化工原理乙醇水课程设计汇总定稿版
乙醇-水提纯课程设计完整版(终极版)
《化工原理课程设计》报告15000吨/年乙醇~水精馏装置设计年级三年级专业精细化工设计者姓名XXX设计单位化工原理课程设计完成日期2012年 6 月28 日1化工原理课程设计任务书一、课程设计题目乙醇-水溶液连续精馏塔设计二、课程设计的内容1.设计方案的确定2.带控制点的工艺流程图的确定3.操作条件的选择(包括操作压强、进料状态、回流比等)4.塔的工艺计算(1)全塔物料衡算(2)最佳回流比的确定(3)理论板及实际板的确定(4)塔径的计算(5)降液管及溢流堰尺寸的确定(6)浮阀数及排列方式(筛板孔径及排列方式)的确定(7)塔板流动性能的校核(8)塔板负荷性能图的绘制(9)塔板设计结果汇总表5.辅助设备工艺计算(1)换热器的面积计算及选型(2)各种接管管径的计算及选型(3)泵的扬程计算及选型6.塔设备的结构设计:(包括塔盘、裙座、进出口料管)三、课程设计的要求21、撰写课程设计说明书一份2、工艺流程图一张3、设备总装图一张四、课程设计所需的主要技术参数原料:乙醇-水溶液原料温度: 30℃处理量: 1.5万吨/年原料组成(乙醇的质量分数):50%产品要求:塔顶产品中乙醇的质量分数:90%,92%,94%;塔顶产品中乙醇的回收率:99%生产时间: 300天(7200 h)冷却水进口温度:30℃加热介质: 0.6MPa饱和水蒸汽五、课程设计的进度安排1、查找资料,初步确定设计方案及设计内容,1-2天2、根据设计要求进行设计,确定设计说明书初稿,2-3天3、撰写设计说明书,总装图,答辩,4-5天六、课程设计考核方式与评分方法指导教师根据学生的平时表现、设计说明书、绘图质量及答辩情况评定成绩,采用百分制。
其中:平时表现20%设计说明书40%绘图质量20%答辩20%指导教师:王为国学科部负责人:3目录一、概述 (6)1.1 设计依据 (7)1.2 技术来源 (7)1.3 设计任务及要求 (7)二:计算过程 (8)1. 塔型选择 (8)2. 操作条件的确定 (8)2.1 操作压力 (8)2.2 进料状态 (8)2.3 加热方式 (9)2.4 热能利用 (9)3. 有关的工艺计算 (9)3.1 最小回流比及操作回流比的确定 (10)3.2 塔顶产品产量、釜残液量及加热蒸汽量的计算 (11)3.3 全凝器冷凝介质的消耗量 (12)3.4 热能利用 (12)3.5 理论塔板层数的确定 (13)3.6 全塔效率的估算 (14)N (15)3.7 实际塔板数P4. 精馏塔主题尺寸的计算 (15)4.1 精馏段与提馏段的体积流量 (16)4.1.1 精馏段 (16)4.1.2 提馏段 (17)4.2 塔径的计算 (18)4.3 塔高的计算 (20)5. 塔板结构尺寸的确定 (21)5.1 塔板尺寸 (21)5.2 弓形降液管 (22)5.2.1 堰高 (22)5.2.2 降液管底隙高度h0 (22)5.2.3 进口堰高和受液盘 (22)5.3 浮阀数目及排列 (23)45.3.1 浮阀数目 (23)5.3.2 排列 (23)5.3.3 校核 (24)6. 流体力学验算 (24)h (24)6.1 气体通过浮阀塔板的压力降(单板压降)ph (25)6.1.1 干板阻力ch (25)6.1.2 板上充气液层阻力16.1.3 由表面张力引起的阻力h (25)6.2 漏液验算 (25)6.3 液泛验算 (26)6.4 雾沫夹带验算 (26)7. 操作性能负荷图 (27)7.1 雾沫夹带上限线 (27)7.2 液泛线 (27)7.3 液体负荷上限线 (28)7.4 漏液线 (28)7.5 液相负荷下限线 (28)7.6 操作性能负荷图 (28)8. 各接管尺寸的确定 (30)8.1 进料管 (30)8.2 釜残液出料管 (31)8.3 回流液管 (31)8.4 塔顶上升蒸汽管 (32)8.5 水蒸汽进口管 ······································错误!未定义书签。
化工原理课程设计乙醇水
化工原理课程设计乙醇水英文回答:Chemical Engineering Principles Course Design: Ethanol-Water.In this course design, I will discuss the separation of ethanol-water mixture using various separation techniques. Ethanol-water separation is a common process in the chemical industry, as ethanol is widely used as a solvent, fuel, and raw material in various applications.Firstly, distillation is a widely used technique for separating ethanol-water mixture. Distillation relies on the difference in boiling points between the components of the mixture. Ethanol has a lower boiling point compared to water, so when the mixture is heated, ethanol vaporizesfirst and can be collected and condensed to obtain pure ethanol. The remaining liquid is enriched in water. This process can be repeated to achieve higher purity levels.Another technique that can be used is azeotropic distillation. In some cases, ethanol and water form an azeotrope, which is a mixture that boils at a constant temperature and has a constant composition. Azeotropic distillation involves adding a third component, called an entrainer, to break the azeotrope. The entrainer forms a new azeotrope with either ethanol or water, allowing for their separation. For example, benzene can be used as an entrainer to break the ethanol-water azeotrope.In addition to distillation, membrane separation is also a promising technique for ethanol-water separation. Membrane separation involves the use of a semi-permeable membrane that allows certain components to pass through while retaining others. In the case of ethanol-water separation, a membrane with selective permeability towards ethanol can be used. This allows ethanol to pass through the membrane while water is retained, resulting in the separation of the two components.Furthermore, liquid-liquid extraction can be employedfor ethanol-water separation. This technique involves the use of a solvent that has a higher affinity for one component of the mixture. For example, if we use an organic solvent like hexane, which has a higher affinity for ethanol, we can extract ethanol from the mixture. The organic solvent and the ethanol form a separate phase, which can be easily separated from the water phase.中文回答:化工原理课程设计,乙醇水。
xy-化工原理课程设计定稿(乙醇-水)
目录摘要 (I)Abstract (II)引言 (1)第一章设计任务与条件 (2)1.1课程设计目的与设计要求 (2)1.2课程设计的内容和步骤 (2)1.3课程设计的任务 (6)第二章设计方案的确定 (8)2.1操作条件的确定 (8)2.2确定设计方案的原则 (11)第三章精馏塔的工艺设计.................................................................... 错误!未定义书签。
3.1精馏塔的物料衡算..................................................................... 错误!未定义书签。
3.2塔板的确定 (15)3.3 精馏塔工艺条件及有关物性参数的计算 (16)3.4精馏塔的塔体工艺尺寸计算 (21)第4章塔板工艺尺寸的设计................................................................ 错误!未定义书签。
4.1溢流装置计算............................................................................. 错误!未定义书签。
4.2塔板布置..................................................................................... 错误!未定义书签。
4.3筛板的流体力学验算................................................................. 错误!未定义书签。
4.4塔板负荷性能图......................................................................... 错误!未定义书签。
化工原理乙醇水精馏塔课程设计汇本
目录第一章板式精馏塔的设计1.1概述 (1)1.2板式精馏塔的设计原则与步骤 (1)1.3理论塔板数的确定 (3)1.4塔板效率和实际塔板数 (7)1.5板式精馏塔的结构设计 (8)1.6板式精馏塔高度及其辅助设备 (27)1.7板式精馏塔的计算机设计 (31)第二章板式精馏塔设计举例2.1苯-甲苯板式精馏塔设计 (33)2.2乙醇—水板式精馏塔设计 (47)2.3 甲醇—水板式精馏塔设计 (66)第三章塔设备的机械计算3.1 塔体及裙座的强度计算 (86)3.2 塔盘板及其支撑梁的强度、挠度计算 (104)3.3 塔盘技术条件 (105)3.4 塔盘支撑件的尺寸公差 (109)附录 (111)第一章板式精馏塔的设计1.1概述蒸馏是利用液体混合物中各组分挥发度的不同并借助于多次部分汽化和部分冷凝达到轻重组分分离的方法。
蒸馏操作在化工、石油化工、轻工等工业生产中中占有重要的地位。
为此,掌握气液相平衡关系,熟悉各种塔型的操作特性,对选择、设计和分析分离过程中的各种参数是非常重要的。
蒸馏过程按操作方式可分为间歇蒸馏和连续蒸馏。
间歇蒸馏是一种不稳态操作,主要应用于批量生产或某些有特殊要求的场合;连续蒸馏为稳态的连续过程,是化工生产常用的方法。
蒸馏过程按蒸馏方式可分为简单蒸馏、平衡蒸馏、精馏和特殊精馏等。
简单蒸馏是一种单级蒸馏操作,常以间歇方式进行。
平衡蒸馏又称闪蒸,也是一种单级蒸馏操作,常以连续方式进行。
简单蒸馏和平衡蒸馏一般用于较易分离的体系或分离要求不高的体系。
对于较难分离的体系可采用精馏,用普通精馏不能分离体系则可采用特殊精馏。
特殊精馏是在物系中加入第三组分,改变被分离组分的活度系数,增大组分间的相对挥发度,达到有效分离的目的。
特殊精馏有萃取精馏、恒沸精馏和盐溶精馏等。
精馏过程按操作压强可分为常压精馏、加压精馏和减压精馏。
一般说来,当总压强增大时,平衡时气相浓度与液相浓度接近,对分离不利,但对在常压下为气态的混合物,可采用加压精馏;沸点高又是热敏性的混合液,可采用减压精馏。
化工原理课程设计(乙醇和水的分离)
化工原理课程设计课题名称乙醇-水分离过程筛板精馏塔设计院系可再生能源学院班级应用化学0901班学号1091100128学生姓名蔡文震指导老师覃吴设计周数 1目录一、化工原理课程设计任务书 (4)1.1设计题目 (4)1.2原始数据及条件: (4)二、塔板工艺设计 (4)2.1精馏塔全塔物料衡算 (4)2.2乙醇和水的物性参数计算 (5)2.2.1 温度 (5)2.2.2 密度 (6)2.2.3相对挥发度 (9)2.2.4混合物的黏度 (9)2.2.5混合液体的表面张力 (9)2.3塔板的计算 (10)2.3.1 q、精馏段、提留段方程计算 (10)2.3.2理论塔板计算 (12)2.3.3实际塔板计算 (12)2.4操作压力的计算 (13)三、塔体的工艺尺寸计算 (13)3.1塔径的初步计算 (13)3.1.1气液相体积流量计算 (13)3.1.2塔径计算 (13)3.2塔体有效高度的计算 (15)3.3精馏塔的塔高计算 (16)3.4溢流装置 (16)3.4.1堰长 (16)3.4.2溢流堰高度 (16)3.4.3弓形降液管宽度和截面积 (17)3.5塔板布置 (17)3.5.1塔板的分块 (17)3.5.2边缘区宽度的确定 (18)3.5.3开孔区面积计算 (18)3.5.4筛孔计算及其排列 (18)四、筛板的流体力学验算 (19)4.1塔板压降 (19)4.1.1干板阻力 (19)4.1.2气体通过液层的阻力 (19)4.1.3液体表面张力的阻力(很小可以忽略不计) (20)4.1.4气体通过每层板的压降 (20)4.2液沫夹带 (20)4.3漏液 (21)4.4液泛 (21)五、塔板负荷性能图 (22)5.1漏液线 (22)5.2液沫夹带线 (22)5.3液相负荷下限线 (24)5.4液相负荷上限线 (24)5.5液泛线 (24)5.6图表汇总及负荷曲线图 (26)六、主要工艺接管尺寸的计算和选取 (26)七、课程设计总结 (27)八、参考文献 (28)一、化工原理课程设计任务书1.1设计题目分离乙醇一水筛板精馏塔的设计1.2原始数据及条件:生产能力:年处理乙醇一水混合液2.6万吨/年(约为87吨/天)。
乙醇-水课程设计39页
乙醇-水课程设计39页一、教学目标本章节的教学目标旨在让学生掌握乙醇-水溶液的基本概念、性质和制备方法,以及了解其在生活和工业中的应用。
具体目标如下:1.知识目标:(1)了解乙醇的结构和性质;(2)掌握乙醇-水溶液的制备方法及注意事项;(3)了解乙醇-水溶液的应用领域。
2.技能目标:(1)学会乙醇-水溶液的制备实验操作;(2)能够运用所学知识分析生活中的乙醇-水溶液实例。
3.情感态度价值观目标:(1)培养学生的实验操作兴趣,提高动手能力;(2)培养学生对科学知识的热爱,增强其探究精神;(3)使学生认识到科学知识在生活中的重要性,培养其应用意识。
二、教学内容本章节的教学内容主要包括以下几个方面:1.乙醇的结构和性质;2.乙醇-水溶液的制备方法及注意事项;3.乙醇-水溶液的应用领域;4.乙醇-水溶液在生活和工业中的实际案例分析。
三、教学方法为了实现本章节的教学目标,将采用以下教学方法:1.讲授法:讲解乙醇的结构和性质、乙醇-水溶液的制备方法及应用领域;2.讨论法:分组讨论生活中的乙醇-水溶液实例,引导学生运用所学知识进行分析;3.实验法:引导学生进行乙醇-水溶液的制备实验,培养学生的动手能力;4.案例分析法:分析实际案例,让学生了解乙醇-水溶液在生活和工业中的应用。
四、教学资源为了支持本章节的教学内容和教学方法的实施,将准备以下教学资源:1.教材:提供关于乙醇-水溶液的相关理论知识;2.参考书:为学生提供更多的乙醇-水溶液相关知识,以便进行深入研究;3.多媒体资料:制作PPT等多媒体资料,生动展示乙醇-水溶液的制备过程和应用领域;4.实验设备:准备实验所需的仪器和试剂,确保实验教学的顺利进行。
五、教学评估本章节的评估方式将采用多元化的评价手段,以全面、客观、公正地评估学生的学习成果。
具体评估方式如下:1.平时表现:通过观察学生在课堂上的参与程度、提问回答、小组讨论等表现,评估其学习态度和理解能力;2.作业:布置与本章节相关的练习题,评估学生对知识点的掌握程度;3.实验报告:评估学生在实验过程中的操作技能、观察能力和问题解决能力;4.考试:设计针对本章节内容的考试,全面测试学生的知识水平和应用能力。
化工原理课程设计-乙醇-水精馏塔浮阀塔课程设计
化工原理课程设计乙醇——水浮阀精馏塔设计化学工程与工艺化工1308班学号12010830指导教师摘要本设计为分离乙醇-水混合物,采用筛板式精馏塔。
精馏塔是提供混合物气、液两相接触条件,实现传质过程的设备。
它是利用混合物中各组分挥发能力的差异,通过液相和气相的回流,使混合物不断分离,以达到理想的分离效果。
选择精馏方案时因组分的沸点都不高所以选择常压,进料为泡点进料,回流是泡点回流。
塔顶冷凝方式是采用全凝器,塔釜的加热方式是使用再沸器。
精馏过程的计算包括物料衡算,热量衡算,塔板数的确定等。
然后对精馏塔进行设计包括:塔径、塔高、溢流装置。
最后进行流体力学验算、绘制塔板负荷性能图。
乙醇精馏是生产乙醇中极为关键的环节,是重要的化工单元。
其工艺路线是否合理、技术装备性能之优劣、生产管理者及操作技术素质之高低,均影响乙醇生产的产量及品质。
工业上用发酵法和乙烯水化法生产乙醇,单不管用何种方法生产乙醇,精馏都是其必不可少的单元操作。
浮阀塔具有下列优点:1、生产能力大。
2、操作弹性大。
3、塔板效率高。
4、气体压强降及液面落差较小。
5、塔的造价低。
浮阀塔不宜处理易结焦或黏度大的系统,但对于黏度稍大及有一般聚合现象的系统,浮阀塔也能正常操作。
关键词:乙醇水精馏浮阀塔连续精馏塔板设计目录前言 (1)第一章设计任务书 (2)1.1、设计条件 (2)1.2、设计任务 (2)1.3、设计内容 (3)第二章设计方案确定及流程说明 (5)第三章塔板的工艺设计 (7)3.1、全塔物料衡算 (7)3.2、塔内混合液物性计算 (8)3.3、适宜回流比 (15)3.4、溢流装置 (21)3.5、塔板布置与浮阀数目及排列 (22)3.6、塔板流体力学计算 (25)3.7、塔板性能负荷图 (29)3.8、塔高度确定 (33)第四章附属设备设计 (35)4.1、冷凝器的选择 (35)4.2、再沸器的选择 (36)第五章辅助设备的设计 (38)5.1、辅助容器的设计 (38)5.2、管道设计 (39)燕京理工学院——课程设计第六章控制方案 (42)第七章设计心得与体会 (42)附录一主要符号说明 (43)附录二塔计算结果表 (45)附录三管路计算结果表 (47)文献综述 (48)前言乙醇(C2H5OH),俗名酒精,是基本的工业原料之一,与酸碱并重,它作为再生能源犹为受人们的重视。
化工原理乙醇水课程设计汇总定稿版
化⼯原理⼄醇⽔课程设计汇总定稿版化⼯原理⼄醇⽔课程设计汇总HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】化⼯原理课程设计分离⼄醇-⽔混合物精馏塔设计学院:化学⼯程学院专业:学号:姓名:指导教师:时间: 2012年6⽉13⽇星期三化⼯原理课程设计任务书⼀、设计题⽬:分离⼄醇-⽔混合物精馏塔设计⼆、原始数据:a)原料液组成:⼄醇 20 % 产品中:⼄醇含量≥94% 残液中≤4% b)⽣产能⼒:6万吨/年c)操作条件进料状态:⾃定操作压⼒:⾃定加热蒸汽压⼒:⾃定冷却⽔温度:⾃定三、设计说明书内容:a)概述b)流程的确定与说明c)塔板数的计算(板式塔);或填料层⾼度计算(填料塔)d) 塔径的计算e)1)塔板结构计算;a 塔板结构尺⼨的确定; b塔板的流体⼒学验算;c塔板的负荷性能图。
2)填料塔流体⼒学计算;a 压⼒降;b 喷淋密度计算f)其它(1)热量衡算—冷却⽔与加热蒸汽消耗量的计算(2)冷凝器与再沸器传热⾯的计算与选型(板式塔)(3)除沫器设计g)料液泵的选型h)计算结果⼀览表第⼀章课程设计报告内容⼀、精馏流程的确定⼄醇、⽔混合料液经原料预热器加热⾄泡点后,送⼊精馏塔。
塔顶上升蒸汽采⽤全凝器冷凝后,⼀部分作为回流,其余为塔顶产品经冷却器冷却后送⾄贮槽。
塔釜采⽤间接蒸汽向沸热器供热,塔底产品经冷却后送⼊贮槽。
⼆、塔的物料衡算(⼀) 料液及塔顶、塔底产品含⼄醇摩尔分数(⼆) 平均摩尔质量(三) 物料衡算总物料衡算 F W D =+易挥发组分物料衡算 F x W x D x F w D =+联⽴以上三式得三、塔板数的确定(⼀) 理论塔板数T N 的求取根据⼄醇、⽔的⽓液平衡数据作y-x 图⼄醇—⽔⽓液平衡数据⼄醇—⽔图解法求理论塔板数2. ⼄醇—⽔体系的平衡曲线有下凹部分,求最⼩回流⽐⾃a (,,,D D x x )作平衡线的切线并延长与y 轴相交,截距min 0.29561Dx R =+取操作回流⽐min 22 1.91 3.82R R ==?=故精馏段操作线⽅程 11+++=R x R Ry D即0.79250.1784y x =+3.作图法求理论塔板数T N 得18T N =(不包括再沸器)。
化工原理课程设计乙醇水精馏塔设计doc
化工原理课程设计-乙醇-水精馏塔设计.doc化工原理课程设计:乙醇-水精馏塔设计一、设计任务本设计任务是设计一个乙醇-水精馏塔,用于分离乙醇和水混合物。
给定混合物中,乙醇的含量为30%,水含量为70%。
设计要求塔顶分离出95%以上的乙醇,塔底剩余物中水含量不超过5%。
二、设计方案1.确定理论塔板数根据给定的乙醇含量和设计要求,利用简捷计算法计算理论塔板数。
首先确定乙醇的回收率和塔顶产品的浓度,然后根据简捷计算公式计算理论塔板数。
2.塔的总体积和尺寸根据理论塔板数和每块理论板的液相体积流量,计算塔的总体积。
根据总体积和塔内件设计要求,确定塔的外形尺寸。
3.塔内件设计塔内件包括溢流管、进料口、冷凝器、再沸器和出口管等。
溢流管的尺寸和形状应根据塔径和物料性质进行设计。
进料口的位置和尺寸应根据进料流量和进料组成进行设计。
冷凝器和再沸器应根据物料的热力学性质和工艺要求进行设计。
出口管应根据塔径和出口流量进行设计。
4.塔板设计每块塔板的设计包括板上液相和气相的流动通道、堰和降液管等。
根据物料的物理性质和操作条件,确定液相和气相的流动通道尺寸和形状。
堰的高度和形状应根据液相流量和操作条件进行设计。
降液管的设计应保证液相流动顺畅且无滞留区。
5.塔的支撑结构和保温根据塔的外形尺寸和操作条件,设计支撑结构的形状和尺寸。
考虑保温层的设置,以减小热量损失。
三、设计计算1.确定理论塔板数根据简捷计算法,乙醇的回收率为95%,塔顶产品的乙醇浓度为95%。
通过简捷计算公式,得到理论塔板数为13块。
2.塔的总体积和尺寸每块理论板的液相体积流量为0.01m3/min,因此总体积为0.013m3/min。
考虑一定裕度,确定塔的外径为0.6m,高度为10m。
3.塔内件设计溢流管的尺寸为Φ10mm,形状为直管上升式。
进料口的位置位于第3块理论板处,尺寸为Φ20mm。
冷凝器采用列管式换热器,再沸器采用釜式再沸器。
出口管采用标准出口管,直径为Φ20mm。
化工原理课程设计乙醇水混合液精馏塔设计
化工原理课程设计乙醇水混合液精馏塔设计化工原理课程设计乙醇水混合液精馏塔设计一、引言精馏是石油化工、化学工业等领域中非常重要的分离和纯化方法之一。
在工业生产中,乙醇与水混合液的精馏分离技术应用非常广泛。
本文针对乙醇水混合液的精馏塔设计展开探讨。
二、乙醇水混合液的精馏分离原理通常将乙醇水混合液进行精馏时,可以利用其两种组分的沸点差异来实现分离。
在常压下,100克水的沸点为100℃,而100克乙醇的沸点为78.5℃,因此在一定的操作条件下,乙醇可以被分离出来。
三、精馏塔结构及工作原理精馏塔是一种具有特殊内部结构的容器,它可以用来将液体混合物分离成其组分。
精馏塔通常包括塔体、进料口、下塔液口和顶部气体口。
在塔体内部,有许多被称为塔板的“板子”,可以使物质沿着塔的高度进行反复蒸馏和冷凝,以达到分离组分的目的。
四、乙醇水混合液精馏塔设计对于乙醇水混合液的精馏塔设计,主要需要掌握以下几个参数。
4.1 精馏塔塔板数量精馏塔塔板数量对精馏分离效率有着决定性的影响。
一般来说,塔板的数量越多,分离效率越高。
在设计乙醇水混合液精馏塔时,需要根据不同的情况选择适当的塔板数量。
4.2 进料口位置和进料速度进料口位置和进料速度对于精馏分离的效果也有比较大的影响。
在设计乙醇水混合液精馏塔时,需要根据实际情况确定进料口位置和进料速度。
4.3 塔顶气体口和旋流板塔顶气体口和旋流板的设置也是精馏塔设计中必不可少的环节。
旋流板能够使得气体在塔体内形成旋涡,加速液体蒸发,从而提高精馏塔的分离效率。
五、结论乙醇水混合液的精馏塔设计是一项非常重要的工作,直接影响到分离效率和产品质量。
在进行精馏塔设计时,需要对塔板数量、进料口位置和进料速度、塔顶气体口和旋流板等参数进行合理的把握,以达到最佳的分离效果。
化工原理课程设计乙醇水
目录一概述 (4)1.1 设计依据 (4)1.2 技术来源 (4)1.3 设计内容 (4)1.4 工艺条件 (5)1.5 塔型选择 (5)二塔板的工艺设计 (5)2.1 物料衡算 (5)2.2 精馏塔内各物性参数 (6)2.2.1 温度 (6)2.2.2 密度 (7)2.2.3 粘度 (8)2.2.4 相对挥发度 (9)2.2.5 混合液体表面张力 (9)2.2.6 气液体积流量 (11)2.3 理论塔板数 (12)2.3.1 最小回流比Rmin及操作回流比R的确定 (12)2.3.2 操作线方程 (13)2.4 实际塔板数 (13)2.4.1 精馏段 (13)2.4.2 提馏段 (13)2.4.3 全塔效率 (14)2.5 塔径的初步计算 (14)2.5.1 精馏段 (14)2.5.2 提馏段 (14)2.6 塔有效高度的计算 (15)2.7 溢流装置 (15)2.7.1 堰长 (15)2.7.2 方形降液管的宽度和横截面 (15)2.7.3 降液管底隙高度 (16)2.8 塔板布置及复发数目与排列 (16)2.8.1 踏板分布 (16)2.8.2 浮阀数目与排列 (16)三塔板的流体力学计算 (17)3.1 气相通过浮阀塔板的压降 (17)3.1.1 精馏段 (17)3.1.2 提馏段 (17)3.2 淹塔 (17)3.2.1 精馏段 (18)3.2.2 提馏段 (18)3.3 雾沫夹带 (18)3.3.1 精馏段 (19)3.3.2 提馏段 (19)3.4 塔板负荷性能图 (19)3.4.1 雾沫夹带线 (19)3.4.2 液泛线 (20)3.4.3 液相负荷上限 (21)3.4.4 漏液线 (21)3.4.5 液相负荷下限线 (21)四接管尺寸的确定 (23)4.1 进料管 (23)4.2 回流管 (23)4.3 塔釜出料管 (23)4.4 塔顶蒸汽出料管 (24)4.5 塔釜进气管 (24)五附属设备设计 (24)5.1 冷凝器 (24)5.2 再沸器 (25)六总结 (25)七参考文献 (26)八附件 (26)一、概述乙醇—水是工业上最常见的溶剂,也是非常重要的化工原料之一,是无色、无毒、无致癌性、污染性和腐蚀性小的液体混合物。
化工原理课程设计--乙醇——水混合液常压连续精馏
化工原理课程设计--乙醇——水混合液常压连续精馏课程设计任务书一、设计题目:乙醇——水混合液常压连续精馏二、设计原始数据:原料液处理量28000吨/年原料液初温20℃原料液含乙醇45%(质量)馏出液含乙醇93%(质量)乙醇回收率99.9%(质量)三、设计任务:完成精馏工艺设计,精馏塔设备设计和有关附属设备的设计、选用;编写设计说明书;绘制工艺流程图和塔板结构简图。
四、设计完成日期: 2013年01月18日五、设计者:王尧尧设计指导教师:张鸿发目录:1.…………………………………………………………………绪论2.………………………………………………………………工艺计算3.…………………………………………………………塔设备的计算4.………………………………………………………泵的选择及计算5.……………………………………………………………主凝器选型6.…………………………………再沸器加热釜中水蒸汽的用量计算7.………………………………………………………计算结果汇总表8.…………………………………………………………工艺流传简图绪论精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。
有板式塔与填料塔两种主要类型。
根据操作方式又可分为连续精馏塔与间歇精馏塔。
蒸气由塔底进入,与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向蒸气中转移,蒸气中的难挥发(高沸点)组分不断地向下降液中转移,蒸气愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,达到组分分离的目的。
由塔顶上升的蒸气进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。
塔底流出的液体,其中的一部分送入再沸器,热蒸发后,蒸气返回塔中,另一部分液体作为釜残液取出。
精馏塔的工作原理是根据各混合气体的汽化点(或沸点)的不同,控制塔各节的不同温度,达到分离提纯的目的。
化工生产常需进行液体混合物的分离以达到提纯或回收有用组分的目的,精馏操作在化工、石油化工、轻工等工业生产中中占有重要的地位。
化工原理课程设计乙醇-水精馏塔设计(完整资料).doc
化⼯原理课程设计⼄醇-⽔精馏塔设计(完整资料).doc【最新整理,下载后即可编辑】⼤连民族学院化⼯原理课程设计说明书题⽬:⼄醇—⽔连续精馏塔的设计设计⼈:1104系别:⽣物⼯程班级:⽣物⼯程121班指导教师:⽼师设计⽇期:2014 年10 ⽉21 ⽇~ 11⽉3⽇温馨提⽰:本设计有⼀⼩部分计算存在错误,但步骤应该没问题化⼯原理课程设计任务书⼀、设计题⽬⼄醇—⽔精馏塔的设计。
⼆、设计任务及操作条件1.进精馏塔的料液含⼄醇30%(质量),其余为⽔。
2.产品的⼄醇含量不得低于92.5%(质量)。
3.残液中⼄醇含量不得⾼于0.1%(质量)。
4.处理量为17500t/a,年⽣产时间为7200h。
5.操作条件(1)精馏塔顶端压强4kPa(表压)。
(2)进料热状态泡点进料。
(3)回流⽐R=2Rmin(4)加热蒸汽低压蒸汽。
(5)单板压降≯0.7kPa。
三、设备型式设备型式为筛板塔。
四、⼚址⼚址为⼤连地区。
五、设计内容1.设计⽅案的确定及流程说明2.塔的⼯艺计算3.塔和塔板主要⼯艺尺⼨的设计(1)塔⾼、塔径及塔板结构尺⼨的确定。
(2)塔板的流体⼒学验算。
(3)塔板的负荷性能图。
4.设计结果概要或设计⼀览表5.辅助设备选型与计算6.⽣产⼯艺流程图及精馏塔的⼯艺条件图7.对本设计的评述或有关问题的分析讨论⽬录前⾔ (1)第⼀章概述 (1)1.1塔型选择 (1)1.2操作压强选择 (2)1.3进料热状态选择 (2)1.4加热⽅式 (2)1.5回流⽐的选择 (2)1.6精馏流程的确定 (3)第⼆章主要基础数据 (3)2.1⽔和⼄醇的物理性质 (3)2.2常压下⼄醇—⽔的⽓液平衡数据 (4)2.3 A,B,C—Antoine常数 (5)第三章设计计算 (5)3.1塔的物料衡算 (5)3.1.1 料液及塔顶、塔底产品含⼄醇摩尔分率 (5) 3.1.2 平均分⼦量 (5)3.1.3 物料衡算 (5)3.2塔板数的确定 (6)3.2.1 理论塔板数N的求取 (6)T的求取 (7)3.2.2 全塔效率ET3.2.3 实际塔板数N (7)3.3塔的⼯艺条件及物性数据计算 (7)(7)3.3.1操作压强Pm3.3.2温度t(7)m(8)3.3.3平均摩尔质量Mm3.3.4平均密度ρ(8)m(9)3.3.5液体表⾯张⼒σm(10)3.3.6液体粘度µLm3.4⽓液负荷计算 (10)3.5塔和塔板主要⼯艺尺⼨计算 (11) 3.5.1塔径D (11)3.5.2溢流装置 (12)3.5.3塔板布置 (14)3.5.4筛孔数n与开孔率φ (15)3.5.5塔有效⾼度Z (15)3.5.6塔⾼计算 (15)3.6筛板的流体⼒学验算 (16)3.6.1⽓体通过筛板压强降的液柱⾼度h (16)p的验算 (17)3.6.2雾沫夹带量eV3.6.3漏液的验算 (17)3.6.4液泛的验算 (17)3.7塔板负荷性能图 (18)3.7.1雾沫夹带线(1) (18)3.7.2液泛线(2) (19)3.7.3液相负荷上限线(3) (20)3.7.4漏液线(⽓相负荷下限线)(4) (20)3.7.5液相负荷下限线(5) (20)3.8筛板塔的⼯艺设计计算结果总表 (21)3.9精馏塔附属设备选型与计算 (23)3.9.1冷凝器计算 (23)3.9.2预热器计算 (23)3.9.3各接管尺⼨计算 (24)第四章设计评述与⼼得 (25)4.1设计中存在的问题及分析 (25)4.2设计⼼得 (25)参考⽂献 (27)前⾔化⼯⽣产中所处理的原料中间产品⼏乎都是由若⼲组分组成的混合物,其中⼤部分是均相混合物。
化工原理课程设计--乙醇——水混合液常压连续精馏
课程设计任务书一、设计题目:乙醇——水混合液常压连续精馏二、设计原始数据:原料液处理量28000吨/年原料液初温20℃原料液含乙醇45%(质量)馏出液含乙醇93%(质量)乙醇回收率99.9%(质量)三、设计任务:完成精馏工艺设计,精馏塔设备设计和有关附属设备的设计、选用;编写设计说明书;绘制工艺流程图和塔板结构简图。
四、设计完成日期: 2013年01月18日五、设计者:王尧尧设计指导教师:张鸿发目录:1.…………………………………………………………………绪论2.………………………………………………………………工艺计算3.…………………………………………………………塔设备的计算4.………………………………………………………泵的选择及计算5.……………………………………………………………主凝器选型6.…………………………………再沸器加热釜中水蒸汽的用量计算7.………………………………………………………计算结果汇总表8.…………………………………………………………工艺流传简图绪论精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。
有板式塔与填料塔两种主要类型。
根据操作方式又可分为连续精馏塔与间歇精馏塔。
蒸气由塔底进入,与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向蒸气中转移,蒸气中的难挥发(高沸点)组分不断地向下降液中转移,蒸气愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,达到组分分离的目的。
由塔顶上升的蒸气进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。
塔底流出的液体,其中的一部分送入再沸器,热蒸发后,蒸气返回塔中,另一部分液体作为釜残液取出。
精馏塔的工作原理是根据各混合气体的汽化点(或沸点)的不同,控制塔各节的不同温度,达到分离提纯的目的。
化工生产常需进行液体混合物的分离以达到提纯或回收有用组分的目的,精馏操作在化工、石油化工、轻工等工业生产中中占有重要的地位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化工原理乙醇水课程设计汇总HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】化工原理课程设计分离乙醇-水混合物精馏塔设计学院:化学工程学院专业:学号:姓名:指导教师:时间: 2012年6月13日星期三化工原理课程设计任务书一、设计题目:分离乙醇-水混合物精馏塔设计二、原始数据:a)原料液组成:乙醇 20 % 产品中:乙醇含量≥94% 残液中≤4% b)生产能力:6万吨/年c)操作条件进料状态:自定操作压力:自定加热蒸汽压力:自定冷却水温度:自定三、设计说明书内容:a)概述b)流程的确定与说明c)塔板数的计算(板式塔);或填料层高度计算(填料塔)d) 塔径的计算e)1)塔板结构计算;a 塔板结构尺寸的确定; b塔板的流体力学验算;c塔板的负荷性能图。
2)填料塔流体力学计算;a 压力降;b 喷淋密度计算f)其它(1)热量衡算—冷却水与加热蒸汽消耗量的计算(2)冷凝器与再沸器传热面的计算与选型(板式塔)(3)除沫器设计g)料液泵的选型h)计算结果一览表第一章 课程设计报告内容 一、精馏流程的确定乙醇、水混合料液经原料预热器加热至泡点后,送入精馏塔。
塔顶上升蒸汽采用全凝器冷凝后,一部分作为回流,其余为塔顶产品经冷却器冷却后送至贮槽。
塔釜采用间接蒸汽向沸热器供热,塔底产品经冷却后送入贮槽。
二、塔的物料衡算(一) 料液及塔顶、塔底产品含乙醇摩尔分数(二) 平均摩尔质量(三) 物料衡算总物料衡算 F W D =+易挥发组分物料衡算 F x W x D x F w D =+联立以上三式得三、塔板数的确定(一) 理论塔板数T N 的求取根据乙醇、水的气液平衡数据作y-x 图乙醇—水气液平衡数据乙醇—水图解法求理论塔板数2. 乙醇—水体系的平衡曲线有下凹部分,求最小回流比自a (,,,D D x x )作平衡线的切线并延长与y 轴相交,截距min 0.29561Dx R =+取操作回流比min 22 1.91 3.82R R ==⨯=故精馏段操作线方程 11+++=R x R Ry D即0.79250.1784y x =+3.作图法求理论塔板数T N 得18T N =(不包括再沸器)。
第16层为加料板。
(四) 物性参数和实际塔板数的计算4.1温度常压下乙醇—水气液平衡组成与温度的关系利用表中数据由内差可求得t F t D t W① t F :8986.77.219.66--=89.08.927.21f t -- t F =87.39℃② t D : :42.7443.8941.7815.78--=43.890.8615.78--d t t D =78.21℃③ t W :90.105.95100--=1001.60w t -- t W =96.21℃④ 精馏段平均温度:1t =2d f t t +=87.3978.212+=82.8℃ ⑤ 提留段平均温度:2t =2w f t t +=87.3996.212+=91.8℃ 4.2气液组成 塔顶温度: t D =78.21℃气相组成y D :78.4178.1578.2178.150.78150.89430.8943D y --=-- y D =0.8683 进料温度: t F =87.39℃气相组成y F :89.086.789.087.390.38910.43750.3891Fy --=-- y F =0.4230 塔底温度: t W =99.91℃气相组成y w :95.589.095.591.80.0190.07210.019wy --=-- y w =0.04923 (1)精馏段液相组成x 1:10.860.08920.474622D F x x x ++=== 气相组成y 1:10.86830.42300.645722D F y y y ++=== 所以1460.474618(10.4746)31.29/L M kg mol =⨯+⨯-=(2)提留段 液相组成x 2:20.0160.08920.052622W F x x x ++=== 气相组成y 2:20.049230.042300.236122W F y y y ++===所以2460.474618(10.4746)19.47/L M kg mol =⨯+⨯-=4.3液体粘度 (一)乙醇的粘度1),塔顶温度: t D =78.21℃ 查表,得μ乙醇=0.45mpa ·s, 2), 进料温度: t F =87.39℃ 查表,得μ乙醇=0.38mpa ·s, 3),塔底温度: t W =99.91℃ 查表,得μ乙醇=0.335mpa ·s, (二)水的黏度1),塔顶温度: t D =78.21℃ 2), 进料温度: t F =87.39℃ 3),塔底温度: t W =99.91℃4),∑==ni i i Lm x 1μμ5)全塔平均液相黏度为0.43670.33100.29610.35462L μ++==s a m ⋅P4.4相对挥发度由 x F =0.0892 y F =0.4230 得()()0.4230/0.08927.4910.4230/10.0892F a ==--由 x D =0.86 y D =0.08683 得()()0.8683/0.861.0710.8683/10.86D a ==--由 x W =0.016 y w =0.04923 得()()0.04923/0.0163.1810.04923/10.016W a ==--4.5全塔效率的估算(1)用`O conenell 对全塔效率进行估算:全塔平均液相黏度为全塔效率0.2450.2450.49()0.49(5.050.3546)43%T L E αμ--==⨯⨯≈(2) 实际塔板数P N18420.43T P T N N E ===块 其中,精馏段的塔板数为:15/0.4335=块4.6 操作压力(1)操作压力计算塔顶操作压力D P = 101.3 kPa每层塔板压降 △P =0.7 kPa进料板压力F P =101.3+0.7×15=125.72kPa塔底操作压力w P =101.3+0.7×42=130.7kPa精馏段平均压力 1101.3125.72113.52m P +== kPa提馏段平均压力 2130.7125.72128.212m P +== kPa(2)密度乙醇与水的密度已知:LB ραραρ///1B LA A Lm +=(α为质量分数)1, 液相密度(1) 塔顶 因为 t D =78.21℃所以32807078.2170742.3754.2754.2CH CH OH ρ--=-- 323731.31/CH CH OH kg m ρ=(2) 进料板 因为87.39F t =℃所以32908087.3780730735735CH CH OH ρ--=-- 323731.31/CH CH OH kg m ρ=(3)塔釜因为t W =96.21℃所以321009096.2190717.3730.1730.1CH CH OH ρ--=-- 323722.21/CH CH OH kg m ρ=(4)精馏段平均液相密度()311755.07908.30831.69/2L kg m ρ=+= (5)精馏段平均液相密度()321955.96908.30932.13/2L kg m ρ=+= 2.气相密度(1)精馏段 (1)提馏段 4.7 液体表面张力乙醇表面张力:水表面张力(1) 塔顶 因为 t D =78.21℃所以32807078.217017.151818CH CH OH σ--=-- 3217.3/CH CH OH mN m σ=(2) 进料板 因为87.39F t =℃所以32908087.398016.217.1564.3CH CH OH σ--=-- 3216.45/CH CH OH mN m σ=(3)塔釜 因为t W =96.21℃所以321009096.219015.216.216.2CH CH OH σ--=-- 3215.58/CH CH OH mN m σ=(4)塔顶表面张力 ()0.8617.310.8662.923.68/D mN m σ=⨯+-⨯= (5)进料板表面张力()0.89216.4510.89262.2158.13/F mN m σ=⨯+-⨯= (6)塔底表面张力 ()0.01615.5810.01669.5258.82/D mN m σ=⨯+-⨯=(7)精馏段平均表面张力()1123.6858.1340.90/2mN m σ=+= (8)提馏段平均表面张力()2158.8258.1340.90/2mN m σ=+= 五、气液负荷计算(1)精馏段(1)提馏段六、塔和塔板主要工艺尺寸计算(一) 塔的有效高度计算初选板间距0.40T H m =,则由公式18110.4518.380.43T T T N Z H m E ⎛⎫⎛⎫=-=-⨯= ⎪ ⎪⎝⎭⎝⎭(二)塔径D参考表4-1,初选板间距m H T 45.0=,取板上液层高度m h L 07.0=表4-1 板间距与塔径的关系(1)精馏段塔经计算图4-5 Sminth 关联图查图4-5可知,200.08C =,依照下式校正C取安全系数为0.60,则故 2.55D m === 按标准,塔径圆整为2.6m ,塔截面积为2220.785 2.6 5.314T A D m π==⨯=实际空塔气速为17.0861.33/5.31S T V u m s A ===提留段塔径计算横坐标数值: 11220.0176932.13()()0.0776.869 1.04S L S V L V ρρ⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭取板间距:Ht=0.45m , h L =0.07m .则Ht- h L =0.38m 查图可知C 20=0.078 , 取安全系数为0.6则空塔气速max 10.60.6 2.89/u u m s ==⨯=按标准塔径圆整后为2D =2.6m综上:塔径D=2.6m ,选择双流型塔板,截面积231.5m A T =(三)溢流装置采用单溢流、弓形降液管、平行受液盘及平行溢流堰,不设进口堰。
各项计算如下。
1.溢流堰长w l单溢流 w l 为0.6D ,即 0.6 2.6 1.56w l m =⨯=2.出口堰高w h由/ 1.56/2.60.6w l D == ,(1) 精馏段图4-9 液流收缩系数计算图查图4-9,知E =1则22332.84 2.8428.4610.021******* 1.56h OW w L h E m l ⎛⎫⎛⎫==⨯⨯= ⎪ ⎪⎝⎭⎝⎭ 故 0.070.020.05W h m =-=(2) 提馏段查图4-9,知E =1则22332.84 2.8463.3610.0310001000 1.56h OW w L h E m l ⎛⎫⎛⎫==⨯⨯= ⎪ ⎪⎝⎭⎝⎭ 故 0.070.030.04W h m m =-=3.弓形降液管滴面积由/0.6w l D =图4-11 弓形降液管的宽度和面积查图4-11,得 /0.110d W D = ,/0.055f T A A =故0.110 2.60.286d W m =⨯=220.0550.2924f A D m π=⨯= T A =5.31 2m由下式计算液体在降液管中停留时间以检验降液管面积,即提馏段:10.2920.4516.650.00791f f s A H s s L θ⨯===≥ (符合要求)提馏段:20.2920.457.4650.0176f f sA H s s L θ⨯===≥ (符合要求)4.1.2.4降液管底隙高度(1)精馏段(2)提馏段 4.1.2.5受液盘受液盘凹形和平形两种,对于塔径为mm 800ϕ以上的塔,常采用凹形受液盘,这种结构在低流量时仍能造成正液封,且有改变液体流向的缓冲作用。