2017高考试题分类汇编之概率统计(精校版)新版

合集下载

近五年(2017-2021)高考数学真题分类汇编10 概率与统计

近五年(2017-2021)高考数学真题分类汇编10 概率与统计

近五年(2017-2021)高考数学真题分类汇编十、概率与统计一、单选题1.(2021·全国(文))为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是()A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间2.(2021·全国(理))将4个1和2个0随机排成一行,则2个0不相邻的概率为()A.13B.25C.23D.453.(2021·全国(文))将3个1和2个0随机排成一行,则2个0不相邻的概率为()A.0.3 B.0.5 C.0.6 D.0.84.(2021·全国(理))在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74的概率为()A.79B.2332C.932D.295.(2021·全国(文))在区间10,2⎛⎤⎥⎝⎦随机取1个数,则取到的数小于13的概率为()A.34B.23C.13D.166.(2021·全国)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立7.(2020·天津)从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[)[)[)[]5.31,5.33,5.33,5.35,,5.45,5.47,5.47,5.49,并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为()A.10 B.18 C.20 D.36 8.(2020·全国(文))设一组样本数据x1,x2,…,x n的方差为0.01,则数据10x1,10x2,…,10x n的方差为()A.0.01 B.0.1 C.1 D.10 9.(2020·全国(文))如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤i<j<k≤12.若k–j=3且j–i=4,则称a i,a j,a k为原位大三和弦;若k–j=4且j–i=3,则称a i,a j,a k为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为()A.5 B.8 C.10 D.1510.(2020·全国(理))在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是( )A .14230.1,0.4p p p p ====B .14230.4,0.1p p p p ====C .14230.2,0.3p p p p ====D .14230.3,0.2p p p p ====11.(2020·全国(文))设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( ) A .15B .25 C .12D .4512.(2020·全国(理))某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( ) A .y a bx =+ B .2y a bx =+ C .e x y a b =+D .ln y a b x =+13.(2019·浙江)设01a <<,则随机变量X 的分布列是:则当a 在()0,1内增大时 A .()D X 增大 B .()D X 减小C .()D X 先增大后减小D .()D X 先减小后增大14.(2019·全国(文))某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生B .200号学生C .616号学生D .815号学生15.(2019·全国(理))演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差D .极差16.(2019·全国(理))我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .111617.(2018·浙江)设01p <<,随机变量ξ的分布列如图,则当p 在()0,1内增大时,A .()D ξ减小B .()D ξ增大C .()D ξ先减小后增大D .()D ξ先增大后减小18.(2018·全国(理))某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =A .0.7B .0.6C .0.4D .0.319.(2018·全国(理))如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p320.(2018·全国(文))某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半21.(2017·全国(理))某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了如图所示的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳22.(2017·山东(文))下图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件)若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为A .5,5B .3,5C .3,7D .5,723.(2017·全国(文))如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .8π C .12D .4π 24.(2017·山东(理))为了研究某班学生的脚长x (单位厘米)和身高y (单位厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为ˆˆˆy bx a =+.已知101225i i x ==∑,1011600i i y ==∑,ˆ4b =.该班某学生的脚长为24,据此估计其身高为 A .160B .163C .166D .17025.(2017·全国(理))如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .8π C .12D .4π 26.(2017·天津(文))有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为 A .45B .35C .25D .1527.(2017·浙江)已知随机变量i ξ满足P (i ξ=1)=p i ,P (i ξ=0)=1—p i ,i =1,2.若0<p 1<p 2<12,则 A .1E()ξ<2E()ξ,1D()ξ<2D()ξ B .1E()ξ<2E()ξ,1D()ξ>2D()ξ C .1E()ξ>2E()ξ,1D()ξ<2D()ξD .1E()ξ>2E()ξ,1D()ξ>2D()ξ28.(2011·湖北(理))如图,用K 、A 1、A 2三类不同的元件连接成一个系统.当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作,已知K 、A 1、A 2正常工作的概率依次是0.9、0.8、0.8,则系统正常工作的概率为A .0.960B .0.864C .0.720D .0.576二、多选题29.(2021·全国)有一组样本数据1x ,2x ,…,n x ,由这组数据得到新样本数据1y ,2y ,…,n y ,其中i i y x c =+(1,2,,),i n c =⋅⋅⋅为非零常数,则( )A .两组样本数据的样本平均数相同B .两组样本数据的样本中位数相同C .两组样本数据的样本标准差相同D .两组样数据的样本极差相同30.(2020·海南)我国新冠肺炎疫情进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是A .这11天复工指数和复产指数均逐日增加;B .这11天期间,复产指数增量大于复工指数的增量;C .第3天至第11天复工复产指数均超过80%;D .第9天至第11天复产指数增量大于复工指数的增量;31.(2020·海南)信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,,n ,且1()0(1,2,,),1ni i i P X i p i n p ===>==∑,定义X 的信息熵21()log ni i i H X p p ==-∑.( )A .若n =1,则H (X )=0B .若n =2,则H (X )随着1p 的增大而增大C .若1(1,2,,)i p i n n==,则H (X )随着n 的增大而增大D .若n =2m ,随机变量Y 所有可能的取值为1,2,,m ,且21()(1,2,,)j m j P Y j p p j m +-==+=,则H (X )≤H (Y )三、解答题32.(2021·全国)某学校组织“一带一路”知识竞赛,有A ,B 两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A 类问题中的每个问题回答正确得20分,否则得0分;B 类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A 类问题的概率为0.8,能正确回答B 类问题的概率为0.6,且能正确回答问题的概率与回答次序无关. (1)若小明先回答A 类问题,记X 为小明的累计得分,求X 的分布列; (2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.33.(2021·全国(文))甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++34.(2021·全国(理))某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和y ,样本方差分别记为21S 和22S .(1)求x ,y ,21S ,22S ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x -≥否则不认为有显著提高).35.(2020·海南)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM 2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且2SO浓度不超过150”的概率;(2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与2SO浓度有关?附:22()()()()()n ad bcKa b c d a c b d-=++++,36.(2020·北京)某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:假设所有学生对活动方案是否支持相互独立.(Ⅰ)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(Ⅲ)将该校学生支持方案二的概率估计值记为0p ,假设该校一年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为1p ,试比较0p 与1p 的大小.(结论不要求证明)37.(2020·海南)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM 2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM 2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM 2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,38.(2020·江苏)甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n次这样的操作,记甲口袋中黑球个数为X n,恰有2个黑球的概率为p n,恰有1个黑球的概率为q n.(1)求p1·q1和p2·q2;(2)求2p n+q n与2p n-1+q n-1的递推关系式和X n的数学期望E(X n)(用n表示) .39.(2020·全国(文))某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n ad bcKa b c d a c b d-=++++,40.(2020·全国(文))某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?41.(2020·全国(理))甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12,(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率.42.(2020·全国(理))某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i i y ==∑,2021)80i i x x =-=∑(,2021)9000i i y y =-=∑(,201))800ii ix y x y =--=∑((. (1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r =12211))))ni iiiin ni i x y x x y y y x ===----∑∑∑((((,≈1.414.43.(2019·江苏)在平面直角坐标系xOy 中,设点集{(0,0),(1,0),(2,0),,(,0)}n A n =⋯,{(0,1),(,1)},{(0,2),(1,2),(2,2),,(,2)},.n n B n C n n N *==∈令n nn n M A B C =.从集合M n 中任取两个不同的点,用随机变量X 表示它们之间的距离. (1)当n =1时,求X 的概率分布;(2)对给定的正整数n (n ≥3),求概率P (X ≤n )(用n 表示).44.(2019·北京(文))改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(Ⅰ)估计该校学生中上个月A ,B 两种支付方式都使用的人数;(Ⅱ)从样本仅使用B 的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.45.(2019·北京(理))改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.46.(2019·全国(理))为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成,A B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:P C的估计记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到()值为0.70.(1)求乙离子残留百分比直方图中,a b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).47.(2019·天津(文))2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(Ⅰ)应从老、中、青员工中分别抽取多少人?(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A B C D E F .享受情况如下表,其中“”表示享受,“×”表示不享受.现从这6人中,,,,,随机抽取2人接受采访.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.48.(2019·天津(理))设甲、乙两位同学上学期间,每天7:30之前到校的概率均为2 3 .假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(Ⅱ)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.49.(2019·全国(文))某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.()分别估计这类企业中产值增长率不低于的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602≈.50.(2019·全国(文))某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.51.(2019·全国(理))11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束. (1)求P (X =2);(2)求事件“X =4且甲获胜”的概率.52.(2019·全国(理))为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性.53.(2018·北京(理))电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“1k ξ=”表示第k 类电影得到人们喜欢,“0k ξ=”表示第k 类电影没有得到人们喜欢(k =1,2,3,4,5,6).写出方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系. 54.(2018·北京(文))电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)55.(2018·全国(理))某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:()()()()()22n ad bcKa b c d a c b d-=++++,56.(2018·全国(文))某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于30.35m 的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)57.(2018·全国(文))下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,,17)建立模型①:ˆ30.413.5y t =-+;根据2010年至2016年的数据(时间变量t 的值依次为1,2,,7)建立模型②:ˆ9917.5yt =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.58.(2018·天津(理))已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(I )应从甲、乙、丙三个部门的员工中分别抽取多少人?(II )若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i )用X 表示抽取的3人中睡眠不足..的员工人数,求随机变量X 的分布列与数学期望; (ii )设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率.59.(2018·全国(理))某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产。

2017-2019年高考真题数学(文)分项汇编_专题15 概率与统计(解答题)

2017-2019年高考真题数学(文)分项汇编_专题15 概率与统计(解答题)

专题15概率与统计(解答题)1.【2019年高考全国Ⅰ卷文数】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.【答案】(1)男、女顾客对该商场服务满意的概率的估计值分别为0.8,0.6;(2)有95%的把握认为男、女顾客对该商场服务的评价有差异.【解析】(1)由调查数据,男顾客中对该商场服务满意的比率为400.8 50=,因此男顾客对该商场服务满意的概率的估计值为0.8.女顾客中对该商场服务满意的比率为300.6 50=,因此女顾客对该商场服务满意的概率的估计值为0.6.(2)由题可得22100(40203010)4.76250507030K⨯⨯-⨯=≈⨯⨯⨯.由于4.762 3.841>,故有95%的把握认为男、女顾客对该商场服务的评价有差异.2.【2019年高考全国Ⅱ卷文数】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602≈.【答案】(1)产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%;(2)这类企业产值增长率的平均数与标准差的估计值分别为30%,17%. 【解析】(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为1470.21100+=. 产值负增长的企业频率为20.02100=. 用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%. (2)1(0.1020.10240.30530.50140.707)0.30100y =-⨯+⨯+⨯+⨯+⨯=, ()52211100i ii s n y y ==-∑ 222221(0.40)2(0.20)240530.20140.407100⎡⎤=-⨯+-⨯+⨯+⨯+⨯⎣⎦ =0.0296,0.020.17s ==≈,所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.3.【2019年高考全国Ⅲ卷文数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70.(1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 【答案】(1)0.35a =,0.10b =;(2)甲、乙离子残留百分比的平均值的估计值分别为4.05,6.00. 【解析】(1)由已知得0.700.200.15a =++,故0.35a =.10.050.150.700.10b =---=.(2)甲离子残留百分比的平均值的估计值为20.1530.2040.3050.2060.1070.05 4.05⨯+⨯+⨯+⨯+⨯+⨯=.乙离子残留百分比的平均值的估计值为30.0540.1050.1560.3570.2080.15 6.00⨯+⨯+⨯+⨯+⨯+⨯=.4.【2019年高考天津卷文数】2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为, , , , , A B C D E F .享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.(i )试用所给字母列举出所有可能的抽取结果;(ii )设M 为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M 发生的概率. 【答案】(1)应从老、中、青员工中分别抽取6人,9人,10人;(2)(i )见解析,(ii )1115. 【分析】本题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识,考查运用概率知识解决简单实际问题的能力.【解析】(1)由已知,老、中、青员工人数之比为6 : 9 : 10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人,9人,10人.(2)(i)从已知的6人中随机抽取2人的所有可能结果为{, },{, },{, },{, },{, },{, },A B A C A D A E A F B C{, },{, },{, },{, {,}},,B D B E B FCD C E{,},C F {,},{,},{,}D E D F E F,共15种.(ii)由表格知,符合题意的所有可能结果为{, },{, },{, },{, },{, },{, },{, {,},{,},{,},{,},}A B A D A E A F B D B CE BF E C F D F E F,共11种.所以,事件M发生的概率11 ()15P M=.5.【2019年高考北京卷文数】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(1)估计该校学生中上个月A,B两种支付方式都使用的人数;(2)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(2)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.【答案】(1)该校学生中上个月A,B两种支付方式都使用的人数约为400;(2)0.04;(3)见解析.【解析】(1)由题知,样本中仅使用A的学生有27+3=30人,仅使用B的学生有24+1=25人,A,B两种支付方式都不使用的学生有5人.故样本中A,B两种支付方式都使用的学生有100–30–25–5=40人.估计该校学生中上个月A,B两种支付方式都使用的人数为401000400 100⨯=.(2)记事件C 为“从样本仅使用B 的学生中随机抽取1人,该学生上个月的支付金额大于2000元”, 则1()0.0425P C ==. (3)记事件E 为“从样本仅使用B 的学生中随机抽查1人,该学生本月的支付金额大于2000元”. 假设样本仅使用B 的学生中,本月支付金额大于2000元的人数没有变化, 则由(2)知,4(0)0.P E =.答案示例1:可以认为有变化.理由如下:()P E 比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月支付金额大于2000元的人数发生了变化, 所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E 是随机事件,()P E 比较小,一般不容易发生,但还是有可能发生的, 所以无法确定有没有变化.6.【2018年高考全国Ⅱ卷文数】下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,,17)建立模型①:ˆ30.413.5yt =-+;根据2010年至2016年的数据(时间变量t 的值依次为1,2,,7)建立模型②:ˆ9917.5yt =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.【答案】(1)模型①:226.1亿元,模型②:256.5亿元;(2)模型②得到的预测值更可靠,理由见解析.【解析】(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为y$=–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为y$=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y$=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.7.【2018年高考全国Ⅰ卷文数】某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)47.45m.【答案】(1)见解析;(2)0.48;(3)3【解析】(1)频率分布直方图如下:(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35m3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后日用水量小于0.35m 3的概率的估计值为0.48. (3)该家庭未使用节水龙头50天日用水量的平均数为11(0.0510.1530.2520.3540.4590.55260.655)0.4850x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=. 该家庭使用了节水龙头后50天日用水量的平均数为21(0.0510.1550.25130.35100.45160.555)0.3550x =⨯+⨯+⨯+⨯+⨯+⨯=. 估计使用节水龙头后,一年可节省水3(0.480.35)36547.45(m )-⨯=.8.【2018年高考全国Ⅲ卷文数】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++,2()0.0500.0100.0013.8416.63510.828P K k k ≥.【答案】(1)第二种生产方式的效率更高,理由见解析;(2)列联表见解析;(3)有99%的把握认为两种生产方式的效率有差异.【解析】(1)第二种生产方式的效率更高. 理由如下:(i )由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分.(2)由茎叶图知7981802m+==.列联表如下:(3)由于2240(151555)10 6.63520202020K⨯-⨯==>⨯⨯⨯,所以有99%的把握认为两种生产方式的效率有差异.9.【2018年高考北京卷文数】电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(2)随机选取1部电影,估计这部电影没有获得好评的概率;(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)【答案】(1)0.025;(2)0.814;(3)增加第五类电影的好评率,减少第二类电影的好评率.【解析】(1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000.第四类电影中获得好评的电影部数是200×0.25=50,故所求概率为500.025 2000=.(2)方法1:由题意知,样本中获得好评的电影部数是140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1 =56+10+45+50+160+51=372.故所求概率估计为37210.8142000-=.方法2:设“随机选取1部电影,这部电影没有获得好评”为事件B.没有获得好评的电影共有140×0.6+50×0.8+300×0.85+200×0.75+800×0.8+510×0.9=1628部.由古典概型概率公式得16280.8142)00(P B==.(3)增加第五类电影的好评率,减少第二类电影的好评率.10.【2018年高考天津卷文数】已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(2)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.【答案】(1)分别抽取3人,2人,2人;(2)(i)见解析,(ii)521.【分析】本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识,考查运用概率知识解决简单实际问题的能力.【解析】(1)由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(2)(i)从抽出的7名同学中随机抽取2名同学的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21种.(ii )由(1),不妨设抽出的7名同学中,来自甲年级的是A ,B ,C ,来自乙年级的是D ,E ,来自丙年级的是F ,G ,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为 {A ,B },{A ,C },{B ,C },{D ,E },{F ,G },共5种. 所以,事件M 发生的概率为P (M )=521. 11.【2017年高考全国Ⅱ卷文数】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg ),其频率分布直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50kg”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较. 附: (22()()()()()n ad bc K a b c d a c b d -=++++.【答案】(1)0.62;(2)列联表见解析,有99%的把握认为箱产量与养殖方法有关;(3)新养殖法优于旧养殖法.【分析】(1)根据频率分布直方图中小长方形面积等于对应概率,计算A 的概率;(2)将数据填入对应表格,代入卡方公式,计算215.705K ≈,对照参考数据可作出判断;(3)先从均值(或中位数)比较大小,越大越好,再从数据分布情况看稳定性,越集中越好,综上可得新养殖法优于旧养殖法. 【解析】(1)旧养殖法的箱产量低于50kg 的频率为(0.012+0.014+0.024+0.034+0.040)×5=0.62. 因此,事件A 的概率估计值为0.62. (2)根据箱产量的频率分布直方图得列联表K 2=22006266343815.70510010096104⨯⨯-⨯⨯⨯⨯()≈.由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.(3)箱产量的频率分布直方图表明:新养殖法的箱产量平均值(或中位数)在50 kg 到55 kg 之间,旧养殖法的箱产量平均值(或中位数)在45kg 到50kg 之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法.【名师点睛】(1)频率分布直方图中小长方形面积等于对应概率,所有小长方形面积之和为1. (2)频率分布直方图中均值等于组中值与对应概率乘积的和. (3)均值大小代表水平高低,方差大小代表稳定性.12.【2017年高考全国Ⅰ卷文数】为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s ==≈,18.439≈,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.(1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑0.09≈.【答案】(1)18.0-≈r ,可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小;(2)(ⅰ)需对当天的生产过程进行检查;(ⅱ)均值与标准差的估计值分别为10.02,0.09.【分析】(1)依公式求r ;(2)(i )由9.7,0.212x s =≈,得抽取的第13个零件的尺寸在(3,3)x s x s -+以外,因此需对当天的生产过程进行检查;(ii )剔除第13个数据,则均值的估计值为10.02,方差为0.09.【解析】(1)由样本数据得(,)(1,2,,16)i x i i =的相关系数为16()(8.5)0.18ix x i r --==≈-∑.由于||0.25r <,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小. (2)(i )由于9.97,0.212x s =≈,由样本数据可以看出抽取的第13个零件的尺寸在(3,3)x s x s -+以外,因此需对当天的生产过程进行检查.(ii )剔除离群值,即第13个数据,剩下数据的平均数为1(169.979.22)10.0215⨯-=, 这条生产线当天生产的零件尺寸的均值的估计值为10.02.162221160.212169.971591.134ii x==⨯+⨯≈∑,剔除第13个数据,剩下数据的样本方差为221(1591.1349.221510.02)0.00815--⨯≈,0.09≈.【名师点睛】解答新颖的数学题时,一是通过转化,化“新”为“旧”;二是通过深入分析,多方联想,以“旧”攻“新”;三是创造性地运用数学思想方法,以“新”制“新”,应特别关注创新题型的切入点和生长点.13.【2017年高考全国Ⅲ卷文数】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率估计最高气温位于该区间的概率. (1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y (单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.【答案】(1)0.6;(2)Y 的所有可能值为900,300,-100,Y 大于零的概率为0.8.【分析】(1)先确定需求量不超过300瓶的天数为2163654++=,再根据古典概型的概率计算公式求概率;(2)先分别求出最高气温不低于25(36天),最高气温位于区间[20,25)(36天),以及最高气温低于20(18天)对应的利润分别为900,300,100-,所以Y 大于零的概率估计为3625740.890+++=.【解析】(1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y=6450-4450=900;若最高气温位于区间[20,25),则Y=6300+2(450-300)-4450=300;若最高气温低于20,则Y=6200+2(450-200)-4450=-100.所以,Y的所有可能值为900,300,-100.Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为,因此Y大于零的概率的估计值为0.8.【名师点睛】古典概型中基本事件数的探求方法:(1)列举法;(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法;(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.14.【2017年高考北京卷文数】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30],[30,40],,[80,90],并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.【答案】(1)0.4;(2)20;(3):32.【分析】(1)根据频率分布直方图,表示分数大于等于70的概率,就求最后两个矩形的面积;(2)根据公式:频数=总数⨯频率进行求解;(3)首先计算分数大于等于70的总人数,根据样本中分数不小于70的男女生人数相等再计算所有的男生人数,100−男生人数就是女生人数.【解析】(1)根据频率分布直方图可知,样本中分数不小于70的频率为(0.020.04)100.6+⨯=, 所以样本中分数小于70的频率为10.60.4-=.所以从总体的400名学生中随机抽取一人,其分数小于70的概率估计为0.4.(2)根据题意,样本中分数不小于50的频率为(0.010.020.040.02)100.9+++⨯=, 分数在区间[40,50)内的人数为1001000.955-⨯-=. 所以总体中分数在区间[40,50)内的人数估计为540020100⨯=. (3)由题意可知,样本中分数不小于70的学生人数为(0.020.04)1010060+⨯⨯=, 所以样本中分数不小于70的男生人数为160302⨯=. 所以样本中的男生人数为30260⨯=,女生人数为1006040-=, 男生和女生人数的比例为::604032=.所以根据分层抽样原理,总体中男生和女生人数的比例估计为:32.【名师点睛】(1)用样本估计总体是统计的基本思想,而利用频率分布表和频率分布直方图来估计总体则是用样本的频率分布去估计总体分布的两种主要方法.分布表在数量表示上比较准确,而直方图比较直观.(2)频率分布表中的频数之和等于样本容量,各组中的频率之和等于1;在频率分布直方图中,各小长方形的面积表示相应各组的频率,所以,所有小长方形的面积的和等于1.。

湖北省各地2017届高三最新考试数学理试题分类汇编:统计与概率含答案

湖北省各地2017届高三最新考试数学理试题分类汇编:统计与概率含答案

湖北省各地2017届高三最新考试数学理试题分类汇编统计与概率 2017。

02一、选择、填空题1、(黄冈市2017届高三上学期期末)有一个电动玩具,它有一个96⨯的长方形(单位:cm )和一个半径为1cm 的小圆盘(盘中娃娃脸),他们的连接点为A,E ,打开电源,小圆盘沿着长方形内壁,从点A 出发不停地滚动(无滑动),如图所示,若此时某人向该长方形盘投掷一枚飞镖,则能射中小圆盘运行区域内的概率为 .2、(荆、荆、襄、宜四地七校考试联盟2017届高三2月联考)有一长、宽分别为50m 、30m 的矩形游泳池,一名工作人员在池边巡视,某时刻出现在池边任一位置可能性相同,一人在池中心(对角线交点)处呼唤工作人员,其声音可传出152m ,则工作人员能及时听到呼唤(出现在声音可传到区域)的概率是A 。

34B.38C.316π D.12332π+3、(荆门市2017届高三元月调考)某公司门前有一排9个车位的停车场,从左往右数第三个,第七个车位分别停着A 车和B 车,同时进来C ,D 两车,在C,D 不相邻的条件下,C 和D 至少有一辆与A 和B 车相邻的概率是A.1017B.1417C.916D.794、(天门、仙桃、潜江市2017届高三上学期期末联合考试)高考后,4位考生各自在甲、乙两所大学中任选一所参观,则甲、乙两所大学都有考生参观的概率为A.18B.38C.58D.785、(武汉市武昌区2017届高三1月调研)小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A=“4个人去的景点不相同”,事件B=“小赵独自去一个景点”,则()P A B==()A.29B.13C. 49D.596、(襄阳市优质高中2017届高三1月联考)从某校高三年级随机抽取一个班,对该班50名学生的高校招生体检表中的视力情况进行统计,其频率分布直方图如图所示。

若某高校A专业对视力的要求在0.9以上,则该班学生中能报A专业的人数为。

2017年文科概率统计高考真题.doc

2017年文科概率统计高考真题.doc

、3 5 8 (B) 一(C) 一(D) 一2 3 5统计[2017年北京卷第14题】某学习小组由学生和学科网&教师组成,人员构成同时满足以下三个条件:(i ) 男学生人数多于女学生人数;(ii) 女学生人数多于教师人数; (iii) 教师人数的两倍多于男学生人数.%1 若教师人数为4,则女学生人数的最大值为. %1 该小组人数的最小值为.[2017年江苏卷第3题】某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100 件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号 的产品中抽取 件.(2017年山东卷第8题】如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件). 若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为(A) 3,5(B) 5,5 (C) 3,7 (D) 5,7甲组 乙组算法框图[2017年北京卷第3题】执行如图所示的程序框图,输出的s 值为[2017年江苏卷第4题】右图是一个算法流程图,若输入工的值为上,则输出的》的值是 _______________ r16(A) 2L 输中y 7(结束),第6题图(A) 0 (B) 1 (C) 2 (D) 3[2017年山东卷第6题】执行右侧的程序框图,当输入的x 的值为4 口寸,输出的),的值为2,则空白判断框中 的条件可能为(A) x>3(B) x>4 (C) x<4 (D) x<5[2017年天津卷第4题】阅读右面的程序框图,运行相应的程序,若输入N 的值为19,则输出N 的值 为概率[2017年江苏卷第7题】记函数#, 、_ n~ ------------- F 的定义域为D.在区间[-4,5]上随机取一个数x,则J \X) — \ + X — Xx e D 的概率是[2017年天津卷第3题】有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩 笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为4321(A) 一 (B) 一 (C) 一 (D) 一5 5 5 5[2017年北京卷第17题】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层 抽样的方法从中随机抽取了 100名学生,记录他们的分数,将数据分成7组:[20,30) , [30,40),・・・, [80,90],并整理得到如下频率分布直方图:(结束)(第4题)(开始)----- -------- ——B31B 5(II) 己知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(III) 已知样本中有一半男生的分数学.科网不小于70,且样本中分数不小于70的男女生人数相等.试 估计总体中男生和女生人数的比例.[2017年山东卷第16题】某旅游爱好者计划从3个亚洲国家A 142,^3和3个欧洲国家&,&,曷中选择2 个国家去旅游.(I )若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(II)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A 但不包括色的概率.[2017年浙江卷第16题】从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4 人服务队,要求服务队中至少有1名女生,共有 种不同的选法.(用数字作答)[2017年新课标I 卷第4题】如图,正方形ABCD 内的图形来自中国古代的太极图.正方 形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一 A点,则此点取自黑色部分的概率是()[2017年新课标II 第9题】甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的 成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则A. 乙可以知道两人的成绩B.丁可能知道两人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩(2017年新课标II 第11题】从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张, 则抽得的第一张卡片上的数大于第二张卡片上的数的概率为1A —10[2017年新课标I卷笫2题】为评估一种农作物的种植效果,选了〃块地作试验m.这〃块地的亩产量(单位:kg)分别为% 12,…,办,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A. X1,尤2,...,尤,7的平均数B. X],尤2,...,X〃的标准差C. X1,X2,...,对?的最大值D. X1,也,...,为]的中位数[2017年新课标III卷第3题】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客童(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳[2017年新课标III卷第18题】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:。

2017高考十年高考文数分项版(新课标1专版)专题11 概率和统计(解析版) 含解析

2017高考十年高考文数分项版(新课标1专版)专题11 概率和统计(解析版) 含解析

一.基础题组1。

【2013课标全国Ⅰ,文3】从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ).A .12B .13C .14D .16【答案】:B【解析】:由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为13。

2。

【2011课标,文6】有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A 。

13B 。

12 C.23D 。

34【答案】A【解析】因为每位同学参加各个小组的可能性相等,所以所求概率为13,选A 。

3。

【2008全国1,文2】掷一个骰子,向上一面的点数大于2且小于5的概率为1P ,抛两枚硬币,正面均朝上的概率为2P ,则( ) A .12P P < B .12P P > C .12P P = D 。

不能确定 【答案】B5。

【2016新课标1文数】为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(A )13 (B )12 (C )23 (D )56【答案】C【解析】试题分析:将4种颜色的花种任选2种种在一个花坛中,余下2种种在另一个花坛中,有6种种法,其中红色和紫色的花不在同一个花坛的种数有4种,故所求概率为23,选C 。

【考点】古典概型【名师点睛】作为客观题形式出现的古典概型试题,一般难度不大,解答中的常见错误是在用列举法计数时出现重复或遗漏,避免此类错误发生的有效方法是按照一定的标准进行列举。

6。

【2011全国1,文19】(Ⅰ)设所求概率为1P ,则1=1(10.5)(10.6)0.8.P --⨯-=故该地1位车主至少购买甲、乙两种保险中的l 种的概率为0.8.(Ⅱ)对每位车主甲、乙两种保险都不购买的概率为(10.5)(10.6)0.2.-⨯-=于是所求概率为:123(0.2)(10.2)0.384.C -=7. 【.2009....全国卷...Ⅰ.,文..20..】甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束。

湖北省各地2017届高三最新考试数学文试题分类汇编:统计与概率含答案

湖北省各地2017届高三最新考试数学文试题分类汇编:统计与概率含答案

湖北省各地2017届高三最新考试数学文试题分类汇编统计与概率2017.02一、选择、填空题1、(荆、荆、襄、宜四地七校考试联盟2017届高三2月联考)从数字1,2,3,4中任取两个不同的数字构成一个两位数,这个两位数大于20的概率是A.14B.34C.13D.232、(荆州市五县市区2017届高三上学期期末)经统计,用于数学学习的时间(单位:小时)与成绩(单位:分)近似于线性相关关系.对某小组学生每周用于数学的学习时间x与数学成绩y进行数据收集如下:由表中样本数据求得回归方程为y bx a,则点(,)a b与直线11018=+yx的位置关系是( )A.点在直线左侧B.点在直线右侧C.点在直线上D.无法确定3、(天门、仙桃、潜江市2017届高三上学期期末联合考试)对于一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为P1,P2,P3,则A.P1= P2<P3 B.P2= P3<P1 C.P1= P2=P3D.P1= P3<P24、(天门、仙桃、潜江市2017届高三上学期期末联合考试)已知集合{|28}M x x=-≤≤,2{|320}N x x x=-+≤,在集合M中任取一个元素x,则“x M N∈”的概率为A.110B.16C.310D.125、(天门、仙桃、潜江市2017届高三上学期期末联合考试)为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁~18岁的男生体重(kg),得到频率分布直方图如下根据上图,可得这100名学生中体重在).,.[564556的学生人数是▲.6、(武汉市2017届高三毕业生二月调研考)从装有3个红球和2个白球的袋中任取3个球,则所取的3个球中至少有2个红球的概率是A. 12B. 25C. 710D。

357、(武汉市武昌区2017届高三1月调研)已知某射击运动员每次射击击中目标的概率都为,现采用随机模拟的方法估计该运动员4次射击至少3次击中目标的概率:先由计算器产生0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,再以每4个随机数为一组,代表4次射击的结果,经随机模拟产生了如下20组随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 7610 4281据此估计,该射击运动员4次射击至少3次击中目标的概率为8、(孝感市七校教学联盟2017届高三上学期期末)一个棱长为4的正方体涂上红色后,将其切成棱长为1的小正方体,置于一密闭容器搅拌均匀,从中任取一个,则取到两面涂红色的小正方体的概率为()A. 18B.38C. 827D。

2017年高考全国名校试题数学分项汇编专题11 概率与统计(解析版)

2017年高考全国名校试题数学分项汇编专题11 概率与统计(解析版)

一、填空题1. 【 2016年第二次全国大联考(江苏卷)】已知一组数据8,10,9,12,11,那么这组数据的方差为_______.【答案】2【解析】先算平均值:8+10+9+12+11=105,再算方差:22222(810)+(1010)+(910)+(1210)+(1110)=25-----.2. 【 2016年第二次全国大联考(江苏卷)】袋中有形状、大小都相同的四只球,其中有1只红球,3只白球,若从中随机一次摸出2只球,则这2只球颜色不同的概率为_______.3. 【2016年第三次全国大联考【江苏卷】】春风商店对某类商品销售数量(单位:个)进行统计,统计时间是9月1日至9月30日,每5天一组分组统计,绘制了如图的销售数量频率分布直方图.已知从左到右各长方形的高的比为2∶3∶4∶6∶4∶1,且第二组的频数为180,那么该月共销售出的此类商品数(单位:个)为.【答案】1200【解析】由直方图得12003146432180=+++++⨯.4. 【2016年第三次全国大联考【江苏卷】】已知实数]10,0[∈a ,则函数3)4()(--=x a x f 在区间(0,+∞)内为增函数的概率为________. 【答案】52【解析】因4)4(3)('---=x a x f ,故当)(x f 在区间(0,+∞)内为增函数时,04<-a ,即4<a ,因]10,0[∈a ,故所求概率为52104==P . 5. 【2016年第四次全国大联考【江苏卷】】 已知一组数据:8,10,,12,11a 的方差为2,那么相对应的另一组数据:17,21,21,25,23a +的方差为_______. 【答案】8【解析】由题意得:所求方差为222=8.⨯6. 【2016年第四次全国大联考【江苏卷】】袋中有形状、大小都相同的五只球,其中2只红球,3只白球,从中一次随机摸出2只球,则至少有1只白球的概率为_______. 【答案】910【解析】从五只球中一次随机摸出2只球共有10种基本事件,其中全是红球包含1种基本事件,因此至少有1只白球的概率为191=.1010-7. 【2016年第一次全国大联考【江苏卷】】分别在集合{1234}A =,,,和集合{5678}B =,,,中各取一个数相乘,则乘积为偶数的概率为_______.8. 【2016高考押题卷(1)【江苏卷】】袋子里有两个不同的红球和两个不同的白球,从中任取两个球,则这两个球颜色相同的概率为_______.【答案】1 3【解析】从中4个球中任取两个球共有6种基本事件,其中两个球颜色相同包含两种基本事件,故概率为21=63.9. 【2016高考押题卷(3)【江苏卷】】一汽车检测站对100辆汽车在一个时段经过某一雷达测速区进行测试,并将这些汽车运行时速绘制成频率分布直方图,则从图中可以看出时速超过hkm/60的汽车数目约为辆.频率组距时速km/h8070605040300。

2017高考理科专题--概率与统计解析

2017高考理科专题--概率与统计解析
试题解析:(Ⅰ)
x 12 0.06 14 0.14 16 0.3 18 0.32 20 0.10 22 0.08 17 (Ⅱ)由频率分布直方图可知 P( x x 4) 0.14 , ∴ ~ B 5, 0.14 ,所以 E 5 0.14 0.7
12.某保险公司针对企业职工推出一款意外险产品,每年每人只要交少量保费,发生意外
数是
A. 40 B. 60 C. 80 D. 100 【解析】三个小球放入盒子是不对号入座的方法有 2 种,由排列组合的知识可得,不同的
放法总数是: 2C63 40 种。本题选择 A。
7.某厂家为了解广告宣传费与销售轿车台数之间的关系,得到如下统计数据表:根据数据
表可得回归直线方程 yˆ bˆx aˆ ,其中bˆ 2.4 , aˆ y bˆx ,据此模型预测广告费用为
根据以上信息,这 5 人的笔试名次的所有可能的种数是( )
A. 54 B. 72 C. 78 D. 96
【解析】由题得甲不是第一,乙不是最后,先排乙,乙得第一,有 A 4 24 种,乙没得第
一有 3 种再排甲也有 3 种,余下得有 3
6 种,故有 6
3
3=54
4
种,所以一共有
A
24+54=78 种
3
9.已知随机变量 X 服从正态分布 N(2,σ²),且 P(0≤X≤2)=0.3,则 P(X>4)=_____.
【解析】解:由题意结合正态分布的性质可知: P 2 x 4 0.3 ,则:
P(X
4) 1 0.3 2 2
0.2 .
点睛:求解本题关键是明确正态曲线关于 x=2 对称,且区间[0,4]也关于 x=2 对称.
【解析】(Ⅰ)先根据频率分布直方图中小长方形面积等于对应区间概率得概率,再根据组

2017-2019年高考真题理科数学分项版汇编专题14 概率与统计(选择题、填空题) 解析版

2017-2019年高考真题理科数学分项版汇编专题14 概率与统计(选择题、填空题) 解析版

专题14 概率与统计(选择题、填空题)1.【2019年高考全国Ⅲ卷理数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5 B .0.6 C .0.7D .0.8【答案】C【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C .【名师点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.2.【2019年高考全国Ⅱ卷理数】演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差D .极差 【答案】A【解析】设9位评委评分按从小到大排列为123489x x x x x x <<<<<.则①原始中位数为5x ,去掉最低分1x ,最高分9x 后剩余2348x x x x <<<<,中位数仍为5x ,A 正确; ②原始平均数1234891()9x x x x x x x =<<<<<,后来平均数23481()7x x x x x '=<<<,平均数受极端值影响较大,∴x 与x '不一定相同,B 不正确; ③2222111[()()()]9q S x x x x x x =-+-++-,22222381[()()()]7s x x x x x x '=-'+-'++-',由②易知,C 不正确;④原极差91x x =-,后来极差82x x =-,显然极差变小,D 不正确.故选A . 3.【2019年高考浙江卷】设0<a <1,则随机变量X 的分布列是则当a 在(0,1)内增大时, A .()D X 增大B .()D X 减小C .()D X 先增大后减小D .()D X 先减小后增大【答案】D【分析】研究方差随a 变化的增大或减小规律,常用方法就是将方差用参数a 表示,应用函数知识求解.本题根据方差与期望的关系,将方差表示为a 的二次函数,二次函数的图象和性质解题.题目有一定综合性,注重重要知识、基础知识、运算求解能力的考查. 【解析】方法1:由分布列得1()3aE X +=, 则2222111111211()(0)()(1)()333333926a a a D X a a +++=-⨯+-⨯+-⨯=-+, 则当a 在(0,1)内增大时,()D X 先减小后增大.故选D .方法2:则222221(1)222213()()()0[()]3399924a a a a D X E X E X a +-+=-=++-==-+,则当a 在(0,1)内增大时,()D X 先减小后增大.故选D .【名师点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.4.【2018年高考全国Ⅱ卷理数】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .112B .114C .115D .118【答案】C【解析】不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有C 102=45种方法,因为7231119131730+=+=+=,所以随机选取两个不同的数,其和等于30的有3种方法, 故所求概率为31=4515,故选C . 【名师点睛】古典概型中基本事件数的探求方法:(1)列举法;(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法;(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化;(4)排列组合法:适用于限制条件较多且元素数目较多的题目.5.【2018年高考全国Ⅰ卷理数】某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 【答案】A【解析】设新农村建设前的收入为M ,而新农村建设后的收入为2M ,则新农村建设前种植收入为0.6M ,而新农村建设后的种植收入为0.74M ,所以种植收入增加了,所以A 项不正确;新农村建设前其他收入为0.04M ,新农村建设后其他收入为0.1M ,故增加了一倍以上,所以B 项正确;新农村建设前,养殖收入为0.3M ,新农村建设后为0.6M ,所以增加了一倍,所以C 项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的30%+28%=58%>50%,所以超过了经济收入的一半,所以D 正确;故选A .6.【2018年高考全国Ⅲ卷理数】某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,(4)(6)P X P X =<=,则p = A .0.7 B .0.6 C .0.4D .0.3【答案】B【解析】∵()(1)D X np p =-,∴0.4p =或0.6p =,4466641010(4)C (1)(6)C (1)P X p p P X p p ==-<==-,22(1)p p ∴-<,可知0.5p >,故0.6p =.故选B .7.【2018年高考浙江卷】设01p <<,随机变量ξ的分布列是则当p 在(0,1A .D (ξ)减小B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小【答案】D【解析】∵E(ξ)=0×1−p 2+1×12+2×p 2=p +12,∴D(ξ)=1−p 2(0−p −12)2+12(1−p −12)2+p2(2−p −12)2=−p 2+p +14,∵12∈(0,1),∴D(ξ)先增大后减小,故选D . 8.【2018年高考全国Ⅰ卷理数】下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 3【答案】A【解析】设AC =b ,AB =c ,BC =a ,则有b 2+c 2=a 2,从而可以求得ΔABC 的面积为S 1=12bc ,黑色部分的面积为22221π()π()[π()]2222c b a S bc =⋅+⋅-⋅-2222221π()π44424c b a c b a bc +-=+-+=⋅+1122bc bc =,其余部分的面积为2231π1π()2242a a S bc bc =⋅-=-,所以有12S S =, 根据面积型几何概型的概率公式,可以得到p 1=p 2,故选A .9.【2017年高考全国Ⅲ卷理数】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 【答案】A【解析】观察折线图,每年7月到8月折线图呈下降趋势,月接待游客量减少,选项A 说法错误; 折线图整体呈现出增长的趋势,年接待游客量逐年增加,选项B 说法正确;每年的接待游客量7,8月份达到最高点,即各年的月接待游客量高峰期大致在7,8月,选项C 说法正确;每年1月至6月的月折线图平稳,月接待游客量波动性更小,7月至12月折线图不平稳,月接待游客量波动性大,选项D 说法正确. 故选A .【名师点睛】将频率分布直方图中相邻的矩形的上底边的中点顺次连结起来就得到一条折线,我们称这条折线为本组数据的频率分布折线图,频率分布折线图的首、尾两端取值区间两端点须分别向外延伸半个组距,即折线图是频率分布直方图的近似,它们比频率分布表更直观、形象地反映了样本的分布规律. 10.【2017年高考全国Ⅰ卷理数】如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14 B .π8 C .12D .π4【答案】B【解析】设正方形边长为a ,则圆的半径为2a ,正方形的面积为2a ,圆的面积为2π4a .由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221ππ248a a ⋅=,故选B . 【秒杀解】由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率p 满足1142p <<,故选B . 【名师点睛】对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算()P A .11.【2017年高考山东卷理数】从分别标有,,,的张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是 A .B .C .D .【答案】C 【解析】标有1,2,,9的9张卡片中,标奇数的有5张,标偶数的有4张,所以抽到的2张卡片上的数奇偶性不同的概率是11542C C 5989=⨯,故选C .【名师点睛】概率问题的考查,侧重于对古典概型和对立事件的概率考查,属于简单题. 12.【2017年高考浙江卷】已知随机变量i ξ满足P (i ξ=1)=p i ,P (i ξ=0)=1–p i ,i =1,2.若0<p 1<p 2<12,则A .1()E ξ<2()E ξ,1()D ξ<2()D ξB .1()E ξ<2()E ξ,1()D ξ>2()D ξC .1()E ξ>2()E ξ,1()D ξ<2()D ξD .1()E ξ>2()E ξ,1()D ξ>2()D ξ【答案】A【解析】∵1122(),()E p E p ξξ==,∴12()()E E ξξ<,∵111222()(1),()(1)D p p D p p ξξ=-=-,∴121212()()()(1)0D D p p p p ξξ-=---<,故选A . 【名师点睛】求离散型随机变量的分布列,首先要根据具体情况确定X 的取值情况,然后利用排列,组合与概率知识求出X 取各个值时的概率.对于服从某些特殊分布的随机变量,其分布列可以直接应用公式给出,其中超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.由已知本题随机变量i ξ服从两点分布,由两点分布数学期望与方差的公式可得A 正确.13.【2017年高考山东卷理数】为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为.已知,,.该班某学生的脚长为24,据此估计其身高为A .B .C .D .【答案】C【解析】由已知得22.5,160,x y ==则160422.570,a =-⨯=当24x =时,ˆ42470y=⨯+166=,故选C . 12⋅⋅⋅99518495979ˆˆˆybx a =+101225ii x==∑1011600i i y ==∑ˆ4b=160163166170【名师点睛】判断两个变量是否线性相关及相关程度通常有两种方法:(1)利用散点图直观判断;(2)将相关数据代入相关系数的公式求出,然后根据的大小进行判断.求线性回归方程时,在严格按照公式求解时,一定要注意计算的准确性.14.【2019年高考江苏卷】已知一组数据6,7,8,8,9,10,则该组数据的方差是______________.【答案】53【解析】由题意,该组数据的平均数为678891086+++++=,所以该组数据的方差是22222215[(68)(78)(88)(88)(98)(108)]63-+-+-+-+-+-=. 15.【2019年高考全国Ⅱ卷理数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______________. 【答案】0.98【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【解析】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10201040++=,所以该站所有高铁平均正点率约为39.20.9840=. 【名师点睛】本题考查了概率统计,渗透了数据处理和数学运算素养,侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.16.【2019年高考全国Ⅰ卷理数】甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是______________. 【答案】0.18【分析】本题应注意分情况讨论,即前五场甲队获胜的两种情况,应用独立事件的概率的计算公式求解.题目有一定的难度,注重了基础知识、基本计算能力及分类讨论思想的考查.【解析】前四场中有一场客场输,第五场赢时,甲队以4:1获胜的概率是30.60.50.520.108,⨯⨯⨯=前四场中有一场主场输,第五场赢时,甲队以4:1获胜的概率是220.40.60.520.072,⨯⨯⨯=综上所述,甲队以4:1获胜的概率是0.1080.0720.18.q =+=【名师点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是思维的全面性是否具备,要考虑甲队以4:1获胜的两种情况;易错点之三是是否能够准确计算. 17.【2018年高考江苏卷】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的r r r分数的平均数为______________.【答案】90【解析】由茎叶图可知,5位裁判打出的分数分别为89,89,90,91,91, 故平均数为8989909191905++++=.18.【2018年高考江苏卷】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为______________. 【答案】310【解析】从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种, 因此所求概率为310. 19.【2017年高考全国Ⅱ卷理数】一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则DX =______________. 【答案】1.96【解析】由题意可得,抽到二等品的件数符合二项分布,即~(100,0.02)X B ,由二项分布的期望公式可得(1)1000.020.98 1.96DX np p =-=⨯⨯=.【名师点睛】判断一个随机变量是否服从二项分布,要看两点:①是否为n 次独立重复试验,在每次试验中事件A 发生的概率是否均为p ;②随机变量是否为在这n 次独立重复试验中某事件发生的次数,且()C (1)k k n kn P X k p p -==-表示在独立重复试验中,事件A 恰好发生k 次的概率.20.【2017年高考江苏卷】记函数()f x =D .在区间[4,5]-上随机取一个数x ,则x D ∈的概率是______________.【答案】59【解析】由260x x +-≥,即260x x --≤,得23x -≤≤,根据几何概型的概率计算公式得x D ∈的概率是3(2)55(4)9--=--.21.【2017年高考江苏卷】某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取______________件.【答案】18【解析】应从丙种型号的产品中抽取30060181000⨯=件,故答案为18.。

2017年高考理科数学试卷分类解析-统计与概率

2017年高考理科数学试卷分类解析-统计与概率

2017年高考理科数学试卷分类解析-统计与概率1、(2017年全国卷一.2)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A .B .C .D .2、(2017年全国卷一.19).(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在之外的零件数,求及的数学期望;(2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.04 10.269.91 10.1310.029.2210.0410.059.95经计算得,,其中为抽取的第个零件的尺寸,.用样本平均数作为的估计值,用样本标准差作为的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计和(精确到0.01).附:若随机变量服从正态分布,则,.14π812π42(,)N μσ(3,3)μσμσ-+(1)P X ≥X (3,3)μσμσ-+16119.9716i i x x ===∑161622221111()(16)0.2121616i i i i s x x x x ===-=-≈∑∑i x i 1,2,,16i =⋅⋅⋅x μˆμs σˆσˆˆˆˆ(3,3)μσμσ-+μσZ 2(,)N μσ(33)0.997 4P Z μσμσ-<<+=160.997 40.959 2=0.0080.09≈3、(2017年全国卷二.13).一批产品的二等品率为,从这批产品中每次随机取一件,有放回地抽取次,表示抽到的二等品件数,则。

2017年全国各地高考数学试题及解答分类大全(随机变量及其分布)

2017年全国各地高考数学试题及解答分类大全(随机变量及其分布)

第1页(共7页)2017年全国各地高考数学试题及解答分类大全(概率、随机变量及其分布正态分布)一、选择题1.(2017浙江)已知随机变量i满足P (i=1)=p i ,P (i=0)=1—p i ,i=1,2.若0<p 1<p 2<12,则()A .1E()<2E(),1D()<2D()B .1E()<2E(),1D()>2D()C .1E()>2E(),1D()<2D()D .1E()>2E(),1D()>2D()【答案】A 【解析】试题分析:112212(),(),()()E p E p E E 111222121212()(1),()(1),()()()(1)0D p p D p p D D p p p p ,选A .【考点】两点分布【名师点睛】求离散型随机变量的分布列,首先要根据具体情况确定X 的取值情况,然后利用排列,组合与概率知识求出X 取各个值时的概率.对于服从某些特殊分布的随机变量,其分布列可以直接应用公式给出,其中超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.由已知本题随机变量i服从两点分布,由两点分布均值与方差公式可得A 正确.二、填空1.(2017全国新课标Ⅱ理)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,表示抽到的二等品件数,则D。

【答案】1.96三、解答题1.(2017北京理)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x 和y 的数据,并制成下图,其中“*”表示服药者,“+”表示未服药者.第2页(共7页)(Ⅰ)从服药的50名患者中随机选出一人,求此人指标y 的值小于60的概率;(Ⅱ)从图中A ,B ,C ,D 四人中随机.选出两人,记为选出的两人中指标x 的值大于 1.7的人数,求的分布列和数学期望E ();(Ⅲ)试判断这100名患者中服药者指标y 数据的方差与未服药者指标y 数据的方差的大小.(只需写出结论)【答案】(Ⅰ)0.3;(Ⅱ)详见解析;(Ⅲ)在这100名患者中,服药者指标y 数据的方差大于未服药者指标y 数据的方差.【解析】(Ⅱ)由图知,A,B,C,D 四人中,指标x 的值大于 1.7的有2人:A 和C.所以的所有可能取值为0,1,2.21122222222444C C C C 121(0),(1),(2)C6C3C6P P P .所以的分布列为12P162316故的期望121()0121636E .(Ⅲ)在这100名患者中,服药者指标y 数据的方差大于未服药者指标y 数据的方差.【考点】1.古典概型; 2.超几何分布; 3.方差的定义.【名师点睛】求分布列的三种方法1.由统计数据得到离散型随机变量的分布列;2.由古典概型求出离散型随机变量的分布列;3.由互斥事件的概率、相互独立事件同时发生的概率及n 次独立重复试验有k 次发生的概率求离散型随机变量的分布列.第3页(共7页)2.(2017江苏)已知一个口袋有m 个白球,n 个黑球(,*,2m n n N ≥),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,,m n 的抽屉内,其中第k 次取出的球放入编号为k 的抽屉(1,2,3,,)kmn .123m n(1)试求编号为2的抽屉内放的是黑球的概率p ;(2)随机变量X 表示最后一个取出的黑球所在抽屉编号的倒数,()E X 是X 的数学期望,证明:()()(1)n E X mn n 【答案】(1)n m n(2)见解析【解析】解:(1)编号为2的抽屉内放的是黑球的概率p 为:11CCn m n n m nn pm n.(2)随机变量X 的概率分布为:X 1n11n 12n …1k …1m n P11C Cn n n m n1C Cn n n m n11C Cn n n m n…11C Cn k n m n…11C Cn n m n m n随机变量X 的期望为:()()(1)n E X m n n .【考点】古典概型概率、随机变量及其分布、数学期望【名师点睛】求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某第4页(共7页)事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布(,)XB n p ),则此随机变量的期望可直接利用这种典型分布的期望公式(()E X np )求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度.3.(2017全国新课标Ⅰ理)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N .(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)之外的零件数,求(1)P X及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)之外的零件,学+科网就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得16119.9716ii xx ,16162221111()(16)0.2121616iii i s x x xx ,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i .用样本平均数x 作为的估计值,用样本标准差s 作为的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除???(3,3)之外的数据,用剩下的数据估计和(精确到0.01).附:若随机变量Z 服从正态分布2(,)N ,则(33)0.997 4P Z ,160.997 40.959 2,0.0080.09.(ii )由9.97,0.212xs,得的估计值为9.97,的估计值为?0.212,由样本数据可以看出有一个零件的尺寸在???(3,3)之外,因此需对当天的生产过程进行检查.剔除????(3,3)之外的数据9.22,剩下数据的平均数为1(169.979.22)10.0215,因此的估计值为10.02.162221160.212169.971591.134ii x,剔除???(3,3)之外的数据9.22,剩下数据的样本方差为221(1591.1349.221510.02)0.00815,因此的估计值为0.0080.09.4.(2017全国新课标Ⅲ理)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间2025,,需求量为300瓶;如果最高气温低于20,需求量为200瓶,为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温1015,1520,2025,2530,3035,3540,天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元).当六月份这种酸奶一天的进货量n第5页(共7页)(单位:瓶)为多少时,Y 的数学期望达到最大值?【解析】⑴易知需求量x 可取200,300,50021612003035P X 3623003035P X 257425003035P X.则分布列为:X 200300500P152525⑵①当200n ≤时:642Y n n ,此时max400Y ,当200n 时取到.②当200300n ≤时:4122002200255Yn n880026800555nn n此时max 520Y ,当300n 时取到.③当300500n ≤时,12220022002300230022555Ynn n 320025n此时520Y .④当500n ≥时,易知Y 一定小于③的情况.综上所述:当300n 时,Y 取到最大值为520.5.(2017山东理)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(I )求接受甲种心理暗示的志愿者中包含A 1但不包含1B 的频率。

2017年高考数学真题分类汇编(理数)_专题7概率与统计(解析版)

2017年高考数学真题分类汇编(理数)_专题7概率与统计(解析版)

2017年高考真题分类汇编(理数):专题7 概率与统计(解析版)一、单选题1、(2017•新课标Ⅰ卷)如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A、B、C、D、2、(2017•新课标Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A、月接待游客量逐月增加B、年接待游客量逐年增加C、各年的月接待游客量高峰期大致在7,8月D、各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳3、(2017•山东)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到在2张卡片上的数奇偶性不同的概率是()A、B、C、D、4、(2017•山东)为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为=x+ ,已知x i=225,y i=1600,=4,该班某学生的脚长为24,据此估计其身高为()A、160B、163C、166D、1705、(2017•浙江)已知随机变量ξi满足P(ξi=1)=p i,P(ξi=0)=1﹣p i,i=1,2.若0<p1<p2<,则()A、E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)B、E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)C、E(ξ1)>E(ξ2),D(ξ1)<D(ξ2)D、E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)二、填空题6、(2017•江苏)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.7、(2017•新课标Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则DX=________.8、(2017•江苏)记函数f(x)= 定义域为D.在区间[﹣4,5]上随机取一个数x,则x∈D的概率是________.三、解答题9、(2017•山东)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(12分)(Ⅰ)求接受甲种心理暗示的志愿者中包含A1但不包含B1的概率.(Ⅱ)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.10、(2017·天津)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为,,.(Ⅰ)设X表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列和数学期望;(Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.11、(2017•北京卷)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40), (80)90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.12、(2017•江苏)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.13、(2017•新课标Ⅰ卷)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(12分)(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P (X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.0410.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得= =9.97,s= = ≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3 +3 )之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.14、(2017•新课标Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:(Ⅰ)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;(Ⅱ)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg 箱产量≥50kg旧养殖法新养殖法(Ⅲ)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).附:P(K2≥k) 0.050 0.010 0.001K 3.841 6.635 10.828K2= .15、(2017•新课标Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温 [10,15) [15,20) [20,25) [25,30) [30,35) [35,40)以最高气温位于各区间的频率代替最高气温位于该区间的概率.(Ⅰ)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(Ⅱ)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?答案解析部分一、单选题1、【答案】B【考点】几何概型【解析】【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积S= ,则对应概率P= = ,故选:B【分析】根据图象的对称性求出黑色图形的面积,结合几何概型的概率公式进行求解即可.2、【答案】A【考点】命题的真假判断与应用【解析】【解答】解:由折线图中2014年1月至2016年12月期间月接待游客量(单位:万人)的数据可得:月接待游客量逐月有增有减,故A错误;年接待游客量逐年增加,故B正确;各年的月接待游客量高峰期大致在7,8月,故C正确;各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳,故D正确;故选:A【分析】根据折线图中2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,逐一分析给定四个结论的正误,可得答案.3、【答案】C【考点】排列、组合及简单计数问题【解析】【解答】解:从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,共有=36种不同情况,且这些情况是等可能发生的,抽到在2张卡片上的数奇偶性不同的情况有=20种,故抽到在2张卡片上的数奇偶性不同的概率P= = ,故选:C.【分析】计算出所有情况总数,及满足条件的情况数,代入古典概型概率计算公式,可得答案.4、【答案】C【考点】线性回归方程【解析】【解答】解:由线性回归方程为=4x+ ,则= x i=22.5,= y i=160,则数据的样本中心点(22.5,160),由回归直线经过样本中心点,则= ﹣4x=160﹣4×22.5=70,∴回归直线方程为=4x+70,当x=24时,=4×24+70=166,则估计其身高为166,故选C.【分析】由数据求得样本中心点,由回归直线方程必过样本中心点,代入即可求得,将x=24代入回归直线方程即可估计其身高.5、【答案】A【考点】离散型随机变量及其分布列,离散型随机变量的期望与方差【解析】【解答】解:∵随机变量ξi满足P(ξi=1)=p i,P(ξi=0)=1﹣p i,i=1,2,…,0<p1<p2<,∴<1﹣p2<1﹣p1<1,E(ξ1)=1×p1+0×(1﹣p1)=p1,E(ξ2)=1×p2+0×(1﹣p2)=p2,D(ξ1)=(1﹣p1)2p1+(0﹣p1)2(1﹣p1)= ,D(ξ2)=(1﹣p2)2p2+(0﹣p2)2(1﹣p2)= ,D(ξ1)﹣D(ξ2)=p1﹣p12﹣()=(p2﹣p1)(p1+p2﹣1)<0,∴E(ξ1)<E(ξ2),D(ξ1)<D(ξ2).故选:A.【分析】由已知得0<p1<p2<,<1﹣p2<1﹣p1<1,求出E(ξ1)=p1,E(ξ2)=p2,从而求出D(ξ1),D(ξ2),由此能求出结果.二、填空题6、【答案】18【考点】分层抽样方法【解析】【解答】解:产品总数为200+400+300+100=1000件,而抽取60辆进行检验,抽样比例为= ,则应从丙种型号的产品中抽取300× =18件,故答案为:18【分析】由题意先求出抽样比例即为,再由此比例计算出应从丙种型号的产品中抽取的数目.7、【答案】1.96【考点】离散型随机变量的期望与方差,二项分布与n次独立重复试验的模型【解析】【解答】解:由题意可知,该事件满足独立重复试验,是一个二项分布模型,其中,p=0.02,n=100,则DX=npq=np(1﹣p)=100×0.02×0.98=1.96.故答案为:1.96.【分析】判断概率满足的类型,然后求解方差即可.8、【答案】【考点】一元二次不等式的解法,几何概型【解析】【解答】解:由6+x﹣x2≥0得x2﹣x﹣6≤0,得﹣2≤x≤3,则D=[﹣2,3],则在区间[﹣4,5]上随机取一个数x,则x∈D的概率P= = ,故答案为:【分析】求出函数的定义域,结合几何概型的概率公式进行计算即可.三、解答题9、【答案】解:(I)记接受甲种心理暗示的志愿者中包含A1但不包含B1的事件为M,则P(M)= = .(II)X的可能取值为:0,1,2,3,4,∴P(X=0)= = ,P(X=1)= = ,P(X=2)= = ,P(X=3)= = ,P(X=4)= = .∴X的分布列为X 0 1 2 3 4PX的数学期望EX=0× +1× +2× +3× +4× =2.【考点】古典概型及其概率计算公式,离散型随机变量及其分布列,离散型随机变量的期望与方差,组合及组合数公式【解析】【分析】(Ⅰ)利用组合数公式计算概率;(Ⅱ)使用超几何分布的概率公式计算概率,得出分布列,再计算数学期望.10、【答案】解:(Ⅰ)随机变量X的所有可能取值为0,1,2,3;则P(X=0)=(1﹣)×(1﹣)(1﹣)= ,P(X=1)= ×(1﹣)×(1﹣)+(1﹣)× ×(1﹣)+(1﹣)×(1﹣)× = ,P(X=2)=(1﹣)× × + ×(1﹣)× + × ×(1﹣)= ,P(X=3)= × × = ;所以,随机变量X的分布列为X 0 1 2 3P随机变量X的数学期望为E(X)=0× +1× +2× +3× = ;(Ⅱ)设Y表示第一辆车遇到红灯的个数,Z表示第二辆车遇到红灯的个数,则所求事件的概率为P(Y+Z=1)=P(Y=0,Z=1)+P(Y=1,Z=0)=P(Y=0)•P(Z=1)+P(Y=1)•P(Z=0)= × + ×= ;所以,这2辆车共遇到1个红灯的概率为.【考点】离散型随机变量及其分布列,离散型随机变量的期望与方差,条件概率与独立事件【解析】【分析】(Ⅰ)随机变量X的所有可能取值为0,1,2,3,求出对应的概率值,写出它的分布列,计算数学期望值;(Ⅱ)利用相互独立事件同时发生的概率公式计算所求事件的概率值.11、【答案】解:(Ⅰ)由频率分布直方图知:分数小于70的频率为:1﹣(0.04+0.02)×10=0.4故从总体的400名学生中随机抽取一人,估计其分数小于70的概率为0.4;(Ⅱ)已知样本中分数小于40的学生有5人,故样本中分数小于40的频率为:0.05,则分数在区间[40,50)内的频率为:1﹣(0.04+0.02+0.02+0.01)×10﹣0.05=0.05,估计总体中分数在区间[40,50)内的人数为400×0.05=20人,(Ⅲ)样本中分数不小于70的频率为:0.6,由于样本中分数不小于70的男女生人数相等.故分数不小于70的男生的频率为:0.3,由样本中有一半男生的分数不小于70,故男生的频率为:0.6,即女生的频率为:0.4,即总体中男生和女生人数的比例约为:3:2.【考点】频率分布直方图,用样本的频率分布估计总体分布,古典概型及其概率计算公式【解析】【分析】(Ⅰ)根据频率=组距×高,可得分数小于70的概率为:1﹣(0.04+0.02)×10;(Ⅱ)先计算样本中分数小于40的频率,进而计算分数在区间[40,50)内的频率,可估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.进而得到答案.12、【答案】解:直线l的直角坐标方程为x﹣2y+8=0,∴P到直线l的距离d= = ,∴当s= 时,d取得最小值= .【考点】二次函数在闭区间上的最值,点到直线的距离公式,参数方程化成普通方程,函数最值的应用【解析】【分析】求出直线l的直角坐标方程,代入距离公式化简得出距离d关于参数s的函数,从而得出最短距离.13、【答案】(1)解:由题可知尺寸落在(μ﹣3σ,μ+3σ)之内的概率为0.9974,则落在(μ﹣3σ,μ+3σ)之外的概率为1﹣0.9974=0.0026,因为P(X=0)= ×(1﹣0.9974)0×0.997416≈0.9592,所以P(X≥1)=1﹣P(X=0)=0.0408,又因为X~B(16,0.0026),所以E(X)=16×0.0026=0.0416;(2)(ⅰ)由(1)知尺寸落在(μ﹣3σ,μ+3σ)之外的概率为0.0026,由正态分布知尺寸落在(μ﹣3σ,μ+3σ)之外为小概率事件,因此上述监控生产过程方法合理;(ⅱ)因为用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,且= =9.97,s= = ≈0.212,所以﹣3 =9.97﹣3×0.212=9.334,+3 =9.97+3×0.212=10.606,所以9.22∉(﹣3 +3 )=(9.334,10.606),因此需要对当天的生产过程进行检查,剔除(﹣3 +3 )之外的数据9.22,则剩下的数据估计μ= =10.02,将剔除掉9.22后剩下的15个数据,利用方差的计算公式代入计算可知σ2≈0.008,所以σ≈0.09.【考点】用样本的数字特征估计总体的数字特征,离散型随机变量的期望与方差,二项分布与n次独立重复试验的模型,正态分布曲线的特点及曲线所表示的意义【解析】【分析】(1.)通过P(X=0)可求出P(X≥1)=1﹣P(X=0)=0.0408,利用二项分布的期望公式计算可得结论;(2.)(ⅰ)由(1)及知落在(μ﹣3σ,μ+3σ)之外为小概率事件可知该监控生产过程方法合理;(ⅱ)通过样本平均数、样本标准差s估计、可知(﹣3 +3 )=(9.334,10.606),进而需剔除(﹣3 +3 )之外的数据9.22,利用公式计算即得结论.14、【答案】解:(Ⅰ)记B表示事件“旧养殖法的箱产量低于50kg”,C表示事件“新养殖法的箱产量不低于50kg”,由P(A)=P(BC)=P(B)P(C),则旧养殖法的箱产量低于50kg:(0.012+0.014+0.024+0.034+0.040)×5=0.62,故P(B)的估计值0.62,新养殖法的箱产量不低于50kg:(0.068+0.046+0.010+0.008)×5=0.66,故P(C)的估计值为,则事件A的概率估计值为P(A)=P(B)P(C)=0.62×0.66=0.4092;∴A发生的概率为0.4092;(Ⅱ)2×2列联表:箱产量<50kg 箱产量≥50kg总计旧养殖法 62 38 100新养殖法 34 66 100总计 96 104 200则K2= ≈15.705,由15.705>6.635,∴有99%的把握认为箱产量与养殖方法有关;(Ⅲ)由题意可知:方法一:=5×(37.5×0.004+42.5×0.020+47.5×0.044+52.5×0.068+57.5×0.046+62.5×0.010+67.5×0.008),=5×10.47,=52.35(kg).新养殖法箱产量的中位数的估计值52.35(kg)方法二:由新养殖法的箱产量频率分布直方图中,箱产量低于50kg的直方图的面积:(0.004+0.020+0.044)×5=0.034,箱产量低于55kg的直方图面积为:(0.004+0.020+0.044+0.068)×5=0.68>0.5,故新养殖法产量的中位数的估计值为:50+ ≈52.35(kg),所以新养殖法箱产量的中位数的估计值52.35(kg).【考点】频率分布直方图,用样本的数字特征估计总体的数字特征,独立性检验,相互独立事件的概率乘法公式【解析】【分析】(Ⅰ)由题意可知:P(A)=P(BC)=P(B)P(C),分布求得发生的频率,即可求得其概率;(Ⅱ)完成2×2列联表:求得观测值,与参考值比较,即可求得有99%的把握认为箱产量与养殖方法有关:(Ⅲ)根据频率分布直方图即可求得其平均数.15、【答案】解:(Ⅰ)由题意知X的可能取值为200,300,500,P(X=200)= =0.2,P(X=300)= ,P(X=500)= =0.4,∴X的分布列为:X 200 300 500P 0.2 0.4 0.4(Ⅱ)当n≤200时,Y=n(6﹣4)=2n≤400,EY≤400,当200<n≤300时,若x=200,则Y=200×(6﹣4)+(n﹣200)×2﹣4)=800﹣2n,若x≥300,则Y=n(6﹣4)=2n,∴EY=p(x=200)×(800﹣2n)+p(x≥300)×2n=0.2(800﹣2n)+0.8=1.2n+160,∴EY≤1.2×300+160=520,当300<n≤500时,若x=200,则Y=800﹣2n,若x=300,则Y=300×(6﹣4)+(n﹣300)×(2﹣4)=1200﹣2n,∴当n=300时,(EY)max=640﹣0.4×300=520,若x=500,则Y=2n,∴EY=0.2×(800﹣2n)+0.4(1200﹣2n)+0.4×2n=640﹣0.4n,当n≥500时,Y= ,EY=0.2(800﹣2n)+0.4(1200﹣2n)+0.4(2000﹣2n)=1440﹣2n,∴EY≤1440﹣2×500=440.综上,当n=300时,EY最大值为520元.【考点】离散型随机变量及其分布列,离散型随机变量的期望与方差【解析】【分析】(Ⅰ)由题意知X的可能取值为200,300,500,分别求出相应的概率,由此能求出X 的分布列.(Ⅱ)当n≤200时,Y=n(6﹣4)=2n≤400,EY≤400;当200<n≤300时,EY≤1.2×300+160=520;当300<n≤500时,n=300时,(EY)max=640﹣0.4×300=520;当n≥500时,EY≤1440﹣2×500=440.从而得到当n=300时,EY最大值为520元.。

三年高考(2017_2019)高考数学真题分项汇编专题14概率与统计(选择题、填空题)理(含解析)

三年高考(2017_2019)高考数学真题分项汇编专题14概率与统计(选择题、填空题)理(含解析)

专题14 概率与统计(选择题、填空题)1.【2019年高考全国Ⅲ卷理数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5 B .0.6 C .0.7D .0.8【答案】C【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C .【名师点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.2.【2019年高考全国Ⅱ卷理数】演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差D .极差 【答案】A【解析】设9位评委评分按从小到大排列为123489x x x x x x <<<<<L .则①原始中位数为5x ,去掉最低分1x ,最高分9x 后剩余2348x x x x <<<<L ,中位数仍为5x ,A 正确; ②原始平均数1234891()9x x x x x x x =<<<<<L ,后来平均数23481()7x x x x x '=<<<L ,平均数受极端值影响较大,∴x 与x '不一定相同,B 不正确; ③2222111[()()()]9q S x x x x x x =-+-++-L ,22222381[()()()]7s x x x x x x '=-'+-'++-'L ,由②易知,C 不正确;④原极差91x x =-,后来极差82x x =-,显然极差变小,D 不正确.故选A . 3.【2019年高考浙江卷】设0<a <1,则随机变量X 的分布列是则当a 在(0,1)内增大时, A .()D X 增大B .()D X 减小C .()D X 先增大后减小D .()D X 先减小后增大【答案】D【分析】研究方差随a 变化的增大或减小规律,常用方法就是将方差用参数a 表示,应用函数知识求解.本题根据方差与期望的关系,将方差表示为a 的二次函数,二次函数的图象和性质解题.题目有一定综合性,注重重要知识、基础知识、运算求解能力的考查. 【解析】方法1:由分布列得1()3aE X +=, 则2222111111211()(0)()(1)()333333926a a a D X a a +++=-⨯+-⨯+-⨯=-+, 则当a 在(0,1)内增大时,()D X 先减小后增大.故选D .方法2:则222221(1)222213()()()0[()]3399924a a a a D X E X E X a +-+=-=++-==-+,则当a 在(0,1)内增大时,()D X 先减小后增大.故选D .【名师点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.4.【2018年高考全国Ⅱ卷理数】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .112 B .114 C .115D .118【答案】C【解析】不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个, 随机选取两个不同的数,共有C 102=45种方法,因为7231119131730+=+=+=,所以随机选取两个不同的数,其和等于30的有3种方法,故所求概率为31=4515,故选C . 【名师点睛】古典概型中基本事件数的探求方法:(1)列举法;(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法;(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化;(4)排列组合法:适用于限制条件较多且元素数目较多的题目.5.【2018年高考全国Ⅰ卷理数】某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例建设后经济收入构成比例则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 【答案】A【解析】设新农村建设前的收入为M ,而新农村建设后的收入为2M ,则新农村建设前种植收入为0.6M ,而新农村建设后的种植收入为0.74M ,所以种植收入增加了,所以A 项不正确;新农村建设前其他收入为0.04M ,新农村建设后其他收入为0.1M ,故增加了一倍以上,所以B 项正确;新农村建设前,养殖收入为0.3M ,新农村建设后为0.6M ,所以增加了一倍,所以C 项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的30%+28%=58%>50%,所以超过了经济收入的一半,所以D 正确;故选A . 6.【2018年高考全国Ⅲ卷理数】某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,(4)(6)P X P X =<=,则p = A .0.7 B .0.6 C .0.4D .0.3【答案】B【解析】∵()(1)D X np p =-,∴0.4p =或0.6p =,4466641010(4)C (1)(6)C (1)P X p p P X p p ==-<==-Q ,22(1)p p ∴-<,可知0.5p >,故0.6p =.故选B .7.【2018年高考浙江卷】设01p <<,随机变量ξ的分布列是则当p 在(0,1)内增大时, A .D (ξ)减小 B .D (ξ)增大 C .D (ξ)先减小后增大D .D (ξ)先增大后减小【答案】D【解析】∵E (E )=0×1−E 2+1×12+2×E2=E +12,∴E (E )=1−E 2(0−E −12)2+12(1−E −12)2+E 2(2−E −12)2=−E 2+E +14,∵12∈(0,1),∴E (E )先增大后减小,故选D .8.【2018年高考全国Ⅰ卷理数】下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 3【答案】A【解析】设EE =E ,EE =E ,EE =E ,则有E 2+E 2=E 2,从而可以求得ΔEEE 的面积为E 1=12EE ,黑色部分的面积为22221π()π()[π()]2222c b a S bc =⋅+⋅-⋅-2222221π()π44424c b a c b a bc +-=+-+=⋅+1122bc bc =,其余部分的面积为2231π1π()2242a a S bc bc =⋅-=-,所以有12S S =, 根据面积型几何概型的概率公式,可以得到E 1=E 2,故选A .9.【2017年高考全国Ⅲ卷理数】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 【答案】A【解析】观察折线图,每年7月到8月折线图呈下降趋势,月接待游客量减少,选项A 说法错误; 折线图整体呈现出增长的趋势,年接待游客量逐年增加,选项B 说法正确;每年的接待游客量7,8月份达到最高点,即各年的月接待游客量高峰期大致在7,8月,选项C 说法正确;每年1月至6月的月折线图平稳,月接待游客量波动性更小,7月至12月折线图不平稳,月接待游客量波动性大,选项D 说法正确. 故选A .【名师点睛】将频率分布直方图中相邻的矩形的上底边的中点顺次连结起来就得到一条折线,我们称这条折线为本组数据的频率分布折线图,频率分布折线图的首、尾两端取值区间两端点须分别向外延伸半个组距,即折线图是频率分布直方图的近似,它们比频率分布表更直观、形象地反映了样本的分布规律. 10.【2017年高考全国Ⅰ卷理数】如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8 C .12D .π4【答案】B【解析】设正方形边长为a ,则圆的半径为2a ,正方形的面积为2a ,圆的面积为2π4a .由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221ππ248a a ⋅=,故选B . 【秒杀解】由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率p 满足1142p <<,故选B . 【名师点睛】对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算()P A . 11.【2017年高考山东卷理数】从分别标有,,,的张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是 A .B .C .D .【答案】C【解析】标有1,2,,9L 的9张卡片中,标奇数的有5张,标偶数的有4张,所以抽到的2张卡片上的数奇偶性不同的概率是11542C C 5989=⨯,故选C .12⋅⋅⋅99518495979【名师点睛】概率问题的考查,侧重于对古典概型和对立事件的概率考查,属于简单题. 12.【2017年高考浙江卷】已知随机变量i ξ满足P (i ξ=1)=p i ,P (i ξ=0)=1–p i ,i =1,2.若0<p 1<p 2<12,则A .1()E ξ<2()E ξ,1()D ξ<2()D ξB .1()E ξ<2()E ξ,1()D ξ>2()D ξC .1()E ξ>2()E ξ,1()D ξ<2()D ξD .1()E ξ>2()E ξ,1()D ξ>2()D ξ【答案】A【解析】∵1122(),()E p E p ξξ==,∴12()()E E ξξ<,∵111222()(1),()(1)D p p D p p ξξ=-=-,∴121212()()()(1)0D D p p p p ξξ-=---<,故选A . 【名师点睛】求离散型随机变量的分布列,首先要根据具体情况确定X 的取值情况,然后利用排列,组合与概率知识求出X 取各个值时的概率.对于服从某些特殊分布的随机变量,其分布列可以直接应用公式给出,其中超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.由已知本题随机变量i ξ服从两点分布,由两点分布数学期望与方差的公式可得A 正确.13.【2017年高考山东卷理数】为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为.已知,,.该班某学生的脚长为24,据此估计其身高为 A . B . C .D .【答案】C【解析】由已知得22.5,160,x y ==则$160422.570,a=-⨯= 当24x =时,ˆ42470y=⨯+166=,故选C . 【名师点睛】判断两个变量是否线性相关及相关程度通常有两种方法:(1)利用散点图直观判断;(2)将相关数据代入相关系数的公式求出,然后根据的大小进行判断.求线性回归方程时,在严格按照公式求解时,一定要注意计算的准确性.14.【2019年高考江苏卷】已知一组数据6,7,8,8,9,10,则该组数据的方差是______________.ˆˆˆybx a =+101225i i x ==∑1011600i i y ==∑ˆ4b =160163166170r r r【答案】53【解析】由题意,该组数据的平均数为678891086+++++=,所以该组数据的方差是22222215[(68)(78)(88)(88)(98)(108)]63-+-+-+-+-+-=. 15.【2019年高考全国Ⅱ卷理数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______________. 【答案】0.98【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【解析】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10201040++=,所以该站所有高铁平均正点率约为39.20.9840=. 【名师点睛】本题考查了概率统计,渗透了数据处理和数学运算素养,侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.16.【2019年高考全国Ⅰ卷理数】甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是______________. 【答案】0.18【分析】本题应注意分情况讨论,即前五场甲队获胜的两种情况,应用独立事件的概率的计算公式求解.题目有一定的难度,注重了基础知识、基本计算能力及分类讨论思想的考查.【解析】前四场中有一场客场输,第五场赢时,甲队以4:1获胜的概率是30.60.50.520.108,⨯⨯⨯=前四场中有一场主场输,第五场赢时,甲队以4:1获胜的概率是220.40.60.520.072,⨯⨯⨯=综上所述,甲队以4:1获胜的概率是0.1080.0720.18.q =+=【名师点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是思维的全面性是否具备,要考虑甲队以4:1获胜的两种情况;易错点之三是是否能够准确计算. 17.【2018年高考江苏卷】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为______________.【答案】90【解析】由茎叶图可知,5位裁判打出的分数分别为89,89,90,91,91, 故平均数为8989909191905++++=.18.【2018年高考江苏卷】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为______________. 【答案】310【解析】从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种, 因此所求概率为310. 19.【2017年高考全国Ⅱ卷理数】一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则DX =______________. 【答案】1.96【解析】由题意可得,抽到二等品的件数符合二项分布,即~(100,0.02)X B ,由二项分布的期望公式可得(1)1000.020.98 1.96DX np p =-=⨯⨯=.【名师点睛】判断一个随机变量是否服从二项分布,要看两点:①是否为n 次独立重复试验,在每次试验中事件A 发生的概率是否均为p ;②随机变量是否为在这n 次独立重复试验中某事件发生的次数,且()C (1)k k n kn P X k p p -==-表示在独立重复试验中,事件A 恰好发生k 次的概率.20.【2017年高考江苏卷】记函数()f x =D .在区间[4,5]-上随机取一个数x ,则x D ∈的概率是______________.【答案】59【解析】由260x x +-≥,即260x x --≤,得23x -≤≤,根据几何概型的概率计算公式得x D ∈的概率是3(2)55(4)9--=--.21.【2017年高考江苏卷】某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取______________件. 【答案】18【解析】应从丙种型号的产品中抽取30060181000⨯=件,故答案为18.。

江西省各地2017届高三最新考试数学理试题分类汇编:统计与概率 Word版含答案

江西省各地2017届高三最新考试数学理试题分类汇编:统计与概率 Word版含答案

江西省各地2017届高三最新考试数学理试题分类汇编统计与概率2017.02一、选择、填空题1、(红色七校2017届高三第二次联考)已知直线AB :x+y ﹣6=0与抛物线y=x 2及x 轴正半轴围成的图形为Ω,若从Rt △AOB 区域内任取一点M (x ,y ),则点M 取自图形Ω的概率为 .2、(赣州市2017届高三上学期期末考试)已知变量,x y 成负相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测数据算得的线性回归方程可能是( ) A .0.4 2.3y x =+ B .2 2.4y x =+ C .29.5y x =-+ D . 0.4 4.4y x =-+3、(江西省师大附中、临川一中2017届高三1月联考)“微信抢红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的总金额为10元,被随机分配为1.49元,1.81元,2.19元,3.41元,0.62元,0.48元,共6份,供甲、乙等6人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于4元的概率是( ) A.12 B. 14 C. 13 D. 164、(新余市2017高三上学期期末考试)若实数x y 、满足约束条件101010x y x y y +-≤⎧⎪-+≥⎨+≥⎪⎩,将一颗骰子投掷两次得到的点数分别为a b 、,则函数2ax by Z =+在点(2,1)-处取得最大值的概率为( )A. 15B. 25C. 16D. 565、(江西省重点中学协作体2017届高三下学期第一次联考) 已知变量,x y 呈现线性相关关系,回归方程为ˆ12yx =-,则变量,x y 是( ) A .线性正相关关系B .由回归方程无法判断其正负相关关系C .线性负相关关系D .不存在线性相关关系6、(江西省重点中学协作体2017届高三下学期第一次联考) 如右图所示矩形ABCD 边长1,4AB AD ==,抛物线顶点为边AD 的中点E ,且,B C 两点在抛物线上,则从矩形内任取一点落在抛物线与边BC 围成的封闭区域(包含边界上的点)内的概率是 .二、解答题 1、(红色七校2017届高三第二次联考)某电视台推出一档游戏类综艺节目,选手面对1﹣5号五扇大门,依次按响门上的门铃,门铃会播放一段音乐,选手需正确回答这首歌的名字,回答正确,大门打开,并获得相应的家庭梦想基金,回答每一扇门后,选手可自由选择带着目前的奖金离开,还是继续挑战后面的门以获得更多的梦想基金,但是一旦回答错误,游戏结束并将之前获得的所有梦想基金清零;整个游戏过程中,选手有一次求助机会,选手可以询问亲友团成员以获得正确答案.1﹣5号门对应的家庭梦想基金依次为3000元、6000元、8000元、12000元、24000元(以上基金金额为打开大门后的累积金额,如第三扇大门打开,选手可获基金总金额为8000元);设某选手正确回答每一扇门的歌曲名字的概率为p i (i=1,2,…,5),且p i =(i=1,2,…,5),亲友团正确回答每一扇门的歌曲名字的概率均为,该选手正确回答每一扇门的歌名后选择继续挑战后面的门的概率均为;(1)求选手在第三扇门使用求助且最终获得12000元家庭梦想基金的概率;(2)若选手在整个游戏过程中不使用求助,且获得的家庭梦想基金数额为X (元),求X 的分布列和数学期望. 2、(南昌市八一中学2017届高三2月测试)某高校在今年的自主招生考试成绩中随机抽取100名考生的笔试成绩,分为5组制出频率分布直方图如图所示. (1)求d c b a ,,,的值;(2)该校决定在成绩较好的3、4、5组用分层抽样抽取6名学生进行面试,则每组应各抽多少名学生?(3)在(2)的前提下,已知面试有4位考官,被抽到的6名学生中有两名被指定甲考官面试,其余4名则随机分配给3位考官中的一位对其进行面试,求这4名学生分配到的考官个数X 的分布列和期望.3、(赣中南五校2017届高三下学期第一次联考)江西景德镇某陶瓷厂准备烧制甲、乙、丙三件不同的2017年新上市工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为,,,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为,,.(1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为,求随机变量的期望.4、(赣州市2017届高三上学期期末考试)传统文化就是文明演化而汇集成的一种反映民族特质和风貌的民族文化,是民族历史上各种思想文化、观念形态的总体表征.教育部考试中心确定了2017年普通高考部分学科更注重传统文化考核.某校为了了解高二年级中国数学传统文化选修课的教学效果,进行了一次阶段检测,并从中随机抽取80名同学的成绩,然、、、、五个等级进行数据统计如下:后就其成绩分为A B C D E根据以上抽样调查数据,视频率为概率.(1)若该校高二年级共有1000名学生,试估算该校高二年级学生获得成绩为B的人数;、、、、分别对应100分、80分、60分、40分、20分,学校要求“平(2)若等级A B C D E均分达60分以上”为“教学达标”,请问该校高二年级此阶段教学是否达标?、的学生中,按分层抽样抽取7人,再从(3)为更深入了解教学情况,将成绩等级为A B中任意抽取3名,求抽到成绩为A的人数X的分布列与数学期望.5、(上饶市2017届高三第一次模拟考试)水是地球上宝贵的资源,由于介个比较便宜在很多不缺水的城市居民经常无节制的使用水资源造成严重的资源浪费.某市政府为了提倡低碳环保的生活理念鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),[1,1.5),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.(1)若全市居民中月均用水量不低于3吨的人数为3.6万,试估计全市有多少居民?并说明理由;(2)若该市政府拟采取分层抽样的方法在用水量吨数为[1,1.5)和[1.5,2)之间选取7户居民作为议价水费价格听证会的代表,并决定会后从这7户家庭中按抽签方式选出4户颁发“低碳环保家庭”奖,设X 为用水量吨数在[1,1.5)中的获奖的家庭数,Y 为用水量吨数在[1.5,2)中的获奖家庭数,记随机变量||Z X Y =-,求Z 的分布列和数学期望.6、(江西省师大附中、临川一中2017届高三1月联考)某理科考生参加自主招生面试,从7道题中(4道理科题3道文科题)不放回地依次任取3道作答.(1)求该考生在第一次抽到理科题的条件下,第二次和第三次均抽到文科题的概率; (2)规定理科考生需作答两道理科题和一道文科题,该考生答对理科题的概率均为23,答对文科题的概率均为14,若每题答对得10分,否则得零分.现该生已抽到三道题(两理一文),求其所得总分X 的分布列与数学期望()E X .7、(新余市2017高三上学期期末考试)现有清华、北大、上海交大三所大学的招生负责人各一人来我市宣讲2017年高考自主招生政策,我市四所重点中学必须且只能邀请其中一所大学的负责人,且邀请其中任何一所大学的负责人是等可能的。

山东省13市2017届高三最新考试数学文试题分类汇编_统计与概率全国通用含答案

山东省13市2017届高三最新考试数学文试题分类汇编_统计与概率全国通用含答案

山东省13市2017届高三最新考试数学文试题分类汇编统计与概率 2017。

03一、选择、填空题1、(滨州市2017届高三上期末)在区间62ππ⎡⎤-⎢⎥⎣⎦,上随机地取一个数,则事件“1sin 2x ≥"发生的概率为 .2、(德州市2017届高三第一次模拟考试)如表是降耗技术改造后生产某产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对应数据,根据表中提供的数据,求出y 关于的线性回归方程ˆˆ0.70.3yx =+,那么表中m 的值为 .3、(菏泽市2017年高考一模)在一次化学测试中,高一某班50名学生成绩的平均分为82分,方差为8.2,则下列四个数中不可能是该班化学成绩的是( ) A .60 B .70 C .80 D .1004、(济宁市2017届高三第一次模拟(3月))在区间[]0,π上随机地取一个数,则事件“1tan x -≤≤发生的概率为( )A .712B .23C .13D .145、(聊城市2017届高三上期末)某市教育局随机调查了300名高中学生周末的学习时间(单位:小时),制成了如图所示的频率分布直方图,其中学习时间的范围是[0,30],样本数据分组为,[0,5)[5,10)[10,15)[15,20)[20,25)[25,30],,,,,,根据直方图,这300名高中生周末的学习时间是15小时的人数是( )A .27B .33C .135D .165 6、(临沂市2017届高三2月份教学质量检测(一模))传承传统文化再掀热潮,在刚刚过去的新春假期中,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏,下面的茎叶图是两位选手在个人追逐赛中的比赛得分,则下列说法正确的是(A )甲的平均数大于乙的平均数 (B)甲的中位数大于乙的中位数(C)甲的方差大于乙的方差 (D)甲的平均数等于乙的中位数7、(青岛市2017年高三统一质量检测)已知变量,y 具有线性相关关系,它们之间的一组数据如下表所示,若y 关于的线性回归方程为ˆ 1.31yx =-,则m = ;8、(日照市2017届高三下学期第一次模拟)在[]2,2-上随机地取两个实数,a b ,则事件“直线1x y +=与圆()()222x a y b -+-=相交”发生的概率为(A )1116(B )916(C ) 34(D )149、(泰安市2017届高三第一轮复习质量检测(一模))在区间-1,1]上随机取一个数k ,使直线y =k (x +3)与圆x 2+y 2=1相交的概率为 A .12B .13C .23D .2410、(烟台市2017届高三3月高考诊断性测试(一模))某十字路口的信号灯为红灯和绿灯交替出现,红灯持续的时间为60秒,小明放学回家途经该路口遇到红灯,则小明至少要等15秒才能出现绿灯的概率为( )A .23B .13C .34D .1411、(烟台市2017届高三3月高考诊断性测试(一模))用0,1,2,…,299给300名高三学生编号,并用系统抽样的方法从中抽取15名学生的数学成绩进行质量分析,若第一组抽取的学生的编号为8,则第四组抽取的学生编号为 .12、(枣庄市2017届高三下学期第一次模拟考试)为了解本市居民的生活成本,甲、乙、内三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),甲、乙、丙所调查数据的标准差分别为321,,x x x ,则它们的大小关系为A .321s s s >> B .231s s s >> C .123s s s >> D .213s s s >>13、(淄博市2017届高三3月模拟考试)在区间[0,]2π上随机地取一个数,则事件“13sin 22x ≤≤”发生的概率为 ( )。

2017年高考题和高考模拟题分项版汇编数学(文):专题07 概率与统计(含解析)

2017年高考题和高考模拟题分项版汇编数学(文):专题07 概率与统计(含解析)

2017年高考题和高考模拟题分项版汇编数学(文)1.【2017课标1,文2】为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数【答案】B 【解析】试题分析:刻画评估这种农作物亩产量稳定程度的指标是标准差,故选B 【考点】样本特征数【名师点睛】众数:一组数据出现次数最多的数叫众数,众数反应一组数据的多数水平; 中位数:一组数据中间的数,(起到分水岭的作用)中位数反应一组数据的中间水平; 平均数:反应一组数据的平均水平;方差:方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差.在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定. 标准差是方差的算术平方根,意义在于反映一个数据集的离散程度.2.【2017课标1,文4】如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π 4【答案】B 【解析】【考点】几何概型【名师点睛】对于一个具体问题能否用几何概型的概率公式计算事件的概率,关键在于能否将问题几何化,也可根据实际问题的具体情况,选取合适的参数建立适当的坐标系,在此基础上,将实验的每一结果一一对应于该坐标系中的一点,使得全体结果构成一个可度量的区域;另外,从几何概型的定义可知,在几何概型中,“等可能”一词理解为对应于每个实验结果的点落入某区域内的可能性大小,仅与该区域的度量成正比,而与该区域的位置、形状无关.3.【2017山东,文8】如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为A. 3,5B. 5,5C. 3,7D. 5,7【答案】A 【解析】【考点】茎叶图、样本的数字特征【名师点睛】由茎叶图可以清晰地看到数据的分布情况,这一点同频率分布直方图类似.它优于频率分布直方图的第一点是从茎叶图中能看到原始数据,没有任何信息损失,第二点是茎叶图便于记录和表示.其缺点是当样本容量较大时,作图较繁琐. 利用茎叶图对样本进行估计是,要注意区分茎与叶,茎是指中间的一列数,叶是从茎的旁边生长出来的数.4.【2017天津,文3】有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为 (A )45(B )35(C )25(D )15【答案】C 【解析】试题分析:选取两支彩笔的方法有25C 种,含有红色彩笔的选法为14C 种,由古典概型公式,满足题意的概率值为142542105C p C ===.本题选择C 选项.【考点】古典概型【名师点睛】本题主要考查的是古典概型及其概率计算公式.,属于基础题.解题时要准确理解题意,先要判断该概率模型是不是古典概型,利用排列组合有关知识,正确找出随机事件A包含的基本事件的个数和试验中基本事件的总数代入公式()()n A Pn=Ω.5.【2017课标II,文11】从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.110B.15C.310D.25【答案】D【考点】古典概型概率【名师点睛】古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.6.【2017课标3,文3】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( ) A .月接待游客逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 【答案】A【考点】折线图【名师点睛】用样本估计总体时统计图表主要有1.频率分布直方图,(特点:频率分布直方图中各小长方形的面积等于对应区间概率,所有小长方形的面积之和为1);2. 频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.3. 茎叶图.对于统计图表类题目,最重要的是认真观察图表,从中提炼有用的信息和数据.7.【2017江苏,7】 记函数2()6f x x x =+-定义域为D .在区间[4,5]-上随机取一个数x ,则x D ∈的概率是▲ . 【答案】59【解析】由260x x +-≥,即260x x --≤,得23x -≤≤,根据几何概型的概率计算公式得x D ∈的概率是3(2)55(4)9--=--.【考点】几何概型概率【名师点睛】(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.8.【2017江苏,3】 某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 ▲ 件.【答案】18【考点】分层抽样【名师点睛】在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N .9.【2017课标1,文19】为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序 12 345 678 零件尺寸9.9510.12 9.96 9.96 10.01 9.92 9.98 10.04 抽取次序 9 1011 12 13 14 15 16 零件尺寸10.269.91 10.1310.029.2210.0410.059.95经计算得16119.9716i i x x ===∑,16162221111()(16)0.2121616i i i i s x x x x ===-=-≈∑∑18.439≈,161()(8.5) 2.78ii x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.(1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数12211()()()()niii n niii i x x y y r x x y y ===--=--∑∑∑0.0080.09≈.【答案】(1)18.0-≈r ,可以;(2)(ⅰ)需要;(ⅱ)均值与标准差估计值分别为10.02,0.09. 【解析】试题分析:(1)依公式求r ;(2)(i )由9.97,0.212x s =≈,得抽取的第13个零件的尺寸在(3,3)x s x s -+以外,因此需对当天的生产过程进行检查;(ii )剔除第13个数据,则均值的估计值为10.02,方差为0.09.(ii )剔除离群值,即第13个数据,剩下数据的平均数为1(169.979.22)10.0215⨯-=,这条生产线当天生产的零件尺寸的均值的估计值为10.02.162221160.212169.971591.134ii x==⨯+⨯≈∑,剔除第13个数据,剩下数据的样本方差为221(1591.1349.221510.02)0.00815--⨯≈, 0.0080.09≈. 【考点】相关系数,方差均值计算【名师点睛】解答新颖的数学题时,一是通过转化,化“新”为“旧”;二是通过深入分析,多方联想,以“旧”攻“新”;三是创造性地运用数学思想方法,以“新”制“新”,应特别关注创新题型的切入点和生长点.10.【2017课标II ,文19】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg ), 其频率分布直方图如下:(1) 记A 表示事件“旧养殖法的箱产量低于50kg”,估计A 的概率;(2) 填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3) 根据箱产量的频率分布直方图,对两种养殖方法的优劣进行较。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年高考试题分类汇编之概率统计一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2017课标I 理)如图,正方形 ABCD 内的图形来自中国古代的太极图 .正方形内切圆中 的黑色部分和白色部分关于正方形的中心成中心对称 .在正方形内随机取一点,则此点取自黑色部分的概率是()兀1 兀B.C.—D.—824某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理 了2014年1月至2016年12月期间月接待游客量(单位万人)的数据,绘制了下面的折线图•根据该折线图,下列结论错误的是()C.各年的月接待游客量高峰期大致在 7,8月D. 各年1月至6月的月接待游客量相对 7月至12月,波动性更小,变化比较平稳3. (2017课标n 文)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张, 则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()113 2 AB. —C.D.-1051054. (2017课标I 文)为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2^ x n ,下面给出的指标中可以用来评估这种农作物亩产量稳 定程度的是()A%, X 2,…X n 的平均数B.Xj X 2,…X n 的标准差D.XjX?,…X n的中位数5. (2017天津文)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫 .从这5 支彩A1(第 1 题)2.( 2017 课标 III 理) A 月接待游客量逐月增加B. 年接待游客量逐年增加C.XjX?,…X n的最大值(第 2题)笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为()取1张•则抽到的2张卡片上的数奇偶性不同的概率是(二、填空题(将正确的答案填在题中横线上)10. (2017江苏) 某工厂生产甲、乙、丙、丁四种不同型号的产品200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取件进行检验,则应从丙种型号的产品中抽取 ________________ 件.11. (2017江苏) 记函数f (x )=;6,x -x 2的定义域为D .在区间[Y,5]上随机取一个数 x , 则x • D 的概率是 _____________________ . 12. (2017课标II 理)一批产品的二等品率为 0.02,从这批产品中每次随机取一件,有放 回地抽取100次,X 表示抽到的二等品件数,则DX = ______________ 。

6. (2017山东文)如图所示的茎叶图记录了甲、乙甲组乙组两组各5名工人某日的产量数据(单位:件).若这6 59两组数据的中位数相等,且平均值也相等,则x 和y 的 2 5 6 】7 y 值分别为()A.3,5 B.5,5 C.3,7D.5,7x 41s7. ( 2017浙江)已知随机变量八5 B.3 c-l=0)=1_ P i ,i =1,2.若i 满足P( i = 1) = P i , P( iC 1 冲 0 ■ 5 ::: P2 ,则(2 A E( 1) < E( 2), D( i ) < D( 2) B.E(i < E( 2), D( i ) > D( 2) C E( i ) > EC),D( i ) < D( 2)D.E( 1)> E(;),D( 1) > D( 2)8. ( 2017山东理) 为了研究某班学生的脚长x (单位厘米)和身高 y (单位厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为 y? =i5X • a?. 10 10已知7 X j =225 ,、y i =1600 , ? = 4 .该班某学生的iAi脚长为24,据此估计其身高为(A 160 B. 163 C.166 D.1709.( 2017山东理)从分别标有1, …,9的9张卡片中不放回地随机抽取 2次,每次抽184 B.-95 C.- 97 D.-9,产量分别为60三、解答题(应写出必要的文字说明、证明过程或演算步骤)13. ( 2017北京文)某大学艺术专业 400名学生参加某次测评,根据男女学生人数比例,使 用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成 7组:[20,30),[30,40),…,[80,90],并整理得到如下频率分布直方图:(2)已知样本中分数小于 40的学生有5人,试估计总体中分数在区间[40,50)内的人数; (3)已知样本中有一半男生的分数不小于 70,且样本中分数不小于70的男女生人数相等•试估计总体中男生和女生人数的比例.(1)生产线上随机抽取一个零件,并测量其尺寸(单位: cm ).下面是检验员在一天内依次抽经计算得 x=£;6xr9.97 , 1;6(Xi-x)S 1 (J x 2"6x 2) : 0.212,16 y Y16y\'16 y16' (x -x)(i -8.5) = -2.78,其中 xi 为抽取的第i 吕i =1,2, ,16 .寸不随生产过程的进行而系统地变大或变小(若| r | ::: 0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2) 一天内抽检零件中,如果出现了尺寸在(x -3s,x 3s)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(i) 从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ii) 在(x-3s,x 3s)之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01 )n为(X i -x)(y -y)____附:样本(X i ,yj (i =1,2,…,n)的相关系数 r 「壬n,0.008、0.09•' (i -8.5)2 18.439, i 个零件的尺寸,(1)求(x ,i) (i =1,2, ,16)的相关系数 r ,并回答是否可以认为这一天生产的零件尺£(x-x)2尼(y F15. (2017山东理)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响, 具体方法如下将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙 种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者 A,A 2,人,傀,阳人和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接 受甲种心理暗示,另 5人接受乙种心理暗示. (1 )求接受甲种心理暗示的志愿者中包含A 但不包含B 3的频率。

(2)用x 表示接受乙种心理暗示的女志愿者人数,求 x 的分布列与数学期望 Ex .16.(2017天津理)从甲地到乙地要经过 3个十字路口,设各路口信号灯工作相互独立,且在(2)若有2辆车独立地从甲地到乙地,求这 2辆车共遇到1个红灯的概率.各路口遇到红灯的概率分别为1 1 1 2'3'4(1)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望;17. (2017课标III理)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位°C)有关.如果最高气温不低于25,需求量为500 瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200 瓶•为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频(1)求六月份这种酸奶一天的需求量x (单位瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为y (单位:元).当六月份这种酸奶一天的进货量n (单位瓶)为多少时,y的数学期望达到最大值?(文科)(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.18. (2017课标II 理)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时(1)设两种养殖方法的箱产量相互独立,记 A 表示事件 旧养殖法的箱产量低于 50kg ,新养殖法的箱产量不低于 50kg ”估计A 的概率; (2)99%箱产量c 50kg箱产量A 50 kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到)21X 2n( ad-be)K 二(a+b)(c + d)(a + c)(b + d)P (K 2>k)0,050 O.OK)k3.S416.63510.828:kg )某频率分布直方图如下:19. (2017课标I理)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位cm)•根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2).(1 )假设生产状态正常,记x表示一天内抽取的16个零件中其尺寸在(」-3;二."3「)之外的零件数,求P(X _1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(」-3二」• 3匚)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(i)试说明上述监控生产过程方法的合理性;(ii)下面是检验员在一天内抽取的16个零件的尺寸22经计算得x = 為X i =9.97 , s (X j -x)2 C x2 -16x2)2:0.212,16 i4 \ 16 y 16 y其中X i为抽取的第i个零件的尺寸,i二1,2, (16)用样本平均数x作为」的估计值?,用样本标准差s作为二的估计值少,利用估计值判断是否需对当天的生产过程进行检查?剔除(? - ■? - 3:?)之外的数据,用剩下的数据估计J和-(精确到0.01).附若随机变量Z服从正态分布N(巴坊2),贝y P(卩—犯v Z v卩+知)= 0.997 4 ,0.997 416=0.959 2 , .0.008 0.09•20. (2017北京理)为了研究一种新药的疗效,选100名患者随机分成两组,每组各 50名,一组服药,另一组不服药 .一段时间后,记录了两组患者的生理指标 X 和y 的数据,并制成下图,其中“ *”表示服药者,“+”表示未服药者.1指柿11 1rBJ 1A-D * ** • * «-T- — — A . ,亠*■韋;* -* 1 i|*-*;* 亠—* 十 ~r'c** * * ** *>1一Il_ .* H -“w八实*1 * # 1 1 || 1 II 1 1 1 1 11 1H指标T(1 )从服药的50名患者中随机选出一人,求此人指标 y 的值小于60的概率;(2) 从图中A, B,C,D 四人中随机选出两人,记•为选出的两人中指标 X 的值大于1.7的 人数,求■的分布列和数学期望 E ();(3) 试判断这100名患者中服药者指标 y 数据的方差与未服药者指标 y 数据的方差的大小.(只需写出结论)21. (2017江苏) 已知一个口袋有 m 个白球,n 个黑球(m,n ・N *,n > 2 ),这些球除颜色外 全部相同.现将口袋中的球随机的逐个取出, 并放入如图所示的编号为 1,2,3」||,m 5的抽屉 内,其中第k 次取出的球放入编号为 k 的抽屉(k =1,2,3川|,m • n ).(1)试求编号为2的抽屉内放的是黑球的概率 p ;(2)随机变量X 表示最后一个取出的黑球所在抽屉编号的倒数,E (X )是X 的数学期望,证明 E(X)::: (m n)(n _1)。

相关文档
最新文档