高温超导体
现在高压下超导的最高温度

现在高压下超导的最高温度
高温超导体的定义是指相对于传统超导体,其超导转变温度(临界温度,Tc)较高的材料。
传统超导体通常需要极低的温度,接近绝对零度(0K或-273.15°C),而高温超导体的Tc通常高于液氮的沸点,即77K(-196.15°C),这样的温度使得其更容易实现实际应用。
当前最高温度的高温超导体之一是铁基超导体(iron-based superconductors)和H2S超导体(氢化硫超导体)。
以下是一些相关的超导体和其对应的最高临界温度:
1.铁基超导体:
•铁基超导体是一类以铁基化合物为基础的高温超导体。
一些铁基超导体的Tc超过液氮温度,达到甚至超过液氮沸
点。
•举例:LaFeAsO1-xFx系列,其中x的值不同,其Tc可在30K到56K之间变化。
2.H2S超导体:
•在高压下,氢化硫(H2S)被发现在相对较高的温度下表现出超导性。
该研究首次在2015年发表,当时研究小组
报道了Tc达到203K(-70°C),这是迄今为止报道的最高
Tc。
需要注意的是,高温超导体的研究仍然是一个活跃的领域,新的发现和突破可能已经发生。
为了获取当前最新的信息,建议查阅最新的科学文献和研究报道。
高温超导实验报告步骤(3篇)

第1篇一、实验目的1. 了解高温超导体的基本特性和物理机制。
2. 学习液氮低温技术,掌握低温环境下的实验操作。
3. 测量高温超导体的临界温度(Tc)和临界磁场(Hc)。
4. 研究高温超导体的临界电流(Ic)与磁场、温度的关系。
二、实验原理高温超导现象是指某些材料在液氮温度(约77K)下表现出超导特性。
实验中,通过测量超导体的电阻、临界温度、临界磁场等参数,来研究高温超导体的物理性质。
三、实验仪器与材料1. 高温超导材料(如钇钡铜氧YBCO等)2. 低温冰箱3. 温度计4. 磁场计5. 电阻计6. 磁场发生器7. 数字多用表8. 液氮四、实验步骤1. 样品制备:将高温超导材料制备成合适尺寸的样品,通常为薄片或丝状。
2. 低温环境准备:将低温冰箱预热至液氮温度,并将样品放入冰箱内冷却至液氮温度。
3. 电阻测量:- 使用电阻计测量样品在液氮温度下的电阻。
- 记录电阻值,作为初始数据。
4. 临界温度测量:- 慢慢升温,观察电阻变化。
- 当电阻突然降至零时,记录此时的温度,即为临界温度(Tc)。
5. 临界磁场测量:- 使用磁场计测量样品在液氮温度下的磁场。
- 慢慢增加磁场强度,观察电阻变化。
- 当电阻突然降至零时,记录此时的磁场强度,即为临界磁场(Hc)。
6. 临界电流测量:- 在一定磁场下,逐渐增加电流,观察电阻变化。
- 当电阻突然降至零时,记录此时的电流,即为临界电流(Ic)。
7. 温度与磁场关系研究:- 在不同温度下,重复步骤4和5,研究临界温度(Tc)和临界磁场(Hc)与温度的关系。
- 在不同磁场下,重复步骤6,研究临界电流(Ic)与磁场的关系。
8. 数据整理与分析:- 将实验数据整理成表格,分析高温超导体的物理性质。
- 对比不同高温超导材料的物理性质,总结实验结果。
五、实验注意事项1. 实验过程中,务必保持低温环境,避免样品受热。
2. 在测量电阻、临界温度、临界磁场等参数时,要确保仪器精度。
3. 注意实验安全,防止低温伤害。
高温超导体的研究与应用

高温超导体的研究与应用高温超导体是指在较高的温度下(通常指液氮温度,约77 K),材料表现出超导性质的一类物质。
与低温超导体相比,高温超导体不仅温度更高,而且更易于制备和使用,因此在科研和应用领域有着广泛的潜力和用途。
一、高温超导体的研究意义高温超导体是研究超导性质的热点领域,对纳米科学、物理学、材料科学等领域具有重要意义。
相较于低温超导体,高温超导体的超导温度更高,超导电流密度更大,抗磁能力更强,因此有着更好的应用前景。
在电力输送、储能、计算机存储等领域,高温超导体具有惊人的潜力。
二、高温超导体的分类高温超导体按照化学成分可以分为铜氧化物高温超导体(cuprate)和铁基高温超导体(Fe-based)。
其中 cuprate 高温超导体是首先发现的一类高温超导体,它的基本结构是由铜氧化物层与稀土氧化物层层叠在一起的。
Fe-based 高温超导体则是后来才被发现的,它的超导机理与 cuprate 不同,但仍然具有较高的超导温度,且稳定性较好。
三、高温超导体的产生高温超导体的产生需要一定的条件,比如精细的材料制备技术、在合适的环境下进行处理等等。
目前,人们发现高温超导体室温下是不超导的,必须冷却至较低的温度才能展现出超导性质。
一方面,材料的结构和组分对超导性质有着重要的影响,因此需要通过化学方法制备出具有合适组分和结构的高温超导体提高其超导性能。
另一方面,超导材料的制备过程涉及到很多复杂的物理和化学作用,如固态反应、化学气相沉积等。
由于这些道路的不同,会产生不同的材料、不同的结构和性质,因此需要定期优化材料制备的方法来提高超导性能。
四、高温超导体的应用高温超导体具有广泛的应用前景,例如:1.电力输送领域:超导材料能在零电阻状态下传输电流,这种特性让超导材料在电力输送领域拥有重要的应用。
使用高温超导体制造的超导电缆可以在能耗和成本方面都有较大的优势。
2.储能领域:超导能量储存是一种高能量密度、低体积、零阻值的储能方式。
高温超导体及其研究近况

高温超导体及其研究近况姓名:高卓班级:材料化学09-1 学号:200901130805所谓超导,是指在一定温度、压力下,一些金属合金和化合物的电阻突然为零的性质.利用此次性质做成的材料称为超导材料.超导材料按其化学组成可分为:元素超导体,合金超导体,化合物超导体。
近年来,由于具有较高临界温度的氧化物超导体的出现,有人把临界温度Tc达到液氮温度(77K)以上的超导材料称为高温超导体,上述元素超导体,合金超导体,化合物超导体均属低温超导体。
以下就高温超导体作一个简要介绍。
一材料特点自1964年发现第一个超导体氧化物SrTiO3以来,至今已发现数十种氧化物超导体。
这些氧化物超导体具有如下共同的特征:(1)超导温度相对而言比较高,但载流子浓度低;(2)临界温度Tc随组分成单调变化,且在某一组分时会过渡到绝缘态;(3)在Tc以上温度区,往往呈现类似半导体的电阻-温度关系;(4)Tc和其他超导参量对无需程度敏感。
高温超导体在结构和物性方面具有以下特征;(1)晶体结构具有很强的地维特点,三个晶格常数往往相差3-4倍;(2)输运系数(电导率、热导率等)具有明显的各向异性;(3)磁场穿透深度远大于相干长度,是第二类超导体;(4)载流子浓度低,且多为空穴型导电;(5)同位素效应不显著;(6)迈斯纳效应不完全;(7)隧道实验表明能隙存在,且为库柏型配对。
氧化物超导体的这些特征,引起人们的兴趣和关注。
二发展趋势目前,在高温超导研究领域中,各国科学家正着重进行三个方面的探索,一是继续提高Tc,争取获得室温超导体;二是寻找适合高温超导的微观机理;三是加紧进行高温超导材料与器件的研制,进一步提高材料的Jc和Tc,改善各种性能,降低成本,以适用实用化的要求。
三国内外发展现状超导材料技术是21世纪具有战略意义的高新技术,极具发展潜力和市场前景。
世界各主要国家政府纷纷制订相关计划和加大研发投资,推动基础研究和产业化发展,竞争十分激烈。
高温超导体的发现与理论解释

高温超导体的发现与理论解释超导体是指在低温条件下,电流能够在材料内部无阻力地流动的材料。
在使用超导体的设备中,由于能量的无损耗传输,使得这些设备更加节能和高效。
但是,在过去,超导体的使用范围非常有限,因为只有在极低温度的条件下,它才能表现出超导的特性。
但是,近些年来,在高温条件下发现了具有超导性质的一种材料,这种材料被称为高温超导体。
高温超导体的发现极大地提升了超导体的应用范围,并且对于科学界来说,也是一项重大的突破。
本文将探讨高温超导体的发现和理论解释。
一、高温超导体的发现高温超导体的发现,始于1986年。
当时,一组瑞士、美国和日本的学者,分别独立地在他们的实验中发现了具有超导性质的铜氧化物。
他们所发现的材料,最高的超导转变温度超过了-200℃。
这个转变温度比以前发现的超导体高上数十倍,因此被命名为高温超导体。
高温超导体的发现给科学家们带来了很多的疑惑。
根据之前的理论,超导体只能在几乎接近绝对零度的情况下才能表现出其超导性质。
由于高温超导体的超导转变温度比之前的超导体都高很多,这个发现让人们对超导性质的理解发生了重大的变革。
二、高温超导体的理论解释高温超导体的发现,让科学家们重新审视了超导体的理论。
1987年,美国物理学家格里高利•哈托沃兹(Gregory H. Wannier)表示,高温超导体的发现“是一个突破性的事件,它发起了超导理论的颠覆与重建。
”目前,被广泛接受的高温超导理论是BCS理论(Bardeen、Cooper、Schrieffer)。
这种理论主要利用了电子之间的“库伦相互作用”来解释超导性质的发生。
库伦相互作用是指电子之间的相互吸引和排斥作用。
在低温超导物质中,电子之间的库伦相互作用可以抑制它们之间的相互碰撞,所以电子可以在物质内部形成一个“库伦对”,从而实现超导。
而在高温超导体中,由于铜氧化物的晶体结构特殊,铜氧化物中的电子与材料内部的振动模式产生强的相互作用,从而形成了能够在较高温度下实现超导的“库伦偶极子对”。
高温超导体的研究和发展

高温超导体的研究和发展随着科技的不断发展,人们对材料方面的研究也越来越深入,其中高温超导体在近年来受到人们的关注。
那么高温超导体是什么呢?高温超导体是指在较高温度下具有超导性质的材料,它比低温超导体具有更高的超导临界温度,也更容易理解和加工。
高温超导体的发现,开启了新一轮超导材料的研究热潮,备受科研领域和工程界的关注。
1.高温超导体的发现和研究历程高温超导体的研究,始于20世纪80年代。
1986年,斯沃伯等人在研究氧化物中的磁学性质时,意外地发现了氧化铜和氧化铈混合物的超导特性,而这个混合物的超导温度高达35K以上,这是迄今为止最高的超导临界温度。
这个发现成为一次重大突破,也引起了全世界科学家的关注。
此后,科学家们在研究和发展过程中,不断深入探索,先后发现了YBa2Cu3O7等系列材料的超导性,这些材料的超导转变温度达到了90K以上,大大提高了超导体的应用价值。
2.高温超导体的物性和应用研究高温超导体特别的物性使得它在电子、计算机、电机、电力输配等领域具有广阔的应用前景。
高温超导体有较高的临界温度,临界磁场,超导体相变的宽度和强的吸收电磁场等特性。
由于这些特性,高温超导体可以被广泛应用于各种型号的电子元件、传感器、磁体和飞行平台等技术设备中。
此外,高温超导体还可用于矿物的选择性分离,蛋白质结晶和生物学研究等生物医学领域,给科技发展和人类社会带来无限的希望。
3.高温超导体的制备方法高温超导体的制备方法一直是科研领域关注的焦点,有以下几种常用的制备方法:以固相反应作为合成方法,制备出高温超导材料的方法是最早也是最简单的一种,但是它的反应温度往往很高,反应时间长,在反应的过程中也会出现大量的副产物,对环境会造成不利的影响。
而液相反应方法制备高温超导材料的方法虽然制备质量相对较好,但是会产生有机物和氧化物等副反应,会对制备过程带来很多麻烦。
最近新的制备方法越来越多,如固态反应、分子束外延法、溅射法等都极大地缩短了制备时间和提高了材料的制备质量。
新型高温超导体的研究与应用

新型高温超导体的研究与应用随着科学技术的进步,人们对新型高温超导体的研究越来越深入。
高温超导体的发现引发了物理学领域的重大变革,也给人们的日常生活带来了诸多应用。
本文将围绕新型高温超导体的研究与应用展开讨论。
一、新型高温超导体的研究最初发现的高温超导体需要极其低的温度及极低的压力才能发挥超导效果。
但现如今,高温超导体的温度门槛已经大大提高,并且能够在较常见的温度和压力条件下达到超导效果。
这是科学家们耗费大量时间和精力进行研究的结果。
新型高温超导体的探索,需要借助现代高科技手段。
其中,金属有机化合物是重要的研究投入,研究人员通过对其进行原子层分析,探究其中的特殊结构和物性变化。
此外,使用光谱技术、原子力显微镜和拉曼光谱技术等多种技术手段,对高温超导体进行研究。
科学家们不断深化对高温超导体的研究,寻找新的化合物、新的结构和新的物理机制,并不断完善相关理论,推动了新型高温超导体的研究。
二、新型高温超导体在能源领域的应用新型高温超导体在能源领域有诸多潜在的应用。
比如说,超导材料在电力输送方面可减少传输损失,使电能传输更加高效。
此外,超导材料广泛应用于磁共振成像(MRI)中,其对人类医疗事业的贡献不可低估。
另外,新型高温超导体还可用于建造更加强大和节约能源的发电机。
例如,已有研究人员在实验中制造出了能够将机械能转换为电能的超导风力涡轮机。
此种发电机与传统水轮发电机不同,其转子受到超导电流控制,实现了更高效的电能转换。
相信随着相关技术在实际应用中的推广,新型高温超导体在能源领域的应用潜力还将不断被挖掘。
三、新型高温超导体的其他应用除在能源领域外,新型高温超导体的应用在其他领域也非常广泛。
比如在交通运输领域中,超导磁悬浮列车能够实现高速运动和零排放,是一种能够有效改善交通状况的先进交通工具。
此外,新型高温超导体还可用于制作高灵敏度传感器和高效的微处理器等。
在这些领域中,新型超导材料的应用会大幅提升设备的性能表现,从而大大提升人们的工作效率和生活质量。
高温超导体的物理特性及应用

高温超导体的物理特性及应用高温超导体是指在相对较高的温度下即可表现出超导现象的材料。
它是一种重要的超导材料,与低温超导体相比具有许多优点。
本文将介绍高温超导体的物理特性及其应用。
一、高温超导体的物理特性1. 零电阻性和磁场排斥性高温超导体的最显著的物理特性是其零电阻性和磁场排斥性。
当高温超导体的温度低于其临界温度时,电流可以在其中自由流动,不会有能量损耗。
此外,高温超导体还表现出一种磁场排斥性,这是因为在材料中产生的磁场会阻挡外加磁场的进入,这种现象被称为Meissner效应。
2. 高超导临界温度高温超导体的临界温度是指材料开始表现超导现象的温度。
由于高温超导体的临界温度高于室温,从而使它们的制造和运用更加方便。
现有的高温超导体具有较高的临界温度,如银镧超导体具有临界温度为125K,YBCO超导体则可达到到约92K。
3. 材料的复杂结构高温超导体具有复杂的结构,其中许多体系都是多组分和多晶的,这些结构使得其物理性质更加复杂。
由于这种复杂性,高温超导体常导致无序或迷惑性的现象,这使得研究高温超导体变得更加困难。
4. 热运输性质高温超导体的热运输性质日益引起人们关注。
超导性质与材料中的电荷载流子、热载流子之间的耦合有关。
材料中的热载流子扮演着“刺激系统”的角色,可以引起超导-绝缘相变、非线性电阻、磁滞效应等现象。
二、高温超导体的应用高温超导体的应用领域非常广泛,主要应用于以下领域:1. 磁体应用领域高温超导体的关键应用领域是磁体。
能量密度和磁场强度在高温超导体磁体中得到了显著改善。
高温超导能够在磁体、电机、电力输配电系统等领域中发挥重要作用。
2. 能源应用领域高温超导体也在能源应用领域中得到了广泛应用。
高温超导发电机和变压器具有高效节能、小体积、无噪音、无污染等优点,可在小型电动车、风力和太阳能发电系统等领域中广泛使用。
3. 应用于物理学实验高温超导体的物理性质对物理学实验也有极大的贡献。
高温超导可用于制备强电场绝缘材料、光学显微镜、场致发光器件和电学元器件等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原文地址:/baike/2391.html
Powered by TCPDF ()
页面 1 / 1
高温超导体 链接:/科名片
高温超导体是超导物质中的一种族类,具有一般的结构特征以及相对上适度间隔的铜氧化物平面。它们也被称作铜 氧化物超导体。高温超导体并不是大多数人认为的几百几千的高温,只是相对原来超导所需的超低温高许多的温度, 不过也有零下几百多摄氏度。而在人类所研究的超导中温度算提高非常多,所以称之为高温超导体。
简介
高温超导体通常是指在液氮温度(77 K)以上超导的材料。人们在超导体被发现的时候(1911年),就被其奇特的 性质(即零电阻,反磁性,和量子隧道效应)所吸引。但在此后长达七十五年的时间内所有已发现的超导体都只是在 极低的温度(23 K)下才显示超导,因此它们的应用受到了极大的限制。
发现
1986年柏诺兹和缪勒发现了35K 超导的鑭钡铜氧体系。这一突破性发现导致了更高温度的一系列稀土钡铜氧化物超 导体的发现。通过元素替换,1987年初美国吴茂昆(朱经武)等和我国物理所赵忠贤等宣布了90K 钇钡铜氧超导体的发现,第一次实现了液氮温度(77 K)这个温度壁垒的突破。柏诺兹和缪勒也因为他们的开创性工作而荣获了1987年度诺贝尔物理学奖。
分类
高温超导体包括四大类:90K的稀土系,110K的铋系,125K的铊系,和135K的汞系。它们都含有铜和氧,因此也总 称为铜氧基超导体。它们具有类似的层状结晶结构,铜氧层是超导层。高温超导体已经取得了实际应用,开始为人类 造福。例如,钇钡铜氧超导体和铋系超导体已制成了高质量的超导电缆。而铊钡钙铜氧超导薄膜制成的装置,早在上 世纪末就安装在移动电话的发射塔中,增加容量,减少断线和干扰。