拉丝工艺 光纤的制造

合集下载

第四节光纤拉丝技术及涂覆工艺

第四节光纤拉丝技术及涂覆工艺

3、涂覆装置:1)无外部加压开口杯式
2)压力涂覆器
第四章 光纤制造技术
采用简单的无外部加压开口杯式涂覆器,移动中的光纤会粘 附一些液体涂料,并穿过一个使涂料在光纤上自对中可调模 具口,涂层厚度由模具口大小和光纤直径决定。但这种结构 涂覆器,在高速拉丝时(V>1000m/s)得不到均匀涂敷层。 因此,现在实际应用更普遍的是压力涂敷器。这种结构涂覆 器最适合用于高速拉丝,而且不会在涂料中搅起气泡。
第四章 光纤制造技术
第四章 光纤制造技术
第四节 光纤拉丝技术及涂覆工艺
第四章 光纤制造技术
第四节 光纤拉丝技术及涂覆工艺
光纤拉丝:将制备好的光纤预制棒,利用某种加热设备加热熔 融后拉制成直径符合要求的细小光纤纤维,并保证光纤的芯/包 直径比和折射率分布形式不变的工艺操作过程。
在拉丝操作过程中,最重要的技术:如何保证不使光纤表面受 到损伤并正确控制芯/包层外径尺寸及折射率分布形式。 如果光纤表面受到损伤,将会影响光纤机械强度与使用寿命, 而外径发生波动,由于结构不完善不仅会引起光纤波导散射损 耗,而且在光纤接续时,连接损耗也会增大,因此在控制光纤 拉丝工艺流程时,必须使各种工艺参数与条件保持稳定。
第四章 光纤制造技术
③氧化锆(ZrO2)感应加热炉:利用氧化锆材料在常温下为绝缘 体,接近1500º C时,就会变成导体的特点而设计制造。其本身 既可作炉管又是加热体,在高频感应场中加热。因为氧化锆的 氧化温度在2500º C。因此氧化锆感应炉一般不需要气氛保护, 但在制造光纤时,为隔离空气降低制造过程中产生的衰减,必 须充Ar气进行气氛保护。 ④高功率激光器:用激光拉制光纤的清净度是各种方法无法比
第四章 光纤制造技术
1、涂覆层的作用(双层):

光纤拉丝作业指导书

光纤拉丝作业指导书

光纤拉丝作业指导书1、光纤拉丝准备1.1 拉丝机的启动1)设备部负责打开所有装置的电源(测量装置需要在拉丝开始前20 分钟打开)。

2)设备部负责打开所有工艺气体主管路上的阀门,并根据《光纤拉丝工艺点检表》检查气压设置是否正确,确保无异常。

3)设备部负责开启工艺冷却水(开启前需要检查炉子无漏水现象)。

4)设备部负责打开拉丝塔洁净空气开关(拉丝过程中洁净空气应始终被打开,以保证拉丝区洁净空气环境)。

5)设备部负责开启计算机,登陆WinNt操作系统和打开NOMOS控制系统(operator登陆)。

6)检查各线工艺配方是否设定正确(如3#生产线工艺配方为M.LINE3.001)。

1.2 光纤拉丝炉检查和清洁1)检查拉丝炉石墨件使用时间,对照如下表格,如果超出时间范围立即更换。

2)每一根预制棒拉丝结束以后必须清洁拉丝炉子(不拆炉子在线清洗)。

除一体化保温层外,每五根预制棒拉丝结束后进行石墨件的拆炉清洁,如在拉丝过程中发生异常情况,不到5根棒也需要拆炉子。

3)冷却炉子到室温。

4)戴上洁净手套(清洁炉子时需要两个操作工配合)。

5)辅操工将延伸管出口处的炉门开到最大,接上真空管抽气,主操工用刷子清洁,辅操工配合抽气,将清洁过程中产生的粉尘清除干净。

最后需要开关炉门,将炉门上附着的粉尘吸干净。

6)主操工先用短刷子清洁中心管和马弗管。

7)然后用长刷子及洁净纸反复清洁延伸管内壁,直到洁净纸不会变黄为止。

8)再用短刷子清洁中心管和马弗管。

9)最后用氮气枪进行吹扫干净(吸尘器在底下抽气)。

10)如果中心管和马弗管污染结晶严重,需将中心管和马弗管从炉子中取出,到石墨清洗间清洗。

正常拉丝应每5根预制棒进行一次石墨件的离线清洗(石墨间内)。

注:石墨件的清洗与安装更换由生产部拉丝员工自行完成。

11)戴上洁净手套,在石墨清洗间内用细毛刷清洁各个石墨件的内部及表面。

12)石墨件上绿色和黄色结晶物将严重影响光纤的强度,因其质地较硬,较难清除,因而可以根据具体情况,在石墨件被取出时,采用300目沙纸,将之清除。

光纤拉丝工艺

光纤拉丝工艺

光纤拉丝工艺ppt xx年xx月xx日CATALOGUE目录•引言•光纤拉丝工艺发展历程•光纤拉丝工艺的生产流程•光纤拉丝工艺的技术特点•光纤拉丝工艺的应用领域•光纤拉丝工艺的前景展望01引言光纤拉丝工艺是指利用高温高压技术将高纯度玻璃或塑料光纤预制件拉制成细直径的工艺方法。

光纤拉丝工艺是光通信领域中的关键技术之一,被广泛应用于光缆、光器件和光通讯网络等领域。

光纤拉丝工艺简介光纤拉丝工艺流程选取高纯度玻璃或塑料作为预制件材料,经过高温高压处理制作成预制件。

光纤预制件制作拉丝机安装与调试拉丝过程涂覆与测试安装拉丝机并对其进行精确调试,确保拉丝过程中各项参数的稳定。

将预制件送入拉丝机的高温炉中加热至软化点,通过牵引轮和收线轮相互配合将光纤拉制成细直径。

对拉制好的光纤进行涂覆保护,并进行性能测试以确保符合要求。

1光纤拉丝工艺的重要性23光纤拉丝工艺制成的光纤具有低损耗、高带宽等特点,能够实现长距离、高速率的光通信。

实现长距离光通信光纤拉丝工艺作为光通信产业的基础技术,对光通信产业的发展起着至关重要的作用。

促进光通信产业发展光纤拉丝工艺的广泛应用有助于提升国家信息基础设施的水平,促进信息技术的快速发展。

提升国家信息基础设施水平02光纤拉丝工艺发展历程03初步应用虽然技术尚未成熟,但在一些特定领域,如航空航天、军事等领域开始尝试应用。

第一阶段:起步期01技术引入光纤拉丝工艺起源于20世纪70年代,最初由美国Corning公司引入。

02初步研究在起步期,研究人员开始探索光纤拉丝的基本原理和控制方法。

进入21世纪初,随着技术不断发展,光纤拉丝工艺逐渐转型。

技术突破光纤拉丝工艺逐渐实现规模化生产,生产效率和技术水平显著提高。

生产规模化光纤拉丝工艺逐渐应用于通信、医疗、工业控制等领域。

应用扩展近年来,随着科技的不断进步,光纤拉丝工艺不断创新。

技术创新新型光纤材料不断涌现,如玻璃纤维、碳纤维等,具有更高的强度和更轻的重量。

opgw光缆生产工艺流程

opgw光缆生产工艺流程

opgw光缆生产工艺流程光缆(也称光纤缆)生产工艺流程是指完成光纤、光缆的制造过程,包括光纤预制、光缆纺绕、光缆护套、光缆综合、光缆测试等环节。

下面是一份关于光缆生产工艺流程的详细介绍,共计1200字以上。

一、光纤预制光纤预制是指将光纤的纤芯和包层材料分别均匀地涂布在光纤预制杆上。

该工艺流程包括以下步骤:1.光纤提拉:将预先准备好的原材料通过熔体法拉瓦尔拉丝成型机拉制成光纤束;2.纤芯涂布:将纤芯材料(通常为高纯度二氧化硅)均匀地涂布在光纤束上;3.包层涂布:将包层材料(通常为高聚合物材料)均匀地涂布在纤芯上;4.配留和清洗:对涂布好的光纤束进行剪切和清洗,使其达到工艺要求。

二、光缆纺绕光缆纺绕是指将预制好的光纤束在钢丝绳或塑料骨架上纺绕成光纤缆的工艺流程。

该工艺流程包括以下步骤:1.光纤束纺绕:将光纤束以一定的规则纺绕在钢丝绳或塑料骨架上,形成光纤束层;2.填充材料填充:将填充材料均匀地填充在光纤束之间,以保护光纤束;3.金属屏蔽层纺绕:在填充材料之上,将铝塑复合带等金属屏蔽层绕制在光纤束外,以保护光纤不受电磁干扰;4.外护套纺绕:在金属屏蔽层之上,将PVC或其他材料的护套层纺绕形成光缆的外护套。

三、光缆护套光缆护套是指对光纤缆的外部进行护套和绝缘处理,以保护光纤缆的内部结构。

该工艺流程包括以下步骤:1.护套材料选择:根据光纤缆的使用环境需求,选择合适的材料进行护套;2.总成和剥皮:根据光缆设计的要求,将光纤缆和光纤的一部分剥去外护套;3.护套层绕制:将护套材料纺绕在光纤缆的外部,同时保证纺绕层的均匀和致密;4.温度控制:将光缆进行加热处理,以使其护套与光缆之间达到更好的粘合效果。

四、光缆综合光缆综合是指将预制好的光纤与相关的连接器和拆分器等元器件进行组装和调试的工艺流程。

该工艺流程包括以下步骤:1.连接器组装:将光纤与连接器进行组装,以实现光纤之间的连接;2.拆分器安装:将光纤与拆分器等元器件进行连接,以实现光信号的拆分和合并;3.光缆连接:根据光缆的设计要求,将光缆进行连接和固定,以便于后续的安装和使用;4.调试和测试:对完成的光缆进行调试和光学性能测试,以确保其质量达到设计要求。

光纤光缆生产工艺流程

光纤光缆生产工艺流程

光纤光缆制造工艺及设备重点内容:原料提纯工艺、预制棒汽相沉积工艺、拉丝工艺、套塑工艺、余长形成、松套水冷、绞合工艺、层绞工艺难点: 汽相沉积工艺参数确定、拉丝环境保护、余长的控制、梯度水冷的控制、绞合参数的选择主要内容:(1)光纤制造工艺(2)缆芯制造工艺(成缆工艺)(3)护套挤制工艺成品光缆图5-0-1光纤光缆制造工艺流程图通信用光纤是由高纯度SiO2与少量高折射率掺杂剂GeO2、TiO2、Al2O3、ZrO2和低折射率掺杂剂SiF4(F)或B2O3或P2O5等玻璃材料经涂覆高分子材料制成的具有一定机械强度的涂覆光纤。

而通信用光缆是将若干根(1~2160根)上述的成品光纤经套塑、绞合、挤护套、装铠等工序工艺加工制造而成的实用型的线缆产品。

在光纤光缆制造过程中,要求严格控制并保证光纤原料的纯度,这样才能生产出性能优良的光纤光缆产品,同时,合理的选择生产工艺也是非常重要的。

目前,世界上将光纤光缆的制造技术分成三大工艺.5.0.1光纤制造工艺的技术要点:1.光纤的质量在很大程度上取决于原材料的纯度,用作原料的化学试剂需严格提纯,其金属杂质含量应小于几个ppb,含氢化合物的含量应小于1ppm,参与反应的氧气和其他气体的纯度应为6个9(99.9999%)以上,干燥度应达-80℃露点。

2.光纤制造应在净化恒温的环境中进行,光纤预制棒、拉丝、测量等工序均应在10000级以上洁净度的净化车间中进行。

在光纤拉丝炉光纤成形部位应达100级以上。

光纤预制棒的沉积区应在密封环境中进行。

光纤制造设备上所有气体管道在工作间歇期间,均应充氮气保护,避免空气中潮气进入管道,影响光纤性能。

3.光纤质量的稳定取决于加工工艺参数的稳定。

光纤的制备不仅需要一整套精密的生产设备和控制系统,尤其重要的是要长期保持加工工艺参数的稳定,必须配备一整套的用来检测和校正光纤加工设备各部件的运行参数的设施和装置。

以MCVD工艺为例:要对用来控制反应气体流量的质量流量控制器(MFC)定期进行在线或不在线的检验校正,以保证其控制流量的精度;需对测量反应温度的红外高温测量仪定期用黑体辐射系统进行检验校正,以保证测量温度的精度;要对玻璃车床的每一个运转部件进行定期校验,保证其运行参数的稳定;甚至要对用于控制工艺过程的计算机本身的运行参数要定期校验等。

拉丝工艺对光纤性能的影响

拉丝工艺对光纤性能的影响

拉丝工艺对光纤性能的影响1. 引言1.1 拉丝工艺对光纤性能的影响拉丝工艺是光纤制备过程中的关键环节,对光纤的性能具有重要影响。

通过不同的拉丝工艺参数的调控,可以调整光纤的力学性能、传输特性以及光学性能。

具体来说,拉丝工艺对光纤的拉伸强度影响主要体现在拉拔过程中拉伸的力度和速度,这会直接影响光纤的强度和耐力。

而对光纤的抗弯性能影响则是通过控制拉丝工艺中的拉拔方式和温度等参数来实现的,这会影响光纤在安装和使用中的稳定性和可靠性。

拉丝工艺还会影响光纤的传输损耗、色散特性和光学非线性效应,这些参数的控制需要在拉丝工艺中精心设计和调整。

拉丝工艺是影响光纤性能的重要因素,对光纤的性能表现有着直接而重要的影响。

通过不断优化和改进拉丝工艺,可以提高光纤的性能表现,满足不同领域对光纤性能的要求。

2. 正文2.1 拉丝工艺对光纤的拉伸强度影响拉丝工艺是影响光纤性能的重要因素之一,其中对光纤的拉伸强度影响尤为重要。

在光纤的制作过程中,拉丝工艺可以直接影响到光纤的拉伸强度。

拉丝工艺的优化可以提高光纤的拉伸强度,从而延长光纤的使用寿命并提高其可靠性。

首先,拉丝工艺会影响光纤的内部结构。

通过控制拉丝过程中的拉伸速度和温度,可以使光纤内部的晶格结构更加均匀和致密。

这样的内部结构可以提高光纤的抗拉伸性能,使其能够承受更大的拉力而不容易断裂。

其次,拉丝工艺还会影响光纤的表面光滑度。

拉丝过程中,如果拉伸速度过快或拉丝机器不稳定,可能导致光纤表面出现凹凸不平或者表面裂纹,从而降低光纤的拉伸强度。

因此,在拉丝工艺中需要注意控制拉伸速度和保持设备稳定,以保证光纤表面的光滑度。

总的来说,拉丝工艺对光纤的拉伸强度影响是非常显著的。

通过优化拉丝工艺,可以提高光纤的拉伸强度,进而提高其使用性能和可靠性。

因此,在光纤制作过程中,拉丝工艺的重要性不可忽视。

2.2 拉丝工艺对光纤的抗弯性能影响拉丝工艺是光纤制备过程中至关重要的一环,对光纤的性能有着直接的影响。

拉丝工艺-光纤的制造

拉丝工艺-光纤的制造

预制棒的预处理
预制棒
预制棒和把棒连接
氢氧焰
氢氧焰
拉丝塔工艺控制过程
拉丝塔主要部件介绍(送棒机构)
XY
1 手动控制盒可控制送棒机构可上 下左右移动 2 将预制棒向下送入拉丝炉内,目 测预制棒与拉丝炉的间隙。当发 现其偏离中心位置时,用手动控 制盒上的〔XY位置调整〕按钮进 行调整
拉丝塔各部件介绍(拉丝炉)
制造商
缺点
1. 原料要求纯度高 2. 沉积速率低 1. 原料利用率低 2. 折射率剖面不够精确 1.折射率剖面粗糙 2.原料利用率低
结论
擅长制造纤芯 擅长制造包层, 纤芯制造仅次 于 PCVD 擅长制造包层
1.折射率剖面粗糙 2.原料利用率低
擅长制造包层
外部化学气相沉积法(OVD)
OVD实物图
等离子体管内化学气相沉积法(PCVD)
拉丝操作步骤四(涂覆和加速)
1.涂覆开始和加速
5. 当二涂层直径测量仪显示光纤直径在220um以上时,用 手牵引光纤,将光纤挂线到舞蹈轮后到达收线机传动轮, 保持吸尘器在收线机A盘一侧继续吸引光纤 6. 按下控制柜上的[加速]按钮使速度提高到25m/min,同 时保持光纤的直径大约125±5µm,并继续升高炉温 2175ºC。 7. 启动第一次涂覆。确定气控柜上第一次涂覆CO2流量,确 定一次涂覆初始压力,确定气控柜上一次涂覆UV固化灯 氮气喷入和喷出流量. 8. 在电脑主操作面上的〔自动启动运行设定〕中选择〔一次 涂覆压力〕和〔二次涂覆压力〕为[自动]
炉内壁
预制棒 间隙要均匀
卡盘 预制棒 加热炉 退火管 纤径测量仪
拉丝操作步骤二(拉丝炉升温)
3. 拉丝炉升温
① ② ③ ④ 在拉丝炉退火管下放一铁桶,将底门关闭 打开拉丝炉的电源 在辅助牵引轮下放一铁桶 设定预制棒母棒长和母棒直径的数值。其中,母 棒长=(预制棒有效长度+263)mm ⑤ 设定下料温度。使用新预制棒时,下料炉温应设 定到2150ºC;拉过丝的旧棒下料炉温设定到 2100 ºC。确定拉丝炉氩气流量设定正确;确定 〔拉丝炉〕中的气压和冷却水的指示灯均为绿色。 ⑥ 确定拉丝炉升温前检查各项正常后,按下主控柜 [拉丝炉]〔开〕,拉丝炉开始升温

拉丝工艺对光纤性能的影响

拉丝工艺对光纤性能的影响

拉丝工艺对光纤性能的影响光纤是一种用于传输光信号的细长玻璃纤维或塑料纤维,它具有高传输速度、大带宽和抗干扰能力强等优点,因此在通信、医疗、军事等领域得到广泛应用。

而光纤的性能受到拉丝工艺的影响,拉丝工艺对光纤性能的影响是十分重要的。

拉丝工艺是光纤制造的关键环节之一,其质量直接影响光纤的性能和品质。

光纤制造的一般工艺为:原材料预处理、预成型、拉丝、包覆、涂层、复合、割断、烤焙等。

在整个工艺中,拉丝工艺是至关重要的步骤,影响着光纤的质量和性能。

拉丝工艺对光纤的几何尺寸和光学性能有着直接的影响。

通过拉丝工艺能够控制光纤的直径、圆整度、粗糙度等几何参数。

拉丝过程中,拉力和温度的控制可以调节光纤的拉丝速度和拉丝倍数,从而控制光纤的直径。

而光纤的直径和圆整度对其的传输损耗和带宽有着直接的影响。

拉丝工艺还能影响光纤的纤芯折射率、色散等光学参数,进而影响其传输性能和光学性能。

拉丝工艺对光纤的机械性能也有着重要的影响。

光纤在使用过程中会受到一定的拉伸、弯曲和挤压等力,因此其机械强度和耐久性是十分重要的。

拉丝工艺中拉力和温度的控制可以影响光纤的拉伸性能、弯曲性能和挤压性能。

通过拉丝工艺的调节,可以实现光纤的高强度、高韧性和高抗压性,提高其在使用过程中的稳定性和可靠性。

拉丝工艺还对光纤的表面质量和包覆质量有着直接的影响。

拉丝工艺中的涂层和封闭工艺不仅能保护光纤,还能影响其的表面粗糙度、清洁度和润湿性。

通过控制涂层工艺可以实现光纤表面的附着力和耐磨性,保证光纤在使用过程中不易受到外界环境的影响。

拉丝工艺还对光纤的色散和非线性度有着一定的影响。

拉丝工艺中纤芯的抽拉过程会影响纤芯的非均匀性,进而影响其色散和非线性度。

通过拉丝工艺的调节可以改善光纤的色散特性和非线性特性,提高其在长距离和高速传输中的性能表现。

拉丝工艺对光纤的性能有着多方面的影响,包括几何尺寸、光学性能、机械性能、表面质量、色散和非线性度等方面。

通过优化拉丝工艺,可以提高光纤的质量和性能,满足不同领域对光纤的不同需求。

光缆生产流程

光缆生产流程

光缆生产流程光缆是一种用于传输光信号的通信线缆,它由一根或多根的光纤和外部保护层组成。

光缆的生产流程经过多道工序,需要精密的设备和严格的质量控制。

下面将介绍光缆的生产流程。

首先,光纤的生产。

光纤是光缆的核心部分,它由石英玻璃或塑料等材料制成。

在光纤的生产过程中,需要将原材料加热熔化,然后通过拉丝机将熔融的材料拉成细长的纤维。

这些光纤需要经过多道工序进行拉丝、涂覆、固化等处理,最终形成具有一定强度和光传输性能的光纤。

其次,光缆的组装。

在光纤生产完成后,需要将光纤组装成光缆。

这个过程包括光纤的编织、填充、包覆等工序。

首先是光纤的编织,将多根光纤按照一定的方式编织在一起,形成光缆的芯线。

然后在芯线的外部进行填充,填充材料通常是一种具有良好抗拉性能的材料,用于保护光纤。

最后是包覆,将填充后的芯线进行外部保护层的包覆,通常采用聚乙烯或聚氯乙烯等材料进行包覆,以提高光缆的耐用性和抗外部环境的能力。

接着是光缆的测试。

在光缆组装完成后,需要进行严格的测试,以确保光缆的质量符合标准要求。

测试的项目包括光传输性能、拉伸性能、耐磨性能等多个方面。

只有通过了各项测试,光缆才能被认定为合格品,才能投入使用。

最后是光缆的包装和出厂。

合格的光缆需要进行包装,通常采用轴式包装或盘式包装的方式,将光缆卷绕在轴或盘上,并进行外包装。

包装完成后,光缆可以进行出厂,运往各个使用地点。

总的来说,光缆的生产流程包括光纤的生产、光缆的组装、光缆的测试以及光缆的包装和出厂。

整个流程需要精密的设备和严格的质量控制,以确保光缆的质量和性能符合标准要求。

光缆作为通信领域的重要组成部分,对于现代社会的信息传输起着至关重要的作用。

光纤光缆生产工艺流程

光纤光缆生产工艺流程

光纤光缆制造工艺及设备重点容:原料提纯工艺、预制棒汽相沉积工艺、拉丝工艺、套塑工艺、余长形成、松套水冷、绞合工艺、层绞工艺难点: 汽相沉积工艺参数确定、拉丝环境保护、余长的控制、梯度水冷的控制、绞合参数的选择主要容:(1)光纤制造工艺(2)缆芯制造工艺(成缆工艺)(3)护套挤制工艺图5-0-1光纤光缆制造工艺流程图通信用光纤是由高纯度SiO2与少量高折射率掺杂剂GeO2、TiO2、Al2O3、ZrO2和低折射率掺杂剂SiF4(F)或B2O3或P2O5等玻璃材料经涂覆高分子材料制成的具有一定机械强度的涂覆光纤。

而通信用光缆是将若干根(1~2160根)上述的成品光纤经套塑、绞合、挤护套、装铠等工序工艺加工制造而成的实用型的线缆产品。

在光纤光缆制造过程中,要求严格控制并保证光纤原料的纯度,这样才能生产出性能优良的光纤光缆产品,同时,合理的选择生产工艺也是非常重要的。

目前,世界上将光纤光缆的制造技术分成三大工艺.5.0.1光纤制造工艺的技术要点:1.光纤的质量在很大程度上取决于原材料的纯度,用作原料的化学试剂需严格提纯,其金属杂质含量应小于几个ppb,含氢化合物的含量应小于1ppm,参与反应的氧气和其他气体的纯度应为6个9(99.9999%)以上,干燥度应达-80℃露点。

2.光纤制造应在净化恒温的环境中进行,光纤预制棒、拉丝、测量等工序均应在10000级以上洁净度的净化车间中进行。

在光纤拉丝炉光纤成形部位应达100级以上。

光纤预制棒的沉积区应在密封环境中进行。

光纤制造设备上所有气体管道在工作间歇期间,均应充氮气保护,避免空气中潮气进入管道,影响光纤性能。

3.光纤质量的稳定取决于加工工艺参数的稳定。

光纤的制备不仅需要一整套精密的生产设备和控制系统,尤其重要的是要长期保持加工工艺参数的稳定,必须配备一整套的用来检测和校正光纤加工设备各部件的运行参数的设施和装置。

以MCVD工艺为例:要对用来控制反应气体流量的质量流量控制器(MFC)定期进行在线或不在线的检验校正,以保证其控制流量的精度;需对测量反应温度的红外高温测量仪定期用黑体辐射系统进行检验校正,以保证测量温度的精度;要对玻璃车床的每一个运转部件进行定期校验,保证其运行参数的稳定;甚至要对用于控制工艺过程的计算机本身的运行参数要定期校验等。

自制光纤实验报告总结

自制光纤实验报告总结

一、实验背景光纤通信技术作为现代通信领域的重要分支,以其高速、大容量、抗干扰能力强等优点,在信息传输领域发挥着越来越重要的作用。

为了深入了解光纤通信的原理和应用,我们小组开展了自制光纤实验,通过实践操作,对光纤的基本特性进行探究。

二、实验目的1. 了解光纤的基本原理和结构。

2. 掌握光纤的制备方法。

3. 熟悉光纤的测试方法。

4. 分析光纤的传输特性。

三、实验原理光纤是一种由高纯度石英玻璃拉制的细丝,其内部结构为芯、包层和涂覆层。

光纤通信利用光的全反射原理,将光信号在光纤中传输。

实验中,我们通过制备光纤,模拟光纤通信过程,探究光纤的传输特性。

四、实验器材1. 光纤预制棒2. 光纤拉丝机3. 光纤切割机4. 光纤熔接机5. 光纤测试仪6. 光纤耦合器7. 光纤跳线8. 光功率计9. 光纤熔接机电源10. 实验台五、实验步骤1. 光纤预制棒的切割:将光纤预制棒切割成一定长度的光纤预制棒。

2. 光纤的拉伸:利用光纤拉丝机将光纤预制棒拉伸成所需粗细的光纤。

3. 光纤的切割:使用光纤切割机将拉伸好的光纤切割成所需长度。

4. 光纤的熔接:利用光纤熔接机将两根光纤的末端熔接在一起。

5. 光纤的测试:使用光纤测试仪、光功率计等设备对熔接后的光纤进行测试。

6. 数据分析:根据测试数据,分析光纤的传输特性。

六、实验结果与分析1. 光纤的制备:通过实验,我们成功制备了所需粗细的光纤,并完成了光纤的熔接。

2. 光纤的传输特性:测试结果显示,熔接后的光纤具有良好的传输性能,损耗较低,符合实验要求。

七、实验总结1. 通过本次实验,我们了解了光纤的基本原理和结构,掌握了光纤的制备方法。

2. 实验过程中,我们遇到了一些问题,如光纤预制棒的切割、拉伸、熔接等环节,通过不断尝试和改进,最终解决了这些问题。

3. 通过实验,我们认识到光纤通信技术在信息传输领域的广泛应用,为我国通信事业的发展做出了贡献。

八、实验展望1. 进一步优化光纤的制备工艺,提高光纤的质量和性能。

《光纤拉丝工艺》课件

《光纤拉丝工艺》课件

01
案例分析
某公司光纤拉丝工艺流程介绍
光纤预制棒制备
通过化学气相沉积等方法制备 光纤预制棒。
光纤拉丝
将光纤预制棒加热至熔融状态 ,通过拉丝机拉制成连续光纤 。
涂覆与包层
在拉制出的光纤表面涂覆一层 保护性涂层,并进行包层。
检测与包装
对光纤进行各项性能检测,合 格后进行包装。
某公司光纤拉丝工艺设备配置
拉丝塔设备
拉丝塔设备是实现光纤拉丝的核心设备,其作用是将熔融状态的预制棒通过一定 速度的拉丝头拉伸成光纤。
设备的稳定性和精度对于光纤的直径和质地具有重要影响,因此需要保持设备的 良好状态,并进行定期校准和维护。
涂覆与保护设备
涂覆与保护设备的作用是在光纤表面涂覆一层保护材料,以 增强光纤的机械性能和保护光纤不受环境因素的影响。
01
光纤拉丝工艺是指将高纯度玻璃 管通过加热和拉丝机的作用,制 备成具有特定折射率和光学性能 的光纤的过程。
02
该工艺需要精确控制温度、速度 和玻璃管成分,以确保制备出高 质量的光纤。
光纤拉丝工艺的原理
光纤拉丝工艺基于玻璃的热膨胀和表 面张力原理。
通过控制加热温度和拉丝速度,可以 形成连续且均匀的玻璃丝,即光纤。
总结词
拉丝过程中,需要保持环境的清洁度 ,防止灰尘、杂质等对光纤造成污染 。ห้องสมุดไป่ตู้
详细描述
拉丝设备的维护和清洁工作十分重要 ,需要定期进行,以确保设备的正常 运行和光纤的质量。
涂覆与保护的质量控制
详细描述
涂覆与保护的质量控制包括对涂层的厚度 、硬度、粘附性等指标进行检测和控制,
以确保其满足工艺要求。
总结词
光纤预制棒制备设备
包括反应腔、加热系统、气流控制装置等。

拉丝工艺对光纤性能的影响

拉丝工艺对光纤性能的影响

拉丝工艺对光纤性能的影响1. 引言1.1 光纤的重要性光纤作为信息传输的重要载体,在现代通信、医疗、科研等领域发挥着至关重要的作用。

光纤具有传输速度快、带宽大、信号稳定等优点,广泛应用于电话、互联网、电视等通信领域。

在医疗领域,光纤的应用使得医学影像的传输更加精准和高效,为医生提供了更多的诊断和治疗手段。

在科研领域,光纤被广泛用于激光、光谱分析等领域,推动了科学研究的进步。

由于光纤的重要性日益凸显,不断提高光纤的性能和品质是当前研究的热点之一。

拉丝工艺作为光纤制备的关键环节,对光纤的性能有着重要影响,因此对拉丝工艺对光纤性能的影响进行研究,对提高光纤质量、改善传输性能具有重要意义。

通过对拉丝工艺的研究和优化,可以不断提升光纤的性能,推动光纤技术的发展,促进信息时代的进步和发展。

1.2 拉丝工艺的介绍光纤是一种重要的通信传输媒介,其在现代通信、网络和数据传输领域发挥着至关重要的作用。

光纤的性能直接影响着通信质量和传输效果,因此对光纤的制备工艺进行研究和优化具有重要意义。

拉丝工艺是光纤制备过程中至关重要的环节,是将预制的光纤芯棒通过高温熔融并拉伸成细长的光纤的过程。

拉丝工艺直接影响着光纤的结构和性能,包括抗拉性能、色散性能、损耗性能、弯曲性能以及传输性能等方面。

在拉丝工艺中,熔融拉伸的温度、速度和拉伸比等参数对光纤的性能有着重要影响。

通过合理控制这些参数,可以调控光纤的结构和性能,从而实现光纤性能的优化和提升。

深入研究拉丝工艺对光纤性能的影响具有重要的理论意义和实际应用价值。

通过对光纤拉丝工艺的深入研究,可以为光纤通信技术的发展提供有力支持,并进一步推动光纤通信领域的不断创新和进步。

【共240字】1.3 研究背景和意义光纤作为信息传输和通信领域中不可或缺的重要元件,其性能直接影响着信息传输的质量和速度。

拉丝工艺作为影响光纤性能的关键加工工艺之一,对光纤的抗拉性能、色散性能、损耗性能、弯曲性能和传输性能等方面均有显著影响。

光纤生产工艺

光纤生产工艺

光纤生产流程1.预制棒和尾管的入库(贴上编码,例如预制棒编SD091204001尾管编码:F100828018)2.抛光流程抛光的定义:在光纤生产的过程中,预制棒与尾管的对接即称之为抛光抛光流程:将预制棒与尾管分别固定在机器上,尽量使其切面对齐,经过高温持续加热1小时,融化焊接,然后磨平焊接口,最后冷却足够(2小时以上)取下。

高温加热预制棒尾管3.拉丝过程3.1裸光纤光纤外径波动越小越好,光纤直径波动可导致光纤产生后散射功率损耗和光纤接续损耗。

光纤外径的波动引起芯径和模场直径波动,导致光纤散射损耗、接续损耗增加。

假设光纤芯径波动与外径波动成正比,则两个外径不同的光纤接续时,在光纤接续点的损耗可见为:A(直径波动)≈20log{2/(a1/a2+a2/a1)}(dB)设a 1=126μm,a 2=124μm,则A=0.001(dB);设a 1=127C a 2=123μm 则A=-0.0045(dB)。

因此将光纤的外径波动控制在±1μm 为好。

提高拉丝速度,适当降低拉丝温度,减少预制棒在高温炉中的停留时间。

减小包层中水分量向新区扩散,有利于降低光纤拉丝附加衰减。

提高拉丝速度,增大拉丝张力可减小外径波动,还有利于减小E’缺陷的产生。

也有利于光纤强度的增加。

但高速拉丝需要更高的炉温加热功率,也就更容易产生温场不均匀的现象。

会对光纤翘曲度有较大的影响(翘曲度是指裸光纤在不受任何外界应力的情况下的发生弯曲所对应的曲率半径)。

影响翘曲度的原因主要是光纤在温场中受热不均匀,导致光纤在颈向收缩不同,造成光纤翘曲度减小。

而光纤的翘曲度是光缆用户较为关心的指标之一,尤其在带光纤中,光纤翘曲度要是偏小将对接续带来不良后果。

由于光纤高速拉丝炉有以下基本要求:A.设计理想的温区分布和气路设计以便产生理想的预制棒变颈形状。

B.炉温稳定可调,便于精确控制拉丝张力。

C.加热炉元件选择和气流设计保证光纤表面尽可能少污染。

光缆生产、加工及制造工艺

光缆生产、加工及制造工艺

光缆生产,加工及制造工艺重点内容:原料提纯工艺,预制棒汽相沉积工艺,拉丝工艺,套塑工艺,余长形成,松套水冷,绞合工艺,层绞工艺难点:汽相沉积工艺参数确定,拉丝环境保护,余长的控制,梯度水冷的控制,绞合参数的选择主要内容:通信用光纤是由高纯度SiO2与少量高折射率掺杂剂GeO2,TiO2,Al2O3,ZrO2和低折射率掺杂剂SiF4(F)或B2O3或P2O5等玻璃材料经涂覆高分子材料制成的具有一定机械强度的涂覆光纤。

而通信用光缆是将若干根(1~2160根)上述的成品光纤经套塑,绞合,挤护套,装铠等工序工艺加工制造而成的实用型的线缆产品。

在光纤光缆制造过程中,要求严格控制并保证光纤原料的纯度,这样才能生产出性能优良的光纤光缆产品,同时,合理的选择生产工艺也是非常重要的。

目前,世界上将光纤光缆的制造技术分成三大工艺.光纤制造工艺的技术要点:1.光纤的质量在很大程度上取决于原材料的纯度,用作原料的化学试剂需严格提纯,其金属杂质含量应小于几个ppb,含氢化合物的含量应小于1ppm,参与反应的氧气和其他气体的纯度应为6个9(99.9999%)以上,干燥度应达-80℃露点。

2.光纤制造应在净化恒温的环境中进行,光纤预制棒,拉丝,测量等工序均应在10000级以上洁净度的净化车间中进行。

在光纤拉丝炉光纤成形部位应达100级以上。

光纤预制棒的沉积区应在密封环境中进行。

光纤制造设备上所有气体管道在作业间歇期间,均应充氮气保护,避免空气中潮气进入管道,影响光纤性能。

3.光纤质量的稳定取决于加工工艺参数的稳定。

光纤的制备不仅需要一整套精密的生产设备和控制系统,尤其重要的是要长期保持加工工艺参数的稳定,必须配备一整套的用来检测和校正光纤加工设备各部件的运行参数的设施和装置。

以MCVD工艺为例:要对用来控制反应气体流量的质量流量控制器(MFC)定期进行在线或不在线的检验校正,以保证其控制流量的精度;需对测量反应温度的红外高温测量仪定期用黑体辐射系统进行检验校正,以保证测量温度的精度;要对玻璃车床的每一个运转部件进行定期校验,保证其运行参数的稳定;甚至要对用于控制工艺过程的计算机本身的运行参数要定期校验等。

光纤拉丝工艺ppt

光纤拉丝工艺ppt

控制涂层的厚度和质量,以确保光纤的机械 性能和光学性能。
光纤涂覆
涂料选择
选择合适的涂料,以确保光纤在各种环境条件下 具有良好的稳定性和可靠性。
涂层厚度控制
控制涂层的厚度,以确保光纤的机械性能和光学 性能。
பைடு நூலகம்涂层均匀性
确保涂层在整个光纤表面上均匀分布,无气泡、 裂纹等缺陷。
光纤测试与包装
光学性能测试
高效化
01
提高光纤拉丝速度和产量,降低生产成本,提高市场竞争力。
智能化
02
引入自动化、智能化设备和技术,实现生产过程的自动化和智
能化控制,提高生产效率和产品质量。
精细化
03
提高光纤拉丝工艺的精度和稳定性,实现产品性能的精细调控
,满足不同应用场景的需求。
光纤拉丝工艺在通信领域的应用前景
5G通信
随着5G通信技术的快速发展,光纤拉丝工艺将广泛应用于5G通信基站和传输网的建设, 为5G通信提供更高速、更稳定的数据传输服务。
率和产品质量。
02
医疗健康
光纤拉丝工艺可用于医疗设备制造和生物医学研究,提高医疗设备和
仪器的精度和稳定性,促进医疗健康事业的发展。
03
安全监控
光纤拉丝工艺可用于安全监控领域的视频传输和数据采集,提高监控
系统的传输效率和稳定性,保障公共安全和国家安全。
05
结束语
对光纤拉丝工艺的总结
光纤拉丝工艺是一种高精度、高效率的生产工 艺,被广泛应用于光纤通信、航空航天、医疗 等领域。
2. 优化工艺参数,如 温度、压力、冷却速 度等,以提高光纤的 质量和稳定性。
3. 根据实际需求调整 拉丝速度,找到最佳 的生产效率和光纤质 量平衡点。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 将预制棒向下送入拉丝炉内,目 测预制棒与拉丝炉的间隙。当发 现其偏离中心位置时,用手动控 制盒上的〔XY位置调整〕按钮进 行调整
2020/4/2
拉丝塔各部件介绍(拉丝炉)
套管
电极
Ar
退火管
2020/4/2
顶盖 冷却 水 中心管
炉底门
冷却水:起到冷却炉体、炉顶盖、 炉底盖、电极、和夹具的作用, 确保冷却水已开
可重新穿丝) 11. 光纤穿过二次固化UV固化灯时,半关闭UV
固化灯门,注意:光纤不要摩擦灯门 12.光纤穿过二次UV固化灯底门后,卸下牵坠用
手牵引使光纤经过导向轮、张力轮,然后到达 牵引轮。打开牵引轮保护盘,并将光纤导入牵 引轮和传送带之间后,打开辅助牵引轮,再按 下吸引器〔开〕,使吸尘器吸入光纤 13.设定预制棒〔推进速度〕为3mm/min。 14.按下电控柜上〔牵引盘〕中的〔加速〕,提高 牵引速度,同时升高炉温并保持光纤直径为 135±5µm。
固化灯门,注意:光纤不要摩擦灯门。
导向轮
张力 测量轮
牵引轮
2020/4/2
收线轮
卡盘 预制棒
加热炉 退火管
纤径测量仪
冷却管
辅助牵引轮 一次涂覆
UV固化灯
纤径测量仪
冷却管 二次涂覆
同心度监控仪 UV固化灯
纤径测量仪
导向轮
张力 测量轮
牵引轮
2020/4/2
收线轮
拉丝操作步骤三(穿丝)
2.穿丝
9. 二次穿丝 10. (在穿丝时光纤断过三次,应清理模具后才
④ 用手牵引光纤端头使其变细(约200um),按下辅助牵引轮 控制盒上的[关],合上辅助牵引轮, 由辅助牵引轮挟持并牵 引光纤,同时,将一废纤盒放在辅助牵引轮下收集光纤
卡盘 预制棒
加热炉 退火管
纤径测量仪
冷却管
辅助牵引轮 一次涂覆
UV固化灯 纤径测量仪 冷却管
二次涂覆 同心度监控仪
UV固化灯 纤径测量仪
2020/4/2
拉丝操作步骤一(动力供给)
1.打开控制柜上的主开关 ,启动微机,显示光纤拉丝塔的主 操作界面
2.打开气体管路阀门,确定气控柜各种气体压力参数 (Ar、 N2、He、CO2和压缩空气)
3.打开冷却水阀门,确定冷却水压力和流量
2020/4/2
拉丝操作步骤二(拉丝炉升温)
1.拉丝炉抽真空
伤。 ⑤ 接触光纤碎屑(如光纤穿丝过程),要防止光纤扎伤皮肤;万
一光纤扎入皮肤,应立即用镊子将其夹出。 ⑥ 在UV固化灯和拉丝炉等强光处操作时要戴好防护墨镜,严禁
裸眼直视。 ⑦ 在进行接触化学品如涂覆树脂、乙醇等的操作时,要戴好乳胶
手套。 ⑧ 在升降机上操作时,当升降机在升降过程中,头手不要伸到护
栏外部。 ⑨ 防止拉丝炉及拉丝炉周围的水泄漏,一旦发现泄漏,立即切断
2020/4/2
拉丝操作步骤四(涂覆和加速)
1.涂覆开始和加速
5. 当二涂层直径测量仪显示光纤直径在220um以上时,用 手牵引光纤,将光纤挂线到舞蹈轮后到达收线机传动轮, 保持吸尘器在收线机A盘一侧继续吸引光纤
6. 按下控制柜上的[加速]按钮使速度提高到25m/min,同 时保持光纤的直径大约125±5µm,并继续升高炉温 2175ºC。
② 料头直径小于10mm,不必剪断料头,让料头自然下落,当 在炉底门处的光纤直径大概在1-2mm时,关闭炉底门;如 果料头直径较大,则要用斜口钳剪断光纤,再用镊子夹住光 纤,轻轻往下拉,当在炉底门处的光纤直径大概在1-2mm 时,关闭炉底门。注意:不要碰到光纤。
③ 当料头到辅助牵引轮处时,先将手放置在光纤旁,感觉光纤 是否冷却,如果光纤温度较高,不要用手触摸,而用斜口钳 往废纤盒内拉光纤,并将料头切掉;待光纤冷却可以用手触 摸时,再用手拉细光纤
缺点
1. 原料要求纯度高 2. 沉积速率低
1. 原料利用率低 2. 折射率剖面不够精确
1.折射率剖面粗糙 2.原料利用率低
1.折射率剖面粗糙 2.原料利用率低
结论 擅长制造纤芯 擅长制造包层, 纤芯制造仅次
于 PCVD 擅长制造包层
擅长制造包层
外部化学气相沉积法(OVD)
2020/4/2
OVD实物图
2020/4/2
最后工艺测试与包装
经过强度试验后, 合格光纤将进行传输 性能和几何性能的测 试。
2020/4/2
2020/4/2
卡盘 预制棒
加热炉 退火管
纤径测量仪
冷却管
辅助牵引轮 一次涂覆
UV固化灯 纤径测量仪 冷却管
二次涂覆 同心度监控仪
UV固化灯 纤径测量仪
拉丝塔结构
环境条件 : 洁净度:10000级 温度:20ºC-30 ºC 湿度:40%-70%
电源;在泄漏被查明和修复之前,拉丝炉不能通电。 ⑩ 防止UV固化灯内烟气进入工作间。
2020/4/2
拉丝工序的主要辅料及工具
原料:光纤预制棒(带把棒) 内涂UV固化涂料 外涂UV固化涂料。
辅料:收线盘 氩气 氮气 二氧化碳 氦气 乙醇 洁净纸 一次性手套 粘胶带等。
工具:光纤坠 力矩扳手 斜口钳 清洁刷 乙 醇瓶 手电筒 铁桶 吸尘器 镊子 螺 丝刀 卷尺 直尺 喉箍等。
张力 测量轮
2020/4/2牵引轮
收线轮
① 在拉丝炉退火管下放一铁桶,将底门关闭
② 打开拉丝炉的电源
③ 在辅助牵引轮下放一铁桶
④ 设定预制棒母棒长和母棒直径的数值。其中,母 棒长=(预制棒有效长度+263)mm
⑤ 设定下料温度。使用新预制棒时,下料炉温应设 定到2150ºC;拉过丝的旧棒下料炉温设定到 2100 ºC。确定拉丝炉氩气流量设定正确;确定 〔拉丝炉〕中的气压和冷却水的指示灯均为绿色 。
[π*(D/2)²](*V送*t)
等于熔化拉丝后光纤的容积:
[π*(d/2)²](*V拉*t)
化简后关系: V拉=V送*D² /d²
2020/4/2
2020/4/2
预制棒的预处理
预制棒
预制棒和把棒连接
氢氧焰
氢氧焰
2020/4/2
拉丝塔工艺控制过程
拉丝塔主要部件介绍(送棒机构)
XY
1 手动控制盒可控制送棒机构可上 下左右移动
⑥ 确定拉丝炉升温前检查各项正常后,按下主控柜 [拉丝炉]〔开〕,拉丝炉开始升温
拉丝操作步骤三(穿丝)
底门
2020/4/2
1.在辅助牵引轮处牵引
① 当炉温达到下料温度时,每5分钟左右稍微打开炉底门,用 有色玻璃片观察拉丝炉内光纤状态;如果发现拉丝光纤料头 从退火管中滴下,马上打开拉丝炉底门,进行下面操作,否 则,关闭炉底门
• 抽风装置:确保紫外固化炉在正常工作时 不至于因温度过高而烧坏炉子。
2020/4/2
筛选工艺及设备简介(筛选设备)
张力轮
放线轮
收线轮
通过在光纤上施加一适当大小的张力,筛去低于或等于筛选强度的裂 纹点,保证幸存光纤的机械可靠性,从而避免光纤在后续工序的使用过 程中断纤;这主要是因为当光纤在成缆过程中和用于实际环境中时,必 须经受住一定的机械应力和化学环境的侵蚀,选择传输特性优良和张力合 格的光纤
⑤ 取出炉底塞,关闭炉底门。
2020/4/2
拉丝操作步骤二(拉丝炉升温)
2.预制棒进给
XY
① 在把棒的顶端套两个喉箍
② 用三角卡盘夹好预制棒把棒,并用2
公斤的力矩扳手将预制棒卡紧。(
如听到咔嗒一声即松,不得继续用
力以免夹裂把棒)去掉炉底塞,关
闭拉丝炉底门
③ 揭开炉顶盖
④ 在预制棒进给机构的开关盒上按下[ 寸动下降]以降低预制棒。
2020/4/2
等离子体管内化学气相沉积法(PCVD)
2020/4/2
经PCVD沉积好的管子在熔缩车床上熔缩成一实心预制棒
2020/4/2
预制棒
2020/4/2
拉丝
预制棒经拉丝,被拉成125µm 粗 细的光纤,并涂上二层树脂以保 护光纤的强度。
★ 芯径 单模光纤: <10um(长距离通信主干) 多模光纤: 50um/62.5um(通信局域网,一般是橘色外皮)
⑦ 目测预制棒与拉丝炉的间隙。当发现其偏 离中心位置时,用手动控制盒上的〔XY位 置调整〕按钮进行调整
2020/4/2
卡盘 预制棒
加热炉
退火管
纤径测量仪
拉丝操作步骤二(拉丝炉升温 )
3. 拉丝炉升温
冷却管
辅助牵引轮 一次涂覆
UV固化灯
纤径测量仪
冷却管 二次涂覆
同心度监控仪 UV固化灯
纤径测量仪
导向轮
拉丝操作步骤三(穿丝)
2.穿丝
1. 安装涂覆器的模具。。 2. 一次穿丝。 3. 在辅助牵引轮的正下方剪断光纤,移走废纤盒,
在一次。 4. 涂覆器处开始穿丝。不要插入光纤太急,而要
缓慢插入。 5. 当光纤被卡住时,轻轻抽回光纤并进行重新
插入。 6. 在光纤顺利通过模具之后,从模具底部拉紧光
纤,并同时挂上牵坠。 7. 在光纤穿过一次固化UV固化灯时,半关闭UV
Ar气
① 安装炉顶盖
真空器 ② 插入炉底塞并用底门固定
③ 在主操作界面上设置Ar气流量(上中下)
底门 炉底塞
④ 当拉丝炉压力表读数为0时,按下手动控制 盒上的抽真空[开], 当拉丝炉压力表读数 稳定在为-0.09MPa时,按下手动控制盒上 的Ar气〔开〕,使压力表从-0.09MPa升 到0。反复进行三次,完成抽真空操作
光纤的制造
2020/4/2
光纤成品
芯层: SiO2+Ge+F 包层: SiO2+F 内涂覆层:丙烯酸树脂 外涂敷层:丙烯酸树脂
纤芯和包层是不可分离的,纤芯与包层合起来组成裸光纤。
相关文档
最新文档