2020最全高一数学知识点总结.doc

合集下载

高一数学知识点全部总结

高一数学知识点全部总结

高一数学知识点全部总结一、代数1.1 一元二次方程一元二次方程是高一数学的重点内容之一,一元二次方程的定义是形式为ax^2+bx+c=0的方程,其中a≠0。

解一元二次方程的方法有因式分解、配方法、公式法等。

1.2 不等式高一数学的不等式内容主要包括一元一次不等式、一元二次不等式以及一元三次不等式的求解方法,包括图像法、取值范围法、代数法等。

1.3 二次函数二次函数是高一数学代数部分的重点内容,涉及了函数的定义、性质、图像、极值、单调性、解析式等多个方面的内容。

1.4 基本初等函数高一数学还包括了基本初等函数的概念和性质,包括幂函数、指数函数、对数函数、三角函数等的定义、性质及其在实际问题中的应用。

1.5 绝对值函数绝对值函数也是高一数学中的一个重要内容,主要包括了绝对值函数的性质、图像及其在实际问题中的应用。

1.6 平面直角坐标系中的直线和圆平面直角坐标系中的直线和圆也是高一数学的重要内容,主要包括了直线的方程、性质、圆的方程、性质及其在实际问题中的应用。

1.7 数列数列也是高一数学的一个重要内容,包括等差数列、等比数列、递推数列等的概念、性质、求和公式及其在实际问题中的应用。

1.8 集合与函数高一数学的内容还包括了集合的基本概念、基本运算、集合的关系和函数的概念、性质、运算、基本初等函数的图像等内容。

1.9 二项式定理二项式定理是高一数学中的一个重要概念,包括二项式的展开式、二项式系数、二项式定理的应用等方面的内容。

1.10 逻辑与命题关系逻辑与命题关系也是高一数学的一个知识点,主要包括了命题、充分必要条件、等价命题、逻辑联结词、命题公式等内容。

二、几何2.1 几何图形的性质高一数学的几何内容主要包括了基本的几何图形的性质,包括直线、角、三角形、四边形、圆等的基本性质、判定方法和应用题。

2.2 相似三角形相似三角形是高一数学中的重点内容,主要包括了相似三角形的性质、判定方法及其在实际问题中的应用。

高一数学知识点全总结归纳

高一数学知识点全总结归纳

高一数学知识点全总结归纳数学作为一门理科学科,对于高中生们来说无疑是一门重要的学科之一。

高一是数学学科的起点,是打下扎实数学基础的关键阶段。

为了帮助广大高一学生掌握和巩固数学知识,本文将全面总结和归纳高一数学知识点,帮助学生们更好地学习和理解。

一、代数1. 数与代数式2. 数的四则运算3. 一元一次方程与不等式4. 二元一次方程组与解法5. 平方差与完全平方公式6. 平方根与立方根7. 二次根式与整式的乘法8. 因式分解与最大公因数、最小公倍数9. 分式及其性质10. 一元二次方程与不等式11. 二次函数与一次函数二、几何1. 平面直角坐标系与二维坐标变换2. 向量及其运算3. 直线与线段的性质4. 角与角度的度量5. 三角函数与三角恒等式6. 圆的性质与相关定理7. 相似与全等三角形8. 数列与等差数列9. 数列与等比数列10. 空间坐标系与三维向量11. 空间中的直线与平面12. 空间中的平面与直线三、概率与统计1. 事件与概率的基本概念2. 概率的计算方法3. 条件概率与独立事件4. 随机变量与概率分布5. 二项分布与泊松分布6. 抽样与统计分布7. 统计图与直方图8. 统计数据的分析与应用四、数学建模与应用1. 数学建模的基本步骤与方法2. 函数模型与线性规划3. 排队论与图论4. 矩阵与运算5. 微分与微分方程6. 积分与应用问题以上是高一数学的主要知识点总结,涵盖了代数、几何、概率与统计以及数学建模与应用等重要内容。

在学习过程中,要注重基础知识的理解和掌握,应用数学解题的方法和技巧,并通过大量的练习和实际应用,不断提升数学能力。

希望本文对高一学生的数学学习有所帮助,让他们能够在数学领域取得优秀的成绩。

最新2020高一数学知识点总结归纳5篇

最新2020高一数学知识点总结归纳5篇

1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系(5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0}B={-1,1}“元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B①任何一个集合是它本身的子集。

AíA②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)③如果AíB,BíC,那么AíC④如果AíB同时BíA那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。

高一数学知识点总结归纳2形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。

自变量x的取值范围是不等于0的一切实数。

反比例函数图像性质:反比例函数的图像为双曲线。

由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。

另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。

上面给出了k分别为正和负(2和-2)时的函数图像。

当K>0时,反比例函数图像经过一,三象限,是减函数当K<0时,反比例函数图像经过二,四象限,是增函数反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。

知识点:1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。

2.对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。

(加一个数时向左平移,减一个数时向右平移)高一数学知识点总结归纳3方程的根与函数的零点1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

高一数学全部知识点

高一数学全部知识点

高一数学全部知识点高一数学是学生们接触到的第一门较为复杂的数学课程,它为后续的数学学习打下了基础。

本文将从数与代数、函数与方程、三角函数、几何与向量、概率与统计等五个方面来论述高一数学全部知识点。

一、数与代数1. 数的集合:自然数集、整数集、有理数集和实数集的介绍和运算性质。

2. 数的性质:数的比较、数的绝对值与相反数等概念。

3. 线性方程与不等式:一元一次方程和一元一次不等式的解法。

4. 分数与比例:分数的四则运算、比例与比例方程的求解。

5. 百分数:百分数的意义、百分数的应用。

二、函数与方程1. 函数的概念:函数的定义、函数的表示与性质。

2. 一次函数:一次函数的定义、图像、性质及其应用。

3. 二次函数:二次函数的定义、图像、性质及其应用。

4. 指数与对数:指数运算与对数运算的概念、性质及其应用。

5. 幂函数与根函数:幂函数与根函数的定义、图像、性质及其应用。

三、三角函数1. 常用角度:角度的概念、角度的弧度制与度数制的转换。

2. 三角比的概念:正弦、余弦、正切等三角函数的定义、计算与性质。

3. 三角函数的图像与性质:正弦、余弦、正切函数的图像、周期、对称性等特点。

4. 三角函数的应用:角度的应用、航空航天及地理测量中的应用。

四、几何与向量1. 四边形的性质:平行四边形、矩形、正方形、菱形、梯形等四边形的定义、性质与应用。

2. 圆的知识:圆的定义、圆心角、弧长与扇形面积的计算。

3. 直线与平面几何:直线角的性质、平行线与三角形的性质等。

4. 向量的概念与运算:向量的定义、向量的加法与数乘等。

五、概率与统计1. 概率的概念:随机事件、样本空间、事件的概率等。

2. 概率计算:加法原理、乘法原理、全概率公式与贝叶斯公式的应用。

3. 统计的概念:数据的收集与整理、频数表与频率表的制作。

4. 统计指标与图形:中位数、众数、平均数和箱线图、直方图、折线图等。

高一数学的内容涉及了多个方面,对于学生来说,需要细心理解并融会贯通。

高一数学知识点全面总结(4篇)

高一数学知识点全面总结(4篇)

高一数学知识点全面总结(优秀4篇)作为一名无私奉献的老师,常常要写一份优秀的教案,借助教案可以提高教学质量,收到预期的教学效果。

那要怎么写好教案呢?小编为朋友们整理了4篇《高一数学知识点全面总结》,可以帮助到您,就是小编我最大的乐趣哦。

高一数学知识点总结篇一立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

高一数学知识点总结(15篇)

高一数学知识点总结(15篇)

高一数学知识点总结(15篇)高一数学知识点总结1一、函数的概念与表示1、映射(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B。

注意点:(1)对映射定义的理解。

(2)判断一个对应是映射的方法。

一对多不是映射,多对一是映射2、函数构成函数概念的三要素①定义域②对应法则③值域两个函数是同一个函数的条件:三要素有两个相同二、函数的解析式与定义域1、求函数定义域的主要依据:(1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;三、函数的值域1求函数值域的方法①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;③判别式法:运用方程思想,依据二次方程有根,求出y 的取值范围;适合分母为二次且∈R的分式;④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);⑤单调性法:利用函数的单调性求值域;⑥图象法:二次函数必画草图求其值域;⑦利用对号函数⑧几何意义法:由数形结合,转化距离等求值域。

主要是含绝对值函数四.函数的奇偶性1.定义:设y=f(x),x∈A,如果对于任意∈A,都有,则称y=f(x)为偶函数。

如果对于任意∈A,都有,则称y=f(x)为奇函数。

2.性质:①y=f(x)是偶函数y=f(x)的图象关于轴对称,y=f(x)是奇函数y=f(x)的图象关于原点对称,②若函数f(x)的定义域关于原点对称,则f(0)=0③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[两函数的定义域D1,D2,D1∩D2要关于原点对称]3.奇偶性的判断①看定义域是否关于原点对称②看f(x)与f(-x)的关系五、函数的单调性1、函数单调性的定义:2设是定义在M上的函数,若f(x)与g(x)的单调性相反,则在M上是减函数;若f(x)与g(x)的单调性相同,则在M 上是增函数。

高一数学知识点总结大全(非常全面)

高一数学知识点总结大全(非常全面)

高一数学知识点总结大全(非常全面)高一数学知识点汇总1函数的有关概念注意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

求函数的定义域时列不等式组的主要根据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)假如函数是由一些根本函数通过四那么运算结合而成的.那么,它的定义域是使各局部都有意义的x的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.u 一样函数的判断方法:①表达式一样(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)2.值域 : 先考虑其定义域(1)观察法(2)配方法(3)代换法3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .(2) 画法A、描点法:B、图象变换法常用变换方法有三种1) 平移变换2) 伸缩变换3) 对称变换4.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.5.映射高一数学知识点汇总2集合(1)含n个元素的集合的子集数为2n,真子集数为2n-1;非空真子集的数为2n-2;(2)注意:讨论的时候不要遗忘了的情况。

(3)第二局部函数与导数1.映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。

2.函数值域的求法:①分析^p 法;②配方法;③判别式法;④利用函数单调性;⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、间隔、绝对值的意义等);⑧利用函数有界性;⑨导数法。

2024年高一数学知识点重点总结归纳(二篇)

2024年高一数学知识点重点总结归纳(二篇)

2024年高一数学知识点重点总结归纳高一数学的知识点重点总结归纳如下:1. 数与代数- 整数、有理数、实数及其运算:掌握整数的四则运算,有理数与实数的大小关系,注意乘方运算的规律。

- 一次函数:了解一次函数的概念、性质和图像,掌握求解一次方程和一次不等式的方法。

- 二次根式:熟练掌握二次根式的化简、运算和求值,注意二次根式的性质和特殊形式。

- 四则运算的应用:了解四则运算的应用问题,尤其是解决实际问题时的应用能力。

- 等比数列:掌握等比数列的概念、通项公式和求和公式,能够运用等比数列解决实际问题。

2. 几何与图形- 直线与角:了解直线的基本概念和性质,掌握角的概念、性质和分类,熟练运用角的平分线和垂直线的性质。

- 三角形:掌握三角形的基本概念和性质,熟练使用三角形内角和的性质、外角和的性质,能够运用三角形解决实际问题。

- 二次函数:了解二次函数的图像特征和性质,掌握二次函数的标准式和一般式,能够根据图像特征确定二次函数的参数。

- 圆:掌握圆的基本概念和性质,熟练使用圆的切线和割线的性质,能够利用圆的性质解决实际问题。

- 同类图形:了解同类图形的概念和性质,掌握相似比和相似三角形的性质,能够解决相似三角形的计算问题。

3. 数据与统计- 概率与统计:了解概率的基本概念和性质,掌握概率计算的方法和技巧,熟练应用概率解决实际问题。

- 数据的收集和分析:熟悉数据的收集方法和数据的整理方法,能够分析处理数据,掌握直方图和折线图的绘制方法。

4. 函数与方程- 数列与序列:了解数列的概念、性质和分类,掌握数列的通项公式、递推公式和求和公式,能够解决数列的计算问题。

- 线性规划:了解线性规划的概念和基本方法,能够利用线性规划解决实际问题。

- 二次函数与方程:了解二次函数与方程的基本概念和性质,掌握二次函数与方程的图像特征和参数变化规律,能够应用二次函数与方程解决实际问题。

这些都是高一数学中的重点知识点,掌握了这些知识,能够为学习高级数学打下坚实的基础。

最新2020高一数学知识点总结归纳5篇

最新2020高一数学知识点总结归纳5篇

最新2020高一数学知识点总结归纳5篇数学被很多学生认为是一门很难的学科,高中数学更是如此,但是数学作为三大主课之一,所占的分量自是不清,很多学生也明白如果数学学不好的话想要考上理想的大学是天方夜谭,但是苦于无学习之法,那么高中数学都有哪些学习方法呢?下面就是小编给大家带来的高一数学知识点,希望能帮助到大家!高一数学知识点总结归纳11.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系(5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0}B={-1,1}“元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B①任何一个集合是它本身的子集。

AíA②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)③如果AíB,BíC,那么AíC④如果AíB同时BíA那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。

高一数学知识点总结归纳2形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。

自变量x的取值范围是不等于0的一切实数。

反比例函数图像性质:反比例函数的图像为双曲线。

由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。

另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。

上面给出了k分别为正和负(2和-2)时的函数图像。

当K>0时,反比例函数图像经过一,三象限,是减函数当K<0时,反比例函数图像经过二,四象限,是增函数反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。

2020最新高一数学知识点归纳总结5篇

2020最新高一数学知识点归纳总结5篇

1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.注意:2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;3函数的定义域、值域要写成集合或区间的形式.定义域补充能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零(6)实际问题中的函数的定义域还要保证实际问题有意义.构成函数的三要素:定义域、对应关系和值域再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备)值域补充(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域.(2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。

3.函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.即记为C={P(x,y)|y=f(x),x∈A}图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。

(完整版)最新2020高一数学知识点总结归纳5篇2021

(完整版)最新2020高一数学知识点总结归纳5篇2021

最新2020 高一数学知识点总结归纳 5 篇数学被很多学生认为是一门很难的学科,高中数学更是如此,但是数学作为三大主课之一,所占的分量自是不清,很多学生也明白如果数学学不好的话想要考上理想的大学是天方夜谭,但是苦于无学习之法,那么高中数学都有哪些学习方法呢?下面就是小编给大家带来的高一数学知识点,希望能帮助到大家!高一数学知识点总结归纳11. “包含”关系—子集注意:有两种可能(1)A 是 B 的一部分,;(2)A 与 B 是同一集合。

反之:集合A 不包含于集合B, 或集合 B 不包含集合A,记作AB 或BA2. “相等”关系(5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0}B={- 1,1} “元素相同”结论:对于两个集合 A 与B,如果集合 A 的任何一个元素都是集合 B 的元素,同时,集合 B 的任何一个元素都是集合 A 的元素,我们就说集合 A 等于集合B,即:A=B①任何一个集合是它本身的子集。

AíA②真子集:如果AíB,且A1B 那就说集合 A 是集合 B 的真子集,记作AB( 或BA)③如果AíB,BíC,那么AíC④如果AíB同时BíA那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。

高一数学知识点总结归纳2形如y=k/x(k 为常数且k≠0的)函数,叫做反比例函数。

自变量x 的取值范围是不等于0 的一切实数。

反比例函数图像性质:反比例函数的图像为双曲线。

由于反比例函数属于奇函数,有f(-x)=-f(x) ,图像关于原点对称。

另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。

上面给出了k 分别为正和负(2 和-2) 时的函数图像。

当K>0 时,反比例函数图像经过一,三象限,是减函数当K<0 时,反比例函数图像经过二,四象限,是增函数反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。

2020高中数学必修1知识点(超全)

2020高中数学必修1知识点(超全)

2020高中数学必修1知识点(超全)高中数学知识点必修1第一章集合与函数概念1.1.1 集合的含义与表示1) 集合的概念是指集合中的元素具有确定性、互异性和无序性。

2) 常用数集及其记法:N表示自然数集,N*或N+表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集。

3) 集合与元素间的关系:对象a与集合M的关系是a∈M,或者a∉M,两者必居其一。

4) 集合的表示法包括自然语言法、列举法、描述法和图示法。

5) 集合的分类包括有限集、无限集和空集(∅)。

1.1.2 集合间的基本关系6) 子集、真子集、集合相等的定义和符号表示如下:名称记号意义子集 A⊆B A中的任一元素都属于B真子集 A⊂B A⊆B,且B中至少有一元素不属于A集合相等 A=B A中的任一元素都属于B,B中的任一元素都属于A7) 已知集合A有n(n≥1)个元素,则它有2n个子集,2n-1个真子集,2n-1个非空子集和0个非空真子集。

1.1.3 集合的基本运算8) 交集、并集、补集的定义和符号表示如下:名称记号意义交集A∩B {x|x∈A,且x∈B}并集 A∪B {x|x∈A,或x∈B}补集 A' {x|x∈U,且x∉A}补充知识】含绝对值的不等式与一元二次不等式的解法1) 含绝对值的不等式|x|0)的解集为{-a<x<a}。

1.解一元一次不等式对于形如 $ax+b$ 的一元一次不等式,可以将其看成一个整体,化成 $|ax+b|a(a>0)$ 型的不等式来求解。

2.解一元二次不等式对于形如 $ax^2+bx+c$ 的一元二次不等式,首先计算其判别式 $\Delta=b^2-4ac$,然后根据二次函数$y=ax^2+bx+c(a>0)$ 的图像,分类讨论 $\Delta$ 的大小关系。

当 $\Delta>0$ 时,解集为 $\{x|xx_2\}$;当 $\Delta=0$ 时,解集为 $\{x|x=x_1\}$;当 $\Delta<0$ 时,无实数解。

高一数学知识点总结(7篇)

高一数学知识点总结(7篇)

高一数学知识点总结(7篇)高一数学学问点总结篇1立体几何初步1、柱、锥、台、球的构造特征(1)棱柱:定义:有两个面相互平行,其余各面都是四边形,且每相邻两个四边形的公共边都相互平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相像,其相像比等于顶点到截面距离与高的比的平方。

(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的局部。

分类:以底面多边形的边数作为分类的标准分为三棱台、四棱台、五棱台等。

表示:用各顶点字母,如五棱台几何特征:①上下底面是相像的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面绽开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面绽开图是一个扇形。

(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的局部几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面绽开图是一个弓形。

(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

2020高一数学知识点总结归纳三篇

2020高一数学知识点总结归纳三篇

2020高一数学知识点总结归纳三篇数学这个科目一直是同学们又爱又恨的科目,学的好的同学靠它来与其它同学拉开分数,学的差的同学则在数学上失分很多;在平时的学习和考试中同学们要善于总结知识点,这样有助于帮助同学们学好数学。

下面就是小编给大家带来的高一数学知识点总结,希望能帮助到大家!高一数学知识点总结11、含n个元素的有限集合其子集共有2n个,非空子集有2n 1个,非空真子集有2n 2个。

2、集合中,Cu(A B)=(CuA)U(CuB),交之补等于补之并。

Cu(AUB)=(CuA) (CuB),并之补等于补之交。

3、ax2+bx+c 0的解集为x(0+c 0的解集为x,cx2+bx+a 0的解集为 x或x ax2 bx+4、c 0的解集为x,cx2 bx+a 0的解集为- x或x -。

5、原命题与其逆否命题是等价命题。

原命题的逆命题与原命题的否命题也是等价命题。

6、函数是一种特殊的映射,函数与映射都可用:f:A B 表示。

A表示原像,B表示像。

当f:A B表示函数时,A表示定义域,B大于或等于其值域范围。

只有一一映射的函数才具有反函数。

7、原函数与反函数的单调性一致,且都为奇函数。

偶函数和周期函数没有反函数。

若f(x)与g(x)关于点(a,b)对称,则g(x)=2b-f(2a-x).8、若f(-x)=f(x),则f(x)为偶函数,若f(-x)=f(x),则f(x)为奇函数;偶函数关于y轴对称,且对称轴两边的单调性相反;奇函数关于原点对称,且在整个定义域上的单调性一致。

反之亦然。

若奇函数在x=0处有意义,则f(0)=0。

函数的单调性可用定义法和导数法求出。

偶函数的导函数是奇函数,奇函数的导函数是偶函数。

对于任意常数T(T 0),在定义域范围内,都有f(x+T)=f(x),则称f(x)是周期为T的周期函数,且f(x+kT)=f(x),k 0.9、周期函数的特征性:①f(x+a)=-f(x),是T=2a的函数,②若f(x+a)+f(x+b)=0,即f(x+a)=-f(x+b),T=2(b-a)的函数,③若f(x)既x=a关对称,又关于x=b对称,则f(x)是T=2(b-a)的函数④若f(x+a) f(x+b)= 1,即f(x+a)= ,则f(x)是T=2(b-a)的函数⑤f(x+a)= ,则f(x)是T=4(b-a)的函数10、复合函数的单调性满足“同增异减”原理。

高一数学知识点归纳总结

高一数学知识点归纳总结

高一数学知识点归纳总结高一数学知识点归纳总结(一)一、函数1.函数的定义:对于每一个自变量,函数都给出唯一的因变量值。

2.函数的表示:y=f(x),x为自变量,y为因变量,f(x)为函数。

3.函数的性质:定义域、值域、单调性、奇偶性、周期性、对称性。

4.常见数学函数:指数函数、对数函数、三角函数、反三角函数、幂函数、根式函数。

5.函数的图像:函数的图像是函数在平面直角坐标系上的表示,反映了函数自变量和因变量之间的函数关系。

6.函数的运算:加减、乘除、复合运算。

7.函数的极限:当自变量接近某一特定值时,函数趋于一个确定的极限。

8.导数与微分:导数是函数变化率的极限值,微分是函数的一个微小变化量。

9.应用:求函数的最值、拐点、渐近线、曲率等,还可以用于物理、经济、工程学等领域中的问题求解。

二、集合与命题1.集合的概念:由若干个元素构成的整体。

2.基本集合运算:并集、交集、差集、补集。

3.集合的性质:子集、相等、空集、全集、互斥、互补。

4.命题:是可以用真假判断的陈述句,并且只有真假两种可能。

5.命题的逻辑运算:否定、合取、析取、蕴含。

6.命题的等价关系与充分必要条件。

7.谓词与量词:谓词是具有“真假”性质的函数,量词包括全称量词和存在量词,它们用于指定谓词中的变量范围。

三、平面与立体几何1.欧氏几何:以欧氏公理为基础的几何学,研究点、线、面的性质以及它们之间的关系。

2.平面几何:研究平面上点、线、面及其相互关系的几何学。

3.直线和圆的性质:如平行线公理、垂线定理、相交线夹角定理、圆的周长、面积等。

4.三角形和四边形的性质:如勾股定理、海伦公式、三角形周长公式、正方形、矩形、平行四边形、菱形的周长、面积等。

5.立体几何:研究空间中点、线、面、体及其相互关系的几何学。

6.球的性质:如球的体积、表面积等。

7.多面体的性质:如正四面体、正六面体、正八面体等体积、表面积等。

四、数列与数学归纳法1.数列的概念:按一定顺序排列的一列数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

22最全高一数结 数学被很多为的学科,高中数学更是如此,但是数三 之一,所占的分量自是不清,很多学生也明白如果数学学不想要考上理 想的大学是天,但是苦于之法,那么高中学都有哪方法呢 ?下面 就给来的高一数点,希望能帮助到大家!高一数点 1 1. “包含”关系— 子集注意:有两种可能 (1)A 是 B 的一部分, ;(2)A 与 B 是同一集合。

反之 :集合 A 不包含于集合 B,或集合 B 不包含集合 A,记作 AB 或 BA2. “相等”关系(5≥ 5,且5≤ 5=5) 实A={x|x2-1=0}B={- 1,1} “元素相同 ” 结论:对于两个集合 A 与 B ,如果集合 A 的任何一个元素都是集合 B的元素,同 时,集合 B 的任何一个元素都是集合 A 的元素,我们就说集合 A 等于集合 B ,即: A=B①任何一个集合是它本身的子集。

A íA②真子集 :如果 A íB,且 A1B 那就说集合 A 是集合 B 的真子集,记作 AB( 或 BA)③如果 A íB,BíC,那么 A íC④如果 A íB 同时B íA 那么 A=B 3.不含任何元素的集合叫做空集,记为Φ规定 :空集是任何集合的子集,空集是任何非空集合的真子集。

高一数点21.多面构特征(1)棱柱有两个面相互平行,其余各面都是平形,两形的公共 边平行。

正棱棱垂直于底面的棱柱叫做直棱柱,底面是形的直棱柱叫做正棱柱.反之,正棱柱的底面是棱垂直于底面是矩形。

(2的底面是任面是有一个点的三角形。

正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心。

(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形。

2.旋转体的结构特征(1)圆柱可以由矩形绕一边所在直线旋转一周得到.(2)圆锥可以由直角三角形绕一条直角边所在直线旋转一周得到.(3)圆台可以由直角梯形绕直角腰所在直线旋转一周或等腰梯形绕上下底面中心所在直线旋转半周得到,也可由平行于底面的平面截圆锥得到。

(4)球可以由半圆面绕直径旋转一周或圆面绕直径旋转半周得到。

3.空间几何体的三视图空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的平面图形留下的影子,与平面图形的形状和大小是全等和相等的,三视图包括正视图、侧视图、俯视图。

三视图的长度特征:“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法。

4.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,基本步骤是:(1)画几何体的底面在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=或451°35°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴.已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半。

(2)画几何体的高在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴,也垂直于x′O′平y面′,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变。

高一数学知识点3一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上的山(2)元素的互异性如:由 HAPPY 的字母组成的集合 {H,A,P,Y}(3)元素的无序性 :如:{a,b,c} 和{a,c,b} 是表示同一个集合3.集合的表示: { ⋯ }如: {我校的篮球队员},{太平洋 ,大西洋 ,印度洋 ,北冰洋 }(1)用拉丁字母表示集合: A={我员},B={1,2,3,4,5}(2)集合的表示方法法与描述法。

注意:常用数集法: 整数 (即自然数集作: N 正整数集: N_或 N+整数集: Z有理数集: Q实数集: R1法:{a,b,c ⋯ ⋯ }2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{x?R|x- 3>2},{x|x-3>2}言描述法:例: {不是直角三角形的三角形 }4)V e : 4、集合: (1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例: {x|x2=-5 }二、的基本关系 1. “包含”关系— 子集注意:有两种可能 (1)A 是 B 的一部分, ;(2)A 与 B 是同一集合。

反之 :集合 A 不包含于集合 B,或集合 B 不包含集合 A,记作 AB 或 BA2. “相等”关系:A =B (5≥5实A ={x |x 2-1=0}B ={- 即: ①任何一个集合是它本身的子集。

A íA②真子集 :如果 A íB,且 A1B 那就说集合 A 是集合 B 的真子集,记作 AB( 或 BA)③如果 A íB,BíC,那么 A íC④如果 A íB 同时B íA 那么 A=B3.不含任何元素的集合叫做空集,记为Φ规定 :空集是任何集合的子集,空集是任何非空集合的真子集。

4.子集个数:有 n 个元素的集合,含有 2n 个子集, 2n-1 个真子集,含有 2n-1 个非空子集,含 有 2n-1 个非空真子集三、集合的运算运算类型交集并集补集定义由所有属于 A 且属于 B 的元素所组成的集合 ,叫做 A,B 的交集 .记作 AB(读作‘A 交 B ’,)即 AB={x|xA ,且 xB }. 由所有属于集合 A 或属于集合 B 的元素所组成的集合,叫做 A,B 的并集 .记作:AB(读作 ‘A 并 B ’,)即 AB={x|xA ,或 xB}). 【基本初等函数】一、指数函数(一)指数与的运算 1.根式的概念:一般地,如果,那么叫做的次方根 (nthroot) ,其中 >1,且 ∈_. 当是,正数的次方根是一个的次方根是数 ,的次方根用符号表示 .式子叫做根式 (radical) ,这里叫做根指数 (radicalexponent) ,叫做被开 方数 (radicand). 当是偶数时,正数的次方根有两个,这两个数互为相反数 .此时,正数的正的次方 根用符号表示,负的次方根用符号 -表示 .正的次方根与负的次方根可以合并成 ±(>0).由 此可数没有偶次方根 ;0 的任何次方根都是注意:当是,当是, 2.分数指数幂 正数的分数定: 0 的正分数等于 0,0分数没有意义 指定了分数后,指数的概念就从整数指数推广到了有理数指 数,那么整数的运可以推广到有数的运算性质(二)指数函数及其性质1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.注意:指数函数的底数的取值范围,底数不能是负数、零和 1.2、指数函数的图象和性质【函数的应用】1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。

即:方程有实数根函数的图象与轴有交点函数有零点.3、函数零点的求法:求函数的零点:1(代数法)求方程的实数根;2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:二次函数.1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.高一数学知识点41.知识网络图复数知识点网络图2.复数中的难点(1)复数的向量表示法的运算.对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难.对此应认真体会复数向量运算的几何意义,对其灵活地加以证明.(2)复数三角形式的乘方和开方.有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练.(3)复数的辐角主值的求法.(4)利用复数的几何意义灵活地解决问题.复数可以用向量表示,同时复数的模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会.3.复数中的重点(1)理解好复数的概念,弄清实数、虚数、纯虚数的不同点.(2)熟练掌握复数三种表示法,以及它们间的互化,并能准确地求出复数的模和辐角.复数有代数,向量和三角三种表示法.特别是代数形式和三角形式的互化,以及求复数的模和辐角在解决具体问题时经常用到,是一个重点内容.(3)复数的三种表示法的各种运算,在运算中重视共轭复数以及模的有关性质.复数的运算是复数中的主要内容,掌握复数各种形式的运算,特别是复数运算的几何意义更是重点内容.(4)复数集中一元二次方程和二项方程的解法.高一数学知识点5幂函数定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

定义域和值域:当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。

当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。

在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

而只有a为正数,0才进入函数的值域性质:对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。

当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数;排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

相关文档
最新文档