=与x轴交于点B,以AB为边作等边△ABA1,过点A1作A1B1∥x轴,交直线l于点B1,以A1B1为边作等边△A1B1A2,过点A2作A2B2∥x轴,交直线l于点B2,以A2B2为边作等边△A2B2A3,则点A3的坐标是.25.(4分)如图,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB的顶点A在△ECD的斜边DE上,CD交AB于点F,若AE=,AD=2,则△ACF的面积为.二、解答题(本大题有3个小题,共30分)26.(8分)某商场在二楼到一楼之间设有自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,甲离一楼地面的高度y甲(米)与下行时间x(秒)满足函数关系y=﹣x+6;乙走步行楼梯,乙离一楼地面的高度y乙(米)与下行时间x(秒)的函甲数关系如图所示.(1)求y乙关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面?27.(10分)阅读理解:已知实数x,y满足3x﹣y=5…①,2x+3y=7…②,求x﹣4y和7x+5y 的值.仔细观察两个方程未知数的系数之间的关系,本题可以通过适当变形整体求得代数式的值,如由①﹣②可得x﹣4y=﹣2,由①+②×2可得7x+5y=19.这样的解题思想就是通常所说的“整体思想”.利用“整体思想”,解决下列问题:(1)已知二元一次方程组,则x﹣y=,x+y=;(2)买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,求购买5支铅笔、5块橡皮5本日记本共需多少元?(3)对于实数x,y,定义新运算:x*y=ax+by+c,其中a,b,c是常数,等式右边是实数运算.已知3*5=15,4*7=28,求1*1的值.28.(12分)表格中的两组对应值满足一次函数y=kx+b,函数图象为直线l1,如图所示.将函数y=kx+b中的k与b交换位置后得一次函数y=bx+k,其图象为直线l2.设直线l1交y轴于点A,直线l1交直线l2于点B,直线l2交y轴于点C.x ﹣2 4y ﹣4 2 (1)求直线l2的解析式;(2)若点P在直线l1上,且△BCP的面积是△ABC的面积的(1+)倍,求点P的坐标;(3)若直线y=a分别与直线l1,l2及y轴的三个交点中,其中一点是另两点所成线段的中点,求a的值.参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)数4的算术平方根是()A.2 B.﹣2 C.±2 D.【分析】算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为.【解答】解:∵2的平方为4,∴4的算术平方根为2.故选:A.【点评】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.2.(3分)下列实数中的无理数是()A.0 B.C.πD.1.01010101…【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、0是整数,属于有理数,故本选项不合题意;B、,是整数,属于有理数,故本选项不合题意;C、π是无理数,故本选项符合题意;D、1.01010101…是循环小数,属于有理数,故本选项不合题意;故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.3.(3分)与最接近的整数是()A.9 B.8 C.7 D.6【分析】由于64<66<81,于是8<<9,64与66的距离小于66与81的距离,可得答案.【解答】解:∵82=64,92=81,∴8<<9,又∵8.52>66,∴与最接近的整数是8.故选:B.【点评】本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.4.(3分)下列等式成立的是()A.3+4=7B.=C.÷=2D.=3 【分析】根据二次根式的加、乘、除法法则及二次根式的性质逐一判断即可得.【解答】解:A.3与4不是同类二次根式,不能合并,此选项计算错误;B.×=,此选项计算错误;C.÷=×=3,此选项计算错误;D.=3,此选项计算正确;故选:D.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的加、乘、除法法则及二次根式的性质.5.(3分)下列命题是假命题的是()A.对顶角相等B.两直线平行,同位角相等C.内错角相等,两直线平行D.三角形的外角大于内角【分析】对各个命题逐一判断后找到错误的即可确定假命题.【解答】解:A、对顶角相等,是真命题;B、两直线平行,同位角相等,是真命题;C、内错角相等,两直线平行,是真命题;D、三角形的一个外角大于和它不相邻的任何一个内角,原命题是假命题;故选:D.【点评】此题主要考查了命题与定理,熟练利用相关定理以及性质进而判定举出反例即可判定出命题正确性.6.(3分)已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A.(﹣1,2)B.(1,﹣2)C.(2,3)D.(3,4)【分析】由点A的坐标,利用一次函数图象上点的坐标特征求出k值,结合y随x的增大而减小即可确定结论.【解答】解:A、当点A的坐标为(﹣1,2)时,﹣k+3=2,解得:k=1>0,∴y随x的增大而增大,选项A不符合题意;B、当点A的坐标为(1,﹣2)时,k+3=﹣2,解得:k=﹣5<0,∴y随x的增大而减小,选项B符合题意;C、当点A的坐标为(2,3)时,2k+3=3,解得:k=0,选项C不符合题意;D、当点A的坐标为(3,4)时,3k+3=4,解得:k=>0,∴y随x的增大而增大,选项D不符合题意.故选:B.【点评】本题考查了一次函数的性质以及一次函数图象上点的坐标特征,根据点的坐标,利用一次函数图象上点的坐标特征求出k值是解题的关键.7.(3分)用加减消元法解二元一次方程组时,下列方法中无法消元的是()A.①×2﹣②B.②×(﹣3)﹣①C.①×(﹣2)+②D.①﹣②×3【分析】方程组利用加减消元法变形即可.【解答】解:A、①×2﹣②可以消元x,不符合题意;B、②×(﹣3)﹣①可以消元y,不符合题意;C、①×(﹣2)+②可以消元x,不符合题意;D、①﹣②×3无法消元,符合题意.故选:D.【点评】此题考查了解二元一次方程组,熟练掌握加减消元法是解本题的关键.8.(3分)将一副直角三角板(∠A=∠FDE=90°,∠F=45°,∠C=60°,点D在边AB上)按图中所示位置摆放,两条斜边为EF,BC,且EF∥BC,则∠ADF等于()A.70°B.75°C.80°D.85°【分析】依据平行线的性质,即可得到∠BGD的度数,再根据三角形外角的性质,即可得到∠ADG的度数.【解答】解:如图所示,CB与FD交点为G,∵EF∥BC,∴∠F=∠BGD=45°,又∵∠ADG是△BDG的外角,∠B=30°,∴∠ADG=∠B+∠BGD=30°+45°=75°,故选:B.【点评】本题主要考查了平行线的性质以及三角形外角性质,解题时注意:两条平行线被第三条直线所截,同位角相等.9.(3分)数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b 相交于点P,根据图象可知,关于x的方程x+5=ax+b的解是()A.x=5 B.x=15 C.x=20 D.x=25【分析】两直线的交点坐标为两直线解析式所组成的方程组的解,即可得出答案.【解答】解:∵直线y=x+5和直线y=ax+b相交于点P(20,25),∴方程x+5=ax+b的解为x=20,故选:C.【点评】此题考查了一次函数与一元一次方程,关键是掌握一元一次方程与一次函数的关系,从图象上看,一元一次方程的解,相当于已知两条直线交点的横坐标的值.10.(3分)如图,正方形ABCD的边长为1,其面积标记为S1,以AB为斜边向外作等腰直角三角形,再以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S7的值为()A.B.C.D.【分析】根据题意求出S2=()1,S3=()2,S4=()3,…,根据规律解答.【解答】解:由题意得:S1=12=1,S2=(1×)2=()1,S3=(×)2==()2,S4=(××)2==()3,…,则S n=()n﹣1,∴S7=()6,故选:A.【点评】本题考查了等腰直角三角形的性质、勾股定理以及规律型中数的变化规律,解题的关键是找出规律“S n=()n﹣1”.二、填空题(本大题4个小题,每小题4分,共16分)11.(4分)实数2﹣的倒数是2+.【分析】利用倒数的定义,以及分母有理化性质计算即可.【解答】解:实数2﹣的倒数是==2+.故答案为:2+.【点评】此题考查了分母有理化,以及倒数,熟练找到有理化因式也是解本题的关键.12.(4分)点P(a,b)在函数y=3x+2的图象上,则代数式6a﹣2b的值等于﹣4.【分析】把P(a,b)代入一次函数解析式得到b=3a+2,则3a﹣b=﹣2,即可求解.【解答】解:∵点P(a,b)在函数y=3x+2的图象上,∴b=3a+2,∴3a﹣b=﹣2,∴6a﹣2b=2×(﹣2)=﹣4,故答案为:﹣4.【点评】本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式.13.(4分)如图,在x轴,y轴上分别截取OA,OB,使OA=OB,再分别以点A,B为圆心,以大于AB长为半径画弧,两弧交于点P.若点P的坐标为(a,2a﹣3),则a 的值为3.【分析】根据作图方法可知点P在∠BOA的角平分线上,由角平分线的性质可知点P到x轴和y轴的距离相等,结合点P在第一象限,可得关于a的方程,求解即可.【解答】解:∵OA=OB,分别以点A,B为圆心,以大于AB长为半径画弧,两弧交于点P,∴点P在∠BOA的角平分线上,∴点P到x轴和y轴的距离相等,又∵点P在第一象限,点P的坐标为(a,2a﹣3),∴a=2a﹣3,∴a=3.故答案为:3.【点评】本题考查了角平分线的作法及其性质在坐标与图形性质问题中的应用,明确题中的作图方法及角平分线的性质是解题的关键.、14.(4分)《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为.【分析】根据“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两”,得到等量关系,即可列出方程组.【解答】解:根据题意得:.故答案为:.【点评】本题考查了由实际问题抽象出二元一次方程组,解决本题的关键是找到题目中所存在的等量关系.三、解答题(本大题共6个小题,满分54分)15.(10分)(1)计算:﹣+﹣|2﹣3|;(2)计算:÷3×.【分析】(1)直接利用二次根式的性质化简,再利用二次根式的加减运算法则计算即可;(2)直接利用二次根式的乘除运算法则计算得出答案.【解答】解:(1)原式=﹣+2+2﹣3=2;(2)÷3×=3××=×=1.【点评】此题主要考查了实数运算以及二次根式的混合运算,正确化简二次根式是解题关键.16.(10分)(1)解方程组:;(2)解方程组:.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)把①代入②得:3(y+1)+y=7,解得:y=1,把y=1代入①得:x=1+1=2,则方程组的解为;(2)②×5﹣①×2得:21y=20,解得:y=,把y=代入②得:2x+5×=8,解得:x=,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.17.(8分)某校开展了“学习新思想,做好接班人”主题阅读活动月.请根据统计图表中的信息,解答下列问题:(1)被抽查的学生人数是100人,表中m=30;(2)被抽查的学生阅读文章篇数的中位数是5篇,众数是5篇;(3)若该校共有1600名学生,请估计该校学生在主题阅读活动月内文章阅读的篇数为4篇的有多少人?阅读篇数 3 4 5 6 7及以上人数20 25 m 15 10【分析】(1)先由6篇的人数及其所占百分比求得总人数,总人数减去其他篇数的人数求得m的值;(2)根据中位数和众数的定义求解;(3)用总人数乘以样本中4篇的人数所占比例即可得.【解答】解:(1)被调查的总人数为15÷15%=100(人),m=100﹣(20+25+15+10)=30;故答案为:100,30.(2)由于共有100个数据,其中位数为第50、51个数据的平均数,而第50、51个数据均为5篇,所以中位数为5篇,出现次数最多的是5篇,所以众数为5篇.故答案为:5篇,5篇.(3)该校学生在主题阅读活动月内文章阅读的篇数为4篇的有:1600×=400(人).【点评】本题考查的是扇形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.18.(6分)大学生运动会将在成都召开,大批的大学生报名参与志愿者服务工作.某大学计划组织本校大学生志愿者乘车去了解比赛场馆情况,若单独调配36座(不含司机)新能源客车若干辆,则有2人没有座位;若只调配22座(不含司机)新能源客车,则用车数量将增加4辆,并空出2个座位.求计划调配36座新能源客车多少辆?该大学共有多少名大学生志愿者?【分析】设计划调配36座新能源客车x辆,该大学共有y名大学生志愿者,根据“若单独调配36座(不含司机)新能源客车若干辆,则有2人没有座位;若只调配22座(不含司机)新能源客车,则用车数量将增加4辆,并空出2个座位”,即可得出关于x,y 的二元一次方程组,解之即可得出结论.【解答】解:设计划调配36座新能源客车x辆,该大学共有y名大学生志愿者,依题意得:,解得:.答:计划调配36座新能源客车6辆,该大学共有218名大学生志愿者.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.19.(10分)如图,平面直角坐标系中,△ABC的顶点坐标分别为A(4,1),B(3,4),C(1,2).(1)画出△ABC关于y轴对称的△A1B1C1,并写出顶点C1的坐标;(2)若点P在x轴上,且满足PA+PC1最小,求点P的坐标及PA+PC1的最小值.【分析】(1)依据轴对称的性质,即可得到△ABC关于y轴对称的△A1B1C1,即可得到顶点C1的坐标;(2)作点C1关于x轴的对称点C',设直线AC'交x轴于点P,则C'的坐标为(﹣1,﹣2),利用待定系数法即可得到直线AC'的解析式,进而得出点P的坐标;过点A作x轴的垂线,过点C'作y轴的垂线,交于点D,则∠ADC'=90°,再根据勾股定理进行计算即可得出PA+PC1的最小值.【解答】解:(1)如图所示,△A1B1C1即为所求,顶点C1的坐标为(﹣1,2);(2)作点C1关于x轴的对称点C',设直线AC'交x轴于点P,则C'的坐标为(﹣1,﹣2),设直线AC'的解析式为y=kx+b,则,解得,∴直线AC'的解析式为y=x﹣,令y=0,则x=,∴点P的坐标为(,0),过点A作x轴的垂线,过点C'作y轴的垂线,交于点D,则∠ADC'=90°,在Rt△AC'D中,AC'==,∴PA+PC1的最小值为.【点评】本题主要考查了利用轴对称变换作图以及最短距离问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.20.(10分)已知,△ABC和△DCE都是等边三角形,点B,C,E三点不在一条直线上(如图1).(1)求证:BD=AE;(2)若∠ADC=30°,AD=4,CD=5,求BD的长;(3)若点B,C,E三点在一条直线上(如图2),且△ABC和△DCE的边长分别为3和5,求AD的长.【分析】(1)根据等边三角形的性质和全等三角形的判定和性质解答即可;(2)根据等边三角形的性质和全等三角形的判定和性质以及勾股定理解答即可;(3)根据等边三角形的性质和全等三角形的判定和性质以及勾股定理解答即可.【解答】证明:(1)∵△ABC和△DCE是等边三角形,∴BC=AC,DC=EC,∠ACB=∠DCE=60°,∴∠ABC+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,在△BCD与△ACE中,,∴△BCD≌△ACE(SAS),∴BD=AE;(2)∵△DCE等式等边三角形,∴∠CDE=60°,CD=DE=5,∵∠ADC=30°,∴∠ADE=∠ADC+∠CDE=30°+60°=90°,在Rt△ADE中,AD=4,DE=5,∴,∴BD=;(3)如图2,过A作AH⊥CD于H,∵点B,C,E三点在一条直线上,∴∠BCA+∠ACD+∠DCE=180°,∵△ABC和△DCE都是等边三角形,∴∠BCA=∠DCE=60°,∴∠ACD=60°,∴∠CAH=30°,在Rt△ACH中,CH=AC=,AH=CH=,∴DH=CD﹣CH=5﹣,在Rt△ADH中,AD=.【点评】此题考查全等三角形的判定和性质,关键是根据等边三角形的性质、全等三角形的判定和性质解答.一、填空题(每小题4分,共20分)21.(4分)计算•(﹣)+•(﹣)的结果是5.【分析】利用因式分解得方法得到原式=(﹣)(+),然后利用平方差公式计算.【解答】解:原式=(﹣)(+)=()2﹣()2=8﹣3=5.故答案为5.【点评】本题考查了二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22.(4分)某小组数学综合练习得分如表:得分130 140 145人数 5 3 2 则该小组的平均得分是136分.【分析】根据算术平均数的计算公式列出算式,再进行计算即可得出答案.【解答】解:根据题意得:=136(分),答:该小组的平均得分是136分.故答案为:136.【点评】本题考查的是算术平均数的求法,熟练掌握运算公式是解题的关键.23.(4分)如图,线段AB,BC的垂直平分线l1,l2相交于点O,若∠B=50°,则∠AOC =100°.【分析】根据线段垂直平分线的性质和等腰三角形的性质即可得到结论.【解答】解:如图,连接OB,∵OD垂直平分AB,∴OA=OB,∴∠ABO=∠A,∴∠AOB=180°﹣2∠ABO,∵OE垂直平分BC,∴OC=OB,∴∠CBO=∠C,∴∠COB=180°﹣2∠CBO,∵∠AOB+∠BOC+∠AOC=360°,∴∠AOC=360°﹣(180°﹣2∠CBO+180°﹣2∠ABO)=2(∠CBO+∠ABO)=2∠ABC =2×50°=100°,故答案为:100°.【点评】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.24.(4分)如图,点A(﹣2,0),直线l:y=与x轴交于点B,以AB为边作等边△ABA1,过点A1作A1B1∥x轴,交直线l于点B1,以A1B1为边作等边△A1B1A2,过点A2作A2B2∥x轴,交直线l于点B2,以A2B2为边作等边△A2B2A3,则点A3的坐标是(,).【分析】先根据解析式求得B的坐标,即可求得AB=1,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的纵坐标为,A2的纵坐标为,A3的纵坐标为.【解答】解:∵直线l:y=x+与x轴交于点B,∴B(﹣1,0),∴OB=1,∵A(﹣2,0),∴OA=2,∴AB=1,∵△ABA1是等边三角形,∴A1(﹣,),把y=代入y=x+,求得x=,∴B1(,),∴A1B1=2,∴A2(﹣,+×2),即A2(﹣,),把y=代入y=x+,求得x=,∴B2(,),∴A2B2=4,∴A3(,+×4),即A3(,),故答案为:(,).【点评】本题主要考查了一次函数图象上点的坐标特征以及等边三角形的性质的运用,解决问题的关键是依据等边三角形的性质找出规律.25.(4分)如图,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB的顶点A在△ECD的斜边DE上,CD交AB于点F,若AE=,AD=2,则△ACF的面积为3﹣.【分析】连接BD,作FM⊥DE于M,FN⊥BD于N.想办法求出△ABC的面积.再求出FA与FB的比值即可解决问题.【解答】解:如图,连接BD,作FM⊥DE于M,FN⊥BD于N.∵∠ECD=∠ACB=90°,∴∠ECA=∠DCB,∵CE=CD,CA=CB,∴△ECA≌△DCB,∴∠E=∠CDB=45°,AE=BD=,∵∠EDC=45°,∴∠ADB=∠ADC+∠CDB=90°,在Rt△ADB中,AB==,∴AC=BC=,∴S△ABC=××=,∵FD平分∠ADB,FM⊥DE于M,FN⊥BD于N,∴OM=ON,∵====,∴S△AFC=×=3﹣,故答案为:3﹣.【点评】本题考查全等三角形的判定和性质、等腰直角三角形的性质、勾股定理、角平分线的性质等知识,解题的关键是学会利用面积法确定线段之间的关系,属于中考选择题中的压轴题.二、解答题(本大题有3个小题,共30分)26.(8分)某商场在二楼到一楼之间设有自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,甲离一楼地面的高度y甲(米)与下行时间x(秒)满足函数关系y=﹣x+6;乙走步行楼梯,乙离一楼地面的高度y乙(米)与下行时间x(秒)的函甲数关系如图所示.(1)求y乙关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面?【分析】(1)根据题意和图象,即可求y乙关于x的函数解析式;(2)根据已知条件,结合(1)即可说明甲、乙两人谁先到达一楼地面.【解答】解:(1)由图象可知:y乙是x的一次函数,设函数解析式为y乙=kx+b,由图象知:y乙=kx+b过(5,5)和(15,3),∴,解得,∴y乙关于x的函数解析式为y乙=﹣x+6;(2)令y甲=﹣x+6中y甲=0,则0=﹣x+6,得x=20,令y乙=﹣x+6中y乙=0,则0=﹣x+6;得x=30,∵20<30,甲先到达一楼地面.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.27.(10分)阅读理解:已知实数x,y满足3x﹣y=5…①,2x+3y=7…②,求x﹣4y和7x+5y 的值.仔细观察两个方程未知数的系数之间的关系,本题可以通过适当变形整体求得代数式的值,如由①﹣②可得x﹣4y=﹣2,由①+②×2可得7x+5y=19.这样的解题思想就是通常所说的“整体思想”.利用“整体思想”,解决下列问题:(1)已知二元一次方程组,则x﹣y=﹣1,x+y=5;(2)买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,求购买5支铅笔、5块橡皮5本日记本共需多少元?(3)对于实数x,y,定义新运算:x*y=ax+by+c,其中a,b,c是常数,等式右边是实数运算.已知3*5=15,4*7=28,求1*1的值.【分析】(1)由方程组的两式相减与相加即可得出结果;(2)设的消毒液单价为m元,测温枪的单价为n元,防护服的单价为p元,由题意列出方程组,即可得出结果;(3)由定义新运算列出方程组,求出a﹣b+c=﹣11,即可得出结果.【解答】解:(1),由①﹣②得:x﹣y=﹣1,①+②得:3x+3y=15,∴x+y=5,故答案为:﹣1,5;(2)设铅笔单价为m元,橡皮的单价为n元,日记本的单价为p元,由题意得:,由①×2﹣②得:m+n+p=6,∴5m+5n+5p=5×6=30,答:购买5支铅笔、5块橡皮5本日记本共需30元;(3)由题意得:,由①×3﹣②×2可得:a+b+c=﹣11,∴1*1=a+b+c=﹣11.【点评】本题考查了三元一次方程组的应用、定义新运算、“整体思想”等知识;熟练掌握“整体思想”,找出等量关系列出方程组是解题的关键.28.(12分)表格中的两组对应值满足一次函数y=kx+b,函数图象为直线l1,如图所示.将函数y=kx+b中的k与b交换位置后得一次函数y=bx+k,其图象为直线l2.设直线l1交y轴于点A,直线l1交直线l2于点B,直线l2交y轴于点C.x ﹣2 4y ﹣4 2 (1)求直线l2的解析式;(2)若点P在直线l1上,且△BCP的面积是△ABC的面积的(1+)倍,求点P的坐标;(3)若直线y=a分别与直线l1,l2及y轴的三个交点中,其中一点是另两点所成线段的中点,求a的值.【分析】(1)由待定系数法可求出答案;(2)过点B作BH⊥y轴于点H,则△ABH为等腰直角三角形,由三角形面积的比求出BP的长,分两种情况,由等腰直角三角形的性质可求出点P的坐标;(3)设直线y=a与直线l1,l2及y轴的交点分别为D,E,F,求出F(0,a),D(a+2,a),E(,a).分三种情况得出a的方程,解方程即可得出答案.【解答】解:(1)直线l1的解析式为y=kx+b,把(﹣2,﹣4),(4,2)分别代入得,,解得,∴直线l1的解析式为y=x﹣2,由题意可得直线l2的解析式为y=﹣2x+1.(2)令y=x﹣2中,x=0,则y=﹣2,故A(0,﹣2),令y=﹣2x+1中,x=0,则y=1,故C(0,1),过点B作BH⊥y轴于点H,则△ABH为等腰直角三角形,∴AH=BH=1,AB=,∴===1+,∴=1+,∴BP=(1+)•=2+,①过点P1作P1H1⊥y轴于H1,则△AP1H1为等腰直角三角形,∴AP1+,∴AP1=2,∴P1H1=,∴P1的横坐标为﹣,代入直线解析式得y=﹣2﹣,故P1(﹣,﹣2﹣);②过点P2作P2H2⊥y轴于H2,则△AP2H2为等腰直角三角形,∴AP2﹣=2+,∴AP2=2+2,∴P2H2==2+,∴P2的横坐标为2+,代入直线解析式得y=,故P2(2+,);综合以上可得点P的坐标为(﹣,﹣2﹣)或(2+,);(3)设直线y=a与直线l1,l2及y轴的交点分别为D,E,F,则F(0,a),令y=x﹣2中,y=a,则x﹣2=a,解得x=a+2,∴D(a+2,a),代入直线y=﹣2x+1中,则﹣2x+1=a,解得,x=,∴E(,a).①若点F是DE的中点时,D1F1=﹣a﹣2,E1F1=,∴﹣a﹣2=,解得a=﹣5;②若点D是EF的中点时,D2F2=a+2,E2F2=,∴2(a+2)=,解得a=﹣;③若点E是FD的中点时,D3F3=a+2,E3F3=,∴a+2=2×,解得a=﹣;综合以上可得,a的值为﹣5或﹣或﹣.【点评】此题属于一次函数综合题,考查了待定系数法,等腰直角三角形的性质,一次函数与坐标轴的交点,熟练掌握等腰直角三角形的判定与性质是解本题的关键.。

北师大版八年级上学期数学《期末考试试卷》含答案

北师大版八年级上学期数学《期末考试试卷》含答案
5.下列四个命题中,真命题有()
①两条直线被第三条直线所截,内错角相等.
②如果∠1和∠2是对顶角,那么∠1=∠2.
③三角形的一个外角大于任何一个内角.
④如果x2>0,那么x>0.
A.1个B.2个3个D.4个
[答案]A
[解析]
[分析]
利用平行线的性质、对顶角的性质、三角形的外角的性质分别判断后即可确定正确的选项.
(1) 分别写出当0≤x≤100和x>100时,y与x的函数关系式
(2) 利用函数关系式,说明电力公司采取的收费标准
(3) 若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用户该月用了多少度电?
25.如图,直线L:y=﹣ x+2与x轴、y轴分别交于A、B两点,在y轴上有一点N(0,4),动点M从A点以每秒1个单位的速度匀速沿x轴向左移动.
(1)点A 坐标:;点B的坐标:;
(2)求△NOM的面积S与M的移动时间t之间的函数关系式;
(3)在y轴右边,当t为何值时,△NOM≌△AOB,求出此时点M的坐标;
(4)在(3)的条件下,若点G是线段ON上一点,连结MG,△MGN沿MG折叠,点N恰好落在x轴上的点H处,求点G的坐标.
答案与解析
一、选择题(本大题共10小题,共30.0分)
11.已知一组数据x,1,2,3,5,它的平均数是3,则这组数据的方差是__.
12.若点M(a,﹣1)与点N(2,b)关于y轴对称,则a+b的值是_____
13.当m=_______时,函数y=(2m-1)X 是正比例函数.
14.如图,BD与CD分别平分∠ABC、∠ACB的外角∠EBC、∠FCB,若∠A=80°,则∠BDC=_______.
8.已知 和 是二元一次方程ax+by+3=0的两个解,则一次函数y=ax+b(a≠0)的解析式为

北师大版数学八年级上册期末考试试题含答案

北师大版数学八年级上册期末考试试题含答案

北师大版数学八年级上册期末考试试卷一、选择题(本题共15题,每题3分,共45分)1.下列长度的三条线段能组成直角三角形的是( ) A.a =1,b =2,c =3 B.a =2,b =3,c =4 C.a =2,b =4,c =5D.a =7,b =24,c =252.如图,一棵大树在一次强台风中在距地面5m 的C 处折断,倒下后树顶端着地点A 距树底端B 的距离为12m ,则这棵大树在折断前的高度为( )A.10 mB.17 mC.18 mD.20 m3.下列说法正确的是( )A.1的平方根是1B.1的算术平方根是1C.−2是2的平方根D.−1的平方根是−14.下列各式中,正确的是( ) A.±√9=3 B.√9=±3 C.√(−3)2=−3 D.√(−3)2=35.若√(a −3)2=a −3,则a 的取值范围是( )A.a >3B.a <3C.a ≥3D.a ≤3 6.在平面直角坐标系中,点M(−3, 2)关于y 轴对称的点的坐标为( )A.(3, 2)B.(3, −2)C.(−3, −2)D.(−3, 2)7.如图,若在中国象棋盘上建立平面直角坐标系,使“帅”位于点(−1, −1),“马”位于点(2, −1).则“兵“位于点( )A.(−1,2)B.(−3,2)C.(−3,1)D.(−2,3) 8.已知一次函数y =3x +2,函数图象上有两点A(−1, y 1)、B(2, y 2),则y 1与y 2的大小关系为( ) A.y 1<y 2 B.y 1>y 2 C.y 1=y 2 D.无法确定 9.若点P(1, 6)关于y 轴的对称点在一次函数y =(3k +2)x −1的图象上,则k 的值( ) A.−3B.−1C.1D.310.已知{x =1,y =1是关于x ,y 的二元一次方程2x −y =a 的解,那么a 的值为( )A.−1B.1C.2D.−2 11.若关于x ,y 的方程x m+2−y n−1=5是二元一次方程,则m +n 的值为( )A.1B.−1C.3D.−312.在我市举行的中学生春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:这些运动员跳高成绩的中位数和众数分别是( ) A.1.70,1.65B.1.70,1.70C.1.65,1.70D.3,413.在今年中小学全面落实“双减”政策后,小丽同学某周每天的睡眠时间为(单位:小时)8,9,7,9,7,8,8.则小丽该周每天的平均睡眠时间是( ) A.7小时 B.7.5小时 C.8小时 D.9小时 14.在△ABC 中, ∠A =38∘, ∠B =52∘,则△ABC 是( ) A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能15.如图,点D 是△ABC 的内心,∠A =70∘,则∠BOC 的度数为( )A.140∘B.135∘C.130∘D.125∘二、填空题(本题共5题,每题4分,共20分)16.已知直角三角形两边的长为3和4,则此三角形的周长为________. 17.−27的立方根是________; √81的平方根是________.18.若点P (a −2,3)与点Q (1,b +1)关于y 轴对称,则a +b =________. 19.直线y =kx +2过点(−1,4),则k 的值为________.20. {x =1,y =3是二元一次方程2x +ay =5的一个解,则a 的值为________.三、解答题(本题共8题,共85分)21.(10分)计算:(1)1+√83−√36 (2)−12+(π−3)0+√(−2)2−|√2−2|22.(10分)解下列方程组(1){4x −3y =17y =7−5x ; (2){5x −2y =42x −3y =−5.23.(10分)若|a −b +1|与√a +2b +4互为相反数,求(a −b )2020的值24.(10分)如图,在4×4的正方形网格中,每个小正方形的边长都为1.求:(1)△ABC的周长;(2)∠ABC度数.25.(10分)如图,EF // AD,∠1=∠2,∠BAC=70◦,将求∠AGD的过程填写完整.解:因为EF // AD,( )所以∠2=________.( )又因为∠1=∠2,( )所以∠1=∠3.( )所以AB//______( )所以∠BAC+________=180◦.( )因为∠BAC=70◦,( )所以∠AGD=________.26.(11分)如图,在直角坐标系中,A(−1,5),B(−3,0),C(−4,3).(1)在图中作出△ABC关于y轴对称的图形△A1B1C1.(2)写出点A1,B1,C1的坐标.27.(12分)如图,在平面直角坐标系中,直线l1:y=−x+2交x轴于点P,交y轴于点A,直线l2经过点P 和点B(0,−4)(1)求点P的坐标;(2)求直线l2的解析式;(3)已知直线l3经过点A,并且与x轴平行,若直线l3与l2交于点C,求△ABC的面积.28.(12分)某服装店用2600元购进A ,B 两种新型服装,按标价出售后可获得利润1600元,这两种服装的进价、标价如下表所示: (1)问:A ,B 两种服装各购进多少件?(2)如果A 型服装按标价的7折出售,B 型服装按标价的8折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?参考答案一、选择题1.D ;2.C ;3.B ;4.D ;5.C ;6.A ;7.B ;8.A ;9.A ;10.B ;11.A ;12.A ;13.C ;14.B ;15.D ;二、填空题16.【参考答案】12或7+√7 17.【参考答案】−3,±3 18.【参考答案】3 19.【参考答案】2 20.【参考答案】1三、解答题21.【参考答案】 解:(1)1+√83−√36=1+2−6−3;(2)−12+(π−3)0+√(−2)2−|√2−2|=−1+1+2−[−(√2−2)]=2+√2−2=√222.【参考答案】解:(1){4x −3y =17,①y =7−5x,②将②代入①得 4x −3(7−5x )=17, 解得x =2, 将x =2代入②,得 y =7−5×2, 解得y =−3,∴原方程组的解为{x =2,y =−3.(2){5x −2y =4,①2x −3y =−5,②①×3,得15x −6y =12③, ②×2,得4x −6y =−10④,③−④,得(15x −6y )−(4x −6y )=12−(−10), 解得x =2,将x =2代入①,得2×5−2y =4, 解得y =3,∴原方程组的解为{x =2,y =3.23.【参考答案】解:根据题意得:{a −b +1=0,a +2b +4=0,解得:{a =−2,b =−1,则(a −b)2020=(−1)2020=1. 故答案为:1.24.【参考答案】(1)AB =√42+22=2√5BC =√22+12=√5 AC =√32+42=5△ABC 的周长=2√5+√5+5=3√5+5 (2)∵AC 2=25,AB 2=20,BC 2=5∴AC 2=AB 2+BC 2 ∴∠ABC =90∘25.【参考答案】解:因为EF // AD ,(已知)所以∠2=∠3.(两直线平行,同位角相等) 又因为∠1=∠2,(已知) 所以∠1=∠3.(等量代换)所以AB // DG .(内错角相等,两直线平行)所以∠BAC +∠AGD =180◦.(两直线平行,同旁内角互补) 因为∠BAC =70◦,(已知) 所以∠AGD =110◦. 26.【参考答案】 解:(1)如图所示:(2)A 1(1,5),B 1(3,0), C 1 (4,3).27.【参考答案】解:(1)对于直线y =−x +2,当y =0时, −x +2=0,解得x =2,(2分)∴ .点P (2,0);(1分)(2)设直线l 2的解析式为y =kx +b :直线y =kx +b 过点P (2,0)、点B (0,−4) ∴ {0=2k +b −4=b ,解得{k =2b =−4.(2分)∴ 直线l 2的解析式为y =2x −4.(1分)(3)直线y =−x +2与y 轴交点A (0,2),(1分) 如图,直线l 3经过点A (0,2),并且与x 轴平行,∴ △ABC 是直角三角形,且∠BAC =90∘;(1分) 对于直线y =2x −4,当y =3时, 2=2x −4 ,解得x =3 ∴ 点C (3,2)∴ AC =3,AB =OA +OB =6.(1分) ∴ S △ABC =12AB ⋅AC =12×6×3=9.(1分)28.【参考答案】A 型服装购进10件,B 型服装购进20件 服装店比按标价出售少收入940元。

北师大版数学八年级上学期《期末检测题》含答案解析

北师大版数学八年级上学期《期末检测题》含答案解析
7.若直线y=kx+b图象如图所示,则直线y=−bx+k的图象大致是( )
A. B. C. D.
[答案]A
[解析]
[分析]
根据一次函数y=kx+b的图象可知k>0,b<0,再根据k,b的取值范围确定一次函数y=−bx+k图象在坐标平面内的位置关系,即可判断.
[详解]解:∵一次函数y=kx+b的图象可知k>0,b<0,
如图,直线 的函数关系式为 ,且 与 轴交于点A,直线 经过点B(2,0),C(-1,3),直线 与 交于点D.
(1)求直线 的函数关系式;
(2)求△ABD的面积.
(3)点P是 轴上一动点,问是否存在一点P,恰好使△ADP为直角三角形?若存在,直接写出点P 坐标;若不存在,请说明理由.
答案与解析
一、选择题(每小题3分,共30分)
C.因为62+82=102,故是勾股数.故此选项正确;
D.因为52+62≠72,故不是勾股数,故此选项错误.
故选C.
[点睛]本题考查了勾股数的判定方法,比较简单,首先看各组数据是否都是正整数,再检验是否符合较小两边的平方和=最大边的平方.
2.在下列各数: 、0.2、-π、 、 、 中无理数的个数是()
A. B. C. D.
6.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的( )
A.平均数B.中位数C.众数D.方差
7.若直线y=kx+b图象如图所示,则直线y=−bx+k的图象大致是( )
1.下列各组数中,属于勾股数的是()
A.1, ,2B.1.5,2,2.5C.6,8,10D.5,6,7
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(北师大版)八年级数学上学期期末试卷一、耐心填一填(每小题2分,共20分)1.若无理数a 满足14a <<,请写出一个你熟悉的无理数a : .2.如图14、26分别为所在正方形的面积,则图中字母A 所代表的正方形的面积A= .3.一个正方体的体积比棱长为5 cm 的正方体的体积小98 cm 3,则这 个正方体的棱长是 cm .4.比较大小:8110-_____41. 5.观察如图所示的变化规律,在空白处填上适当的图形.6.如图菱形花坛ABCD 的边长为6米, 60=∠B ,其中由两个正六边形组成的图形部分种花,则种花部分的图形的周长为 .7.点P (—5,1)沿x 轴正方向平移2个单位长度,再向y 轴负方向平移一个单位长度后,点的坐标为_________.8:若实数x , y 满足0)2(2=-+-y y x ,则x y 的值为________.9.已知一种数据为-3,6,-3,6,13,20,6,1,这组数据的众数是_________.10.下列每个图案都是若干个棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有n 个棋子,每个图案的棋子总数为s ,按下图的排列规律推断s 与n 之间的关系可以用式子________来表示.二、精心选一选(每小题3分,共30分)11.在给出的一组数13.2,722,9,14.3,7,3.03--中,无理数有 ( )A .1个B .2个C .3个D .5个12.下列各式中计算正确的是 ( )A .93=±B .2(3)3-=-C .33(3)3-=±D .3273= 13.钟表上的分针和时针经过40分钟,分针和时针旋转的角度分别是 ( )A .40°和20°B .240°和20°C .240°和40°D .40°和40°14.小明的爸爸买了一部29英寸(74厘米)的电视机,下列对29英寸的说法中正确的是 ( )A .小明认为指的是荧屏的长度B .妈妈认为指的是荧屏的宽度C .爸爸认为指的是荧屏的周长D .售货员认为指的是荧屏对角线的长度15.将三角形三个顶点的横坐标都乘以2,纵坐标不变,则所得三角形与原三角形的关系是( )A .将原图向左平移两个单位B .与原点对称C .纵向不变,横向拉长为原来的二倍D .关于y 轴对称16.已知⎩⎨⎧==12y x 是方程组⎩⎨⎧=+=-51by x by ax 的解,则a 、b 的值分别为 ( )14 26AAB C DA B C D E A .2 , 7 B .-1 , 3 C .2 , 3 D .-1 , 7 17.某市自来水公司欲调整价格:现行居民用水1.8元/m 3,调整后月用水量少于30m 3,价格为2.3元/m 3;超过部分2.5元/m 3,则调整后用水量x 与应缴水费y (元)的函数图象是 ( )18.对于函数y=2x -1,当自变量增加m 时,相应的函数值增加 ( ) A .2m B .2m -1 C .m D .2m +119.把16个数据分成3组,若第一组4个数的平均数是18,第二组5个数的平均数是14,第三组7个数的平均数是20,那么这16个数的平均数是 ( )A .17.33B .18.5C .17.625D .16.520.等腰梯形ABCD 中,底AD=5,BC=8,腰AB=6,且AB//DE, 则ΔDEC 的周长是( )A .3B .12C .15D .19 三、细心算一算(21~22每题5分,23~24每题6分,共22分)21.解方程组⎩⎨⎧=+=+1743132y x y x22.虹胜广场要建一个占地面积4000平方米的花园,现有两种方案:一种是建正方形花园,一种是建圆形花园,如果你是设计者,你能估算出两种花园的围墙有多长吗?(误差小于1米)如果你是投资者,你会选择那种方案?为什麽? 23:旅客乘车按规定可以随身携带一定重量的行李,如果超过规定,则需要购买行李票,设行李费y (元)与行李重量x(千克)的一次函数关系如图,根据图象回答下列问题: (1)行李重量在多少千克以内,不必交费? (2)当行李重量60千克时,交费多少元?(3)当行李重量多少千克时,交费10元? (4)行李重量每增加1千克,多交多少元? (5)求y 与x 之间的函数关系式.x (千克) y (元) 30 60 90 5 10O x y O 50 30 x y O 50 30 x y O 50 30 x y O50 30 D . C . B . A . ①②24.某中学为了了解全校的耗电情况,抽查了10天中每天的耗电量数据如下表 (1) 写出上表中数据的众数和平均数;(2) 由上题获得的数据,估计该校一个月的耗电量(按30天计算);(3) 若当地每度电的价格是0.5元,写出该校应付电费y(元)与天数x (x 取正数,单位:天)之间的函数关系式。

四、用心想一想25.已知:ΔABC 中DF//AC , EF//AB , AF 平分BAC .(1) 你能判断四边形ADFE 是菱形吗?说明理由。

(2) ΔABC 满足什麽条件时,四边形ADFE 是正方形?26.某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元。

经粗略加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家农工商公司收获这种蔬菜140吨,该公司的加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季节条件的限制,公司必须在15天之内将这批蔬菜全部加工或加工完毕,为此公司研制了三种加工方案,方案一:将蔬菜全部进行粗加工;方案二:尽可能多的对蔬菜进行精加工,没有来得及加工的蔬菜在市场上全部销售。

方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工并恰好在15天完成,你认为选择哪种方案获利最多?为什么?度数(度) 90 93 102 113 114 120 天数(天) 1 1 2 3 1 2B C D EFO Pxy P五、操作与探究 27.在直角坐标系中,横、纵坐标都为整数的点叫做整点.设坐标轴的单位长为1cm ,整点P 从原点O 出发,速度为1cm/秒,且点P 只能向上或向右运动.请回答下列问题: (1)填表: P 从O 出发的时间 可以得到的整点的坐标 可以得到的整点的个数1秒 (0,1)、(1,0)2 2秒 (2,0)、(0,2)、( )3 3秒 (3,0)、(2,1)、(0,3)、( )4秒时,可得到的整点个数是 个;(3)当点P 从O 点出发 秒时,可得到整点(10,5);(4)当点P 从点O 出发30秒时,整点P 恰好在直线y =2x -6上,请求P 点坐标.第5页 共5页参考答案及评分标准三、计算题21.解 (1)⨯3-(2)⨯2得31-=y …………………………………………… 3分代入(1)得47=x …………………………………………… 5分所以方程组的解为⎩⎨⎧-==3147y x …………………………………………… 6分22.解:正方形:边长=2.631020≈ 周长=252.8 ………………………… 2分 圆:半径=35.7 周长=224.1………………………………………… 4分 所以 选择圆形图案 …………………………………………… 6分 23.解:(1)行李重量在30千克以内,不必交费. …………………………1分 (2)当行李重量60千克时,交费5元. ………………………… 2分 (3)当行李重量90千克时,交费10元. …………………………3分 (4)行李重量每增加1千克,多交61元. ………………………… 4分(5)设b kx y +=,根据题意,可得方程组⎩⎨⎧+=+=bk bk 605300解得61=k ,5-=b 所以561-=x y …………………………………………… 6分24.解:(1)众数是113. ……………………………………………1分平均数=()2120111431132102193190101⨯+⨯+⨯+⨯+⨯+⨯ =108 …………………………………………… 3分 (2)324010830=⨯(度) …………………………………………… 4分 (3)x y 54= ……………………………………………………… 6分 25.(1)能判断四边形ADEF 是菱形因为:DF//AC,EF//AB ,所以四边形ADEF 为平行四边形又AF 平分BAC ∠,所以BAF ∠=FAC ∠,所以DAF ∠=DFA ∠ 所以AD=DF,所以四边形ADEF 是菱形 (2) 90=∠A26.解: 方案一获利为:4500⨯140=630000(元)方案二获利为()()7250005000675000564010001567500=+=⨯-⨯+⨯⨯(元) 方案三获利如下:设将x 吨进行精加工,y 吨进行粗加工,则得⎪⎩⎪⎨⎧=+=+510614y x y x 解得⎩⎨⎧==8060y x 方案三获利为810000804500607500=⨯+⨯(元)第三种方案获利最多. 27.(3)当点P 从点O 出发10秒时,可得到的整点个数是 11 个; (4)当点P 从O 点出发 15 秒时,可得到整点(10,5); (5)设P 点坐标为(x , y ),则有x + y =30,)18,12(18126230点坐标为即得由P y x x y y x ⎩⎨⎧==⎩⎨⎧-==+.。

相关文档
最新文档