回归分析思路
大学回归分析教案设计思路
课程名称:统计学授课对象:大学本科生课时安排:2课时教学目标:1. 理解回归分析的基本概念和原理。
2. 掌握一元线性回归和多元线性回归的基本步骤和方法。
3. 能够运用回归分析解决实际问题。
4. 培养学生数据分析的能力和科学思维。
教学重点:1. 回归分析的基本概念和原理。
2. 一元线性回归和多元线性回归的计算方法。
3. 回归模型的诊断和改进。
教学难点:1. 多元线性回归中变量选择和模型设定的问题。
2. 回归模型的应用和解释。
教学准备:1. 多媒体课件2. 统计软件(如SPSS、R等)3. 实例数据集教学过程:第一课时一、导入1. 提问:什么是回归分析?它在统计学中有什么应用?2. 介绍回归分析的定义和基本类型。
二、基本概念和原理1. 解释回归分析的基本概念,如自变量、因变量、回归系数等。
2. 介绍最小二乘法原理,并说明其在回归分析中的应用。
三、一元线性回归1. 展示一元线性回归的模型和计算公式。
2. 使用实例数据,演示一元线性回归的计算过程。
3. 引导学生理解回归系数的含义和意义。
四、多元线性回归1. 介绍多元线性回归的基本概念和模型。
2. 讲解变量选择和模型设定的问题。
3. 使用实例数据,演示多元线性回归的计算过程。
第二课时一、回归模型的诊断1. 介绍回归模型诊断的基本方法,如残差分析、方差分析等。
2. 演示如何使用统计软件进行回归模型诊断。
二、回归模型的改进1. 讲解回归模型改进的方法,如变量转换、模型选择等。
2. 使用实例数据,演示如何改进回归模型。
三、案例分析1. 选择实际案例,引导学生运用回归分析解决问题。
2. 分析案例中可能遇到的问题和解决方案。
四、总结与作业1. 总结本节课的主要内容,强调重点和难点。
2. 布置作业,要求学生运用所学知识进行回归分析。
教学评价:1. 课堂参与度:观察学生在课堂上的提问、回答和互动情况。
2. 作业完成情况:检查学生的作业,评估其对回归分析的理解和应用能力。
对回归分析的认识、体会和思考
对回归分析的认识、体会和思考海口市第一中学潘峰一、教材分析1.内容编排散点图、最小二乘估计的基本思想、最小二乘估计的计算公式、建立回归方程并进行预报等回归分析的部分内容在《数学3(必修)》中已经出现过。
在此基础上,本章通过现实生活中遇到的问题“女大学生身高和体重的关系”进一步讨论一元线性回归模型,分析产生模型中随机误差项的原因,并从相关系数的角度研究了两个变量间线性相关关系的强弱,从而让学生了解在什么情况下可以考虑使用线性回归模型。
教材介绍了一元线性回归模型的残差平方和分解的思想,从而给出相关指数的含义,即相关指数越大,模型拟合的效果越好。
从残差分析的角度研究所选用的回归模型是否合适,引导学生初步体会检验模型的思想。
为提高学生解决应用问题的能力,教材还强调了用解释变量(自变量)估计预报变量(因变量)时需要注意的问题(这点总结得非常的好,帮助学生思考),总结建立回归模型的基本步骤。
作为线性回归模型的一个应用,教材还给出了一个处理非线性相关关系的例子,并通过相关指数比较不同模型对同一样本数据集的拟合效果。
这里所涉及的非线性相关关系可以通过变换转化成线性相关关系,从而可以用线性回归模型进行研究。
这个例子没有增加难度,但能开阔学生的思路,使学生了解虽然任何数据对都可以用线性回归模型来拟合,但其拟合的效果并不一定最好,可以探讨用其他形式的回归模型来拟合观测数据。
2.学习价值:⑴.数理统计已成为人们的常识,它几乎渗透到每一学科中,哪里有试验,哪里有数据,哪里就少不了数理统计,不懂数理统计,就无法应付大量信息;⑵.现代社会是信息社会,学会搜集、测量、评价信息做出决策是一个人成功必备的素质。
3.教材处理的优点:⑴.总以一些生动活泼的、丰富的实际情境引入,激发学生的兴趣和学习激情;⑵.以恰时恰点的问题引导学生思考,培养问题意识,孕育创新精神;(这点对我们教师的思考也是一种帮助)⑶.螺旋上升地安排核心概念和数学思想,加强数学思想方法的渗透与概括;⑷.对高等知识点到即止,强调类比、推广、特殊化、化归等思想方法的运用,开阔视野,提高数学思维能力,培育理性精神。
回归分析方法
回归分析方法
回归分析是统计学中一种重要的数据分析方法,它用于研究自
变量和因变量之间的关系。
回归分析方法可以帮助我们预测和解释
变量之间的关系,从而更好地理解数据的特征和趋势。
在本文中,
我们将介绍回归分析的基本概念、常见的回归模型以及如何进行回
归分析。
首先,回归分析的基本概念包括自变量和因变量。
自变量是研
究者可以控制或观察到的变量,而因变量是研究者希望预测或解释
的变量。
回归分析旨在通过自变量的变化来预测或解释因变量的变化,从而揭示它们之间的关系。
常见的回归模型包括线性回归、多元线性回归、逻辑回归等。
线性回归是最简单的回归模型之一,它假设自变量和因变量之间的
关系是线性的。
多元线性回归则允许多个自变量对因变量产生影响,逻辑回归则用于因变量是二元变量的情况,例如成功与失败、生存
与死亡等。
进行回归分析时,我们需要收集数据、建立模型、进行拟合和
检验模型的拟合优度。
在收集数据时,我们需要确保数据的质量和
完整性,避免因为数据缺失或异常值而影响分析结果。
建立模型时,我们需要选择合适的自变量和因变量,并根据实际情况选择合适的
回归模型。
进行拟合和检验模型的拟合优度时,我们需要根据实际
情况选择合适的统计指标和方法,例如残差分析、R方值等。
总之,回归分析方法是一种重要的数据分析方法,它可以帮助
我们预测和解释变量之间的关系。
通过本文的介绍,相信读者对回
归分析有了更深入的了解,希望能够在实际工作中灵活运用回归分
析方法,为决策提供更可靠的依据。
逐步回归分析
逐步回归分析1、逐步回归分析的主要思路在实际问题中, 人们总是希望从对因变量有影响的诸多变量中选择一些变量作为自变量, 应用多元回归分析的方法建立“最优”回归方程以便对因变量进行预报或控制。
所谓“最优”回归方程, 主要是指希望在回归方程中包含所有对因变量影响显著的自变量而不包含对影响不显著的自变量的回归方程。
逐步回归分析正是根据这种原则提出来的一种回归分析方法。
它的主要思路是在考虑的全部自变量中按其对的作用大小, 显著程度大小或者说贡献大小, 由大到小地逐个引入回归方程, 而对那些对作用不显著的变量可能始终不被引人回归方程。
另外, 己被引人回归方程的变量在引入新变量后也可能失去重要性, 而需要从回归方程中剔除出去。
引人一个变量或者从回归方程中剔除一个变量都称为逐步回归的一步, 每一步都要进行检验, 以保证在引人新变量前回归方程中只含有对影响显著的变量, 而不显著的变量已被剔除。
逐步回归分析的实施过程是每一步都要对已引入回归方程的变量计算其偏回归平方和(即贡献), 然后选一个偏回归平方和最小的变量, 在预先给定的水平下进行显著性检验, 如果显著则该变量不必从回归方程中剔除, 这时方程中其它的几个变量也都不需要剔除(因为其它的几个变量的偏回归平方和都大于最小的一个更不需要剔除)。
相反, 如果不显著, 则该变量要剔除, 然后按偏回归平方和由小到大地依次对方程中其它变量进行检验。
将对影响不显著的变量全部剔除, 保留的都是显著的。
接着再对未引人回归方程中的变量分别计算其偏回归平方和, 并选其中偏回归平方和最大的一个变量, 同样在给定水平下作显著性检验, 如果显著则将该变量引入回归方程, 这一过程一直继续下去, 直到在回归方程中的变量都不能剔除而又无新变量可以引入时为止, 这时逐步回归过程结束。
2、逐步回归分析的主要计算步骤(1) 确定检验值在进行逐步回归计算前要确定检验每个变量是否显若的检验水平, 以作为引人或剔除变量的标准。
回归分析的基本思路
回归分析的基本思路回归分析是一种统计学方法,用于研究自变量与因变量之间的关系。
它的基本思路是通过建立一个数学模型,利用已知的自变量数据来预测因变量的值。
回归分析主要有两个目标,一是确定自变量和因变量之间的函数关系,二是利用这个函数关系进行预测。
本文将详细介绍回归分析的基本思路。
一、数据收集:首先需要收集与研究主题相关的数据,包括自变量和因变量的观测值。
数据可以通过实验、调查或者已有的数据集来获取。
二、变量选择:在进行回归分析前,需要选择适当的自变量和因变量。
自变量是用来预测因变量的变量,而因变量是需要被预测的变量。
选择合适的变量对于回归分析的结果至关重要。
三、建立数学模型:在回归分析中,需要通过建立一个数学模型来描述自变量和因变量之间的关系。
最常用的数学模型是线性回归模型,表示因变量和自变量之间存在一个线性关系。
线性回归模型的一般形式是:Y=β0+β1X1+β2X2+...+βnXn+ε,其中Y是因变量,X1、X2、..、Xn是自变量,β0、β1、β2、..、βn是回归系数,ε是误差项。
四、参数估计:在回归分析中,需要估计回归系数的值。
常见的参数估计方法有最小二乘法、最大似然估计等。
最小二乘法是一种常用的参数估计方法,它通过最小化观测值与模型预测值之间的差异来估计回归系数的值。
五、模型检验:在回归分析中,需要对建立的模型进行检验,以评估模型的拟合程度和可靠性。
常用的模型检验方法有残差分析、方差分析、Hypothesis Check等。
残差分析是一种常用的检验方法,它通过分析模型的预测误差来判断模型是否符合要求。
六、模型解释:回归分析的一个重要目标是解释自变量和因变量之间的关系。
模型解释可以通过回归系数的符号和大小来实现。
回归系数的符号表示自变量和因变量之间的正相关还是负相关,而回归系数的大小表示自变量对因变量的影响程度。
七、模型应用:通过建立回归模型,可以利用已知的自变量数据来预测因变量的值。
这种预测可以用于决策和规划,例如使用回归模型来预测销售额、股票价格等。
多个因变量的回归分析
多个因变量的回归分析多个因变量的回归分析是研究多元因素之间相互作用的必要方法,可以用于分析多个变量对响应变量的影响,从而有效控制其它变量,更好地理解变量之间的关系。
多变量回归分析可以提供有价值的决策信息,并有助于我们做出更好的决策。
一、多个因变量的回归分析的基本概念多个因变量的回归分析是一种统计分析方法,用于检测多个变量对响应变量的影响。
它的基本思路是,首先假设每一个因变量都可以与响应变量有关,然后用数据确定每一个因变量与响应变量之间的关系。
多变量回归分析也可以用来控制其它变量,以减少因变量对响应变量的影响,更好地理解变量之间的关系。
二、多个因变量的回归分析的应用多个因变量的回归分析有多种应用,其中包括估算多个因变量对某一变量的影响大小、分析多个因变量的相互作用、评估一种模型的拟合可能性、比较不同模型之间的差异等等。
这种分析方法可以帮助我们更好地理解变量间的相互关系,使我们能够在决策过程中控制多个变量,从而获得更好的决策结果。
三、多个因变量的回归分析的步骤接下来,将介绍多个因变量的回归分析的基本步骤:1、观察视角:首先根据研究的目的,确定因变量和响应变量。
2、变量定义:根据研究过程中收集的数据,对变量进行定义,定义变量的类型,如连续型、离散型等。
3、建立模型:在回归分析中,建立模型是指根据定义的变量,使用回归方程来表示变量之间的关系。
4、检验模型:根据模型建立后的结果,可以使用多种统计方法对模型进行检验,以确定模型的准确性。
5、结果可视化:使用可视化工具,将结果进行可视化,以便于更直观地分析变量之间的关系。
四、小结多个因变量的回归分析可以提供有价值的决策信息,有助于我们做出更好的决策。
在实践中,可以按照观察视角、变量定义、建立模型、检验模型以及结果可视化五个步骤来实施多个因变量的回归分析。
回归建模的思路和方法
回归建模的思路和方法摘要:一、回归建模的概述1.回归分析的概念2.回归建模的目的3.回归建模的应用场景二、回归建模的步骤1.数据收集与处理2.变量选择与构建3.模型选择与评估4.模型优化与调整5.结果解释与应用三、常见回归建模方法1.线性回归2.多项式回归3.广义线性模型4.非线性回归5.时间序列回归四、回归建模的注意事项1.数据质量与完整性2.变量关系的合理性3.模型复杂性与稳定性4.模型泛化能力与过拟合防范5.结果的可解释性与实用性正文:一、回归建模的概述1.回归分析的概念回归分析是一种研究两个或多个变量之间关系的统计方法。
它旨在探讨因变量(响应变量)与自变量(预测变量)之间的依赖关系,从而为预测和控制因变量提供依据。
2.回归建模的目的回归建模的主要目的是揭示变量间的内在规律,对未来的数据进行预测,评估自变量对因变量的影响程度,以及分析变量间的相关性。
3.回归建模的应用场景回归建模广泛应用于经济学、金融学、社会学、医学等领域。
例如,在金融领域,可以通过回归建模预测股票价格、评估投资风险;在社会学领域,可以分析教育程度、家庭收入等因素对就业的影响。
二、回归建模的步骤1.数据收集与处理进行回归建模的第一步是收集相关数据。
数据来源可以包括官方统计数据、问卷调查、实验数据等。
在收集数据后,需要对数据进行清洗、处理,包括去除异常值、缺失值处理、数据转换等。
2.变量选择与构建在数据处理完成后,需要选择与建模目标相关的自变量和因变量。
自变量可以是连续型或离散型变量,而因变量通常是连续型变量。
在选择变量时,要考虑变量间的相关性、共线性等问题。
此外,还需要根据数据特点构建合适的变量,如对连续变量进行离散化处理、创建时间变量等。
3.模型选择与评估回归建模过程中,需要根据数据特点和建模目标选择合适的模型。
常见的回归模型包括线性回归、多项式回归、广义线性模型等。
在选择模型后,要对模型进行拟合,并对模型的预测性能进行评估。
回归分析方法在市场营销课程中的教学思路及案例解析
线性回归分析思路总结
线性回归分析是一种研究影响关系的方法,在实际研究里非常常见。
不管你有没有系统学习过,对于线性回归,相信多少都有那么一点了解。
即使如此,在实际分析时,还是会碰到很多小细节,让我们苦思冥想,困扰很久,以致拖慢进度,影响效率。
因此本文就一起梳理下回归分析的分析流程,闲话少说,我们开始吧。
回归分析实质上就是研究一个或多个自变量X对一个因变量Y(定量数据)的影响关系情况。
当自变量为1个时,是一元线性回归,又称作简单线性回归;自变量为2个及以上时,称为多元线性回归。
在SPSSAU里均是使用【通用方法】里的【线性回归】实现分析的。
SPSSAU-线性回归1.数据类型线性回归要求因变量Y(被解释变量)一定是定量数据。
如果因变量Y为定类数据,可以用【进阶方法】中的【logit回归】。
对于引入模型的自变量,通常没有个数要求。
但从经验上看,不要一次性放入太多自变量。
如果同时自变量太多,容易引起共线性问题。
建议根据专业知识进行选择,同时样本量不能过少,通常要满足样本个数是自变量的20倍以上。
如果自变量为定类数据,需要对变量进行哑变量处理,可以在SPSSAU的【数据处理】→【生成变量】进行设置。
具体设置步骤查看SPSSAU有关哑变量的文章:什么是虚拟变量?怎么设置才正确?控制变量,可以是定量数据,也可以是定类数据。
一般来说更多是定类数据,如:性别,年龄,工作年限等人口统计学变量。
通常情况下,不需要处理,可以直接和自变量一起放入X 分析框分析即可。
3. 正态性检验理论上,回归分析的因变量要求需服从正态分布,SPSSAU 提供多种检验正态性的方法。
如果出现数据不正态,可以进行对数处理。
若数据为问卷数据,建议可跳过正态性检验这一步。
原因在于问卷数据属于等级数据,很难保证正态性,且数据本身变化幅度就不大,即使对数处理效果也不明显。
4.散点图和相关分析一般来说,回归分析之前需要做相关分析,原因在于相关分析可以先了解是否有关系,回归分析是研究有没有影响关系,有相关关系但并不一定有回归影响关系。
回归分析方法
回归分析方法
回归分析是一种统计学方法,用于研究自变量与因变量之间的关系。
在实际应用中,回归分析可以帮助我们预测未来的趋势,分析变量之间的影响关系,以及找出影响因变量的主要因素。
本文将介绍回归分析的基本概念、常见方法和实际应用。
首先,回归分析可以分为简单线性回归和多元线性回归两种基本类型。
简单线性回归是指只有一个自变量和一个因变量的情况,而多元线性回归则是指有多个自变量和一个因变量的情况。
在进行回归分析时,我们需要先确定自变量和因变量的关系类型,然后选择合适的回归模型进行拟合和预测。
常见的回归模型包括最小二乘法、岭回归、Lasso回归等。
最小二乘法是一种常用的拟合方法,通过最小化残差平方和来找到最佳拟合直线或曲线。
岭回归和Lasso回归则是在最小二乘法的基础上引入了正则化项,用于解决多重共线性和过拟合的问题。
选择合适的回归模型可以提高模型的预测准确性和稳定性。
在实际应用中,回归分析可以用于市场营销预测、金融风险评估、医学疾病预测等领域。
例如,我们可以利用回归分析来预测产
品销量与广告投放的关系,评估股票收益率与市场指数的关系,或
者分析疾病发病率与环境因素的关系。
通过回归分析,我们可以更
好地理解变量之间的关系,为决策提供可靠的依据。
总之,回归分析是一种强大的统计工具,可以帮助我们理解变
量之间的关系,预测未来的趋势,并进行决策支持。
在实际应用中,我们需要选择合适的回归模型,进行数据拟合和预测分析,以解决
实际问题。
希望本文对回归分析方法有所帮助,谢谢阅读!。
“回归分析”
“回归分析”回归(regression):发生倒退或表现倒退;常指趋于接近或退回到中间状态。
在线性回归中,回归指各个观察值都围绕、靠近估计直线的现象。
多元回归模型(multiple regression model):包含多个自变量的回归模型,用于分析一个因变量与多个自变量之间的关系。
它与一元回归模型的区别在于,多元回归模型体现了统计控制的思想。
因变量(dependent variable):也称为依变量或结果变量,它随着自变量的变化而变化。
从试验设计角度来讲,因变量也就是被试的反应变量,它是自变量造成的结果,是主试观测或测量的行为变量。
自变量(independent variable):在一项研究中被假定作为原因的变量,能够预测其他变量的值,并且在数值或属性上可以改变。
随机变量(random variable):即随机事件的数量表现。
这种变量在不同的条件下由于偶然因素影响,可能取各种不同的值,具有不确定性和随机性,但这些取值落在某个范围的概率是一定的。
连续变量(continuous variable):在一定区间内可以任意取值的变量,其数值是连续不断的,相邻两个数值可作无限分割,即可取无限个数值,比如身高、体重等。
名义变量(nominal variable):本身的编码不包含任何具有实际意义的数量关系,变量值之间不存在大小、加减或乘除的运算关系。
随机变量(random variable):即随机事件的数量表现。
这种变量在不同的条件下由于偶然因素影响,可能取各种不同的值,具有不确定性和随机性,但这些取值落在某个范围的概率是一定的。
截距(intercept):函数与y坐标轴的相交点,即回归方程中的常数项。
斜率(slope):即回归方程中各自变量的系数。
它表示自变量一个单位的变化所引起的因变量的变化量,如果是线性模型,则在坐标图上表现为两个变量拟合直线之斜率。
偏效应(partial effect):在控制其他变量的情况下,或者说在其他条件相同的情况下,各自变量X对因变量Y的净效应(net effect)或独特效应(unique effect)。
知识讲解-回归分析的基本思想及其初步应用(文、理)
回归分析的基本思想及其初步应用【学习目标】1. 通过对实际问题的分析,了解回归分析的必要性与回归分析的一般步骤。
2. 能作出散点图,能求其回归直线方程。
3. 会用所学的知识对简单的实际问题进行回归分析。
【要点梳理】要点一、变量间的相关关系1. 变量与变量间的两种关系:〔1〕 函数关系:这是一种确定性的关系,即一个变量能被另一个变量按照某种对应法则唯一确定.例如圆的面积.S 与半径r 之间的关系S=πr 2为函数关系.〔2〕相关关系:这是一种非确定性关系.当一个变量取值一定时,另一个变量的取值带有一定的随机性,这两个变量之间的关系叫做相关关系。
例如人的身高不能确定体重,但一般来说“身高者,体重也重”,我们说身高与体重这两个变量具有相关关系. 2. 相关关系的分类:〔1〕在两个变量中,一个变量是可控制变量,另一个变量是随机变量,如施肥量与水稻产量; 〔2〕两个变量均为随机变量,如某学生的语文成绩与化学成绩. 3. 散点图:将两个变量的各对数据在直角坐标系中描点而得到的图形叫做散点图.它直观地描述了两个变量之间有没有相关关系.这是我们判断的一种依据.4. 回归分析:与函数关系不同,相关关系是一种非确定性关系,对具有相关关系的两个变量进行统计分析的方法叫做回归分析。
要点二、线性回归方程:1.回归直线如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫作回归直线。
2.回归直线方程ˆˆˆybx a =+ 对于一组具有线性相关关系的数据11(,)x y ,22(,)x y ,……,(,)n n x y ,其回归直线ˆˆˆybx a =+的截距和斜率的最小二乘法估计公式分别为:121()()ˆ()niii nii x x y y bx x ==--=-∑∑,ˆˆay bx =- 其中x 表示数据x i 〔i=1,2,…,n 〕的均值,y 表示数据y i 〔i=1,2,…,n 〕的均值,xy 表示数据x i y i 〔i=1,2,…,n 〕的均值.a 、b 的意义是:以a 为基数,x 每增加一个单位,y 相应地平均变化b 个单位.要点诠释:①回归系数121()()ˆ()niii nii x x y y bx x ==--=-∑∑,也可以表示为1221ˆni ii nii x y nx ybxnx==-=-∑∑,这样更便于实际计算。
最新人教版高中数学选修1-2《回归分析的基本思想及其初步应用》教材梳理
庖丁巧解牛知识·巧学 一、回归分析回归分析是根据变量观测数据分析变量间关系的常用统计分析方法.通常把变量观测数据称为样本.1.散点图与回归方程(1)设对y 及x 做n 次观测得数据(x i ,y i )(i=1,2,…,n).以(x i ,y i )为坐标在平面直角坐标系中描点,所得到的这张图便称之为散点图.其中x 是可观测、可控制的普通变量,常称它为自变量,y 为随机变量,常称其为因变量.知识拓展 散点图是直观判断变量x 与y 是否相关的有效手段. (2)a 与回归系数b 的计算方法若散点呈直线趋势,则认为y 与x 的关系可以用一元回归模型来描述.设线性回归方程为y=a+bx+ε.其中a 、b 为未知参数,ε为随机误差,它是一个分布与x 无关的随机变量.最小二乘估计aˆ和b ˆ是未知参数a 和b 的最好估计. x b y aˆˆ-=,b ˆ=∑∑==---ni ini i ix xy y x x121)())((.深化升华 bˆ的计算还可以用公式b ˆ=∑∑==--ni ini ii x n xyx n yx 1221来计算,这时只需列表求出相关的量代入即可. 2.相关性检验如下图中的两个散点图,很难判断这些点是不是分布在某条直线附近.假如不考虑散点图,按照最小二乘估计计算a 与b ,我们可以根据一组成对数据,求出一个回归直线方程.但它不能反映这组成对数据的变化规律.为了解决上述问题,我们有必要对x 与y 作线性相关性的检验,简称相关性检验.对于变量x 与y 随机抽取到的n 对数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),检验统计量是样本相关系数r.r=∑∑∑∑∑∑======---=----ni i ni i ni ii ni i n i i ni i iy n y x n x yx n yx y y x x y y x x122122112121)()()()())((.r 具有以下性质:当r 大于0时,表明两个变量正相关,当r 小于0时,表明两个变量负相关;|r|≤1;|r|越接近1,线性相关程度越强;|r|越接近0,线性相关程度越弱.通常当|r|大于0.75时,认为两个变量有很强的线性相关关系.相关性检验临界值如下表所示.相关性检验的临界值表深化升华 相关性检验的步骤也可如下: (1)作统计假设:X 与Y 不具有线性相关关系.(2)根据小概率0.05与n-2在相关性检验的临界值表中查出r 的一个临界值r 0.05. (3)根据样本相关系数计算公式算出r 的值.(4)作出统计推断.如果|r|>r 0.05,表明有95%的把握认为X 与Y 之间具有线性相关关系.如果|r|≤r 0.05,我们没有理由拒绝原来的假设.这时寻找回归直线方程是没有意义的. 3.回归分析的基本概念(1)在数学上,把每个效应(观测值减去总的平均值)的平方和加起来,即用∑=-ni iy y12)(表示总的效应,称为总偏差平方和.(2)数据点和它在回归直线上相应位置的差异(y i -i yˆ)是随机误差的效应,称i e ˆ=(y i -i y ˆ)为残差.(3)分别将残差的值平方后回来,用数学符号表示为∑=-ni i iy y12)(称为残差平方和.它代表了随机误差的效应.(4)总偏差平方和与残差平方和的差称为回归平方和.(5)回归效果的刻画我们可以用相关指数R 2反映.R 2=1-∑∑==--n i ini i iy y yy1212)()ˆ(.显然,R 2的值越大,说明残差平方和越小,也就是说模型的拟合效果越好.4.非线性回归问题 在实际问题中,当变量之间的相关关系不是线性相关关系时,不能用线性回归方程描述它们之间的相关关系,需要进行非线性回归分析,然而非线性回归方程一般很难求,因此把非线性回归化为线性回归应该说是解决问题的好方法.首先,所研究对象的物理背景或散点图可帮助我们选择适当的非线性回归方程yˆ=μ(x;a,b).其中a及b为未知参数,为求参数a及b的估计值,往往可以先通过变量置换,把非线性回归化为线性回归,再利用线性回归的方法确定参数a及b的估计值.问题·探究问题函数关系是一种确定性关系,而对一种非确定性关系——相关关系,我们如何研究?导思:由于相关关系不是一种确定性关系,我们经常运用统计分析的方法,即回归分析,按照画散点图,求回归方程,用回归方程预报等步骤进行.探究:我们可以知道,相关关系中,由部分观测值得到的回归直线,可以对两个变量间的线性相关关系进行估计,这实际上是将非确定性问题转化成确定性问题来研究.由于回归直线将部分观测值所反映的规律性进行了延伸,它在情况预报、资料补充等方面有着广泛的应用,从某种意义上看,函数关系是一种理想的关系模型,而相关关系是一种更为一般的情况.因此研究相关关系,不仅可使我们处理更为广泛的数学应用问题,还要使我们对函数关系的认识上升到一种新的高度.典题·热题思路解析:散点图是表示具有相关关系的两个变量的一组数据的图形.解:散点图如下:例2每立方米混凝土的水泥用量x(单位:kg)与28天后混凝土的抗压强度(单位:kg/cm2)之间的关系有如下数据:(2)如果y与x之间具有线性相关关系,求回归直线方程.思路解析:求回归直线方程和相关系数,可以用计算器来完成.在有的较专门的计算器中,可通过直接按键得出回归直线方程的系数和相关系数,而如果要用一般的科学计算器进行计算,则要先列出相应的表格,有了表格中的那些相关数据,回归方程中的系数和相关系数就都容易求出了.解:(1)r=)6.721294.64572)(20512518600(6.722051218294322⨯-⨯-⨯⨯-≈0.999>0.75.说明变量y 与x 之间具有显著的线性正相关关系.bˆ=143004347205125186006.72205121829432=⨯-⨯⨯-≈0.304, x b y aˆˆ-==72.6-0.304×205=10.28. 于是所求的线性回归方程为yˆ=0.304x+10.28. 深化升华 为了进行相关性检验,通常将有关数据列成表格,然后借助于计算器算出各个量,为求回归直线方程扫清障碍.若由资料知y 对x 有线性相关关系.试求:(1)线性回归方程yˆ=b ˆx+a ˆ的回归系数a ˆ,b ˆ. (2)使用年限为10年时,估计维修费用是多少?思路解析:因为y 对x 有线性相关关系,所以可以用一元线性相关的方法解决问题.利用公式bˆ=∑∑==--ni i ni ii x n x yx n yx 1221,aˆ=y -b ˆx 来计算回归系数.有时为了方便常列表对应写出x i y i ,x i 2,以利于求和.解:(1)x =4,y =5,∑=ni ix12=90,∑=ni ii yx 1=112.3,于是bˆ=245905453.112⨯-⨯⨯-=1.23,aˆ=y -b ˆx =5-1.23×4=0.08. (2)回归直线方程为yˆ=1.23x+0.08.当x=10年时,y ˆ=1.23×10+0.08=12.38(万元),即估计使用10年的维修费用是12.38万元.方法归纳 知道y 与x 呈线性相关关系,就无需进行相关性检验,否则,应首先进行相关性检验.如果本身两个变量不具有相关关系,或者说,它们之间相关关系不显著,即使求出了回归方程也是毫无意义的,而且估计和预测的量也是不可信的.例4一只红铃虫的产卵数y与x有关,现收集了7组观测数据列于表中,试建立y与x之间思路解析:首先要作出散点图,根据散点图判定y与x之间是否具有线性相关关系,若具有线性相关关系,再求线性回归方程.在散点图中,样本点并没有分布在某个带状区域内,因此两个变量不呈线性相关关系,所以不能直接利用线性回归方程来建立两个变量之间的关系.根据已有的函数知识,可以发现样本分布在某一指数函数曲线的周围.解:散点图如下所示:由散点图可以看出:这些点分布在某一条指数函数y=pe qx(p,q为待定的参数)的周围.现在,问题变为如何估计待定的参数p和q,我们可以通过对数变换把指数关系变为线性关系.令z=lny,则变换后样本点应该分布在直线z=bx+a(a=lnp,b=q)周围.这样就可以利用线性回归模型来建立y与x之间的非线性回归方程了.由下图可看出,变换后的样本点分布在一条直线的附近,因此可以用线性回归方程来拟合.经过计算得到线性回归方程为zˆ=0.272x-3.843.因此红铃虫的产卵数对温度的非线性回归方程为yˆ=e0.272x-3.843.方法归纳线性回归问题在解决前可以先画散点图,通过散点图判断是否为线性回归,如果不是线性回归,要先转换为线性回归问题.。
3.1 回归分析的基本思想及其初步应用
3.1 回归分析的基本思想及其初步应用[学习目标]1.了解随机误差、残差、残差图的概念.2.会通过分析残差判断线性回归模型的拟合效果. 3.掌握建立线性回归模型的步骤. [知识链接]1.什么叫回归分析?答 回归分析是对具有相关关系的两个变量进行统计分析的一种方法. 2.回归分析中,利用线性回归方程求出的函数值一定是真实值吗?答 不一定是真实值,利用线性回归方程求的值,在很多时候是个预报值,例如,人的体重与身高存在一定的线性关系,但体重除了受身高的影响外,还受其他因素的影响,如饮食、是否喜欢运动等. [预习导引] 1.线性回归模型(1)函数关系是一种确定性关系,而相关关系是一种非确定性关系. (2)回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法. (3)对于一组具有线性相关关系的数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),回归直线的斜率和截距的最小二乘估计公式分别为b ^=∑ni =1 (x i -x -)(y i -y -)∑ni =1 (x i -x -)2=∑ni =1x i y i-nx -y-∑n i =1x 2i -nx -2,a ^=y --b ^x -,其中(x -,y -)称为样本点的中心.(4)线性回归模型y =bx +a +e ,其中a 和b 是模型的未知参数,e 称为随机误差,自变量x 称为解释变量,因变量y 称为预报变量. 2.残差的概念对于样本点(x 1,y 1),(x 2,y 2),…,(x n ,y n )而言,它们的随机误差为e i =y i -bx i -a ,i =1,2,…,n ,其估计值为e ^i =y i -y ^i =y i -b ^x i -a ^,i =1,2,…,n ,e ^i 称为相应于点(x i ,y i )的残差. 3.刻画回归效果的方式 (1)残差图法作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据,或体重估计值等,这样作出的图形称为残差图.在残差图中,残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高. (2)残差平方和法残差平方和∑ni =1 (y i -y ^i )2,残差平方和越小,模型拟合效果越好. (3)利用R 2刻画回归效果R 2=1-∑ni =1(y i -y ^i )2∑n i =1 (y i -y -)2;R 2表示解释变量对于预报变量变化的贡献率.R 2越接近于1,表示回归的效果越好.要点一 求线性回归方程例1 某班5名学生的数学和物理成绩如下表:(1)画出散点图;(2)求物理成绩y 对数学成绩x 的回归直线方程; (3)一名学生的数学成绩是96,试预测他的物理成绩. 解 (1)散点图如图.(2)x -=15×(88+76+73+66+63)=73.2, y -=15×(78+65+71+64+61)=67.8.∑5i =1x i y i=88×78+76×65+73×71+66×64+63×61=25 054. ∑5i =1x 2i =882+762+732+662+632=27 174. 所以b ^=∑5i =1x i y i -5x -y -∑5i =1x 2i -5x -2=25 054-5×73.2×67.827 174-5×73.22≈0.625. a ^=y --b ^x -≈67.8-0.625×73.2=22.05.所以y 对x 的回归直线方程是y ^=0.625x +22.05. (3)x =96,则y ^=0.625×96+22.05≈82, 即可以预测他的物理成绩是82.规律方法 (1)散点图是定义在具有相关关系的两个变量基础上的,对于性质不明确的两组数据,可先作散点图,在图上看它们有无关系,关系的密切程度,然后再进行相关回归分析.(2)求回归直线方程,首先应注意到,只有在散点图大致呈线性时,求出的回归直线方程才有实际意义,否则,求出的回归直线方程毫无意义.跟踪演练1 以下是某地搜集到的新房屋的销售价格y 和房屋的面积x 的数据:(1)画出数据对应的散点图;(2)求线性回归方程,并在散点图中加上回归直线; (3)据(2)的结果估计当房屋面积为150 m 2时的销售价格. 解 (1)数据对应的散点图如下图所示:(2)x -=15∑5i =1x i =109,∑5i =1 (x i -x -)2=1 570, y -=23.2,∑5i =1 (x i -x -)(y i -y -)=308.设所求回归直线方程为y ^=b^x +a ^, 则b^=∑5i =1(x i -x -)(y i -y -)∑5i =1(x i -x -)2=3081 570≈0.196 2,a ^=y --b ^x -=0.181 42.故所求回归直线方程为y ^=0.196 2x +1.814 2. 回归直线如上图所示.(3)据(2),当x =150 m 2时,销售价格的估计值为 y ^=0.196 2×150+1.814 2=31.244 2(万元). 要点二 线性回归分析例2 为研究重量x (单位:克)对弹簧长度y (单位:厘米)的影响,对不同重量的6个物体进行测量,数据如下表所示:(1)作出散点图并求线性回归方程; (2)求出R 2; (3)进行残差分析. 解 (1)散点图如图x -=16(5+10+15+20+25+30)=17.5,y -=16(7.25+8.12+8.95+9.90+10.9+11.8)≈9.487,∑6i =1x 2i=2 275,∑6i =1x i y i =1 076.2 计算得,b^≈0.183,a ^≈6.285, 所求回归直线方程为y ^=0.183x +6.285. (2)列表如下:所以∑6i =1 (y i -y ^i )2≈0.013 18,∑6i =1 (y i -y -)2=14.678 4.所以,R 2=1-0.013 1814.678 4≈0.999 1, 回归模型的拟合效果较好.(3)由残差表中的数值可以看出第3个样本点的残差比较大,需要确认在采集这个数据的时候是否有人为的错误,如果有的话,需要纠正数据,重新建立回归模型;由表中数据可以看出残差点比较均匀地落在不超过0.15的狭窄的水平带状区域中,说明选用的线性回归模型的精度较高,由以上分析可知,弹簧长度与拉力成线性关系.规律方法 在研究两个变量间的关系时,首先要根据散点图来粗略判断它们是否线性相关,是否可以用线性回归模型来拟合数据.然后,通过残差e ^1,e ^2,…,e^n来判断模型拟合的效果,判断原始数据中是否存在可疑数据.若残差点比较均匀地分布在水平带状区域内,带状区域越窄,说明模型拟合精度越高,回归方程预报精度越高.跟踪演练2 已知某种商品的价格x (元)与需求量y (件)之间的关系有如下一组数据:求y 对x 的回归直线方程,并说明回归模型拟合效果的好坏.解 x -=15(14+16+18+20+22)=18, y -=15(12+10+7+5+3)=7.4,∑5i =1x 2i =142+162+182+202+222=1 660, ∑5i =1x i y i=14×12+16×10+18×7+20×5+22×3=620, 所以b^=∑5i =1x i y i-5x -y -∑5i =1x 2i -5x -2=620-5×18×7.41 660-5×182=-1.15.a^=7.4+1.15×18=28.1, 所以所求回归直线方程是y ^=-1.15x +28.1. 列出残差表:所以,∑5i =1 (y i -y ^i )2=0.3,∑5i =1 (y i -y -)2=53.2,R 2=1-∑5i =1 (y i -y ^i )2∑5i =1 (y i -y -)2≈0.994,所以回归模型的拟合效果很好. 要点三 非线性回归分析 例3 下表为收集到的一组数据:(1)作出x 与y 的散点图,并猜测x 与y 之间的关系; (2)建立x 与y 的关系,预报回归模型并计算残差; (3)利用所得模型,预报x =40时y 的值.解 (1)作出散点图如下图,从散点图可以看出x 与y 不具有线性相关关系,根据已有知识可以发现样本点分布在某一条指数函数曲线y =c 1e c 2x 的周围,其中c 1,c 2为待定的参数.(2)对两边取对数把指数关系变为线性关系,令z =ln y ,则有变换后的样本点应分布在直线z =bx +a (a =ln c 1,b =c 2)的周围,这样就可以利用线性回归模型来建立y 与x 之间的非线性回归方程了,数据可以转化为求得回归直线方程为z ^=0.272x -3.849, ∴y ^=e 0.272x -3.849. 残差(3)当x=40时,y=e0.272x-3.849≈1 131.规律方法解决非线性回归问题的方法及步骤(1)确定变量:确定解释变量为x,预报变量为y;(2)画散点图:通过观察散点图并与学过的函数(幂、指数、对数函数、二次函数)作比较,选取拟合效果好的函数模型;(3)变量置换:通过变量置换把非线性回归问题转化为线性回归问题;(4)分析拟合效果:通过计算相关指数等来判断拟合效果;(5)写出非线性回归方程.跟踪演练3为了研究某种细菌随时间x变化时,繁殖个数y的变化,收集数据如下:(1)用天数x作解释变量,繁殖个数y作预报变量,作出这些数据的散点图;(2)描述解释变量x与预报变量y之间的关系;(3)计算相关指数.解(1)作散点图如图所示.(2)由散点图看出样本点分布在一条指数函数y=c1e c2x的周围,于是令z=ln y,则有变换后的样本点应分布在直线z=bx+a(a=ln c1,b=c2)的周围,这样就可以利用线性回归模型来建立y 与x 之间的非线性回归方程了,数据可以转化为由计算器得:z ^=0.69x +1.115,则有y ^=e 0.69x +1.115. (3)y -=3776,∑n i =1 e ^21=∑n i =1 (y i -y ^)2=4.816 1, ∑n i =1(y i -y -)2=24 642.8,R 2=1-4.816 124 642.8≈0.999 8, 即解释变量天数对预报变量繁殖细菌个数解释了99.98%.1.下列各组变量之间具有线性相关关系的是( ) A .出租车费与行驶的里程 B .学习成绩与学生身高 C .身高与体重 D .铁的体积与质量 答案 C2.若劳动生产率x (千元)与月工资y (元)之间的线性回归方程为y ^=50+80x ,则下列判断正确的是( )A .劳动生产率为1 000元时,月工资为130元B .劳动生产率提高1 000元时,月工资平均提高80元C .劳动生产率提高1 000元时,月工资平均提高130元D .月工资为210元时,劳动生产率为2 000元 答案 B3.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是( )A.y^=-10x+200B.y^=10x+200C.y^=-10x-200D.y^=10x-200答案 A解析由于销售量y与销售价格x成负相关,故排除B、D.又当x=10时,A中y=100,而C中y=-300,C不符合题意,故选A.4.某电脑公司有6名产品推销员,其工作年限与年推销金额数据如下表:(1)求年推销金额y关于工作年限x的线性回归方程;(2)若第6名推销员的工作年限为11年,试估计他的年推销金额.解(1)设所求的线性回归方程为y^=b^x+a^,则b^=∑5i=1(x i-x-)(y i-y-)∑5i=1(x i-x-)2=1020=0.5,a^=y--b^x-=0.4.所以年推销金额y关于工作年限x的线性回归方程为y^=0.5x+0.4.(2)当x=11时,y^=0.5x+0.4=0.5×11+0.4=5.9(万元).所以可以估计第6名推销员的年推销金额为5.9万元.回归分析的基本思路(1)确定研究对象,明确哪个变量是解释变量,哪个变量是预报变量;(2)画出确定好的解释变量和预报变量的散点图,观察它们之间的关系(如是否存在线性关系等);(3)由经验确定回归方程的类型(如果呈线性关系,则选用线性回归方程y ^=b ^x +a ^); (4)按一定规则估计回归方程中的参数;(5)提出结果后分析残差图是否有异常(个别数据对应的残差过大,或残差呈现不随机的规律性等),若存在异常,则检查数据是否有误或模型是否合适等.一、基础达标1.在下列各量之间,存在相关关系的是( )①正方体的体积与棱长之间的关系;②一块农田的水稻产量与施肥量之间的关系;③人的身高与年龄之间的关系;④家庭的支出与收入之间的关系;⑤某户家庭用电量与电价之间的关系.A .②③B .③④C .④⑤D .②③④ 答案 D2.设某大学的女生体重y (单位:kg)与身高x (单位:cm)有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=0.85x -85.71,下列结论中不正确的是( ) A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(x -,y -)C .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg 答案 D解析 由回归方程为y ^=0.85x -85.71知y 随x 的增大而增大,所以y 与x 具有正的线性相关关系;由最小二乘法建立回归方程的过程知y ^=b ^x +a ^=b ^x +y --b ^x - (a ^=y --b ^x -),所以回归直线过样本点的中心(x -,y -);利用回归方程可以估计总体,所以D 不正确.3.某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程y ^=b ^x +a ^中的b ^为9.4,据此模型预报广告费用为6万元时销售额为( )A .63.6万元B .65.5万元C .67.7万元D .72.0万元 答案 B解析 ∵x -=4+2+3+54=72,y -=49+26+39+544=42,又y ^=b ^x +a ^必过(x -,y -),∴42=72×9.4+a^,∴a ^=9.1.∴线性回归方程为y ^=9.4x +9.1.∴当x =6(万元)时,y ^=9.4×6+9.1=65.5(万元).4.甲、乙、丙、丁四位同学各自对A ,B 两变量做回归分析,分别得到散点图与残差平方和∑ni =1(y i -y ^i )2如下表散点图哪位同学的实验结果体现拟合A ,B 两变量关系的模型拟合精度高?( ) A .甲 B .乙 C .丙 D .丁 答案 D5.如果散点图的所有点都在一条直线上,则残差均为________,残差平方和为________,相关指数为________. 答案 0 0 16.对具有线性相关关系的变量x 和y ,由测得的一组数据求得回归直线的斜率为6.5,且恒过(2,3)点,则这条回归直线的方程为________.答案y^=-10+6.5x解析由题意知x-=2,y-=3,b^=6.5,所以a^=y--b^x-=3-6.5×2=-10,即回归直线的方程为y^=-10+6.5x.7.某个服装店经营某种服装,在某周内纯获利y(元)与该周每天销售这种服装件数x之间的一组数据如下表:(1)求样本中心点;(2)画出散点图;(3)求纯获利y与每天销售件数x之间的回归方程.解(1)x-=6,y-=79.86,中心点(6,79.86).(2)散点图如下:(3)因为b^=∑7i=1(x i-x-)(y i-y-)∑7i=1(x i-x-)2≈4.75,a^=y--b^x-≈51.36,所以y^=4.75x+51.36.二、能力提升8.(2013·福建)已知x与y之间的几组数据如下表:假设根据上表数据所得线性回归直线方程为y^=b^x+a^.若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y=b′x+a′,则以下结论正确的是()A.b ^>b ′,a ^>a ′B.b ^>b ′,a ^<a ′ C.b ^<b ′,a ^>a ′ D.b ^<b ′,a ^<a ′ 答案 C解析 x -=1+2+3+4+5+66=72,y -=0+2+1+3+3+46=136,b ^=∑ni =1x i y i -nx - y -∑n i =1x 2i -nx -2=57,a ^=y --b ^x -=-13,b ′=2-02-1=2>b^,a ′=-2<a ^. 9.下表是x 和y 之间的一组数据,则y 关于x 的回归方程必过( )A.点(2,3) B .点(1.5,4) C .点(2.5,4) D .点(2.5,5) 答案 C解析 回归方程必过样本点的中心(x -,y -),即(2.5,4).10.如图是x 和y 的一组样本数据的散点图,去掉一组数据________后,剩下的4组数据的相关指数最大.答案 D (3,10)解析 去掉D (3,10)这一组数据后,其他4组数据对应的点都集中在某一条直线附近,即两变量的线性相关性最强,此时相关指数最大. 11.某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程y ^=b ^x +a ^;(2)利用(1)中所求出的直线方程预测该地2012年的粮食需求量.解 (1)由所给数据看出,年需求量与年份之间是近似直线上升,下面来求回归直线方程,先将数据处理如下:对处理的数据,容易算得x -=0,y -=3.2,b^=(-4)×(-21)+(-2)×(-11)+2×19+4×29-5×0×3.2(-4)2+(-2)2+22+42-5×02=26040=6.5,a ^=y --b ^x -=3.2.由上述计算结果,知所求回归直线方程为y ^-257=6.5(x -2 006)+3.2.即y ^=6.5(x -2 006)+260.2.(2)利用所求得的直线方程,可预测2012年的粮食需求量为6.5×(2 012-2 006)+260.2=6.5×6+260.2=299.2(万吨).12.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:(1)求回归直线方程y ^=b ^x +a ^,其中b ^=-20,a ^=y --b ^x -;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入—成本)解 (1)x -=8+8.2+8.4+8.6+8.8+96=8.5,y -=16(90+84+83+80+75+68)=80∵b ^=-20,a ^=y ^-b ^x -,∴a^=80+20×8.5=250 ∴回归直线方程y ^=-20x +250;(2)设工厂获得的利润为L 元,则L =x (-20x +250)-4(-20x +250)=-20(x -334)2+361.25∴该产品的单位应定为334元,工厂获得的利润最大. 三、探究与创新13.(2013·重庆卷)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑10i =1x i =80,∑10i =1y i =20,∑10i =1x i y i=184,∑10i =1x 2i =720. (1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x -+a^;(2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄. 附:线性回归方程y ^=b ^x +a ^中,b ^=∑ni =1x i y i -nx - y -∑n i =1x 2i-nx -2,a ^=y --bx -, 其中x -,y -为样本平均值. 解 (1)由题意知n =10,x -=1n ∑n i =1x i =8010=8,y -=1n ∑n i =1y i =2010=2,又l xx =∑ni =1x 2i -nx -2=720-10×82=80, l xy =∑ni =1x i y i -nx - y -=184-10×8×2=24,由此得b^=l xyl xx=2480=0.3,a^=y--b^x-=2-0.3×8=-0.4,故所求回归方程为y^=0.3x-0.4.(2)由于变量y的值随x的值增加而增加(b=0.3>0),故x与y之间是正相关.(3)将x=7代入回归方程可以预测该家庭的月储蓄为y^=0.3×7-0.4=1.7(千元).。
初中数学 如何进行数据的回归分析
初中数学如何进行数据的回归分析
在初中数学中,进行数据的回归分析通常是通过简单线性回归来进行的。
简单线性回归通常包括以下几个步骤:
1. 收集数据:首先,需要收集一组相关数据,通常是两组数据,一组作为自变量(x),另一组作为因变量(y)。
2. 绘制散点图:将收集到的数据绘制成散点图,以观察数据的分布情况和可能的线性关系。
3. 计算相关系数:计算自变量和因变量之间的相关系数,来衡量两组数据之间的线性关系强弱。
4. 拟合直线:利用最小二乘法,拟合一条直线来表示两组数据之间的线性关系,这条直线称为回归线。
5. 预测数值:利用回归线,可以进行数值的预测,例如根据一个自变量的数值,预测对应的因变量的数值。
这些是初中数学中常见的进行数据回归分析的步骤,希望能帮助你更好地理解。
如果有任何问题,请随时提出。
多元回归分析原理及例子
多元回归分析原理回归分析是一种处理变量的统计相关关系的一种数理统计方法。
回归分析的基本思想是: 虽然自变量和因变量之间没有严格的、确定性的函数关系, 但可以设法找出最能代表它们之间关系的数学表达形式。
回归分析主要解决以下几个方面的问题:(1) 确定几个特定的变量之间是否存在相关关系, 如果存在的话, 找出它们之间合适的数学表达式; (2) 根据一个或几个变量的值, 预测或控制另一个变量的取值, 并且可以知道这种预测或控制能达到什么样的精确度;(3) 进行因素分析。
例如在对于共同影响一个变量的许多变量(因素)之间, 找出哪些是重要因素, 哪些是次要因素, 这些因素之间又有什么关系等等。
回归分析有很广泛的应用, 例如实验数据的一般处理, 经验公式的求得, 因素分析, 产品质量的控制, 气象及地震预报, 自动控制中数学模型的制定等等。
多元回归分析是研究多个变量之间关系的回归分析方法, 按因变量和自变量的数量对应关系可划分为一个因变量对多个自变量的回归分析(简称为“一对多”回归分析)及多个因变量对多个自变量的回归分析(简称为“多对多”回归分析), 按回归模型类型可划分为线性回归分析和非线性回归分析。
本“多元回归分析原理”是针对均匀设计3.00软件的使用而编制的, 它不是多元回归分析的全面内容, 欲了解多元回归分析的其他内容请参阅回归分析方面的书籍。
本部分内容分七个部分, §1~§4介绍“一对多”线性回归分析, 包括数学模型、回归系数估计、回归方程及回归系数的显著性检验、逐步回归分析方法。
“一对多”线性回归分析是多元回归分析的基础, “多对多”回归分析的内容与“一对多”的相应内容类似, §5介绍“多对多”线性回归的数学模型,§6介绍“多对多”回归的双重筛选逐步回归法。
§7简要介绍非线性回归分析。
§1 一对多线性回归分析的数学模型§2 回归系数的最小二乘估计§3 回归方程及回归系数的显著性检验§4 逐步回归分析§5 多对多线性回归数学模型§6 双重筛选逐步回归§7 非线性回归模型§1 一对多线性回归分析的数学模型设随机变量与个自变量存在线性关系:, (1.1)(1.1)式称为回归方程, 式中为回归系数,为随机误差。
分组回归系数比较的新思路
分组回归系数比较的新思路
传统的分组回归系数比较方法通常是将数据分为若干组,然后在每组数据上进行回归分析,比较各组的回归系数大小。
然而,这种方法存在一些问题,例如可能存在数据不平衡、组间比较结果可能受到个别异常值的影响等。
为了解决这些问题,可以考虑以下新的思路来比较分组回归系数:
1. 基于稳定性选择的特征选择:首先,对整个数据集进行回归分析,得到所有可能的特征。
然后,根据每个特征的稳定性选择指标,选取最稳定的一组特征。
这样可以避免数据不平衡的问题,同时去除了可能的异常值的影响。
2. 基于稳定性选择的分组划分:将数据按照回归系数的稳定性选择指标进行分组,确保每组中的样本在特征选择上具有相似的稳定性。
然后,在每组数据上进行回归分析,并比较各组的回归系数大小。
这样可以提高比较结果的可靠性和准确性。
3. 基于模型集成的分组回归系数比较:使用模型集成方法(如随机森林、梯度提升树等)来得到每组数据的回归系数估计。
通过对多个模型的集成结果进行比较,可以减少个别异常值或噪音对比较结果的影响,并提高比较结果的稳定性和可靠性。
总之,通过使用基于特征选择和模型集成的方法,可以提高分组回归系数比较的准确性和可靠性,避免了传统方法中存在的
一些问题。
这些新思路可以在实际应用中更好地进行分组回归系数的比较分析。
经典回归模型的假设条件方差分析的基础思路
经典回归模型的假设条件方差分析的基础思路
经典回归模型的假设条件包括:
1. 线性关系:变量之间的关系是线性的,即自变量和因变量之间的关系可以用一条直线来描述。
2. 独立性:每个样本之间是互相独立的,即每个样本的观测值彼此独立。
3. 正态分布:因变量随机误差项服从正态分布,即在不同的自变量取值下,因变量的测量误差服从均值为0、方差相等的正态分布。
4. 等方差性:因变量随机误差项的方差是相等的,即在不同的自变量取值下,因变量的测量误差的方差是相等的。
基于这些假设条件,我们可以使用方差分析来进行假设检验,进而确定自变量和因变量之间的关系是否显著。
方差分析的基本思路是比较不同组之间的方差大小,即将总方差分解为组内方差和组间方差,根据F值来判断组间方差是否大于组内方差。
从而判断自变量与因变量之间是否存在显著的线性关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分析阶段
单因素分析
是否一定要做单因素分析?(一直有争议)
自变量较多时,排除意义不大的变量
初步探索每一自变量与因变量的大致关系
分析阶段
多因素分析
寻找所谓的“独立预后”因子
多因素分析的变量筛选原则:
“少而精”原则,尽量保留所有对因变量有影响的
变量,尽可能地剔除掉可有可无的变量
assumption)
应用条件检查
不满足条件怎么办? 线性回归: 线性不满足:非线性回归,广义可加模型 独立性不满足:多水平模型,空间回归模型 正态性不满足:变量变换,非参数回归,分位数回归 等方差性不满足:加权最小二乘回归,gamma回归
应用条件检查
不满足条件怎么办? 累积比数logit模型: 不满足比例优势假定:偏比例优势模型 Cox回归: 不满足等比例风险假定:非等比例Cox回归
离群点(outliners)
高杠杆点(high leverage points) 强影响点(influential points)
回归诊断
离群点(outliners) 主要针对因变量而言,远离其它因变量的值。 ri ei / MSE 标准化残差 内部学生化残差 外部学生化残差
t Value Pr > |t| -2.08 0.0430 2.22 0.0311 3.27 0.0019 0.48 0.6345 2.21 0.0318
Tolerance . 0.91387 0.49948 0.50374 0.95559
Variance Inflation 0 1.09424 2.00208 1.98514 1.04647
大,表示现有模型与饱和模型的偏差越大,拟合效果越 差。
回归诊断
1. 多重共线性(multi-collinearity)
通俗讲即自变量之间存在高度相关
诊断指标(多数回归通用):
方差扩大因子(Variance Inflation Factor,VIF),指由于
共线性所导致的参数估计值的方差增加量,当VIF大于 10,通常表示共线性很强 容忍度(Tolerance, TOL),方差扩大因子VIF的倒数。 当TOL小于0.1,通常表示共线性很强 条件指数(condition index),最大条件指数即条件数大 于10,可能存在共线性;大于30,可能存在严重共线性
回归模型评价
Logistic回归、Poisson回归等
Pearson χ2 ——比较预测值和观测值的差别。若χ2值很
小,意味着观测值和预测值无“显著差别”,模型很好 地拟合了数据。反之,若χ2值很大,统计检验便有“显 著差别”,提示拟合了不佳的模型。
Deviance——比较饱和模型和现有模型的差别。 该值越
0.4 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 0 1 2 妊娠次数 3 4
logit P
进入分析阶段
关于自变量的形式
理论上,回归分析中的自变量可以使任何形式,定量资料
和定性资料均可。 实际中分析数据时,可结合专业解释角度,对自变量的取 值和形式进行适当调整。 如logistic回归、Poisson回归等更倾向于自变量以分类的形 式进入方程,主要出于解释方便的原因。
应用条件检查
其它常用替代方法:
Tobit回归:
解决因变量超出某一界限无法测量的问题 如: 某实验室检测指标,一旦超出1000,便检测不出结果,只 能用大于1000表示 工资的纳税,低于一定值,没有纳税 某问卷调查中,询问去年每周性生活频率 (1)完全没有 (2)<1次 (3)1次 (4)2-3次 (4)>3次
应用条件检查
Logistic回归 独立性 线性:logit P与自变量满足线性 有序logistic回归/累积比数logit模型 需满足比例优势假定条件(Proportional odds
assumption)
应用条件检查
Cox回归 需满足等比例风险假定条件(Proportional hazards
冯国双
回归家族
线性回归 Logistic回归 Poisson回归 负二项回归 Weibull回归 Cox回归 分位数回归 Tobit回归 …………
研究目的
比较组间差异 寻找危险因素 数据分类 发展趋势预测 …………
数据类型/分布
线性回归 Logistic回归 Poisson回归
分析阶段
最常遇到的问题:
单因素分析和多因素分析结果差别较大
分析阶段
地区、温度对手足口发病率的单因素分析结果
Variable district
temp
ቤተ መጻሕፍቲ ባይዱ
DF 1 1
Parameter Estimate 12.51083 1.41579
Standard Error 7.84584 0.19707
t Value 3.80 9.23
Pr > |t| 0.0011 <.0001
提示:城市的平均温度高于农村(13.29 vs 12.56)
分析阶段
变量筛选技术
前进法、后退法、逐步法、最优子集法
有人称为数据驱动过程(data-driven procedure)
只要你对数据严刑拷打,它总会招供!
的影响,反映了第i个观测与所有观测在自变量矩阵X 上的平均值之间的距离 根据hii值判断,通常大于(k+1)/n(k为自变量个数), 提示可能是高杠杆点
回归诊断
强影响点(influential points) 对模型有较大影响,包含或不包含该点可导致模型的
参数估计值发生较大改变
DFBETA:删除某观测值后对参数估计值的影响
因变量为连续资料 因变量为分类资料 因变量为计数资料 因变量为生存资料 因变量为截取资料
Cox回归
Tobit回归 Weibull回归
服从Weibull分布 服从gamma分布
Gamma回归 …………
应用条件检查
线性回归: 线性(linearity)
可简单通过绘制散点图来观察 独立性(independent) 通常可根据专业知识来判断 正态性(normality) 可绘制残差的正态概率图,或对残差进行正态性检验 等方差性(equal variance) 可通过绘制残差与因变量预测值的散点图来观察
回归诊断
存在多重共线性怎么办
(1)根据专业情况,删除其中不重要的变量
(2)采用统计学方法处理,如: 主成分回归、主成分logistic回归
岭回归 偏最小二乘回归(partial least square regression)
SAS和SPSS中均可实现
回归诊断
2. 异常点
ri ei / s 1 - hii ri ei / s( i ) 1 - hii
通常绝对值大于2,考虑可能是离群点 SPSS通常给出标准化残差 SAS通常给出两个学生化残差
回归诊断
高杠杆点(high leverage points) 针对自变量而言,远离其它自变量的值。 ˆ XB X ( X ' X )1 X ' Y HY Y ˆ Y HY (1 H )Y e Y Y H称为帽子矩阵,对角线元素为hii ,度量了第i个观测
应用条件检查
其它常用替代方法:
零膨胀Poisson回归(zero-inflated Poisson)
可用于计数资料中含有大量0值的情形 如: 吸烟数量,很多人不吸烟,记为0,吸烟的人才开始记录 为1、2、3、……
应用条件检查
其它常用替代方法:
竞争风险模型(competing risk model)
用于生存分析中出现结局以外的其它事件的情形 如: 观察胃癌发生的影响因素,结局为胃癌发生,但中间可能 会出现其它结局,如其它疾病所致的死亡
进入分析阶段
自变量形式审查: 检查自变量与因变量或因变量的变换形式(如logit)之 间是否为线性关系
80 70 手 60 足 50 口 40 病 发 30 病 20 率 10 0 1 3 5 7 月份 9 11
回归诊断
Parameter Variable DF Estimate Intercept 1 -19.81963 age 1 0.16384 sbp 1 0.20371 dbp 1 0.04428 lwbc 1 6.81149
Standard Error 9.54699 0.07392 0.06231 0.09259 3.08482
Number 1 2 3 4 5
Condition ------------------------Proportion of Variation-----------------------Eigenvalue Index Intercept age sbp dbp lwbc 4.93648 1.00000 0.00024614 0.00097341 0.00035412 0.00044024 0.00073452 0.02951 12.93424 0.00020887 0.59401 0.01020 0.05172 0.06232 0.02374 14.41944 0.00675 0.00071741 0.05990 0.10842 0.43894 0.00563 29.61956 0.03024 0.01926 0.92954 0.69965 0.01194 0.00465 32.59568 0.96255 0.38504 0.00000203 0.13977 0.48607
t Value 1.59 7.18