2016-2018年全国卷3高考理科数学试题附答案

合集下载

高考全国3卷理科数学(2016-2018共3套真题)及答案

高考全国3卷理科数学(2016-2018共3套真题)及答案

高考全国3卷理科数学真题2016-2018年共3套2018年普通高等学校招生全国统一考试理科数学(全国3卷)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答案卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}|10A x x =-≥,{}012B =,,,则A B =A .{}0B .{}1C .{}12,D .{}012,, 2.()()1i 2i +-= A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.若1sin 3α=,则cos 2α=A .89B .79C .79-D .89-5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为A .10B .20C .40D .806.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP ∆面积的取值范围是A .[]26,B .[]48,C .D .⎡⎣7.函数422y x x =-++的图像大致为8.某群体中的每位成品使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =A .0.7B .0.6C .0.4D .0.39.ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC ∆的面积为2224a b c +-,则C =A .π2B .π3C .π4D .π610.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且其面积为锥D ABC -体积的最大值为A .B .C .D .11.设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1PF ,则C 的离心率为AB .2C D12.设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+ 二、填空题:本题共4小题,每小题5分,共20分。

2018年高考理科数学(3卷)答案详解(附试卷)

2018年高考理科数学(3卷)答案详解(附试卷)

2018年普通高等学校招生全国统一考试理科数学3卷 答案详解一、选择题:本题共12小题,每小题5分,共60分。

1.已知集合,,则A .B .C .D . 【解析】∵}1|{≥=x x A ,}2,1{=B A . 【答案】C 2. A .B .C .D .【解析】i i i +=-+3)2)(1(. 【答案】D3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是【解析】看不见的线应该用虚线表示. 【答案】A 4.若,则 A .B .C .D . {}|10A x x =-≥{}012B =,,A B ={}0{}1{}12,{}012,,()()1i 2i +-=3i --3i -+3i -3i+1sin 3α=cos2α=897979-89-【解析】227cos212sin 199αα=-=-=. 【答案】B5.252()x x+的展开式中4x 的系数为A .10B .20C .40D .80【解析】由二项式定理得252()x x +的展开式的通项为251031552()2rr r r r rr T C x C x x --+⎛⎫== ⎪⎝⎭,由1034r -=,得2r =,∴252()x x+的展开式中4x 的系数为225240C =.【答案】C6.直线分别与轴,轴交于,两点,点在圆上,则△ABP 面积的取值范围是 A .B .C .D .【解析】如图所示,由题意可知)0,2(-A 、)0,2(-B ,∴22||=AB .过点P 作△ABP 的高PH ,由图可以看出,当高PH 所在的直线过圆心)0,2(时,高PH 取最小值或最大值. 此时高PH 所在的直线的方程为02=-+y x .将02=-+y x 代入,得到与圆的两个交点:)1,1(-N 、)1,3(M ,因此22|211|min =+-=|PM|,232|213|max =++=|PM|. 所以222221min =⨯⨯=S ,6232221max =⨯⨯=S . 20x y ++=x y A B P ()2222x y -+=[]26,[]48,⎡⎣22(2)2x y -+=图A6【答案】A7.函数的图像大致为【解析】设2)(24++-==x x y x f ,∵02)0(>=f ,因此排除A 、B ;)12(224)(23--=+-='x x x x x f ,由0)(>'x f 得22-<x 或220<<x ,由此可知函数)(x f 在),(220内为增函数,因此排除C.422y x x =-++【答案】D8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数,4.2=DX ,)6()4(=<=x P x P ,则p= A .0.7B .0.6C .0.4D .0.3【解析】某群体中的每位成员使用移动支付的概率都为p ,看做独立重复事件,满足),10(~p B X .∵4.2=DX ,∴4.2)1(10=-p p ,解得6.0=p 或4.0=p .∵)6()4(=<=x P x P ,∴4661064410)1()1(p p C p p C -<-,解得021<-p ,即21>p . ∴6.0=p .【答案】B9.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为4222c b a -+,则C =A .B .C .D .【解析】由已知和△ABC 的面积公式有,4sin 21222c b a C ab -+=,解得C ab c b a sin 2222=-+.∴ C abCab ab c b a C sin 2sin 22cos 222==-+=,又∵1cos sin 22=+C C ,∴22sin cos ==C C ,4π=C . 【答案】C10.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为39,则三棱锥D -ABC 体积的最大值为 A .312B .318C .324D .354【解析】如图A12所示,球心为O ,△ABC 的外心为O ′,显然三棱锥D -ABC 体积最大时D 在O′O 的延长线与球的交点.△ABC 为为等边三角形且其面积为39,因此有39432=⨯AB ,解得AB =6. △3260sin 32=⋅⨯=' AB C O ,2)32(42222=-='-='O O OC O O , 2π3π4π6π∴642=+='D O .∴ 三棱锥D -ABC 体积的最大值为31863931=⨯⨯=V .图A10【答案】B11.设F 1、F 2是双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若,则的离心率为 AB.2CD【解析】双曲线C 的渐近线方程为by x a=±,即0bx ay ±=. ∴ 点F 2到渐近线的距离为b ba bc d =+=22,即b ||PF =2,∴ a b c ||PF ||OF |OP|=-=-=222222,∴ a |OP|||PF 661==,在Rt △OPF 2中,cbOF ||PF O PF ==∠||cos 222,在Rt △F 1PF 2中,bca cb |F |F ||PF ||PF |F |F ||PF O PF 4642cos 22221221221222-+=⋅-+=∠,∴ bca cbc b 464222-+=,化简得222364b a c =-,将222a c b -=代入其中得223a c =,1PF =C∴3222==ac e ,3=e .图A11【答案】C12.设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C . 0a b ab +<<D .0ab a b <<+【解析】∵0.20.20.2log 1log 0.3log 0.2<<,∴01a <<.∵221log 0.3log 2<,∴1b <-. ∴0ab <,0a b +<. ∵0.30.30.30.311=log 2log 0.2log 0.4log 0.31a b ab a b++=+=<=,0ab <,∴ab a b <+.综上所述 0ab a b <+<.【答案】B二、填空题:本题共4小题,每小题5分,共20分。

2016年高考理科数学全国Ⅲ卷试题及答案

2016年高考理科数学全国Ⅲ卷试题及答案

绝密★启封并使用完毕前试题类型:2016年普通高等学校招生全国统一考试理科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I >P ,则S I T =(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) (2)若z=1+2i ,则41izz =- (A)1 (B) -1 (C) i (D)-i (3)已知向量12(,)22BA =uu v,31(,),22BC =uu u v 则∠ABC= (A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。

下面叙述不正确的是学.科.网(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个 (5)若3tan 4α=,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A = (A )31010 (B )1010 (C )1010- (D )31010-(9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,学.科.网则该多面体的表面积为(A )18365+ (B )54185+ (C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是(A )4π (B )92π(C )6π (D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,学科&网A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 (A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,ka a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有 (A )18个 (B )16个 (C )14个 (D )12个第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分 (13)若x ,y 满足约束条件则z=x+y 的最大值为_____________.(14)函数的图像可由函数的图像至少向右平移_____________个单位长度得到。

(完整word版)2016全国三卷理科数学高考真题及答案.docx

(完整word版)2016全国三卷理科数学高考真题及答案.docx

2016 年普通高等学校招生全国统一考试理科数学一.选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的 .(1)设集合 S= S x P(x2)(x3)0 ,T x x 0,则 S I T=(A) [2 ,3](B) (-, 2]U [3,+)(C) [3,+ )(D) (0, 2] U[3,+ )(2)若 z=1+2i ,则4izz1(A)1(B)-1(C) i(D)-iuuv( 1uuuv(3,1),(3)已知向量BA, 2 ) , BC则 ABC=2222(A)30 0(B)450(C) 60 0(D)120 0(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C, B 点表示四月的平均最低气温约为50C。

下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均气温高于 200C 的月份有 5 个(5)若tan3,则 cos22sin 26444816(B)(C) 1(A)25(D)2525 431(6)已知a23, b44, c253,则(A )b a c( B)a b c (C) b c a (D) c a b(7)执行下图的程序框图,如果输入的a=4, b=6,那么输出的n=(A ) 3(B ) 4(C) 5(D ) 6(8)在 △ABC 中,B = πBC1cos A =,边上的高等于则43 BC ,( A )3 10( B )101010( C ) -10 ( D ) - 3 1010 10 (9) 如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A ) 18 36 5(B ) 54 18 5(C ) 90 (D ) 81(10) 在封闭的直三棱柱 ABC-A 1B 1C 1 内有一个体积为 V 的球,若AB BC , AB=6 ,BC=8, AA 1 =3,则 V 的最大值是(A ) 4π ( B )9( C ) 6π(D )3223x 2 y 2 1(a b 0) 的左焦点, A , B 分别为 C 的左,右顶点 .P 为(11)已知 O 为坐标原点, F 是椭圆 C :b 2 a 2C 上一点,且 PF ⊥ x 轴 .过点 A 的直线 l 与线段 PF 交于点 M ,与 y 轴交于点 E.若直线 BM 经过 OE 的中点,则C 的离心率为(A )1( B )1( C )2( D )33 2 3 4(12)定义 “规范 01 数列 ”{a n } 如下: { a n } 共有 2m 项,其中 m 项为 0,m 项为 1,且对任意 k 2m , a 1 , a 2, L , a k 中 0 的个数不少于 1 的个数 .若 m=4,则不同的“规范 01 数列”共有 (A ) 18 个( B ) 16 个(C ) 14 个(D ) 12 个二、填空题:本大题共 3 小题,每小题 5 分(13)若 x , y 满足约束条件 错误 ! 未找到引用源。

(完整)【数学】2016年高考真题——全国Ⅲ卷(理)(word版含答案),推荐文档

(完整)【数学】2016年高考真题——全国Ⅲ卷(理)(word版含答案),推荐文档

2016年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S = ,则S T =( )(A) [2,3] (B)(- ,2] [3,+) (C) [3,+) (D)(0,2] [3,+) (2)若,则( ) (A)1 (B) -1 (C) i (D)-i(3)已知向量 , 则ABC =( ) (A)300 (B) 450 (C) 600 (D)1200 (4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C.下面叙述不正确的是( ) (A) 各月的平均最低气温都在00C 以上 (B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个 (5)若 ,则( ) (A)(B) (C) 1 (D) (6)已知,,,则( ){}{}|(2)(3)0,|0S x x x T x x =--≥=>I ∞U ∞∞U ∞12z i =+41izz =-13(,)2BA =uu v 31(,),2BC =uu u v ∠3tan 4α=2cos 2sin 2αα+=642548251625432a =254b =1325c =(A ) (B ) (C ) (D ) (7)执行下图的程序框图,如果输入的,那么输出的( )(A )3 (B )4 (C )5 (D )6 (8)在中,,BC 边上的高等于,则( ) (A )(B ) (C ) (D ) (9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( ) (A ) (B ) (C )90 (D )81(10) 在封闭的直三棱柱内有一个体积为V 的球,若,,,,则V 的最大值是( )(A )4π (B )(C )6π (D )(11)已知O 为坐标原点,F 是椭圆C :的左焦点,A ,B 分别为C的左,右顶点P 为C 上一点,且轴.过点A 的直线l 与线段交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )(A )(B )(C )(D ) (12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意,中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有( )(A )18个(B )16个(C )14个(D )12个b ac <<a b c <<b c a <<c a b <<46a b ==,n =ABC △π4B =13BC cos A =3101010-310-18365+54185+111ABC A B C -AB BC ⊥6AB =8BC =13AA =92π323π22221(0)x y a b a b+=>>PF x ⊥PF 131223342k m ≤12,,,k a a a L第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题未选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)若满足约束条件则的最大值为_____________.(14)函数的图像可由函数的图像至少向右平移_____________个单位长度得到.(15)已知为偶函数,当时,,则曲线在点处的切线方程是_______________.(16)已知直线:与圆交于两点,过分别做的垂线与轴交于两点,若__________________.三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知数列的前n 项和,其中. (I )证明是等比数列,并求其通项公式; (II )若 ,求.,x y 1020220x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩z x y =+sin y x x =-sin y x x =()f x 0x <()ln()3f x x x =-+()y f x =(1,3)-l 30mx y m ++=2212x y +=,A B ,A B l x ,C D AB =||CD ={}n a 1n n S a λ=+0λ≠{}n a 53132S =λ(18)(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图(I )由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (II )建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 参考数据:,,7≈2.646.参考公式:相关系数回归方程 中斜率和截距的最小二乘估计公式分别为:719.32ii y==∑7140.17i i i t y ==∑0.55=()()niit t y y r --=∑y a bt =+)))121()()()nii i nii tt y y b tt ==--=-∑∑),=.a y bt -)))(19)(本小题满分12分)如图,四棱锥中,平面,AD BC ∥,,,为线段上一点,,为的中点.(I )证明MN ∥平面;(II )求直线与平面所成角的正弦值.(20)(本小题满分12分)已知抛物线:的焦点为,平行于轴的两条直线分别交于两 点,交的准线于两点.(I )若在线段上,是的中点,证明AR FQ ∥;(II )若的面积是的面积的两倍,求中点的轨迹方程.P ABC -PA ⊥ABCD 3AB AD AC ===4PA BC ==M AD 2AM MD =NPC PAB AN PMN C 22y x =F x 12,l l C A B ,C P Q ,F AB R PQ PQF ∆ABF ∆AB(21)(本小题满分12分)设函数,其中,记的最大值为. (Ⅰ)求; (Ⅱ)求;(Ⅲ)证明.请考生在[22]、[23]、[24]题中任选一题作答.作答时用2B 铅笔在答题卡上把所选题目题号后的方框涂黑.如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4-1:几何证明选讲如图,⊙O 中AB 的中点为,弦分别交于两点. (I )若,求的大小;(II )若的垂直平分线与的垂直平分线交于点,证明.()cos 2(1)(cos 1)f x a x a x =+-+0a >|()|f x A ()f x 'A |()|2f x A '≤P PC PD ,AB E F ,2PFB PCD ∠=∠PCD ∠EC FD G OG CD ⊥23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系中,曲线的参数方程为,以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(I )写出的普通方程和的直角坐标方程;(II )设点P 在上,点Q 在上,求|PQ |的最小值及此时P 的直角坐标.24.(本小题满分10分)选修4-5:不等式选讲已知函数(I )当a =2时,求不等式的解集;(II )设函数当时,,求的取值范围.xOy 1C 3cos ()sin x y θθθ⎧=⎪⎨=⎪⎩为参数x 2C sin()224ρθπ+=1C 2C 1C 2C ()|2|f x x a a =-+()6f x ≤()|21|,g x x =-x ∈R ()()3f x g x +≥a参考答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【答案】D考点:1、不等式的解法;2、集合的交集运算. (2)【答案】C 【解析】试题分析:,故选C . 考点:1、复数的运算;2、共轭复数. (3)【答案】A 【解析】试题分析:由题意,得,所以,故选A .考点:向量夹角公式. (4)考点:1、平均数;2、统计图 (5)【答案】A 【解析】试题分析:由,得或,所以,故选A . 考点:1、同角三角函数间的基本关系;2、倍角公式. (6)【答案】A44(12)(12)11i ii ii zz ==+---112222cos 11||||BA BC ABC BA BC ⋅∠===⨯u u u r u u u r u uu r u u u r 30ABC ∠=︒3tan 4α=34sin ,cos 55αα==34sin ,cos 55αα=-=-2161264cos 2sin 24252525αα+=+⨯=【解析】试题分析:因为,,所以,故选A . 考点:幂函数的图象与性质. (7)【答案】B考点:程序框图. (8)【答案】C 【解析】试题分析:设边上的高线为,则,所以,.由余弦定理,知,故选C . 考点:余弦定理. (9)【答案】B考点:空间几何体的三视图及表面积. (10)【答案】B 【解析】试题分析:要使球的体积最大,必须球的半径最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值,此时球的体积为,故选B . 考点:1、三棱柱的内切球;2、球的体积. (11)【答案】A422335244a b ==>=1223332554c a ==>=b a c <<BC AD 3BC AD=AC ==AB=222222cos 210AB AC BC A AB AC +-===⋅V R 32334439()3322R πππ==考点:椭圆方程与几何性质.(12)【答案】C【解析】试题分析:由题意,得必有,,则具体的排法列表如下:二、填空题:本大题共3小题,每小题5分(13)【答案】1a=81a=32考点:简单的线性规划问题. (14)【答案】 【解析】试题分析:因为,=,所以函数的图像可由函数的图像至少向右平移个单位长度得到. 考点:1、三角函数图象的平移变换;2、两角和与差的正弦函数. (15)【答案】考点:1、函数的奇偶性与解析式;2、导数的几何意义. (16)【答案】4 【解析】试题分析:因为,且圆的半径为到直线,,解得,代入直线的方程,得的倾斜角为,由平面几何知识知在梯形中,.考点:直线与圆的位置关系.三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)【答案】(Ⅰ);(Ⅱ). 【解析】32πsin 2sin()3y x x x π=+=+sin 2sin()3y x x x π=-=-2sin[()]33x π2π+-sin y x x =-sin y x x =32π21y x =--||AB =(0,0)30mx y m ++=3=3=3m =-l y x =+l 30︒ABDC ||||4cos30AB CD ==︒1)1(11---=n n a λλλ1λ=-考点:1、数列通项与前项和为关系;2、等比数列的定义与通项及前项和为. (18)(本小题满分12分)【答案】(Ⅰ)理由见解析;(Ⅱ)1.82亿吨.(Ⅱ)由及(Ⅰ)得, . 所以,关于的回归方程为:. 将2016年对应的代入回归方程得:. 所以预测2016年我国生活垃圾无害化处理量将约1.82亿吨. 考点:线性相关与线性回归方程的求法与应用.n a n n S n nS 331.1732.9≈=y 103.02889.2)())((ˆ71271≈=---=∑∑==i i i i it t y y t tb 92.04103.0331.1ˆˆ≈⨯-≈-=t b y ay t t y10.092.0ˆ+=9=t 82.1910.092.0ˆ=⨯+=y(19)【答案】(Ⅰ)见解析;(Ⅱ).设为平面的法向量,则,即,可取,于是.考点:1、空间直线与平面间的平行与垂直关系;2、棱锥的体积. (20)【答案】(Ⅰ)见解析;(Ⅱ).25),,(z y x n =PMN ⎪⎩⎪⎨⎧=⋅=⋅00PM ⎪⎩⎪⎨⎧=-+=-0225042z y x z x )1,2,0(=n 2558|||||,cos |==><AN n21y x =-考点:1、抛物线定义与几何性质;2、直线与抛物线位置关系;3、轨迹求法. (21)(本小题满分12分)【答案】(Ⅰ);(Ⅱ); (Ⅲ)见解析. 【解析】试题分析:(Ⅰ)直接可求;(Ⅱ)分两种情况,结合三角函数的有界'()2sin 2(1)sin f x a x a x =---2123,05611,18532,1a a a a A a a a a ⎧-<≤⎪⎪++⎪=<<⎨⎪-≥⎪⎪⎩()f x '1,01a a ≥<<性求出,但须注意当时还须进一步分为两种情况求解;(Ⅲ)首先由(Ⅰ)得到,然后分,三种情况证明试题解析:(Ⅰ). (Ⅱ)当时,因此,. ………4分当时,将变形为.令,则是在上的最大值,,,且当时,取得极小值,极小值为.令,解得(舍去),.考点:1、三角恒等变换;2、导数的计算;3、三角函数的有界性. 22. 【答案】(Ⅰ);(Ⅱ)见解析.A 01a <<110,155a a <≤<<|()|2|1|f x a a '≤+-1a ≥110,155a a <≤<<'()2sin 2(1)sin f x a x a x =---1a ≥'|()||sin 2(1)(cos 1)|f x a x a x =+-+2(1)a a ≤+-32a =-(0)f =32A a =-01a <<()f x 2()2cos (1)cos 1f x a x a x =+--2()2(1)1g t at a t =+--A |()|g t [1,1]-(1)g a -=(1)32g a =-14a t a -=()g t 221(1)61()1488a a a a g a a a--++=--=-1114a a --<<13a <-15a>60︒考点:1、圆周角定理;2、三角形内角和定理;3、垂直平分线定理;4、四点共圆.23.【答案】(Ⅰ)的普通方程为,的直角坐标方程为;(Ⅱ).考点:1、椭圆的参数方程;2、直线的极坐标方程. 24.【答案】(Ⅰ);(Ⅱ). 【解析】试题分析:(Ⅰ)利用等价不等式,进而通过解不等式可求得;1C 2213x y +=2C 40x y +-=31(,)22{|13}x x -≤≤[2,)+∞|()|()h x a a h x a ≤⇔-≤≤(Ⅱ)根据条件可首先将问题转化求解的最小值,此最值可利用三角形不等式求得,再根据恒成立的意义建立简单的关于的不等式求解即可. 试题解析:(Ⅰ)当时,. 解不等式,得.因此,的解集为. ………………5分 (Ⅱ)当时,,当时等号成立,考点:1、绝对值不等式的解法;2、三角形绝对值不等式的应用.()()f x g x +a 2a =()|22|2f x x =-+|22|26x -+≤13x -≤≤()6f x ≤{|13}x x -≤≤x R ∈()()|2||12|f x g x x a a x +=-++-|212|x a x a ≥-+-+|1|a a =-+12x=。

2018年高考全国卷3 理科数学试题与答案

2018年高考全国卷3 理科数学试题与答案

2018年高考全国卷3 理科数学试题与答案2018年高考全国卷3理科数学试题与答案一、选择题1.已知集合A={x|x-1≥2},B={x|2<x≤3},则XXX的值为()A。

∅ B。

{1} C。

{1,2} D。

{2}改写:已知集合A={x|x≥3},B={x|2<x≤3},则B∩A={2}。

2.已知复数z1=1+i,z2=2-i,则(z1+z2)(z1-z2)的值为()A。

-3-i B。

-3+i C。

3-i D。

3+i改写:已知复数z1=1+i,z2=2-i,则(z1+z2)(z1-z2)=(1+i+2-i)(1+i-2+i)=(-3-i)。

3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头。

若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()删除:无法呈现图形改写:中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼。

如图所示,若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是一个正方形或一个长方形。

4.若sinα=1/3,则cos2α的值为()A。

7/9 B。

-9/8 C。

-9/7 D。

9/7改写:若sinα=1/3,则cos2α=1-2sin^2α=8/9.5.(x^2+2/x)^5的展开式中x^4的系数为()A。

10 B。

20 C。

40 D。

80改写:(x^2+2/x)^5的展开式中x^4的系数为40.6.直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x-2)^2+y^2=2上,则△ABP面积的取值范围是()A。

[2,8] B。

[4,32] C。

[2,3] D。

[2√2,3√2]改写:直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x-2)^2+y^2=2上。

则△ABP面积的取值范围是[2,8]。

三年高考(2016-2018)数学(理)真题分项专题25 立体几何中综合问题(含解析)

三年高考(2016-2018)数学(理)真题分项专题25 立体几何中综合问题(含解析)

专题25 立体几何中综合问题考纲解读明方向分析解读 1.能运用共线向量、共面向量、空间向量基本定理及有关结论证明点共线、点共面、线共面及线线、线面的平行与垂直问题;会求线线角、线面角;会求点点距、点面距等距离问题,从而培养用向量法思考问题和解决问题的能力.2.会利用空间向量的坐标运算、两点间距离公式、夹角公式以及相关结论解决有关平行、垂直、长度、角、距离等问题,从而培养准确无误的运算能力.3.本节内容在高考中延续解答题的形式,以多面体为载体,求空间角的命题趋势较强,分值约为12分,属中档题.2018年高考全景展示1.【2018年理数天津卷】如图,且AD =2BC ,,且EG =AD ,且CD =2FG ,,DA =DC =DG =2(I )若M 为CF 的中点,N 为EG 的中点,求证:;(II )求二面角的正弦值;(III )若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【答案】(Ⅰ)证明见解析;(Ⅱ);(Ⅲ).详解:依题意,可以建立以D为原点,分别以,,的方向为x轴,y轴,z轴的正方向的空间直角坐标系(如图),可得D(0,0,0),A(2,0,0),B(1,2,0),C(0,2,0),E(2,0,2),F(0,1,2),G(0,0,2),M(0,,1),N(1,0,2).(Ⅰ)依题意=(0,2,0),=(2,0,2).设n0=(x,y,z)为平面CDE的法向量,则即不妨令z=–1,可得n0=(1,0,–1).又=(1,,1),可得,又因为直线MN平面CDE,所以MN∥平面CDE.(Ⅱ)依题意,可得=(–1,0,0),,=(0,–1,2).设n=(x,y,z)为平面BCE的法向量,则即不妨令z=1,可得n=(0,1,1).设m=(x,y,z)为平面BCF的法向量,则即不妨令z=1,可得m=(0,2,1).因此有cos<m,n>=,于是sin<m,n>=.所以,二面角E–BC–F的正弦值为.(Ⅲ)设线段DP的长为h(h∈[0,2]),则点P的坐标为(0,0,h),可得.易知,=(0,2,0)为平面ADGE的一个法向量,故,由题意,可得=sin60°=,解得h=∈[0,2].所以线段的长为.点睛:本题主要考查空间向量的应用,线面平行的证明,二面角问题等知识,意在考查学生的转化能力和计算求解能力.2.【2018年理北京卷】如图,在三棱柱ABC-中,平面ABC,D,E,F,G分别为,AC,,的中点,AB=BC=,AC==2.(Ⅰ)求证:AC⊥平面BEF;(Ⅱ)求二面角B-CD-C1的余弦值;(Ⅲ)证明:直线FG与平面BCD相交.【答案】(1)证明见解析(2) B-CD-C1的余弦值为(3)证明过程见解析【解析】分析:(1)由等腰三角形性质得,由线面垂直性质得,由三棱柱性质可得,因此,最后根据线面垂直判定定理得结论,(2)根据条件建立空间直角坐标系E-ABF,设立各点坐标,利用方程组解得平面BCD一个法向量,根据向量数量积求得两法向量夹角,再根据二面角与法向量夹角相等或互补关系求结果,(3)根据平面BCD一个法向量与直线F G方向向量数量积不为零,可得结论. 详解:解:(Ⅰ)在三棱柱ABC-A1B1C1中,∵CC1⊥平面ABC,∴四边形A1ACC1为矩形.又E,F分别为AC,A1C1的中点,∴AC⊥EF.∵AB=BC.∴AC⊥BE,∴AC⊥平面BEF.(Ⅱ)由(I)知AC⊥EF,AC⊥BE,EF∥CC1.又CC1⊥平面ABC,∴EF⊥平面ABC.∵BE平面ABC,∴EF⊥BE.如图建立空间直角坐称系E-xyz.由题意得B(0,2,0),C(-1,0,0),D (1,0,1),F(0,0,2),G(0,2,1).∴,设平面BCD的法向量为,∴,∴,令a=2,则b=-1,c=-4,∴平面BCD的法向量,又∵平面CDC1的法向量为,∴.由图可得二面角B-CD-C1为钝角,所以二面角B-CD-C1的余弦值为.(Ⅲ)平面BCD的法向量为,∵G(0,2,1),F(0,0,2),∴,∴,∴与不垂直,∴GF与平面BCD不平行且不在平面BCD内,∴GF与平面BCD相交.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.3.【2018年江苏卷】如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.【答案】(1)(2)【解析】分析:(1)先建立空间直角坐标系,设立各点坐标,根据向量数量积求得向量的夹角,再根据向量夹角与异面直线所成角的关系得结果;(2)利用平面的方向量的求法列方程组解得平面的一个法向量,再根据向量数量积得向量夹角,最后根据线面角与所求向量夹角之间的关系得结果.详解:如图,在正三棱柱ABC−A1B1C1中,设AC,A1C1的中点分别为O,O1,则OB⊥OC,OO1⊥OC,OO1⊥OB,以为基底,建立空间直角坐标系O−xyz.因为AB=AA1=2,所以.(1)因为P为A1B1的中点,所以,从而,故.因此,异面直线BP与AC1所成角的余弦值为.点睛:本题考查空间向量、异面直线所成角和线面角等基础知识,考查运用空间向量解决问题的能力.利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”. 4.【2018年江苏卷】在平行六面体中,.求证:(1);(2).【答案】答案见解析【解析】分析:(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得菱形ABB1A1,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.详解:证明:(1)在平行六面体ABCD-A 1B1C1D1中,AB∥A1B1.因为AB平面A1B1C,A1B1平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B平面A1BC,BC平面A1BC,所以AB1⊥平面A1BC.因为AB1平面ABB1A1,所以平面ABB1A1⊥平面A1BC.点睛:本题可能会出现对常见几何体的结构不熟悉导致几何体中的位置关系无法得到运用或者运用错误,如柱体的概念中包含“两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形”,再如菱形对角线互相垂直的条件,这些条件在解题中都是已知条件,缺少对这些条件的应用可导致无法证明. 5.【2018年理新课标I卷】如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求与平面所成角的正弦值.【答案】(1)证明见解析.(2) .【解析】分析:(1)首先从题的条件中确定相应的垂直关系,即BF⊥PF,BF⊥EF,又因为,利用线面垂直的判定定理可以得出BF⊥平面PEF,又平面ABFD,利用面面垂直的判定定理证得平面PEF⊥平面ABFD.(2)结合题意,建立相应的空间直角坐标系,正确写出相应的点的坐标,求得平面ABFD的法向量,设DP与平面ABFD所成角为,利用线面角的定义,可以求得,得到结果.详解:(1)由已知可得,BF⊥PF,BF⊥EF,又,所以BF⊥平面PEF.又平面ABFD,所以平面PEF⊥平面ABFD.点睛:该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的证明以及线面角的正弦值的求解,属于常规题目,在解题的过程中,需要明确面面垂直的判定定理的条件,这里需要先证明线面垂直,所以要明确线线垂直、线面垂直和面面垂直的关系,从而证得结果;对于线面角的正弦值可以借助于平面的法向量来完成,注意相对应的等量关系即可.6.【2018年全国卷Ⅲ理】如图,边长为2的正方形所在的平面与半圆弧所在平面垂直,是上异于,的点.(1)证明:平面平面;(2)当三棱锥体积最大时,求面与面所成二面角的正弦值.【答案】(1)见解析(2)【解析】分析:(1)先证平面CMD,得,再证,进而完成证明。

2016年全国卷3(理科数学)含答案

2016年全国卷3(理科数学)含答案

绝密★启用前2016年普通高等学校招生全国统一考试理科数学(全国Ⅲ卷)注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合 ,则ST =【D 】(A) [2,3] (B)(- ,2] [3,+) (C) [3,+) (D)(0,2] [3,+) (2)若z=1+2i ,则【C 】 (A)1(B) - 1 (C) i (D)-i(3)已知向量 ,则ABC=【A 】 (A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。

下面叙述不正确的是【D 】{}{}(x 2)(x 3)0,T 0S x x x =--≥=>∞∞∞∞41izz =-1(2BA =31(),22BC =∠(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同 (D) 平均最高气温高于200C 的月份有5个 (5)若 ,则 【A 】 (A)(B) (C) 1 (D) (6)已知,,,则【A 】(A ) (B )(C )(D ) (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =【B 】3tan 4α=2cos 2sin 2αα+=642548251625432a =254b =1325c =b a c <<a b c <<b c a <<c a b <<(A )3 (B )4 (C )5 (D )6(8)在中,,BC 边上的高等于,则【C 】(A(B (C )(D )(9)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为【B 】ABC △π4B13BC cos A101031010(A )(B )(C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB BC ,AB =6,BC =8,AA 1=3,则V 的最大值是【B 】 (A )4π (B )(C )6π (D )(11)已知O 为坐标原点,F 是椭圆C :的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为【A 】 (A )(B )(C )(D )(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意,中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有【C 】(A )18个(B )16个(C )14个(D )12个第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分(13)若x ,y 满足约束条件 则z=x+y 的最大值为 .(14)函数的图像可由函数的图像至少向右平移.个单位长度得到。

2016-2018三年高考全国卷理科数学试题及答案

2016-2018三年高考全国卷理科数学试题及答案

2016-2018全国卷语文2018/2017/2016全国I卷2018/2017/2016全国II卷2018/2017/2016全国III卷2018高考理数(全国卷Ⅰ)1.设1i2i 1iz -=++,则||z = A .0B .12C .1D .22.已知集合{}220A x x x =-->,则A =R ð A .{}12x x -<< B .{}12x x -≤≤C .}{}{|1|2x x x x <->UD .}{}{|1|2x x x x ≤-≥U3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则=5a A .12- B .10- C .10D .125.设函数32()(1)f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A.43AB -41ACB. 41AB -43ACC. 43AB +41ACD. 41AB +43AC7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .172B .52C .3D .28.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅u u u u r u u u r= A .5B .6C .7D .89.已知函数e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是 A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 311.已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若OMN △为直角三角形,则|MN |= A .32B .3C .3D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 A 33B 23C 32D 3 二、填空题:本题共4小题,每小题5分,共20分。

2018年全国卷3(理科数学)含答案

2018年全国卷3(理科数学)含答案

绝密★启用前2018年普通高等学校招生全国统一考试理科数学(全国Ⅲ卷)注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合,,则【C 】A .B .C .D . 2.【D 】 A .B .C .D .3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是【A 】{}|10A x x =-≥{}012B =,,A B ={}0{}1{}12,{}012,,()()1i 2i +-=3i --3i -+3i -3i+4.若,则【B 】 A .B .C .D . 5.的展开式中的系数为【C 】A .10B .20C .40D .806.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是【A 】 A .B .C .D .7.函数的图像大致为【D 】1sin 3α=cos2α=897979-89-522x x ⎛⎫+ ⎪⎝⎭4x 20x y ++=x y A B P ()2222x y -+=ABP △[]26,[]48,⎡⎣422y x x =-++8.某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用移动支付的人数,,,则【B 】 A .0.7B .0.6C .0.4D .0.39.的内角的对边分别为,,,若的面积为,则【C 】 A . B . C . D .10.设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为【B 】A .B .C .D .11.设是双曲线()的左,右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为【C 】 AB.2CD12.设,,则【B 】A .B .C .D .二、填空题:本题共4小题,每小题5分,共20分。

(完整word)2016年高考全国Ⅲ理科数学试题及答案(word解析版),推荐文档

(完整word)2016年高考全国Ⅲ理科数学试题及答案(word解析版),推荐文档

2016年普通高等学校招生全国统一考试(全国Ⅲ)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2016年全国Ⅲ,理1,5分】设集合()(){}{}|230,|0S x x x T x x =--≥=> ,则S T =I ( )(A )[]2,3 (B )(][),23,-∞+∞U (C )[)3,+∞ (D )(][)0,23,+∞U 【答案】D【解析】由()()230x x --≥解得3x ≥或2x ≤,{}23S x x ∴=≤≥或,所以{}023S T x x x =<≤≥I 或,故选D . 【点评】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化.(2)【2016年全国Ⅲ,理2,5分】若i 12z =+,则4i1zz =-( )(A )1 (B )1- (C )i (D )i - 【答案】C【解析】4i 4ii (12i)(12i)11zz ==+---,故选C . 【点评】复数的加、减法运算中,可以从形式上理解为关于虚数单位“i ”的多项式合并同类项,复数的乘法与多项式的乘法相类似,只是在结果中把2i 换成1-.复数除法可类比实数运算的分母有理化.复数加、减法的几何意义可依平面向量的加、减法的几何意义进行理解.(3)【2016年全国Ⅲ,理3,5分】已知向量13(,)2BA =uu v ,31(,)2BC =uu u v ,则ABC ∠=( )(A )30︒ (B )45︒ (C )60︒ (D )120︒ 【答案】A【解析】由题意,得133132222cos 11BA BC ABC BA BC⨯+⨯⋅∠===⨯u u u r u u u r u u u r u u u r ,所以30ABC ∠=︒,故选A . 【点评】(1)平面向量a r 与b r 的数量积为·cos a b a b θr r r r=,其中θ是a r 与b r 的夹角,要注意夹角的定义和它的取值范围:0180θ︒≤≤︒;(2)由向量的数量积的性质有||=a a a ·r r r ,·cos a ba b θ=r rr r ,·0a b a b ⇔⊥r r r r =,因此,利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题.(4)【2016年全国Ⅲ,理4,5分】某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15C ︒,B 点表示四月的平均最低气温约为5C ︒.下面叙述不正确的是( )(A )各月的平均最低气温都在0C ︒以上 (B )七月的平均温差比一月的平均温差大 (C )三月和十一月的平均最高气温基本相同(D )平均气温高于20C ︒的月份有5个 【答案】D【解析】由图可知0C ︒均在虚线框内,所以各月的平均最低气温都在0C ︒以上,A 正确;由图可在七月的平均温差大于7.5C ︒,而一月的平均温差小于7.5C ︒,所以七月的平均温差比一月的平均温差大,B 正确;由图可知三月和十一月的平均最高气温都大约在5C ︒,基本相同,C 正确;由图可知平均最高气温高于20C ︒的月份有3个或2个,所以不正确,故选D .【点评】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选B .(5)【2016年全国Ⅲ,理5,5分】若3tan 4α=,则2cos 2sin 2αα+=( ) (A )6425(B )4825(C )1 (D )1625【答案】A 【解析】由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A .【点评】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间的联系. (6)【2016年全国Ⅲ,理6,5分】已知432a =,254b =,1325c =,则( )(A )b a c << (B )a b c << (C )b c a << (D )c a b << 【答案】A【解析】因为422335244a b ==>=,1223332554c a ==>=,所以b a c <<,故选A .【点评】比较指数的大小常常根据三个数的结构联系相关的指数函数与对数函数、幂函数的单调性来判断,如果两个数指数相同,底数不同,则考虑幂函数的单调性;如果指数不同,底数相同,则考虑指数函数的单调性;如果涉及到对数,则联系对数的单调性来解决.(7)【2016年全国Ⅲ,理7,5分】执行下图的程序框图,如果输入的46a b ==,,那么输出的n =( )(A )3 (B )4 (C )5 (D )6 【答案】B【解析】第一循环,得2,4,6,6,1a b a s n =====;第二循环,得2,6,4,10,2a b a s n =-====;第三循环,得2,4,6,16,3a b a s n =====;第四循环,得2,6,4,2016,4a b a s n =-===>=; 退出循环,输出4n =,故选B .【点评】解决此类型时要注意:第一,要明确是当型循环结构,还是直到型循环结构.根据各自的特点执行循环体;第二,要明确图中的累计变量,明确每一次执行循环体前和执行循环体后,变量的值发生的变化;第三,要明确循环体终止的条件是什么,会判断什么时候终止循环体.(8)【2016年全国Ⅲ,理8,5分】在ABC D 中,π4B =,BC 边上的高等于13BC ,则cos A = ( )(A )310 (B )10 (C )10- (D )310-【答案】C【解析】设BC 边上的高线为AD ,则3BC AD =,所以225AC AD DC AD =+=,2AB AD =.由余弦定理,知22222210cos 2225AB AC BC A AB AC AD AD+-===-⋅⨯⨯,故选C .【点评】在平面几何图形中求相关的几何量时,需寻找各个三角形之间的联系,交叉使用公共条件,常常将所涉及到已知几何量与所求几何集中到某一个三角形,然后选用正弦定理与余弦定理求解.(9)【2016年全国Ⅲ,理9,5分】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )(A )18365+ (B )54185+ (C )90 (D )81 【答案】B【解析】由三视图该集合体是以侧视图为底面的斜四棱柱,所以该几何体的表面积236233233554185S =⨯⨯+⨯⨯+⨯⨯=+,故选B .【点评】求解多面体的表面积及体积问题,关键是找到其中的特征图形,如棱柱中的矩形,棱锥中的直角三角形,棱台中的直角梯形等,通过这些图形,找到几何元素间的关系,建立 未知量与已知量间的关系,进行求解.(10)【2016年全国Ⅲ,理10,5分】在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )(A )4π (B )92π (C )6π (D )323π【答案】B【解析】要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322R πππ==,故选B .【点评】立体几何是的最值问题通常有三种思考方向:(1)根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;(2)将几何体平面化,如利用展开图,在平面几何图中直观求解;(3)建立函数,通过求函数的最值来求解.(11)【2016年全国Ⅲ,理11,5分】已知O 为坐标原点,F 是椭圆2222:1(0)x y C a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )(A )13(B )12 (C )23 (D )34【答案】A 【解析】由题意设直线l 的方程为()y k x a =+,分别令x c =-与0x =得点()FM k a c =-,OE ka =,由~OBE ∆CBM ∆,得12OE OB FM BC=,即()2ka a k a c a c =-+,整理得13c a =,所以椭圆离心率为1e 3=,故选A . 【点评】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c 的值,进而求得e 的值;(2)建立,,a b c 的齐次等式,求得ba或转化为关于e 的等式求解;(3)通过特殊值或特殊位置,求出e .(12)【2016年全国Ⅲ,理12,5分】定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a L 中0的个数不少于1的个数.若4m =,则不同的“规范01数列”共有( ) (A )18个 (B )16个 (C )14个 (D )12个【答案】C【解析】由题意,得必有0a =,1a =,则具体的排法列表如下:,故选C .往往利用表格法、树枝法将其所有可能一一列举出来,常常会达到岀奇制胜的效果.第II 卷本卷包括必考题和选考题两部分。

2016年高考理科数学全国卷3-答案

2016年高考理科数学全国卷3-答案

量将约为 1.82 亿吨. 【考点】相关性分析,线性回归 19.【答案】(Ⅰ)由已知得 AM 2 AD 2 ,取 BP 的中点T ,连接 AT ,TN ,由 N 为 PC 中点知TN∥BC ,
3 TN 1 BC 2 ,又 AD∥BC ,故 TN 平行且等于 AM ,四边形 AMNT 为平行四边形,于是 MN∥AT ,因
【考点】奇偶性,导数,切线方程
16.【答案】3
【解析】如图所示,作 AE BD 于 E ,作 OF AB于 F , AB 2 3 , OA 2 3 ,OF 3 ,即
3/7
3m
3 3 ,m
3 ,直线 l 的倾斜角为 30 , CD AE 2 3
3 3.
m2 1
3
2
【考点】直线和圆,弦长公式
0
0 11 1 01
【考点】数列,树状图
第Ⅱ卷
二、填空题
13.【答案】 3 2
【解析】三条直线的交点分别为
(2,1)

1,
1 2

(0,1)
,代入目标函数可得 3

3 2
,1 ,故最大值为
3 2

【考点】线性规划
14.【答案】 2π 3
【解析】
y sin x
3
cos
x
2sin
x
3
,y
1/7
a 4 2 6 -2 4 2 6 -2 4
b6 4
6
4
6
s0
6
10
16
20
n0
1
2
3
4
【考点】程序框图
8.【答案】C
【 解 析 】 如 图 所 示 , 可 设 B D A D1 , 则 AB 2 , DC 2 , AC 5 , 由 余 弦 定 理 知 ,

2018年高考理科数学全国卷3-答案

2018年高考理科数学全国卷3-答案

2018年普通高等学校招生全国统一考试(课标全国卷Ⅲ)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】∵={1}A x x |≥,{0,1,2}B =,∴={1,2}A B I ,故选C . 2.【答案】D【解析】21i 2i)(2i 2i i 3i )(+-=-+-=+,故选D . 3.【答案】A【解析】两个木构件咬合成长方体时,小长方体(榫头)完全嵌入带卯眼的木构件,易知俯视图可以为A .故选A .4.【答案】B 【解析】由1sin 3α=,得22127cos212sin 12()=1=399αα=-=-⨯-.故选B .5.【答案】C【解析】252()x x+的展开式的通项251103155()(2)2rr r r r r r T C x x C x ---+==g g ,令1034r -=,得2r =,所以4x 的系数为225240C ⨯=.故选C . 6.【答案】A【解析】由圆22(2)=2x y -+可得圆心坐标(2,0),半径r ABP △的面积记为S ,点P 到直线AB 的距离记为d ,则有12S AB d =g .易知AB =max d =+=min d =所以26S ≤≤,故选A . 7.【答案】D【解析】∵42()2f x x x =-++,∴3()42f x x x '=-+,令()0f x '>,解得2x -<或2x 0<<,此时,()f x递增;令()0f x '<,解得x <0或x ,此时,()f x 递减.由此可得()f x 的大致图象.故选D . 8.【答案】B【解析】由题知~1()0,X B p ,则(101 2.4)DX p p =⨯⨯-=,解得0.4p =或0.6.又∵()6(4)P X P X ==<,即446664221010(1)(1)(1)0.5C P p C P p p p p --⇒-⇒<<>,∴0.6p =,故选B . 9.【答案】C【解析】根据余弦定理得2222cos a b c ab C +-=,因为2224ABCa Sbc +-=△,所以c 42os ABC ab CS =△,又1sin 2ABC S ab C =△,所以tan 1C =,因为π()0,C ∈,所以4C π=.故选C .10.【答案】B【解析】设ABC △的边长为a ,则1sin60=932ABC S a a =o g g △,解得6a =(负值舍去).ABC △的外接圆半径r 满足62sin60r =o,得23r =,球心到平面ABC 的距离为()224232-=.所以点D 到平面ABC 的最大距离为246+=,所以三棱锥D ABC -体积的最大值为19361833⨯⨯=,故选B . 11.【答案】C【解析】点2(,0)F c 到渐近线b y x a =的距离22(0)1()bc aPF b b b a-==+>,而2OF c =,所以在2Rt OPF △中,由勾股定理可得22OP c b a =-=,所以166PF OP a ==.在2Rt OPF △中,222cos PF b PF O OF c ∠==,在12F F P △中,2222222121221246cos 22PF F F PF b c a PF O PF F F b c +-+-∠==⋅⋅2,所以222222463464b b c a b c a c bc +-=⇒=-,则有22223()46c a c a -=-,解得3ca=(负值舍去),即3e =.故选C .12.【答案】B【解析】解法一:∵0.20.2log 0.3log 1=0a =>,22log 0.3log 1=0b =<,∴0ab <,排除C . ∵0.20.20log 0.3log 0.2=1<<,22log 0.3log 0.5=1-<,即01a <<,1b <-,∴0a b +<,排除D . ∵220.2log 0.3lg0.2log 0.2log 0.3lg 2b a ===,∴2223log 0.3log 0.2log 12b b a -=-=<,∴1bb ab a b a+⇒+<<,排除A .故选B .解法二:易知01a <<,1b -<,∴0ab <,0a b +<, ∵0.30.30.311log 0.2log 2log 0.41a b+=+=<, 即1a bab+<,∴a b ab +>, ∴0ab a b +<<.故选B .第Ⅱ卷二、填空题 13.【答案】12【解析】由已知得2(4,2)+=a b .又,()1c λ=,2()+∥c a b ,所以42=0λ-,解得12λ=. 14.【答案】3-【解析】设(e ))1(x f x ax =+,则()()1e x f x ax a '=++,所以曲线在点(0,1)处的切线的斜率(0)12k f a '==+=-,解得3a =-.15.【答案】3【解析】令()0f x =,得πcos(3)6x +,解得ππ+()39k x k =∈Z .当0k =时,π9x =;当1k =时,4π9x =;当2k =时,7π9x =,又[ 0,π]x ∈,所以满足要求的零点有3个. 16.【答案】2【解析】解法一:由题意可知C 的焦点坐标为(1,0),所以过焦点(1,0),斜率为k 的直线方程为1y x k =+,设111,y A y k ⎛⎫+ ⎪⎝⎭,221,y B y k ⎛⎫+ ⎪⎝⎭,将直线方程与抛物线方程联立得21,4,y x k y x ⎧=+⎪⎨⎪=⎩整理得2440y y k --=,从而得124y y k+=,124y y =-g .∵1()1,M -,90AMB ∠=o,∴0MA MB =u u u r u u u r g ,即1212(2)(2)(1)(1)0y yy y k k+++--=g ,即2440k k -+=,解得2k =. 解法二:设11A(,)x y ,22(),B x y ,则2112224,4,y x y x ⎧=⎨=⎩①②②-①得2221214()y y x x -=-,从而2121124y y x x k y y --+==.设AB 的中点为M ',连接MM '.∵直线AB 过抛物线24y x =的焦点,∴以线段AB 为直径的M '⊙与准线:1l x =-相切.∵1()1,M -,90AMB ∠=o ,∴点M 在准线:1l x =-上,同时在M '⊙上,∴准线l 是M '⊙的切线,切点M ,且MM l '⊥,即MM '与x 轴平行,∴点M '的纵坐标为1,即1212221y y y y =⇒++=,故124422y y k =+==.故答案为:2. 三、解答题17.【答案】(1)解:设{}n a 的公比为q ,由题设得1n n a q -=. 由已知得424q q =,解得0q =(舍去)或2q =-或2q =. 故1(2)n n a -=-或12n n a -=. (2)若1(2)n n a -=-,则1(2)3nn S --=.由63m S =得(2)188m -=-.此方程没有正整数解.若12n n a -=,则21n n S =-.由63m S =得264m =,解得6m =. 综上,6m =.【解析】(1)解:设{}n a 的公比为q ,由题设得1n n a q -=. 由已知得424q q =,解得0q =(舍去)或2q =-或2q =. 故1(2)n n a -=-或12n n a -=. (2)若1(2)n n a -=-,则1(2)3nn S --=.由63m S =得(2)188m -=-。

2016年全国卷3理科数学理科综合试题及答案

2016年全国卷3理科数学理科综合试题及答案

绝密★启用前2016年普通高等学校招生全国统一考试 全国卷3理科数学注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明1.设集合S={}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则ST=(A )[2,3] (B )(—∞ ,2] [3,+∞) (C )[3,+∞) (D)(0,2] [3,+∞) 【答案】D 【解析】试题分析:由(2)(3)0x x --≥解得3x ≥或2x ≤,所以{|23}S x x x =≤≥或,所以{|023}S T x x x =<≤≥或,故选D .考点:1、不等式的解法;2、集合的交集运算. 2.若12z i =+,则41izz =- (A )1 (B) —1 (C )i (D )-i 【答案】C 【解析】 试题分析:44(12)(12)11i ii i i zz ==+---,故选C . 考点:1、复数的运算;2、共轭复数. 3.已知向量1(2BA = ,31(),22BC = 则∠ABC=(A)300 (B ) 450 (C )600 (D )1200【答案】A 【解析】试题分析:由题意,得112222cos 112||||BA BC ABC BA BC ⨯⋅∠===⨯,所以30ABC ∠=︒,故选A .考点:向量夹角公式.4.某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为150C,B 点表示四月的平均最低气温约为50C.下面叙述不正确的是(A )各月的平均最低气温都在00C 以上 (B )七月的平均温差比一月的平均温差大 (C )三月和十一月的平均最高气温基本相同 (D)平均气温高于200C 的月份有5个 【答案】D 【解析】试题分析:由图可知0C ︒均在虚线框内,所以各月的平均最低气温都在0℃以上,A 正确;由图可在七月的平均温差大于7.5C ︒,而一月的平均温差小于7.5C ︒,所以七月的平均温差比一月的平均温差大,B 正确;由图可知三月和十一月的平均最高气温都大约在5C ︒,基本相同,C 正确;由图可知平均最高气温高于20℃的月份有3个或2个,所以不正确.故选D .考点:1、平均数;2、统计图5.若3tan 4α= ,则2cos 2sin 2αα+= (A)6425 (B ) 4825 (C ) 1 (D )1625【答案】A 【解析】试题分析:由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A .考点:1、同角三角函数间的基本关系;2、倍角公式. 6.已知432a =,254b =,1325c =,则(A)b a c << (B )a b c << (C )b c a << (D)c a b << 【答案】A 【解析】试题分析:因为422335244a b ==>=,1223332554c a ==>=,所以b a c <<,故选A . 考点:幂函数的图象与性质.7.执行下图的程序框图,如果输入的46a b ==,,那么输出的n =(A )3 (B )4 (C)5 (D)6 【答案】B 【解析】试题分析:第一次循环,得2,4,6,6,1a b a s n =====;第二次循环,得2,6,4,10a b a s =-===,2n =;第三次循环,得2,4,6,16,3a b a s n =====;第四次循环,得2,6,4,2016,4a b a s n =-===>=,退出循环,输出4n =,故选B . 考点:程序框图.8.在ABC △中,π4B ,BC 边上的高等于13BC ,则cos A(A 310 (B 10(C)1010(D )31010【答案】C 【解析】试题分析:设BC 边上的高线为AD ,则3BC AD =,所以225AC AD DC AD =+,2AB =.由余弦定理,知22222210cos 2225AB AC BC A AB AC AD AD+-===⋅⨯⨯,故选C . 考点:余弦定理.9.如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18365+ (B)54185+ (C )90 (D)81【答案】B 【解析】试题分析:由三视图该几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积236233233554185S =⨯⨯+⨯⨯+⨯⨯=+B .考点:空间几何体的三视图及表面积.10.在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是(A )4π (B )92π (C)6π (D )323π 【答案】B 【解析】试题分析:要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322R πππ==,故选B . 考点:1、三棱柱的内切球;2、球的体积.11.已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A,B 分别为C 的左,右顶点。

2018全国Ⅲ卷理科数学高考真题及答案

2018全国Ⅲ卷理科数学高考真题及答案

2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合,,则A .B .C .D . 2. A .B .C .D .3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.若,则 A .B .C .D . {}|10A x x =-≥{}012B =,,A B ={}0{}1{}12,{}012,,()()1i 2i +-=3i --3i -+3i -3i+1sin 3α=cos 2α=897979-89-5.的展开式中的系数为A .10B .20C .40D .806.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是A .B .C .D .7.函数的图像大致为8.某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用移动支付的人数,,,则 A .0.7B .0.6C .0.4D .0.39.的内角的对边分别为,,,若的面积为,则A .B .C .D .10.设是同一个半径为4的球的球面上四点,为等边三角形且其面积为体积的最大值为522x x ⎛⎫+ ⎪⎝⎭4x 20x y ++=x y A B P ()2222x y -+=ABP △[]26,[]48,⎡⎣422y x x =-++p X 2.4DX =()()46P X P X =<=p =ABC △A B C ,,a b c ABC △2224a b c +-C =π2π3π4π6A B C D ,,,ABC △D ABC -A .B .C .D .11.设是双曲线()的左,右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为 AB.2CD 12.设,,则A .B .C .D .二、填空题:本题共4小题,每小题5分,共20分。

2016全国三卷理科数学高考真题及答案

2016全国三卷理科数学高考真题及答案

2016全国三卷理科数学高考真题及答案D(B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个(5)若3tan 4α= ,则2cos 2sin 2αα+= (C)(A)6425(B)48251 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n = (A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B,BC 边上的高等于13BC ,则cos A (A )31010 (B )1010(C )1010(D )31010(9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18365+ (B )54185+ (C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是(A )4π (B )92π(C )6π(D )323π (11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为(A)13(B)12(C)23(D)34(12)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意2k m,12,,,ka a a中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有(A)18个(B)16个(C)14个(D)12个二、填空题:本大题共3小题,每小题5分(13)若x,y满足约束条件则z=x+y的最大值为_____________.(14)函数的图像可由函数的图像至少向右平移_____________个单位长度得到。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

于 C , D 的点. (1)证明:平面 AMD ⊥ 平面 BMC ; (2)当三棱锥 M ABC 体积最大时,求面 MAB 与面 MCD 所成二面角的正弦值.
20. (12 分)
x2 y 2 1 交 于 A , B 两 点 , 线 段 AB 的 中 点 为 已 知 斜 率 为 的 直 线 与 椭 圆 C: 4 3
a 2 b2 c2 ,则 C 4
, ,若 △ABC 的面积为 C 的对边分别为, 9. △ABC 的内角 A ,B , A.
π 2
B.
πቤተ መጻሕፍቲ ባይዱ3
C.
π 4
D.
π 6
C ,D 是同一个半径为 4 的球的球面上四点, △ABC 为等边三角形且其面积 10.设 A ,B ,
为 9 3 ,则三棱锥 D ABC 体积的最大值为 A. 12 3 B. 18 3 C. 24 3 D. 54 3
点.若
∠AMB 90 ,则 k ________.
(12 分) 17. 等比数列 an 中, a1 1,a5 4a3 . (1)求 an 的通项公式; (2)记 Sn 为 an 的前项和.若 Sm 63 ,求 m . (12 分) 18. 某工厂为提高生产效率, 开展技术创新活动, 提出了完成某项生产任务的两种新的 生产方式.为比较两种生产方式的效率,选取 40 名工人,将他们随机分成两组,每组 20 人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成 生产任务的工作时间(单位:min)绘制了如下茎叶图:
3
B. ab a b 0
C. a b 0 ab
D. ab 0 a b
13.已知向量 a = 1,2 , b= 2, 2 , c= 1, λ .若 c ∥ 2a + b ,则 ________.
1 处的切线的斜率为 2 ,则 a ________. 14.曲线 y ax 1 e x 在点 0 , π 15.函数 f x cos 3x 在 0 ,π 的零点个数为________. 6 1 和抛物线 C:y 2 4 x ,过 C 的焦点且斜率为的直线与 C 交于 A , B 两 16.已知点 M 1,
x2 y 2 b 0 )的左、右焦点, O 是坐标原点.过 F2 11.设 F1 ,F2 是双曲线 C: 2 2 1( a 0 , a b
作 C 的一条渐近线的垂线,垂足为 P .若 PF1 6 OP ,则 C 的离心率为 A. 5 B.2 C. 3 D. 2
12.设 a log0.2 0.3 , b log 2 0.3 ,则 A. a b ab 0
2016-2018 全国 III 卷理数
2018 全国 III 卷 2-12
2017 全国 III 卷 13-22
2016 全国 III 卷 23-32
1
2018 高考理科数学(全国卷Ⅲ)
1,2 ,则 A B 1.已知集合 A x | x 1≥ 0 , B 0 ,
A. 0 2. 1 i 2 i A. 3 i B. 3 i C. 3 i D. 3 i B. 1 C. 1,2
M 1,m m 0 .
1 (1)证明: k ; 2 (2)设 F 为 C 的右焦点, P 为 C 上一点,且 FP FA FB 0 .证明: FA , FP , FB
成等差数列,并求该数列的公差. 21. (12 分) 已知函数 f x 2 x ax 2 ln 1 x 2 x . (1)若 a 0 ,证明:当 1 x 0 时, f x 0 ;当 x 0 时, f x 0 ; (2)若 x 0 是 f x 的极大值点,求. 22.选修 4—4:坐标系与参数方程](10 分)
7 9
D.
8 9
2 5. x 2 的展开式中 x 4 的系数为 x
A.10
B.20
C.40
2
D.80
6.直线 x y 2 0 分别与轴,轴交于 A , B 两点,点 P 在圆 x 2 y 2 2 上,则 △ABP 面积的取值范围是 A. 2 ,6
4
不超过 m
附: K 2
n ad bc , a b c d a c b d
2
PK2 ≥ k
0.050 3.841
0.010 6.635
0.001 10.828
19. (12 分)
所在平面垂直, M 是 CD 上异 如图,边长为 2 的正方形 ABCD 所在的平面与半圆弧 CD
8 B. 4 ,
C. 2 ,3 2
D. 2 2 ,3 2
7.函数 y x 4 x 2 2 的图像大致为
2
8.某群体中的每位成员使用移动支付的概率都为 p ,各成员的支付方式相互独立,设 X 为 该群体的 10 位成员中使用移动支付的人数, DX 2.4 , P X 4 P X 6 ,则 p A.0.7 B.0.6 C.0.4 D.0.3
1,2 D. 0 ,
3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图 中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长 方体,则咬合时带卯眼的木构件的俯视图可以是
4.若 sin A.
5
1 ,则 cos 2 3
B.
7 9
C.
(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由; (2)求 40 名工人完成生产任务所需时间的中位数 m ,并将完成生产任务所需时间超 过 m 和不超过 m 的工人数填入下面的列联表: 超过 m 第一种生产方式 第二种生产方式 (3)根据(2)中的列联表,能否有 99%的把握认为两种生产方式的效率有差异?
相关文档
最新文档