相交线与平行线测试题

合集下载

平行线与相交线单元测试题

平行线与相交线单元测试题

平行线与相交线单元测试题一、选择题(每题2分,共10分)1. 平行线的定义是什么?A. 永远不会相交的直线B. 相交于一点的直线C. 垂直于同一条直线的直线D. 相交于一个点但角度不同的直线2. 如果两条直线相交,它们的角度和是多少度?A. 90度B. 180度C. 360度D. 45度3. 以下哪项不是平行线的性质?A. 平行线在任何地方都不相交B. 平行线之间的距离处处相等C. 平行线可以相交D. 通过平行线之一可以画出无数条平行线4. 两条平行线被第三条直线所截,所形成的内错角的特点是?A. 内错角相等B. 内错角互补C. 内错角和为90度D. 内错角和为180度5. 同位角的定义是什么?A. 两条平行线被第三条直线所截,同侧的角B. 两条直线相交形成的角C. 两条平行线被第三条直线所截,异侧的角D. 两条直线相交形成的同侧角二、填空题(每题2分,共10分)6. 当两条直线相交时,它们形成的角中,____角相等。

7. 如果两条直线相交,且其中一个角是90度,则这两条直线是____。

8. 平行线之间的距离在任何地方都是____。

9. 两条平行线被第三条直线所截,同旁内角的和是____。

10. 如果两条直线相交,且其中一个角是锐角,则这个角的对顶角是____。

三、判断题(每题1分,共5分)11. 平行线永远不会相交。

()12. 垂直线是相交线的一种特殊形式。

()13. 两条平行线之间的夹角总是90度。

()14. 同旁内角互补,即它们的和为180度。

()15. 如果两条直线相交形成的角是钝角,那么这个角的对顶角是锐角。

()四、简答题(每题5分,共10分)16. 解释什么是“对应角”,并给出一个例子。

17. 描述如何使用三角板来测量两条直线是否平行。

五、计算题(每题5分,共10分)18. 如果两条平行线被一条直线所截,形成的内错角分别为40度和140度,请计算同旁内角的度数。

19. 在一个直角三角形中,如果一个锐角是30度,求另一个锐角的度数。

相交线与平行线单元测试题(含答案)

相交线与平行线单元测试题(含答案)

相交线与平行线一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,共24分)1.在下面各图中,∠1与∠2是对顶角的是()A.B.C.D.2.如图,直线a、b相交于点O,若∠1=30°,则∠2等于()A.60°B.30°C.140°D.150°3.如图,直线a,b相交于点O,若∠1=40°,则∠2=()A.40°B.50°C.60°D.140°4.如图,点P在直线l外,点A,B在直线l上,PA=3,PB=7,点P到直线l的距离可能是()A.2 B.4 C.7 D.85.如图,直线a∥b,∠1=50°,则∠2的度数为()A.40°B.50°C.55°D.60°6.如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b.理由是()A.连接直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.经过直线外一点,有且只有一条直线与这条直线平行7.如图,已知ON丄a,OM丄a,所以OM与ON重合的理由是()A.两点确定一条直线B.经过一点有且只有一条线段垂直于己知直线C.过一点只能作一条垂线D.垂线段最短8.如图,直线AB∥CD,∠A=70°,∠E=30°,则∠C等于()A.30°B.40°C.60°D.70°二、填空题(本大题共6小题,每小题3分,共18分)9.如图所示,在铁路旁边有一李庄,现要建一火车站,为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:.10.如图,已知O是直线AB上一点,∠1=30°,OD平分∠BOC,则∠2=.11.如图,直线AB、CD相交于点O,EO⊥AB,∠AOC=25°。

七年级下册地理相交线和平行线测试题

七年级下册地理相交线和平行线测试题

七年级下册地理相交线和平行线测试题一、选择题1. 在地理上,经线是指连接 __A__。

A. 两极的虚线B. 东西两极的实线C. 东西之间的实线D. 东北、东南、西北、西南之间的实线2. 下列哪些线是地图上的纵线 __C__。

A. 赤道线B. 天空线C. 经线D. 纬线3. 世界由多少个纬线构成 __B__。

A. 1个B. 180个C. 360个D. 720个4. 经线和纬线在地球上形成了一种 __D__。

A. 直线关系B. 弧线关系C. 分叉关系D. 网格关系5. 在地理上,纬线是指连接 __C__。

A. 北极的实线B. 南极的虚线C. 东西两极的实线D. 东西之间的实线二、判断题1. 世界地图上的纬线和经线是相交的。

__X__2. 纬线是指连接东西两极的线。

__X__3. 地图上的经线比纬线多。

__X__三、填空题1. 地理上经线的最大称号是 __经线的圈__2. 纬线的最大称号是 __纬线的圈__四、简答题1. 解释纬线和经线的作用。

答:纬线和经线在地理上主要用来确定地球的位置和导航。

纬线垂直于经线,横跨地球表面,并表示地球表面的纬度。

纬线以赤道为基准,南北分布,帮助人们确定地球上不同地区的纬度。

而经线则是连接地球两极的线,纵向分布,辅助人们确定地球上不同地点的经度。

2. 世界地图上的纬线和经线为什么被称为相交线和平行线?答:纬线和经线在地球上形成了网格状的关系。

纬线相互平行,以赤道为基准,平行地包围着地球。

而经线则从一个极点穿过另一个极点,在地球上形成相交的关系。

这种相交和平行的关系使纬线和经线分别被称为相交线和平行线。

人教版数学七年级下册 第五章《相交线与平行线》测试试题(含答案)

人教版数学七年级下册 第五章《相交线与平行线》测试试题(含答案)

第五章《相交线与平行线》测试题一、单选题(每小题只有一个正确答案)1.在下图中,∠1,∠2是对顶角的图形是( )A .B .C .D .2.已知1∠与2∠互为补角,1120∠=︒,则2∠的余角的度数为( )A .30°B .40︒C .60︒D .120︒3.如图,不能判断12//l l 的条件是( )A .13∠=∠B .24180∠+∠=︒C .45∠=∠D .23∠∠=4.下列图案中,可以利用平移来设计的图案是( )A .B .C .D .5.如图所示,有下列五种说法:①∠1和∠4是同位角;②∠3和∠5是内错角;③∠2和∠6旁内角;④∠5和∠2是同位角;⑤<1和∠3是同旁内角;其中正确的是( )A .①②③④B .①②③④C .①②③④⑤D .①②④⑤6.如图,点E 在AD 的延长线上,下列条件中能判断BC∥AD 的是( )A .∠3=∠4B .∠A +∠ADC =180° C .∠1=∠2D .∠A =∠57.如图,计划把河水引到水池A 中,可以先引AB ⊥CD ,垂足为B ,然后沿AB 开渠,则能使所开的渠最短,这样设计的依据是( )A .垂线段最短B .两点之间,线段最短C .两点确定一条直线D .两点之间,直线最短8.如图,已知AB CD ∥,BE 平分ABC ∠,150CDE ∠=︒,则C ∠=( )A .105︒B .120︒C .130︒D .150︒9.命题:①对顶角相等;②垂直于同一条直线的两条直线平行;③相等的角是对顶角;④同位角相等.其中错误的有( )A .1个B .2个C .3个D .4个10.如图,若∠1=∠2,则下列选项中可以判定AB ∥CD 的是( )A .B .C .D .11.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )A .40°B .50°C .60°D .70°12.如图,若AB∥CD,CD∥EF,那么∠BCE=( )A .∠1+∠2B .∠2-∠1C .180°-∠1+∠2D .180°-∠2+∠1二、填空题13.如图,直线,AB CD 相交于点O ,OA 平分EOC ∠,:2:3EOC EOD ∠∠=,则BOD ∠=________°.14.如图,直线AB 、CD 相交于点O ,OE AB ⊥于点O ,且50COE ∠=︒,则BOD ∠=________.15.小泽在课桌上摆放了一副三角板,如图所示,得到________∥________,依据是________.16.如图,一条公路两次转弯后,和原来的方向相同.如果第一次的拐角∠A 的度数为130°,第二次拐角∠B 的度数为______.三、解答题17.如图,1∠和2∠互为补角,A D ∠=∠,求证://AB CD .请根据条件进行推理,得出结论,并在括号内注明理由.证明:∵1∠和2∠互为补角(已知),∴12180∠+∠=︒(补角定义).又1CGD ∠=∠( ),∴2180CGD ∠+∠=︒(等量代换).∴//AE ( ).又∵A D ∠=∠(已知),∴D ∠=∠ .( )∴//AB CD .( ).18.如图,OA ⊥OB ,OC ⊥OD ,∠BOC =28°,求∠AOD 的度数.19.已知:如图,在△ABC 中,CD ⊥AB 于点D ,E 是AC 上一点且∠1+∠2=90°.求证:DE ∥BC .20.如图,∠ADC=∠ABC,BE 、DF 分别平分∠ABC、∠ADC、且∠1=∠2.(1)求证:AB∥CD.(2)求证:∠A=∠C.21.如图,已知,A ADE C E ∠=∠∠=∠.(1)若3,EDC C ∠=∠求C ∠的度数;(2)求证://BE CD .22.如图所示,已知//,80,140AB DE ABC CDE ︒︒∠=∠=,求BCD ∠的度数.23.如图,已知∠A = ∠C,∠E=∠F,试说明AB∥CD.参考答案1.B2.A3.D4.D5.D6.C7.A8.B9.C10.D11.D12.D13.36 14.40︒ 15.AC ∥DF 内错角相等 两直线平行 16.130°17. 证明:∵1∠和2∠互为补角(已知),∴12180∠+∠=︒(补角定义).又1CGD ∠=∠( 对顶角相等 ),∴2180CGD ∠+∠=︒(等量代换).∴//AE FD ( 同旁内角互补,两直线平行 ).又∵A D ∠=∠(已知),∴D ∠=∠ BFD .( 两直线平行,同位角相等 )∴//AB CD .( 内错角相等,量直线平行 ).18. 解:∵OC ⊥OD ,∠BOC =28°,∴∠BOD =90BOC ︒-∠=62°,∵OA ⊥OB ,∴∠AOB =90°,∴∠AOD =∠BOD +∠AOB =62°+90°=152°.19. 解:证明:∵CD ⊥AB (已知),∴∠1+∠3=90°(垂直定义).∵∠1+∠2=90°(已知),∴∠3=∠2(同角的余角相等).∴DE ∥BC (内错角相等,两直线平行).20. 证明:(1)∵BE、DF 平分∠ABC、∠ADC ∴112322ABC ADC ,∠=∠∠=∠ ∵∠ABC=∠ADC,∴∠2=∠3∵∠1=∠2,∴∠1=∠3,∴AB∥CD;(2)由(1)得AB∥CD∴∠A+∠ADC=180°,∠C+∠ABC=180°∵∠ADC=∠ABC,∴∠A=∠C.21.解:(1)A ADE∠=∠Q,∴,//ED AC∴∠+∠=︒.180EDC CQ,∠=∠EDC C3∴∠+∠=︒,3180C C∴∠=︒;45C(2)A ADE∠=∠Q,∴,//ED AC∴∠=∠.ABE E∠=∠Q,C E∴∠=∠,ABE C∴.//BE CD22.解:延长ED交BC于M.因为AB∥DE,∠ABC=80°,所以∠BMD=∠ABC=80°,因为∠CDE =140°,所以∠MDC=180°-140°=40°.在△CDM中,∠BMD=∠C+∠MDC,所以∠BCD =∠BMD-∠MDC=80°-40°=40°.23.证明:∵∠E=∠F,∴AE∥CF,∴∠A=∠ABF,∵∠A=∠C,∴∠ABF=∠C,∴AB∥CD.。

相交线与平行线单元测试题含答案

相交线与平行线单元测试题含答案

相交线与平行线单元测试题含答案相交线与平行线单元测试题一、选择题1、下列说法正确的是() A. 相交的两条直线一定有一个交点 B. 同位角相等 C. 两直线平行,对角线一定相等 D. 相等的两个角一定是对顶角2、以下不能说明直线AB与CD平行的是() A. AB//CD,A与B在同一方向,C与D在同一方向 B. $\angle 3 = \angle 4$ C. $\angle A = \angle C$ D. $\angle A + \angle B = 180^{\circ}$,$\angleC + \angleD = 180^{\circ}$3、下列说法正确的是() A. 过一点有且只有一条直线与已知直线平行 B. 两直线平行,同位角相等 C. 内错角相等,两直线平行 D. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行4、下列说法正确的是() A. 两条直线被第三条直线所截,同位角相等 B. 相等的两个角是对顶角 C. 两直线平行,同旁内角互补 D. 互补的两个角不一定是邻补角5、下列说法正确的是() A. 同位角相等 B. 互补的角是邻补角 C. 两直线平行,同旁内角相等 D. 两直线平行,内错角相等二、填空题1、同一平面内,如果两条直线都与第三条直线平行,那么这两条直线互相________,简述为________.2、两直线平行,同位角________;两直线平行,内错角________;两直线平行,同旁内角________.3、两条直线的位置关系有________、________.4、若三条直线两两相交,则共有________个交点.5、在同一平面内,若两直线都垂直于第三条直线,那么这两条直线________.6、如图所示,若$\angle A + \angle B = 180^{\circ}$,$\angle A = \angle D$,则$\angle B =$________.7、如图所示,若$\angle A = \angle B$,则$\angle C =$________.8、如图所示,若$\angle A + \angle B = 90^{\circ}$,$\angle B + \angle C = 90^{\circ}$,则$\angle A =$________.9、若一个角的两边分别和另一个角的两边分别平行,则这两个角的关系是________.10、如图所示,若AB//CD,则$\angle A + \angle B + \angle C=$________.三、解答题1、已知两条平行线被第三条直线所截,则形成的同位角的数量是多少?这些同位角还具有什么性质?2、利用所给图形探究规律。

人教版七年级数学下册第五章相交线与平行线单元检测卷(共6套)

人教版七年级数学下册第五章相交线与平行线单元检测卷(共6套)

第五章相交线与平行线单元检测卷一、选择题1.如图,三条直线相交于点O,则∠1+∠2+∠3等于( )A.90°B.120°C.180°D.36002. 如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1 B.2 C.3 D.43. 如图,∠1=70°,∠2=70°,∠3=60°,则∠4的度数等于( )A.80°B.70°C.60°D.50°4.下列图形中,能将其中一个三角形平移得到另一个三角形的是A. B.C. D.5.如图,直线AB,CD相较于点O,OE⊥AB于点O,若∠BOD=40°,则下列结论不正确的是( )A.∠AOC=40°B.∠COE=130°C.∠EOD=40°D.∠BOE=90°6.如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是( )A.∠1=∠2 C.∠3+∠4=180°B.∠3=∠4 D.∠1+∠4=180°7.如图,点A在直线BG上,AD∥BC,AE平分∠GAD,若∠CBA=80°,则( )A.60°B.50°C.40°D.30°8.下列各图中,∠1与∠2互为邻补角的是( )9.对于图中标记的各角,下列条件能推理得到a∥b的是()A.∠1=∠2 B.∠2=∠4 C.∠3=∠4 D.∠1+∠4=18010.下列说法正确的是( )A.一个角的补角一定比这个角大B.一个角的余角一定比这个角小C.一对对顶角的两条角平分线必在同一条直线上D.有公共顶点并且相等的两个角是对顶角二、填空题11.如图,直线AB,CD相交于点O, EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为______.12. 如图是由五个形状、大小完全相同的三角形组成的图案,三角形的三个角分别为36°,72°,72°,则图中共有_____对平行线.13.如图,,则的度数等于14.如图,点0是直线AB上一点平分,图中与互余的角有______ .图中与互补的角有______ .15. 说明命题“x>-4,则x2>16”是假命题的一个反例可以是x=____________.16.如图,现要从村庄A修建一条连接公路PQ的最短小路,过点A作AH⊥PQ于点H,沿AH修建公路,则这样做的理由是三、解答题17.如图,直线AB,CD 相交于点O,∠AOD=3∠BOD+20°.(1)求∠BOD的度数;(2)以O为端点引射线OE,OF ,射线OE平分∠BOD,且∠EOF= 90°,求∠BOF的度数.18.已知:如图,AB∥CD,∠1=∠2,∠3=∠4.(1)求证:AD∥BE;(2)若∠B=∠3=2∠2,求∠D的度数.19.如图,D,E,F是线段AB的四等分点.(1)过点D画DH∥BC交于点H,过点E画EG∥BC交AC于点G,过点F画FM∥BC交AC 于点M;(2)量出线段AH,HG,GM,MC的长度,你有什么发现?(3)量出线段HD,EG,FM,BC的长度,你又有什么发现?20.请写出命题“两直线平行,同位角相等”的题设和结论:题设:,结论:.21.观察下图,寻找对顶角:(1)如图1,图中共有对对顶角(2)如图2,图中共有对对顶角(3)如图3,图中共有对对顶角(4)若有n条直线相交于一点,则可形成多少对对顶角?22.如图,已知直线AB∥DF,∠D+∠B=180°.(1)试说明DE∥BC;(2)若∠AMD=75°,求∠AGC的度数.【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

相交线与平行线测试题

相交线与平行线测试题

相交线与平行线测试题一、选择题1. 以下哪一条不是相交线的特征?A. 相交线在平面内相交于一点B. 相交线可以是曲线C. 相交线相交后形成4个角D. 相交线相交后,对角线相等2. 平行线的定义是什么?A. 永远不会相交的直线B. 相交于一点但不是直线C. 相交于两点的直线D. 永远不会相交的曲线3. 以下哪个条件不能保证两直线平行?A. 同位角相等B. 内错角相等C. 同旁内角互补D. 两条直线相交4. 如果两条直线相交,它们可以形成多少个角?A. 1个B. 2个C. 4个D. 无数个5. 平行线的性质中,以下哪一项是错误的?A. 平行线之间的距离处处相等B. 平行线永远不会相交C. 平行线可以是曲线D. 平行线相交于无穷远处二、填空题6. 两条直线相交所形成的角中,如果两个角是内错角,那么这两个角的关系是________。

7. 如果两条直线相交,其中一个角是锐角,那么它的对角是________。

8. 平行线的性质之一是,如果两条平行线被一条横截线所截,那么同位角相等,内错角相等,同旁内角的和为________。

9. 两条平行线之间的距离是指________。

10. 如果两条直线是平行的,那么它们之间的夹角是________。

三、简答题11. 解释“内错角”和“同旁内角”的定义,并给出它们在平行线中的性质。

12. 描述如何使用“同位角”来证明两条直线是平行的。

13. 如果两条直线相交,它们形成的角有哪些可能的组合?请列举所有情况。

四、计算题14. 在平面直角坐标系中,直线L1的方程为 y = 2x + 3,直线L2的方程为 y = -x + 5。

求这两条直线的交点坐标。

15. 如果两条平行线在y轴上的距离为5,且一条直线的方程为 y =3x + 7,求另一条平行线的方程。

五、证明题16. 给定两条直线AB和CD,已知AB平行于CD,且AB与CD之间的距离为10。

如果AB上的点E到CD的距离为8,求点E到与AB平行且与CD相交的直线的距离。

相交线与平行线经典测试题含答案

相交线与平行线经典测试题含答案
故选择B.
【点睛】
本题综合考查了平行线的判定及性质.
5.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()
A.65°B.115°C.125°D.130°
【答案】B
【解析】
试题分析:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选B.
∴∠1=60°,
故选:B.
【点睛】
此题考查平行线的性质,三角板的知识,熟记性质是解题的关键.
8.如图, , ,则 ()
A. B. C. D.
【答案】C
【解析】
【分析】
首先证明a∥b,再根据两直线平行同位角相等可得∠3=∠6,再根据对顶角相等可得∠4.
【详解】
解:∵∠1+∠5=180°,∠1+∠2=180°,
B、∵∠3=∠4,∴AB∥CD(内错角相等,两直线平行),故B能判断;
C、∵∠ABD=∠BDC,∴AB∥CD(内错角相等,两直线平行),故C能判断;
D、∵∠ABC+∠BCD=180°,∴AB∥CD(同旁内角互补,两直线平行),故D能判断,
故选A.
【点睛】
本题考查了平行线的判定.掌握同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解题的关键.
【详解】
解:∵AB=AC,∠A=36°,
∴∠ABC=∠C=72°,
∵BD平分∠ABC,
∴∠ABD=∠DBC=36°,
∴∠BDC=180°﹣36°﹣72°=72°,

相交线与平行线单元测试题

相交线与平行线单元测试题

相交线与平行线单元测试题一、选择题(每题2分,共20分)1. 下列说法中,正确的是:A. 经过直线外一点,有且只有一条直线与已知直线平行B. 经过直线外一点,有且只有一条直线与已知直线相交C. 经过直线外一点,可以画无数条直线与已知直线平行D. 经过直线外一点,可以画无数条直线与已知直线相交2. 如果两直线相交,那么它们相交所成的角是:A. 锐角B. 直角C. 钝角D. 任意角3. 两条直线被第三条直线所截,如果同侧的内错角相等,那么这两条直线:A. 平行B. 相交C. 垂直D. 无法判断4. 平行线的性质中,下列说法不正确的是:A. 平行线之间的距离处处相等B. 平行线永不相交C. 两条平行线可以确定一个平面D. 平行线之间的夹角是锐角5. 对于两条平行线,下列说法正确的是:A. 它们之间的距离在任何地方都是相同的B. 它们可以相交C. 它们之间的夹角可以是任意角D. 它们可以确定一个平面二、填空题(每题2分,共10分)6. 如果两条直线相交成直角,则称这两条直线互相______。

7. 两条直线相交,如果其中一个角是锐角,则其他三个角分别是______。

8. 平行线之间的距离是指______。

9. 两条直线相交所成的角中,最大的角是______。

10. 如果两条直线被第三条直线所截,那么内错角相等的条件是这两条直线______。

三、判断题(每题1分,共10分)11. 两条直线相交所成的角都是锐角。

()12. 平行线在任何地方的距离都是相等的。

()13. 两条直线相交,形成的对顶角相等。

()14. 两条平行线之间的夹角是直角。

()15. 如果两条直线被第三条直线所截,同位角相等,则这两条直线平行。

()四、简答题(每题5分,共20分)16. 解释什么是“同位角”、“内错角”和“同旁内角”,并说明它们在判断两条直线是否平行时的作用。

17. 描述如何使用直角三角板来检验两条直线是否平行。

18. 给出两条直线相交的几何图形,并说明如何确定它们相交所成的角的大小。

相交线与平行线测试题及答案

相交线与平行线测试题及答案

相交线与平行线测试题及答案1. 单选题:在平面上,两条互相垂直的直线称为()。

A. 平行线B. 垂直线C. 相交线D. 对称线答案:B. 垂直线2. 单选题:下面哪种说法是正确的?A. 平行线永远不会相交B. 相交线永远不会平行C. 平行线和相交线可以同时存在D. 平行线和相交线不能同时存在答案:C. 平行线和相交线可以同时存在3. 多选题:判断下列述句是否正确。

1) 平行线没有交点。

2) 相交线可以有无数个交点。

3) 两条垂直线的交点一定是直角。

A. 正确的有1)、2)、3)B. 正确的有1)、3)C. 正确的有2)、3)D. 正确的只有3)答案:B. 正确的有1)、3)4. 填空题:两条互相垂直的直线所成的角度为()度。

答案:90度5. 判断题:两条平行线的夹角为180度。

答案:错误6. 判断题:两条相交直线一定不平行。

答案:正确7. 计算题:已知直线L1与直线L2互相垂直,L1的斜率为2,过点(1,3)的直线L2的斜率为()。

答案:-1/28. 计算题:已知直线L1过点(1,2)且斜率为3/4,直线L2与L1平行且过点(3,5),求直线L2的斜率。

答案:3/49. 解答题:请解释什么是相交线和平行线,并举例说明。

答案:相交线是指两条直线或线段在平面上有唯一一点相交。

例如,在平面上有两条直线,一条通过点A和点B,另一条通过点C和点D,如果点A与点C不重合并且点B与点D不重合,则这两条直线相交于点E。

平行线是指在平面上没有任何交点的两条直线。

例如,在平面上有一条直线通过点A和点B,另一条直线通过点C和点D,如果两条直线没有任何一点相交,则这两条直线是平行线。

10. 解答题:如何通过直线的斜率来判断两条直线是否平行或垂直?答案:两条直线平行的充要条件是它们的斜率相等,即斜率相同的两条直线是平行线。

两条直线垂直的充要条件是它们的斜率的乘积为-1,即斜率之积为-1的两条直线是垂直线。

总结:在平面几何中,相交线是指两条直线或线段在平面上有唯一一点相交,平行线是指在平面上没有任何交点的两条直线。

相交线与平行线单元测试题

相交线与平行线单元测试题

相交线与平行线单元测试题一、选择题(每题2分,共10分)1. 两条直线在同一平面内,且不相交,这两条直线叫做平行线。

以下哪项描述不正确?A. 平行线在任何情况下都不会相交B. 平行线之间的距离处处相等C. 平行线可以无限延伸D. 平行线可以相交2. 根据平行线的性质,以下哪个命题是正确的?A. 同位角相等B. 内错角相等C. 同旁内角互补D. 以上都是3. 如果两条直线相交成30度角,那么这两条直线的对顶角是:A. 30度B. 60度C. 90度D. 120度4. 已知直线AB与CD相交于点O,那么OA与OB的关系是:A. OA=OBB. OA垂直于OBC. OA平行于OBD. 无法确定5. 在平面几何中,以下哪个条件不能判定两直线平行?A. 同位角相等B. 内错角相等C. 同旁内角互补D. 两直线没有交点二、填空题(每题2分,共10分)6. 如果两条直线相交所构成的同位角不相等,则这两条直线_________。

7. 平行于同一条直线的两条直线_________。

8. 两条直线相交,如果其中一个角是直角,则这两条直线_________。

9. 如果直线a与直线b相交,且a垂直于直线b,则直线a与直线b所成的角是_________度。

10. 两条平行线被第三条直线所截,同旁内角的度数之和为_________。

三、判断题(每题1分,共5分)11. 两条直线相交所形成的角中,对顶角相等。

()12. 平行线的性质可以推出同位角相等,内错角相等,同旁内角互补。

()13. 如果两条直线相交,那么它们一定在某一点相交。

()14. 两条直线相交所形成的角中,邻角互补。

()15. 平行线之间的距离处处相等,这是平行线的一个性质。

()四、简答题(每题5分,共10分)16. 解释什么是“相交线”,并给出相交线的基本性质。

17. 解释什么是“平行线”,并说明平行线的性质有哪些。

五、解答题(每题15分,共15分)18. 在平面直角坐标系中,已知直线L1: y = 2x + 3 和直线L2: y = -x + 5,请判断这两条直线是否平行或相交,并给出证明。

七年级数学下册第五章《相交线与平行线》测试卷-人教版(含答案)

七年级数学下册第五章《相交线与平行线》测试卷-人教版(含答案)

七年级数学下册第五章《相交线与平行线》测试卷-人教版(含答案)三总分题号一二19 20 21 22 23 24分数一、选择题(每题3分,共30分)1.下列四个图案中,可能通过如图平移得到的是()A.B.C.D.2.下列说法正确的是()A.直线AB和直线BA是同一条直线 B.直线是射线的2倍C.射线AB与射线BA是同一条射线 D.三条直线两两相交,有三个交点3.下列各图中,∠1=∠2一定成立的是()A.B.C.D.4.如图,直线BC,DE相交于点O,AO⊥BC于点O.OM平分∠BOD,如果∠AOE =50°,那么∠BOM的度数()A.20°B.25°C.40°D.50°5.如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在()A.A点B.B点C.C点D.D点6.如图,点P在直线L外,点A,B在直线l上,PA=3,PB=7,点P到直线l 的距离可能是()A.2 B.4 C.7 D.87.如图所示,∠1和∠2不是同位角的是()A.①B.②C.③D.④8.如图所示,同位角共有()A.6对B.8对C.10对D.12对9.下列说法正确的有()个.①不相交的两条直线是平行线;②在同一平面内,两条不相交的线段是平行线;③过一点可以而且只可以画一条直线与已知直线平行;④如果一条直线与两条平行线中的一条平行,那么它与另一条直线也互相平行.A.1 B.2 C.3 D.410.如图,a∥b,M、N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=()A .180°B .360°C .270°D .540°二、填空题(每题3分,共24分)11.把命题“等角的补角相等”改写成“如果…那么…”的形式是______. 12.如图所示,12//l l ,点A ,E ,D 在直线1l 上,点B ,C 在直线2l 上,满足BD 平分ABC ∠,BD CD ⊥,CE 平分DCB ∠,若136BAD =︒∠,那么AEC ∠=___________.13.把一个直角三角板(90GEF ∠=︒,30GFE ∠=︒)如图放置,已知AB ∥CD ,AF 平分BAE ∠,则AEG ∠=_____________14.如图,点E 在BC 延长线上,四个条件中:①13∠=∠;②25180+=︒∠∠,③4∠=∠B ;④B D ∠=∠;⑤180D BCD ∠+∠=︒,能判断//AB CD 的是______.(填序号).15.如图,已知12//l l ,直线l 分别与12,l l 相交于,C D 两点,现把一块含30角的直角三角中尺按如图所示的位置摆放.若1130∠=︒,则2∠=___________.16.如图,∠AEM=∠DFN=a,∠EMN=∠MNF=b,∠PEM=12∠AEM,∠MNP=12∠FNP,∠BEP,∠NFD的角平分线交于点I,若∠I=∠P,则a和b的数量关系为_____(用含a的式子表示b).17.如图所示,将△ABC沿BC边平移得到△A1B1C1,若BC1=8,B1C=2,则平移距离为.18.如图,△ABC的边长AB =3 cm,BC=4 cm,AC=2 cm,将△ABC沿BC方向平移a cm(a<4 cm),得到△DEF,连接AD,则阴影部分的周长为_______cm.三.解答题(共46分)19.(7分)如图,直线l1,l2,l3相交于点O,∠1=40°,∠2=50°,求∠3的度数.20.(7分)已知:如图,AB∥CD,CD∥EF.求证:∠B+∠BDF+∠F=360°.21.(8分)如图,直线DE与∠ABC的边BC相交于点P,现直线AB,DE被直线BC所截,∠1与∠2.∠1与∠3,∠1与∠4分别是什么角?22.(8分)如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.23.(8分)图1,点E在直线AB上,点F在直线CD上,EG⊥FG.(1)若∠BEG+∠DFG=90°,请判断AB与CD的位置关系,并说明理由;(2)如图2,在(1)的结论下,当EG⊥FG保持不变,EG上有一点M,使∠MFG=2∠DFG,则∠BEG与∠MFG存在怎样的数量关系?并说明理由;(3)如图2,若移动点M,使∠MFG=n∠DFG,请直接写出∠BEG与∠MFG的数量关系.24.(8分)已知,E、F分别是直线AB和CD上的点,AB∥CD,G、H在两条直线之间,且∠G=∠H.(1)如图1,试说明:∠AEG=∠HFD;(2)如图2,将一45°角∠ROS如图放置,OR交AB于E,OS交CD于F,设K为SO上一点,若∠BEO=∠KEO,EG∥OS,判断∠AEG,∠GEK的数量关系,并说明理由;(3)如图3,将∠ROS=(n为大于1的整数)如图放置,OR交AB于E,OS交CD于F,设K为SO上一点,连接EK,若∠AEK=n∠CFS,则=.参考答案一、选择题: 题号 1 2 3 4 5 6 7 8 9 10 答案 CACAAACCDB二、填空题:11.如果两个角是等角的补角,那么它们相等. 12.146° 13.30°解:∵AB ∥CD ,AF 平分∠BAE , ∴∠BAF=∠EAF=∠AFE , 又∵∠GFE=30°,∴∠BAF=∠EAF=30°,即∠BAE=60°, ∴∠AEF=180°-60°=120°, 又∵∠GEF=90°,∴∠AEG=120°-90°=30°, 14.②③解:①∵∠1=∠3,∴AD ∥BC ;②∵∠2+∠5=180°,∵∠5=∠AGC ,∴∠2+∠AGC=180°,∴AB ∥DC ; ③∵∠4=∠B ,∴AB ∥DC ; ④∠B=∠D 无法判断出AD ∥BC ; ⑤∵∠D+∠BCD=180°,∴AD ∥BC . 15.20︒如图,∵121130,l l ∠=︒∥, ∴50CDB ∠=︒, ∵30ADB ∠=︒,∴2503020CDB ADB ∠=∠-∠=︒-︒=︒.16.如图1,ABCD是长方形纸带(AD∥BC),∠DEF=18°,将纸带沿EF折叠成图2,再沿BF折叠成图3,则图3中的∠CFE的度数是126°.【分析】在图1中,由AD∥BC,利用“两直线平行,内错角相等”可得出∠BFE的度数,由折叠的性质可知,在图3中∠BFE处重叠了三次,进而可得出∠CFE+3∠BFE=180°,再代入∠BFE的度数即可求出结论.【解答】解:在图1中,AD∥BC,∴∠BFE=∠DEF=18°.由折叠的性质可知,在图3中,∠BFE处重叠了三次,∴∠CFE+3∠BFE=180°,∴∠CFE=180°﹣3×18°=126°.故答案为:126°.17.解:∵△ABC沿BC边平移得到△A1B1C1,∴BC=B1C1,BB1=CC1,∵BC1=8,B1C=2,∴BB1=CC1=,即平移距离为3,故答案为:3.18.180;3;内错角相等,两直线平行;两直线平行,同位角相等三.解答题:19.解:∵∠1=40°,∠2=50°,∴∠5=∠1=40°,∠4=∠2=50°,∴∠3=180°﹣∠5﹣∠4=180°﹣40°﹣50°=90°.20.证明:∵AB∥CD(已知)∴∠B+∠BDC=180°(两直线平行,同旁内角互补)∵CD∥EF(已知)∴∠CDF+∠F=180°(两直线平行,同旁内角互补)∴∠B+∠BDC+∠CDF+∠F=360°,∵∠BDF=∠BDC+∠CDF(已知)∴∠B+∠BDF+∠F=360°.21.解:∵直线AB,DE被直线BC所截,∴∠1与∠2是同旁内角,∠1与∠3是内错角,∠1与∠4是同位角.22.解:(1)如图1,作直线GH交AB于M,交CD于Q,∵AB∥CD,∴∠BMG=∠FQH,∵∠EGH=∠GHF,∴∠AEG=∠EGH﹣∠BMG=∠FHG﹣∠FQH=∠HFD;(2)∠GEK﹣2∠AEG=45°,如图2,延长KO交AB于M,∵EG∥MS,∴∠AEG=∠EMF,∠GEK=∠OKE,设∠OEM=α,则∠OEK=2α,∠OME=45°﹣α,∴∠OKE=180°﹣∠MEK﹣∠OME=135°﹣2α,∵EG∥OS,∴∠GEK=∠OKE=135°﹣2α,∴∠AEG=180°﹣∠GEK﹣∠MEK=180°﹣135°+2α﹣3α=45°﹣α,即∠GEK﹣2∠AEG=45°.(3)作OH∥AB,∵AB∥CD,∴OH∥CD,如图3,∵AB∥OH,∴∠OEB=∠EOH,又∵OH∥CD,∴∠FOH=∠OFD,又∵∠OFD=∠CFS=∠AEK,而∠EOH+∠HOF=,∴∠EOH =﹣∠AEK,即180°﹣n∠EOH=∠AEK,又∵∠OEK+∠AEK+∠EOH=180°,∴∠OEK+180°﹣n∠EOH+∠EOH=180°,∴∠OEK=(n﹣1)∠EOH,∴,又∵∠EOH=∠BEO,∴.故答案为:.。

相交线与平行线经典测试题附答案

相交线与平行线经典测试题附答案
本题主要考查直线平行的性质、对顶角的性质(对顶角相等)、角平分线的性质(角平分线把角分为两个大小相等的角)还有等量替换,把所学知识灵活运用是解题的关键.
17.如图,直线 被直线 所截, ,则 的大小是()
A. B. C. D.
【答案】A
【解析】
【分析】
先根据对顶角相等得到 ,再根据平行线的判定得到a∥b,再根据平行线的性质得到 即可得到答案.
∴∠1=180°-∠3=50°,
∵∠2-∠1=15°,
∴∠2=15°+∠1=65°;
故答案为D.
【点睛】
本题考查角的运算,邻补角的性质,比较简单.
2.如图,直线 , ,如果 , , ,那么点 到直线 的距离为()
A. B. C. D.无法确定
【答案】A
【解析】
【分析】
根据点到直线的距离是指垂线段的长度,根据AB⊥AC,得出点C到直线AB的距离为AC.
【详解】
解:由∠EOD+∠OBF=∠COB+∠OBF=180°可知EC∥BF,结合CE是角平分线可得∠ECB=∠ACE=∠CBF,再由EC∥BF可得∠ACE=∠F=∠G,则由三角形内角和定理可得∠GDC=∠CBF.综上所得,∠ECB=∠ACE=∠CBF=∠F=∠G=∠GDC,共有5个与∠ECB相等的角,
【详解】
解: 标记为如下图所示,
∵ 是对顶角,
∴ (对顶角相等),
又∵ ,
∴ ,
∴a∥b(同旁内角互补,两直线平行),
∴ (两直线平行,内错角相等),
∴ ,
故A为答案.
【点睛】
本题主要考查了对顶角的性质(对顶角相等)、直线平行的判定(同旁内角互补,两直线平行)、直线平行的性质(两直线平行,内错角相等),能灵活运用所学知识是解题的关键..

相交线与平行线测试20题

相交线与平行线测试20题

第五章 相交线与平行线班级 姓名 得分一、选择题(3分×7=21分)1、 如图 点E 在AC 延长线上,下列条件中能判断AB ∥CD 的是 ( )A 、 ∠3=∠4B 、 ∠1=∠2C 、 ∠D=∠DCED 、 ∠D+∠ACD=1802、 如图a ∥b ,∠3=1080,则∠1的度数是 ( )A 、 720B 、 800C 、 820D 、 1083、 下列说法正确的是 ( )A 、 a 、b 、c 是直线,且a ∥b, b ∥c,则a ∥cB 、 a 、b 、c 是直线,且a ⊥b, b ⊥c ,则a ⊥cC 、 a 、b 、c 是直线,且a ∥b, b ⊥c 则a ∥cD 、 a 、b 、c 是直线,且a ∥b, b ∥c ,则a ⊥c4、如图由AB ∥CD ,可以得到 ( )A 、∠1=∠2B 、∠2=∠3C 、∠1=∠4D 、∠3=∠45、如图B ∥CD ∥EF ,那么∠BAC+∠ACE+∠CEF= ( )A 、1800B 、 2700C 、 3600D 、5406、下列命题中,错误的是 ( ) A 、邻补角是互补的角 B 、互补的角若相等,则此两角是直角 C 、两个锐角的和是锐角 D 、一个角的两个邻补角是对顶角7、图中,与∠1 成同位角的个数是 ( )A 、 2个 B、3个 C、 4个 D、 5个二、填空题(8、11、12、13、14每题3分共25分)8、如图一个弯形管道ABCD的拐角∠ABC=1200,∠BCD=600,这时说管道AB∥CD,是根据9、如图直线AB、CD、EF相交于点O,是∠AOC的邻补角是 ,∠DOA的对顶角是 ,若∠AOC=500,则∠BOD=0,∠COB= 0第(1)题4321E D CB A 第(2)题b a 31第(4)题4321D C B A 第(5)题F E DC B A L2L 1c 第(7)题b a1D CD 1C 1B 1A 1C O ED B Aba 432110、如图所示的长方体,用符号表示下列棱的位置关系:A 1B 1 AB AA 1 AB 1,A 1D 1C 1D 1 AD BC11、如图直线,a ∥b,∠1=540,则∠2= 0,∠3= 0,∠4= 0。

初中数学相交线与平行线经典测试题附答案

初中数学相交线与平行线经典测试题附答案
14.如图, ,点 在 上,点 在 上,如果 , ,那么 的度数为()
A. B. C. D.
【答案】B
【解析】
【分析】
由 可得∠ABE+∠CEB=180°,∠BED= ,即∠CEB=130°,由 可得 ,设 =k,则∠CEF=6k,∠FEB=7k,可得∠FEB=70°,可得∠DEF=∠FEB+∠BED=120°;又由 可得 =∠DEF即可解答.
故选:B.
【点睛】
此题考查平行线的性质和判定,平行线公理及推论,能熟记知识点的内容是解题的关键.
5.如图,直线a∥b,直线 分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是
A.50°B.70°C.80°D.110°
【答案】C
【解析】
【分析】
根据平行线的性质可得∠BAD=∠1,再根据AD是∠BAC的平分线,进而可得∠BAC的度数,再根据补角定义可得答案.
考点:平行线的性质.
9.如图,下列条件中能判定 的是( )
A. B.
C. D.
【答案】C
【解析】
【分析】
对于A,∠EDC=∠EFC不是两直线被第三条直线所截得到的,据此进行判断;
对于B、D,∠AFE=∠ACD,∠1=∠2是EF和BC被AC所截得到的同位角和内错角,据此进行判断;
对于C,∠3=∠4这两个角是AC与DE被EC所截得到的内错角,据此进行判断.
【详解】
∠EDC=∠EFC不是两直线被第三条直线所截得到的,因而不能判定两直线平行;
∠AFE=∠ACD,∠1=∠2是EF和BC被AC所截得到的同位角和内错角,因而可以判定EF∥BC,但不能判定DE∥AC;
∠3=∠4这两个角是AC与DE被EC所截得到的内错角,可以判定DE∥AC.

相交线与平行线测试题及答案难

相交线与平行线测试题及答案难

相交线与平行线测试题及答案难一、选择题1. 在同一平面内,两条直线的位置关系是()。

A. 相交或平行B. 相交或重合C. 平行或重合D. 相交、平行或重合答案:D2. 如果两条直线都与第三条直线平行,那么这两条直线的关系是()。

A. 相交B. 平行C. 重合D. 不确定答案:B3. 两条直线相交成90度角,这两条直线是()。

A. 相交线B. 垂直线C. 平行线D. 异面直线答案:B二、填空题4. 如果两条直线都与第三条直线相交,且交角相等,则这两条直线()。

答案:平行5. 在平面几何中,如果两条直线不相交,则它们被称为()。

答案:平行线三、判断题6. 两条平行线被第三条直线所截,同位角相等。

()答案:正确7. 垂直于同一直线的两条直线一定平行。

()答案:错误四、解答题8. 已知直线AB与直线CD相交于点O,且∠AOB=90°,求证:AB⊥CD。

证明:因为∠AOB=90°,所以AB与CD相交成直角,根据垂直的定义,AB⊥C D。

9. 若直线m平行于直线n,直线n平行于直线p,求证:直线m平行于直线p。

证明:根据平行公理,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

因此,直线m平行于直线p。

五、综合题10. 在平面直角坐标系中,直线l1的方程为y=2x+3,直线l2的方程为y=-x+5,求证:l1与l2相交。

证明:首先,我们可以将两个方程联立求解。

\begin{cases}y = 2x + 3 \\y = -x + 5\end{cases}将第一个方程中的y代入第二个方程,得到:2x + 3 = -x + 5解得:x = 1将x=1代入任意一个方程求得y,例如第一个方程:y = 2(1) + 3 = 5因此,l1与l2的交点为(1,5),所以l1与l2相交。

11. 已知直线l1平行于直线l2,直线l2平行于直线l3,求证:直线l1平行于直线l3。

证明:根据平行公理,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

相交线与平行线测试题

相交线与平行线测试题

相交线与平行线测试题姓名一、选择(每小题4分,共40分)1、在同一平面内,两条直线的位置关系可能是()A、相交或平行B、相交或垂直C、平行或垂直D、不能确定2、如图,下列说法错误的是()A、∠A与∠C是同旁内角B、∠1与∠3是同位角C、∠2与∠3是内错角D、∠3与∠B是同旁内角第2题图第3题图第4题图3、如图,AB∥DE,∠1=∠2,则AE与DC的位置关系是()A、相交B、平行C、垂直D、不能确定4、如图,直线a,b都与c相交,由下列条件能推出的是()①②③④A.① B.①② C.①②③ D.①②③④5、下列角的平分线中,互相垂直的是()A.平行线的同旁内角的平分线 B.平行线的同位角的平分线C.平行线的内错角的平分线 D.对顶角的平分线6、下面4个命题中正确的是()A、相等的两个角是对顶角B、和等于90 º的两个角互为余角C、如果∠1+∠2+∠3 =180º,那么∠1,∠2,∠3互为补角D、一个角的补角一定大于这个角7、点P为直线l外一点,点A,B,C为直线l上三点,PA=4 cm,PB=5 cm,PC=2 cm,则点P到直线l的距离为( )A、4 cmB、2 cmC、小于2 cmD、不大于2 cm8、一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向平行行驶,那么这两个拐弯的角度可能是( )A.先向左转130°,再向左转50°B.先向左转50°,再向右转50°C.先向左转50°,再向右转40°D.先向左转50°,再向左转40°9、如图,已知AB CD //,∠α等于( )A. 75B.80 C .85 D.95 A B120° α25°C D第9题图 第10题图10、如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A.30°B.25°C.20°D.15°二、填空(每小题4分,共24分)11、如图,直线AB 、CD 相交于点E ,DF ∥AB ,若∠AEC=1000,则∠D 的度数等于 .12、如图所示,用直尺和三角尺作平行线AB ∥CD,其中的道理是__________________________________.ABCD EF第1题图 第2题图13、下列语句是有关几何作图的叙述.①以O 为圆心作弧;②延长射线AB 到点C ;③作∠AOB ,使∠AOB=∠1;④作直线AB ,使AB=a ⑤过三角形ABC 的顶点C 作它的对边AB 的平行线.其中正确的有 .(填序号即可)14、两个互为余角的角的差是30°,则这两角中较小的角的补角是______. AB C D EO第5题图 第6题图 15、如图,直线AB 、CD 相交于点O ,OE ⊥AB ,O 为垂足,如果∠EOD=38 o,则∠AOC= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相交线与平行线
2 .一辆汽车在笔直的公路上行驶,两次拐弯后, 仍在原来的方向上平行前进, 那么两次拐弯的
角度是(

(1)摆动的钟摆。

(2)在笔直的公路上行驶
的汽车。

(3)随风摆动的旗帜。

(4)摇动
的大绳。

(5)汽车玻璃上雨刷的运动。

(6

从楼顶自由落下的球(球不旋转)。

10.如图,直线 AB 、CD 相交于点 O , OE 丄AB ,
O 为垂足,如果/ EOD = 38°,则/ AOC
11.如图,AC 平分/ DAB ,/ 1 = / 2。

填空:因 为AC 平分/
DAB ,所以/ 1 = _______________________ 。

所 以/ 2 = __________ 。

所以 AB // __________ 。

三、做一做(本题 10分)
12 .已知三角形 ABC 、点D ,过点D 作三角形 ABC 平移后的
图形。

6.下列说法中正确的是( )
A .有且只有一条直线垂直于已知直线。

B .从直线外一点到这条直线的垂线段,叫做 这点到这条直线的距离。

C .互相垂直的两条直线一定相交。

D .直线c 外一点A 与直线c 上各点连接而成
1. (时间:45分钟 满分:100分) 姓名 __________________ 、选择题(每小题 4分,共24 分) 下面
四个图形中,/ 个数是( A . 0 B . 与/2是对顶角的图形的 的所有线段中,最短线段的长是 3cm ,则 点A 到直线c 的距离是3cm 。

二、填空题(每小题 4分,共20分) 1
7 .两个角的两边两两互相平行,且一个角的

2
1 于另一个角的 -,则这两个角的度数分别 3 为 ________________________ 。

8.猜谜语(打本章两个几何名称)。

剩下十分钱 ______________ ;两牛相斗 ____________ 。

9 .下面生活中的物体的运动情况可以看成平移的
A . 第
一 次右拐
50°, 第二次左拐 130°。

B . 第一
次左拐 50°, 第二次右拐
50°。

C . 第一
次左拐 50°, 第二次左拐
130°。

D . 第一
次右拐 50°, 第二次右拐
50°。

冋一平面内的四条直线满足
a 丄
b , b 丄
c , c ±
d ,
则下列式子成立的是( )
A .a // b
B . b 丄
d
C .a 丄d
D . b // c
交于'
不同三点时, 对顶角有 n 对,则
m 与n
的关. H. /
系是( )
A . m = n
B . m > n
C .m v n
D . m + n = 10
5.如图, 若 m / n , / 1 =
105 ° ,则/2=
( )
A . 55 °60 ° C . 65 ° D . 75°
(第10题图)
(第11题图)
4.三条直线两两相交于同一点时,
对顶角有m 对,
四、算一算(本题 10分)
13.如图,AD 是/ EAC 的平分线,AD // BC ,/
B = 30 °,你能算出/ EAD 、/ DA
C 、/ C 的
度数吗? 六、实际应用:(本大题两小题,共 24分)
15•
结合本班实际,画出班级的简易平面图形,找 出其中的垂线和平行线。

(本题11分)
16•如图,有两堵墙,要测量地面上所形成的/ AOB 的度数,但
人又不能进入围墙,只能站在墙外。

如何测量(运用本章
知识)?(本题 13分)
五、想一想(每空 3分,共12分)
14.如图,EF // AD ,/ 1 = / 2,/ BAC = 70 °。

将求/ AGD 的过程填写
完整。

因为EF // AD ,所以 / 2 = ____________ 。

又因为/ 1 = / 2,所以/ 1 = / 3。

所以
AB // ___________ 。

所以/ BAC + ____________ = 180。

又因为/ BAC = 70°,所以/
AGD
A
14.本题考查学生对平行线的性质和特征的应用及它们之间的区别,使学生获得一些研究问题的方法和经验,发展思维能力。

附:命题意图及参考答案
(一)命题意图
一、选择题
1.考查学生对对顶角概念的理解,加深学生对平面图形的认识和感受。

2.考查学生对平行线的条件的理解及形象思维的能力。

3.考查学生对数学知识的理解和思维的深刻性。

4.考查学生对对顶角概念的深刻理解及思维的灵活性。

5.考查学生对平行线性质掌握情况。

6.考查学生对垂直知识的掌握情况,提高学生运用基础知识解决问题的能力。

二、填空题
7.考查学生的计算能力。

8.本题通过猜谜引发学生对有关数学概念的思考。

9.本题让学生认识平移在现实生活中的应用。

10.本题考查学生的计算能力。

11.本题意在教会学生使用数学语言有条理地表达思考的过程。

六、实际应用
本题意在提高学生应用数学的意识,体会数学的价值。

设置探索题与开发题,可以暴露学生的思维过程,能深化学生的思维品质,发展学生的逻辑思维和创造性思维能力。

(二)参考答案
1.B
2.B
3.C
4.A
5.D
6.D
7.72°,108°
8.余角,对顶角
9.(2)和(6)
10.52°,128°
11./ BAC,/ BAC , CD。

12 .略
13.30°,30 °,30°
14./ 3,DG,/ AGD ,110°
15 .略
16.延长AO与BO,测/ AOB的对顶角。

三、做一做
12.考查学生对平移作图的掌握情况,提高学生动手动脑能力。

四、算一算
13.本题意在引导学生体会数学知识之间的联系, 感受数学的整体性,不断丰富解决问题的策略,提高解题能力。

五、想一想。

相关文档
最新文档