高一数学知识点总结归纳5篇最新
高一数学知识点整理归纳五篇
高一数学知识点整理归纳五篇高一数学知识点总结1指数函数(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑.(2)指数函数的值域为大于0的实数集合.(3)函数图形都是下凹的.(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的.(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与_轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与_轴的负半轴的单调递增函数的位置.其中水平直线y=1是从递减到递增的一个过渡位置.(6)函数总是在某一个方向上无限趋向于_轴,永不相交.(7)函数总是通过(0,1)这点.(8)显然指数函数无界.奇偶性定义一般地,对于函数f(_)(1)如果对于函数定义域内的任意一个_,都有f(-_)=-f(_),那么函数f(_)就叫做奇函数.(2)如果对于函数定义域内的任意一个_,都有f(-_)=f(_),那么函数f(_)就叫做偶函数.(3)如果对于函数定义域内的任意一个_,f(-_)=-f(_)与f(-_)=f(_)同时成立,那么函数f(_)既是奇函数又是偶函数,称为既奇又偶函数.(4)如果对于函数定义域内的任意一个_,f(-_)=-f(_)与f(-_)=f(_)都不能成立,那么函数f(_)既不是奇函数又不是偶函数,称为非奇非偶函数.高一数学知识点总结2集合与元素一个东西是集合还是元素并不是绝对的,很多情况下是相对的,集合是由元素组成的集合,元素是组成集合的元素.例如:你所在的班级是一个集合,是由几十个和你同龄的同学组成的集合,你相对于这个班级集合来说,是它的一个元素;而整个学校又是由许许多多个班级组成的集合,你所在的班级只是其中的一分子,是一个元素.班级相对于你是集合,相对于学校是元素,参照物不同,得到的结论也不同,可见,是集合还是元素,并不是绝对的..解集合问题的关键解集合问题的关键:弄清集合是由哪些元素所构成的,也就是将抽象问题具体化.形象化,将特征性质描述,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则_肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则_不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数.在_大于0时,函数的值域总是大于0的实数.在_小于0时,则只有同时q为奇数,函数的值域为非零的实数.而只有a为正数,0才进入函数的值域.由于_大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.可以看到:(1)所有的图形都通过(1,1)这点.(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数.(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸.(4)当a小于0时,a越小,图形倾斜程度越大.(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点.(6)显然幂函数.解题方法:换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这种方法叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化.复杂问题简单化,变得容易处理.换元法又称辅助元素法.变量代换法.通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来.或者变为熟悉的形式,把复杂的计算和推证简化.它可以化高次为低次.化分式为整式.化无理式为有理式.化超越式为代数式,在研究方程.不等式.函数.数列.三角等问题中有广泛的应用.高一数学知识点总结4一:集合的含义与表示1.集合的含义:集合为一些确定的.不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体.把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集.2.集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于.(2)元素的互异性:一个给定集合中的元素是的,不可重复的.(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合 3.集合的表示:{…}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法.a.列举法:将集合中的元素一一列举出来{a,b,c……}b.描述法:①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合.{_?R|_-3 2},{_|_-3 2}②语言描述法:例:{不是直角三角形的三角形}③Venn图:画出一条封闭的曲线,曲线里面表示集合.4.集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合5.元素与集合的关系:(1)元素在集合里,则元素属于集合,即:a?A(2)元素不在集合里,则元素不属于集合,即:a¢A注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N_或N+整数集Z有理数集Q实数集R6.集合间的基本关系(1).〝包含〞关系(1)—子集定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集.高一数学知识点总结5圆的方程定义:圆的标准方程(_-a)2+(y-b)2=r2中,有三个参数 a.b.r,即圆心坐标为(a,b),只要求出 a.b.r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件.直线和圆的位置关系:1.直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系.①Δ 0,直线和圆相交.②Δ=0,直线和圆相切.③Δ 0,直线和圆相离.方法二是几何的观点,即把圆心到直线的距离d和半径R的大小加以比较.①dR,直线和圆相离.2.直线和圆相切,这类问题主要是求圆的切线方程.求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况.3.直线和圆相交,这类问题主要是求弦长以及弦的中点问题.切线的性质⑴圆心到切线的距离等于圆的半径;⑵过切点的半径垂直于切线;⑶经过圆心,与切线垂直的直线必经过切点;⑷经过切点,与切线垂直的直线必经过圆心;当一条直线满足(1)过圆心;(2)过切点;(3)垂直于切线三个性质中的两个时,第三个性质也满足.切线的判定定理经过半径的外端点并且垂直于这条半径的直线是圆的切线.切线长定理从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角.高一数学知识点整理归纳精选五篇。
高一数学知识点总结大全(5篇)
高一数学知识点总结大全(集锦5篇)一、集合及其表示1、集合的含义:“集合”这个词首先让我们想到的是上体育课或者开会时教师常常喊的“全体集合”。
数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。
所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。
比方高一二班集合,那么全部高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。
2、集合的表示通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。
a、b、c就是集合A中的元素,记作a∈A,。
有一些特别的集合需要记忆:非负整数集(即自然数集)N正整数集N_或N+整数集Z有理数集Q实数集R集合的表示方法:列举法与描述法。
①列举法:{a,b,c……}②描述法:将集合中的元素的公共属性描述出来。
如{x?R|x—3>2},{x|x—3>2},{(x,y)|y=x2+1}③语言描述法:例:{不是直角三角形的三角形}例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}强调:描述法表示集合应留意集合的代表元素A={(x,y)|y=x2+3x+2}与B={y|y=x2+3x+2}不同。
集合A中是数组元素(x,y),集合B中只有元素y。
3、集合的三个特性(1)无序性指集合中的元素排列没有挨次,如集合A={1,2},集合B={2,1},则集合A=B。
例题:集合A={1,2},B={a,b},若A=B,求a、b的值。
解:A=B留意:该题有两组解。
(2)互异性指集合中的元素不能重复,A={2,2}只能表示为{2}(3)确定性集合确实定性是指组成集合的元素的性质必需明确,不允许有模棱两可、含混不清的状况。
高一数学学问点总结大全(2)1、多面体的构造特征(1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。
正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱。
高一数学知识点总结(15篇)
高一数学知识点总结总结是把一定阶段内的有关情况分析研究,做出有指导性结论的书面材料,它能帮我们理顺知识结构,突出重点,突破难点,因此好好准备一份总结吧。
总结怎么写才不会流于形式呢?以下是小编精心整理的高一数学知识点总结,希望能够帮助到大家。
高一数学知识点总结1一、函数的概念与表示1、映射(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B 的映射,记作f:A→B。
注意点:(1)对映射定义的理解。
(2)判断一个对应是映射的方法。
一对多不是映射,多对一是映射2、函数构成函数概念的三要素①定义域②对应法则③值域两个函数是同一个函数的条件:三要素有两个相同二、函数的解析式与定义域1、求函数定义域的主要依据:(1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;三、函数的值域1求函数值域的方法①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈R的分式;④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);⑤单调性法:利用函数的单调性求值域;⑥图象法:二次函数必画草图求其值域;⑦利用对号函数⑧几何意义法:由数形结合,转化距离等求值域。
主要是含绝对值函数四.函数的奇偶性1.定义:设y=f(x),x∈A,如果对于任意∈A,都有,则称y=f(x)为偶函数。
如果对于任意∈A,都有,则称y=f(x)为奇函数。
2.性质:①y=f(x)是偶函数y=f(x)的图象关于轴对称,y=f(x)是奇函数y=f(x)的图象关于原点对称,②若函数f(x)的定义域关于原点对称,则f(0)=0③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[两函数的定义域D1,D2,D1∩D2要关于原点对称]3.奇偶性的判断①看定义域是否关于原点对称②看f(x)与f(-x)的关系五、函数的单调性1、函数单调性的定义:2设是定义在M上的函数,若f(x)与g(x)的单调性相反,则在M 上是减函数;若f(x)与g(x)的单调性相同,则在M上是增函数。
人教版高一数学必修一知识点归纳最新五篇
人教版高一数学必修一知识点归纳最新五篇对于很多刚上高中的同学们来说,高一数学必修一是噩梦一般的存在,其知识点非常的繁琐复杂,让同学们头疼不已。
对于很多刚上高中的同学们来说,高一数学必修一是噩梦一般的存在,其知识点非常的繁琐复杂,让同学们头疼不已。
人教版高一数学必修一知识点1I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a 0时,开口方向向上,a 0时,开口方向向下,IaI还可以决定开口大小,IaI 越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质1.抛物线是轴对称图形。
对称轴为直线x=-b/2a。
对称轴与抛物线的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a 0时,抛物线向上开口;当a 0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
人教版高一数学必修一知识点2【基本初等函数】一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中 1,且∈.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±( 0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
最新高一数学知识点整理归纳5篇
最新高一数学知识点整理归纳5篇说到高一数学,很多同学都会说很难,的确,相对而言,高一数学是高中数学中最难的一部分,但我们一定要把知识点给吃透.下面就是松鼠给大家带来的最新高一数学知识点整理归纳5篇,希望能帮助到大家!更多高一数学的相关内容推荐↓↓↓人教版高一数学知识点整理五篇分享高一数学集合知识点归纳高一数学知识点大全5篇学好高一数学五大方法数学课本知识点大全高一★高一数学知识点总结11.函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2.复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称,高中数学;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;★高一数学知识点总结2集合具有某种特定性质的事物的总体。
最全高一数学知识点归纳5篇
最全高一数学知识点归纳5篇高一数学必修一是很多同学的噩梦,知识点众多而且杂,对于高一的新生们很不友好,小编建议同学们通过总结知识点的方法来学习数学,这样可以提高学习效率。
下面就是小编给大家带来的高一数学知识点,希望能帮助到大家!高一数学知识点总结11过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于180°18推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等22边角边公理(sas)有两边和它们的夹角对应相等的两个三角形全等23角边角公理(asa)有两角和它们的夹边对应相等的两个三角形全等24推论(aas)有两角和其中一角的对边对应相等的两个三角形全等25边边边公理(sss)有三边对应相等的两个三角形全等26斜边、直角边公理(hl)有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31推论1等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60°的等腰三角形是等边三角形37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半39定理线段垂直平分线上的点和这条线段两个端点的距离相等40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42定理1关于某条直线对称的两个图形是全等形43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3平行四边形的对角线互相平分56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形判定定理3对角线互相平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即s=(a×b)÷267菱形判定定理1四边都相等的四边形是菱形68菱形判定定理2对角线互相垂直的平行四边形是菱形69正方形性质定理1正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1关于中心对称的两个图形是全等的72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半l=(a+b)÷2s=l×h83(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91相似三角形判定定理1两角对应相等,两三角形相似(asa)92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93判定定理2两边对应成比例且夹角相等,两三角形相似(sas)94判定定理3三边对应成比例,两三角形相似(sss)95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97性质定理2相似三角形周长的比等于相似比98性质定理3相似三角形面积的比等于相似比的平方99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
高一数学知识点重点总结归纳精选5篇
高一数学知识点重点总结归纳精选5篇高一数学是很多同学的噩梦,知识点众多而且复杂,对于高一的同学们很不友好,建议同学们通过总结知识点的方法来学习数学,这样可以提高学习效率。
下面就是给大家带来的高一数学知识点总结,希望能帮助到大家!高一数学知识点总结1集合与元素一个东西是集合还是元素并不是绝对的,很多情况下是相对的,集合是由元素组成的集合,元素是组成集合的元素。
例如:你所在的班级是一个集合,是由几十个和你同龄的同学组成的集合,你相对于这个班级集合来说,是它的一个元素;而整个学校又是由许许多多个班级组成的集合,你所在的班级只是其中的一分子,是一个元素。
班级相对于你是集合,相对于学校是元素,参照物不同,得到的结论也不同,可见,是集合还是元素,并不是绝对的。
.解集合问题的关键解集合问题的关键:弄清集合是由哪些元素所构成的,也就是将抽象问题具体化、形象化,将特征性质描述法表示的集合用列举法来表示,或用韦恩图来表示抽象的集合,或用图形来表示集合;比如用数轴来表示集合,或是集合的元素为有序实数对时,可用平面直角坐标系中的图形表示相关的集合等。
高一数学知识点总结2幂函数定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a 为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域性质:对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。
高一数学知识点总结归纳5篇精选
高一数学知识点总结归纳5篇精选高一数学知识点总结1考点要求:1.几何体的展开图、几何体的三视图仍是高考的热点.2.三视图和其他的知识点结合在一起命题是新教材中考查学生三视图及几何量计算的趋势.3.重点掌握以三视图为命题背景,研究空间几何体的结构特征的题型.4.要熟悉一些典型的几何体模型,如三棱柱、长(正)方体、三棱锥等几何体的三视图.知识结构:1.多面体的结构特征(1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。
正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形.(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心.(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形.2.旋转体的结构特征(1)圆柱可以由矩形绕一边所在直线旋转一周得到.(2)圆锥可以由直角三角形绕一条直角边所在直线旋转一周得到.(3)圆台可以由直角梯形绕直角腰所在直线旋转一周或等腰梯形绕上下底面中心所在直线旋转半周得到,也可由平行于底面的平面截圆锥得到.(4)球可以由半圆面绕直径旋转一周或圆面绕直径旋转半周得到.3.空间几何体的三视图空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的平面图形留下的影子,与平面图形的形状和大小是全等和相等的,三视图包括正视图、侧视图、俯视图.三视图的长度特征:“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.4.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,基本步骤是:(1)画几何体的底面在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°或135°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴.已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半.(2)画几何体的高在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴,也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变.高一数学知识点总结2幂函数的性质:对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。
高一数学函数知识点总结(5篇)
高一数学函数知识点总结函数的解析式与定义域1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:(1)有时一个函数来自于一个实际问题,这时自变量____有实际意义,求定义域要结合实际意义考虑;(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如:①分式的分母不得为零;②偶次方根的被开方数不小于零;③对数函数的真数必须大于零;④指数函数和对数函数的底数必须大于零且不等于1;⑤三角函数中的正切函数y=tan____(____∈R,且k∈Z),余切函数y=cot____(____∈R,____≠kπ,k∈Z)等.应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可.已知f(____)的定义域是[a,b],求f[g(____)]的定义域是指满足a≤g(____)≤b的____的取值范围,而已知f[g(____)]的定义域[a,b]指的是____∈[a,b],此时f(____)的定义域,即g(____)的值域.2、求函数的解析式一般有四种情况(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式.(2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(____)=a____+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可.(3)若题设给出复合函数f[g(____)]的表达式时,可用换元法求函数f(____)的表达式,这时必须求出g(____)的值域,这相当于求函数的定义域.(4)若已知f(____)满足某个等式,这个等式除f(____)是未知量外,还出现其他未知量(如f(-____),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(____)的表达式.高一数学函数知识点总结(二)函数的值域与最值(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.(3)反函数法:利用函数f(____)与其反函数f-1(____)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.(6)判别式法:把y=f(____)变形为关于____的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.2、求函数的最值与值域的区别和联系求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.如函数的值域是(0,____],最大值是16,无最小值.再如函数的值域是(-∞,-____]∪[2,+∞),但此函数无最大值和最小值,只有在改变函数定义域后,如____>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.3、函数的最值在实际问题中的应用函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润最大”或“面积(体积)最大(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.高一数学函数知识点总结(三)函数的奇偶性1、函数的奇偶性的定义:对于函数f(____),如果对于函数定义域内的任意一个____,都有f(-____)=-f(____)(或f(-____)=f(____)),那么函数f(____)就叫做奇函数(或偶函数).正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(____)为奇函数或偶函数的必要不充分条件;(2)f(____)=-f(____)或f(-____)=f(____)是定义域上的恒等式.(奇偶性是函数定义域上的整体性质).2、奇偶函数的定义是判断函数奇偶性的主要依据。
人教版高一数学必修一知识点总结5篇
人教版高一数学必修一知识点总结5篇数学这个科目一直是同学们又爱又恨的科目,学的好的同学靠它来与其它同学拉开分数,学的差的同学则在化学上失分很多;在平时的学习和考试中同学们要善于总结知识点,这样有助于帮助同学们学好数学。
人教版高一数学必修一知识点1一.知识归纳:1.集合的有关概念。
1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。
③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件2)集合的表示方法:常用的有列举法、描述法和图文法3)集合的分类:有限集,无限集,空集。
4)常用数集:N,Z,Q,R,N_.子集、交集、并集、补集、空集、全集等概念。
1)子集:若对x∈A都有x∈B,则AB(或AB);2)真子集:AB且存在x0∈B但x0A;记为AB(或,且)3)交集:A∩B={x|x∈A且x∈B}4)并集:A∪B={x|x∈A或x∈B}5)补集:CUA={x|xA但x∈U}注意:①?A,若A≠?,则?A;②若,,则;③若且,则A=B(等集)3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1)与、?的区别;(2)与的区别;(3)与的区别。
4.有关子集的几个等价关系①A∩B=AAB;②A∪B=BAB;③ABCuACuB;④A∩CuB=空集CuAB;⑤CuA∪B=IAB。
5.交、并集运算的性质①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B ∪A;③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。
最新高一数学知识点总结5篇
2022高一数学知识点总结5篇文章一:高一数学知识点总结(1)——初步代数在高一数学中,初步代数是一个非常重要的内容。
它包括了一次函数、二次函数、函数的概念、函数的图像、函数的性质等知识点。
举例如下:1.一次函数一次函数的一般形式为:y=kx+b。
其中,k表示斜率,b为截距。
知道一次函数的图像、斜率、截距,可以用描点法、斜率法和截距法画出它的图像。
2.二次函数二次函数的一般形式为:y=ax²+bx+c。
其中,a为二次项系数,b为一次项系数,c为常数项。
知道二次函数的图像、顶点坐标、对称轴、零点、判别式等信息,可以作出函数的图像。
3.函数的概念函数是将集合A中每个元素x与唯一的元素y对应起来的一个规律。
常用的表示法是f(x),其中f表示函数名,x为自变量,y为因变量。
函数的定义域、值域、图像、单调性等是初步代数中需要掌握的知识。
文章二:高一数学知识点总结(2)——平面几何平面几何也是高一数学中的重要内容,它包括了平面图形的基本性质、相似、全等、共线和垂直、平行等知识点。
举例如下:1.平面图形的基本性质平面图形的基本性质有:周长、面积、角度、对称性等。
知道平面图形的这些性质,可以通过计算周长、面积等,求出其具体特征。
2.相似相似是指两个图形形状相同,但大小不同。
如果两个图形相似,那么它们的对应角度相等,对应边的比相等。
根据相似的关系,可以通过比例来求解图形的各个部分。
3.全等全等是指两个图形形状和大小都相同。
如果两个图形全等,那么它们的对应角度和对应边长都相等,根据全等的性质,可以通过移动、翻转和旋转等方式,证明两个图形全等。
文章三:高一数学知识点总结(3)——三角函数三角函数是高中数学中的重点知识之一,它包括了正弦、余弦、正切等三角函数的概念、性质以及应用。
举例如下:1.正弦函数正弦函数以y=sin(x)的形式表示,其中x为弧度。
正弦函数的图像是一个波浪形,其最大值为1,最小值为-1。
正弦函数在三角函数、谐波振动等领域有着广泛的应用。
高一数学知识点总结归纳5篇精选
高一数学知识点总结归纳5篇精选高一是高中学习生涯中打好基础的一年,而高中数学也是比较难的一门学科。
那么,如何学好高一数学呢?高一数学知识点总结1考点要求:1.几何体的展开图、几何体的三视图仍是高考的热点.2.三视图和其他的知识点结合在一起命题是新教材中考查学生三视图及几何量计算的趋势.3.重点掌握以三视图为命题背景,研究空间几何体的结构特征的题型.4.要熟悉一些典型的几何体模型,如三棱柱、长(正)方体、三棱锥等几何体的三视图.知识结构:1.多面体的结构特征(1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。
正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形.(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心.(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形.2.旋转体的结构特征(1)圆柱可以由矩形绕一边所在直线旋转一周得到.(2)圆锥可以由直角三角形绕一条直角边所在直线旋转一周得到.(3)圆台可以由直角梯形绕直角腰所在直线旋转一周或等腰梯形绕上下底面中心所在直线旋转半周得到,也可由平行于底面的平面截圆锥得到.(4)球可以由半圆面绕直径旋转一周或圆面绕直径旋转半周得到.3.空间几何体的三视图空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的平面图形留下的影子,与平面图形的形状和大小是全等和相等的,三视图包括正视图、侧视图、俯视图.三视图的长度特征:“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.4.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,基本步骤是:(1)画几何体的底面在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°或135°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴.已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半.(2)画几何体的高在已知图形中过O点作z轴垂直于然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x0,则a可以是任意实数;排除了为0这种可能,即对于x0x=0的所有实数,q不能是偶数;排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
高一数学必修一知识点总结归纳(6篇)
高一数学必修一知识点总结归纳1二次函数I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质1.抛物线是轴对称图形。
对称轴为直线x=-b/2a。
对称轴与抛物线的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
高一数学必修一知识点总结归纳2对数函数对数函数的一般形式为,它实际上就是指数函数的反函数。
因此指数函数里对于a的规定,同样适用于对数函数。
右图给出对于不同大小a所表示的函数图形:可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
(1)对数函数的定义域为大于0的实数集合。
(2)对数函数的值域为全部实数集合。
人教版高一数学必修一知识点归纳最新五篇
人教版高一数学必修一知识点归纳最新五篇对于很多刚上高中的同学们来说,高一数学必修一是噩梦一般的存在,其知识点非常的繁琐复杂,让同学们头疼不已。
对于很多刚上高中的同学们来说,高一数学必修一是噩梦一般的存在,其知识点非常的繁琐复杂,让同学们头疼不已。
人教版高一数学必修一知识点1I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a0时,抛物线向上开口;当a1,且∈.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
注意:当是奇数时,当是偶数时,2.分数指数幂正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.3.实数指数幂的运算性质(二)指数函数及其性质1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x 是自变量,函数的定义域为R.注意:指数函数的底数的取值范围,底数不能是负数、零和1.2、指数函数的图象和性质人教版高一数学必修一知识点31.函数知识:基本初等函数性质的考查,以导数知识为背景的函数问题;以向量知识为背景的函数问题;从具体函数的考查转向抽象函数考查;从重结果考查转向重过程考查;从熟悉情景的考查转向新颖情景的考查。
2.向量知识:向量具有数与形的双重性,高考中向量试题的命题趋向:考查平面向量的基本概念和运算律;考查平面向量的坐标运算;考查平面向量与几何、三角、代数等学科的综合性问题。
高一数学知识点重点总结归纳精选5篇
高一数学知识点重点总结归纳精选5篇高一数学是很多同学的噩梦,知识点众多而且复杂,对于高一的同学们很不友好,建议同学们通过总结知识点的方法来学习数学,这样可以提高学习效率。
高一数学知识点总结1集合与元素一个东西是集合还是元素并不是绝对的,很多情况下是相对的,集合是由元素组成的集合,元素是组成集合的元素。
例如:你所在的班级是一个集合,是由几十个和你同龄的同学组成的集合,你相对于这个班级集合来说,是它的一个元素;而整个学校又是由许许多多个班级组成的集合,你所在的班级只是其中的一分子,是一个元素。
班级相对于你是集合,相对于学校是元素,参照物不同,得到的结论也不同,可见,是集合还是元素,并不是绝对的。
.解集合问题的关键解集合问题的关键:弄清集合是由哪些元素所构成的,也就是将抽象问题具体化、形象化,将特征性质描述法表示的集合用列举法来表示,或用韦恩图来表示抽象的集合,或用图形来表示集合;比如用数轴来表示集合,或是集合的元素为有序实数对时,可用平面直角坐标系中的图形表示相关的集合等。
值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域。
由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.可以看到:(1)所有的图形都通过(1,1)这点。
(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。
(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。
(4)当a小于0时,a越小,图形倾斜程度越大。
高一必修一数学知识点归纳5篇
高一必修一数学知识点归纳5篇高一数学是很多同学的噩梦,知识点众多而且杂,对于高一的同学们很不友好,小编建议同学们通过总结知识点的方法来学习数学,这样可以提高学习效率.下面就是小编给大家带来的高一数学必修一知识点,希望能帮助到大家大家!高一必修一数学知识点11.〝包含〞关系子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合.反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.〝相等〞关系(5 5,且5 5,则5=5)实例:设A={_|_2-1=0}B={-1,1}〝元素相同〞结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B①任何一个集合是它本身的子集.A A②真子集:如果A B,且A1B那就说集合A是集合B的真子集,记作AB(或BA)③如果A B,B C,那么A C④如果A B同时B A那么A=B3.不含任何元素的集合叫做空集,记为规定:空集是任何集合的子集,空集是任何非空集合的真子集.高一必修一数学知识点2一.集合一.集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ }如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法.注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N_或N+整数集Z有理数集Q实数集R1)列举法:{a,b,c }2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.{_ R|_-3 2},{_|_-3 2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4.集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{_|_2=-5}二.集合间的基本关系1.〝包含〞关系子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合.反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.〝相等〞关系:A=B(5 5,且5 5,则5=5)实例:设A={_|_2-1=0}B={-1,1}〝元素相同则两集合相等〞即:①任何一个集合是它本身的子集.A A②真子集:如果A B,且A B那就说集合A是集合B的真子集,记作AB(或BA)③如果A B,B C,那么A C④如果A B同时B A那么A=B3.不含任何元素的集合叫做空集,记为规定:空集是任何集合的子集,空集是任何非空集合的真子集. 有n个元素的集合,含有2n个子集,2n-1个真子集二.函数1.函数定义域.值域求法综合2..函数.2.幂函数性质归纳.(1)所有的幂函数在(0,+ )都有定义并且图象都过点(1,1);(2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;(3)时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.方程的根与函数的零点1.函数零点的概念:对于函数,把使成立的实数叫做函数的零点.2.函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标.即:方程有实数根函数的图象与轴有交点函数有零点.3.函数零点的求法:○1(代数法)求方程的实数根;○2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.4.二次函数的零点:二次函数.(1)△ 0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.(2)△=0,方程有两相等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△ 0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.三.平面向量向量:既有大小,又有方向的量.数量:只有大小,没有方向的量.有向线段的三要素:起点.方向.长度.零向量:长度为的向量.单位向量:长度等于个单位的向量.相等向量:长度相等且方向相同的向量向量的运算加法运算AB+BC=AC,这种计算法则叫做向量加法的三角形法则.已知两个从同一点O出发的两个向量OA.OB,以OA.OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA.OB的和,这种计算法则叫做向量加法的平行四边形法则.对于零向量和任意向量a,有:0+a=a+0=a.|a+b| |a|+|b|.向量的加法满足所有的加法运算定律.减法运算与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量.(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b).数乘运算实数与向量a的积是一个向量,这种运算叫做向量的数乘,记作 a,| a|=| ||a|,当 0时, a的方向和a的方向相同,当 0时, a的方向和a的方向相反,当 =0时, a=0.设 . 是实数,那么:(1)( )a= ( a)(2)( )a= a a(3) (a b)= a b(4)(- )a=-( a)= (-a).向量的加法运算.减法运算.数乘运算统称线性运算.向量的数量积已知两个非零向量a.b,那么|a||b|cos 叫做a与b的数量积或内积,记作a?b, 是a与b的夹角,|a|cos (|b|cos )叫做向量a在b方向上(b在a方向上)的投影.零向量与任意向量的数量积为0.a?b的几何意义:数量积a?b等于a的长度|a|与b在a的方向上的投影|b|cos 的乘积.两个向量的数量积等于它们对应坐标的乘积的和.四.三角函数1.善于用〝1〝巧解题2.三角问题的非三角化解题策略3.三角函数有界性求最值解题方法4.三角函数向量综合题例析5.三角函数中的数学思想方法高一必修一数学知识点3一.定义与定义式:自变量_和因变量y有如下关系:y=k_+b则此时称y是_的一次函数.特别地,当b=0时,y是_的正比例函数.即:y=k_(k为常数,k 0)二.一次函数的性质:1.y的变化值与对应的_的变化值成正比例,比值为k 即:y=k_+b(k为任意不为零的实数b取任何实数)2.当_=0时,b为函数在y轴上的截距.三.一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像一条直线.因此,作一次函数的图像只需知道2点,并连成直线即可.(通常找函数图像与_轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(_,y),都满足等式:y=k_+b.(2)一次函数与y轴交点的坐标总是(0,b),与_轴总是交于(-b/k,0)正比例函数的图像总是过原点.3.k,b与函数图像所在象限:当k 0时,直线必通过一.三象限,y随_的增大而增大;当k 0时,直线必通过二.四象限,y随_的增大而减小.当b 0时,直线必通过一.二象限;当b=0时,直线通过原点当b 0时,直线必通过三.四象限.特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像.这时,当k 0时,直线只通过一.三象限;当k 0时,直线只通过二.四象限四.确定一次函数的表达式:已知点A(_1,y1);B(_2,y2),请确定过点A.B的一次函数的表达式.(1)设一次函数的表达式(也叫解析式)为y=k_+b.(2)因为在一次函数上的任意一点P(_,y),都满足等式y=k_+b.所以可以列出2个方程:y1=k_1+b ①和y2=k_2+b ②(3)解这个二元一次方程,得到k,b的值.(4)最后得到一次函数的表达式.五.一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数.s=vt.2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数.设水池中原有水量S.g=S-ft.六.常用公式:(不全,希望有人补充)1.求函数图像的k值:(y1-y2)/(_1-_2)2.求与_轴平行线段的中点:|_1-_2|/23.求与y轴平行线段的中点:|y1-y2|/24.求任意线段的长: (_1-_2) 2+(y1-y2) 2(注:根号下(_1-_2)与(y1-y2)的平方和)高一必修一数学知识点4指数函数(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑.(2)指数函数的值域为大于0的实数集合.(3)函数图形都是下凹的.(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的.(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与_轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与_轴的负半轴的单调递增函数的位置.其中水平直线y=1是从递减到递增的一个过渡位置.(6)函数总是在某一个方向上无限趋向于_轴,永不相交.(7)函数总是通过(0,1)这点.(8)显然指数函数_.高一必修一数学知识点5一:集合的含义与表示1.集合的含义:集合为一些确定的.不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体.把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集.2.集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于.(2)元素的互异性:一个给定集合中的元素是的,不可重复的.(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合3.集合的表示:{ }(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法.a.列举法:将集合中的元素一一列举出来{a,b,c }b.描述法:①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合. {_ R|_-3 2},{_|_-3 2}②语言描述法:例:{不是直角三角形的三角形}③Venn图:画出一条封闭的曲线,曲线里面表示集合.4.集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合5.元素与集合的关系:(1)元素在集合里,则元素属于集合,即:a A(2)元素不在集合里,则元素不属于集合,即:a¢A 注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N_或N+整数集Z有理数集Q实数集R6.集合间的基本关系(1).〝包含〞关系(1) 子集定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集.二.函数的概念函数的概念:设A.B是非空的数集,如果按照某个确定的对应关系f,使对于集合A 中的任意一个数_,在集合B中都有确定的数f(_)和它对应,那么就称f:A---B为从集合A到集合B的一个函数.记作:y=f(_),_ A.(1)其中,_叫做自变量,_的取值范围A叫做函数的定义域;(2)与_的值相对应的y值叫做函数值,函数值的集合{f(_)|_ A}叫做函数的值域.函数的三要素:定义域.值域.对应法则函数的表示方法:(1)解析法:明确函数的定义域(2)图想像:确定函数图像是否连线,函数的图像可以是连续的曲线.直线.折线.离散的点等等.(3)列表法:选取的自变量要有代表性,可以反应定义域的特征.4.函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(_),(_ A)中的_为横坐标,函数值y为纵坐标的点P(_,y)的集合C,叫做函数y=f(_),(_ A)的图象.C上每一点的坐标(_,y)均满足函数关系y=f(_),反过来,以满足y=f(_)的每一组有序实数对_.y为坐标的点(_,y),均在C上.(2)画法A.描点法:B.图象变换法:平移变换;伸缩变换;对称变换,即平移.(3)函数图像平移变换的特点:1)加左减右只对_2)上减下加只对y3)函数y=f(_)关于_轴对称得函数y=-f(_)4)函数y=f(_)关于Y轴对称得函数y=f(-_)5)函数y=f(_)关于原点对称得函数y=-f(-_)6)函数y=f(_)将_轴下面图像翻到_轴上面去,_轴上面图像不动得函数y=|f(_)|7)函数y=f(_)先作_ 0的图像,然后作关于y轴对称的图像得函数f(|_|)三.函数的基本性质1.函数解析式子的求法(1.函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2.求函数的解析式的主要方法有:1)代入法:2)待定系数法:3)换元法:4)拼凑法:2.定义域:能使函数式有意义的实数_的集合称为函数的定义域.求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数.对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的_的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.3.相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)4.区间的概念:(1)区间的分类:开区间.闭区间.半开半闭区间(2)无穷区间(3)区间的数轴表示5.值域(先考虑其定义域)(1)观察法:直接观察函数的图像或函数的解析式来求函数的值域;(2)反表示法:针对分式的类型,把Y关于_的函数关系式化成_关于Y的函数关系式,由_的范围类似求Y的范围.(3)配方法:针对二次函数的类型,根据二次函数图像的性质来确定函数的值域,注意定义域的范围.(4)代换法(换元法):作变量代换,针对根式的题型,转化成二次函数的类型.6.分段函数(1)在定义域的不同部分上有不同的解析表达式的函数.(2)各部分的自变量的取值情况.(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.(4)常用的分段函数有取整函数.符号函数.含绝对值的函数7.映射一般地,设A.B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A 中的任意一个元素_,在集合B中都有确定的元素y与之对应,那么就称对应f:A---B为从集合A到集合B的一个映射.记作〝f(对应关系):A(原象)---B(象)〞对于映射f:A B来说,则应满足:(1)集合A中的每一个元素,在集合B中都有象,并且象是的;(2)集合A中不同的元素,在集合B中对应的象可以是同一个;(3)不要求集合B中的每一个元素在集合A中都有原象.注意:映射是针对自然界中的所有事物而言的,而函数仅仅是针对数字来说的.所以函数是映射,而映射不一定的函数8.函数的单调性(局部性质)及最值(1.增减函数(1)设函数y=f(_)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量_1,_2,当_1(2)如果对于区间D上的任意两个自变量的值_1,_2,当_1注意:函数的单调性是函数的局部性质;函数的单调性还有单调不增,和单调不减两种(2.图象的特点如果函数y=f(_)在某个区间是增函数或减函数,那么说函数y=f(_)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3.函数单调区间与单调性的判定方法(A)定义法:任取_1,_2 D,且_1作差f(_1)-f(_2);变形(通常是因式分解和配方);定号(即判断差f(_1)-f(_2)的正负);下结论(指出函数f(_)在给定的区间D上的单调性).(B)图象法(从图象上看升降)(C)复合函数的单调性复合函数:如果y=f(u)(u M),u=g(_)(_ A),则y=f[g(_)]=F(_)(_ A)称为f.g的复合函数.复合函数f[g(_)]的单调性与构成它的函数u=g(_),y=f(u)的单调性密切相关,其规律:〝同增异减〞注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.9:函数的奇偶性(整体性质)(1.偶函数一般地,对于函数f(_)的定义域内的任意一个_,都有f(-_)=f(_),那么f(_)就叫做偶函数.(2.奇函数一般地,对于函数f(_)的定义域内的任意一个_,都有f(-_)= f(_),那么f(_)就叫做奇函数.(3.具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.利用定义判断函数奇偶性的步骤:a.首先确定函数的定义域,并判断其是否关于原点对称;若是不对称,则是非奇非偶的函数;若对称,则进行下面判断;b.确定f(-_)与f(_)的关系;c.作出相应结论:若f(-_)=f(_)或f(-_)-f(_)=0,则f(_)是偶函数; 若f(-_)=-f(_)或f(-_)+f(_)=0,则f(_)是奇函数.(4)利用奇偶函数的四则运算以及复合函数的奇偶性a.在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;a.复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇.注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定;(2)由f(-_) f(_)=0或f(_)/f(-_)= 1来判定;(3)利用定理,或借助函数的图象判定.10.函数最值及性质的应用(1.函数的最值a利用二次函数的性质(配方法)求函数的(小)值b利用图象求函数的(小)值c利用函数单调性的判断函数的(小)值:如果函数y=f(_)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(_)在_=b处有值f(b);如果函数y=f(_)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(_)在_=b处有最小值f(b);(2.函数的奇偶性与单调性奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性.(3.判断含糊单调性时也可以用作商法,过程与作差法类似,区别在于作差法是与0作比较,作商法是与1作比较.(4)绝对值函数求最值,先分段,再通过各段的单调性,或图像求最值.(5)在判断函数的奇偶性时候,若已知是奇函数可以直接用f(0)=0,但是f(0)=0并不一定可以判断函数为奇函数.(高一阶段可以利用奇函数f(0)=0).1.精选高一数学知识点总结归纳5篇2.最全高一数学知识点归纳5篇3.精选最新高一数学知识点总结归纳5篇4.高一数学知识点大全5篇5.最新高一数学知识点5篇总结高一作文他生气了800字首夏犹清和,芳草亦未歇〞,本来是美好快乐的,可因为一件事,一切都变得不再那么美好借物喻人作文600字高一闻着春的气息,听见春的脚步,看见春的身影.已是六年级的毕业班学生,随之而来的压力高一作文开学第一天优秀范文今天是开学第一天.这一天是令人激动的,是崭新的一天.下面是小编给大家带来的开学第以生活启示为题的作文高一在生活中启示无处不在,每个人都会受到启发.我也是这样,就在今天我受到了蚂蚁的启示。
最全高一数学知识点归纳5篇
最全高一数学知识点归纳5篇高一数学必修一是很多同学的噩梦,知识点众多而且杂,对于高一的新生们很不友好,小编建议同学们通过总结知识点的方法来学习数学,这样可以提高学习效率。
下面就是小编给大家带来的高一数学知识点,希望能帮助到大家!高一数学知识点总结11过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于180°18推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等22边角边公理(sas)有两边和它们的夹角对应相等的两个三角形全等23角边角公理(asa)有两角和它们的夹边对应相等的两个三角形全等24推论(aas)有两角和其中一角的对边对应相等的两个三角形全等25边边边公理(sss)有三边对应相等的两个三角形全等26斜边、直角边公理(hl)有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31推论1等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60°的等腰三角形是等边三角形37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半39定理线段垂直平分线上的点和这条线段两个端点的距离相等40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42定理1关于某条直线对称的两个图形是全等形43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3平行四边形的对角线互相平分56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形判定定理3对角线互相平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即s=(a×b)÷267菱形判定定理1四边都相等的四边形是菱形68菱形判定定理2对角线互相垂直的平行四边形是菱形69正方形性质定理1正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1关于中心对称的两个图形是全等的72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半l=(a+b)÷2s=l×h83(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91相似三角形判定定理1两角对应相等,两三角形相似(asa)92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93判定定理2两边对应成比例且夹角相等,两三角形相似(sas)94判定定理3三边对应成比例,两三角形相似(sss)95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97性质定理2相似三角形周长的比等于相似比98性质定理3相似三角形面积的比等于相似比的平方99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
高一数学知重点难点识点总结归纳5篇
高一数学知重点难点识点总结归纳5篇高一数学知识点总结11.柱.锥.台.球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体.分类:以底面多边形的边数作为分类的标准分为三棱柱.四棱柱.五棱柱等.表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱.几何特征:两底面是对应边平行的全等多边形;侧面.对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体.分类:以底面多边形的边数作为分类的标准分为三棱锥.四棱锥.五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面.对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分.分类:以底面多边形的边数作为分类的标准分为三棱态.四棱台.五棱台等表示:用各顶点字母,如五棱台几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体.几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形.(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体.几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形.(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形.(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径.2.空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右).俯视图(从上向下)注:正视图反映了物体上下.左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右.前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下.前后的位置关系,即反映了物体的高度和宽度.3.空间几何体的直观图斜二测画法斜二测画法特点:①原来与_轴平行的线段仍然与_平行且长度不变;②原来与y轴平行的线段仍然与y平行,长度为原来的一半.高一数学知识点总结2如果直线a与平面平行,那么直线a与平面内的直线有哪些位置关系?平行或异面.若直线a与平面平行,那么在平面内与直线a平行的直线有多少条?这些直线的位置关系如何?无数条;平行.如果直线a与平面平行,经过直线a的平面与平面相交于直线b,那么直线a.b的位置关系如何?为什么?平行;因为a∥ ,所以a与没有公共点,则a与b没有公共点,又a与b在同一平面内,所以a与b平行.综上分析,在直线a与平面平行的条件下我们可以得到什么结论?如果一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.高一数学知识点总结3集合常用大写拉丁字母来表示,如:A,B,C 而对于集合中的元素则用小写的拉丁字母来表示,如:a,b,c 拉丁字母只是相当于集合的名字,没有任何实际的意义.将拉丁字母赋给集合的方法是用一个等式来表示的,例如:A={ }的形式.等号左边是大写的拉丁字母,右边花括号括起来的,括号内部是具有某种共同性质的数学元素.常用的有列举法和描述法.1.列举法﹕常用于表示有限集合,把集合中的所有元素一一列举出来﹐写在大括号内﹐这种表示集合的方法叫做列举法.{1,2,3, }2.描述法﹕常用于表示无限集合,把集合中元素的公共属性用文字﹐符号或式子等描述出来﹐写在大括号内﹐这种表示集合的方法叫做描述法.{_|P}(_为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于的正实数组成的集合表示为:{_|03.图示法(venn图)﹕为了形象表示集合,我们常常画一条封闭的曲线(或者说圆圈),用它的内部表示一个集合.集合自然语言常用数集的符号:(1)全体非负整数的集合通常简称非负整数集(或自然数集),记作N;不包括0的自然数集合,记作N_(2)非负整数集内排除0的集,也称正整数集,记作Z+;负整数集内也排除0的集,称负整数集,记作Z-(3)全体整数的集合通常称作整数集,记作Z(4)全体有理数的集合通常简称有理数集,记作Q.Q={p/q|p Z,q N,且p,q互质}(正负有理数集合分别记作Q+Q-)(5)全体实数的集合通常简称实数集,记作R(正实数集合记作R+;负实数记作R-)(6)复数集合计作C集合的运算:集合交换律A B=B AA B=B A集合结合律(A B) C=A(B C)(A B) C=A (B C)集合分配律 A (B C)=(A B) (A C)A (B C)=(A B) (A C)集合德.摩根律集合Cu(A B)=CuA CuBCu(A B)=CuA CuB集合〝容斥原理〞在研究集合时,会遇到有关集合中的元素个数问题,我们把有限集合A的元素个数记为card(A).集合吸收律A (A B)=AA (A B)=A集合求补律A CuA=UA CuA= 设A为集合,把A 的全部子集构成的集合叫做A的幂集德摩根律A-(BUC)=(A-B) (A-C)A-(B C)=(A-B)U(A-C)~(BUC)=_B _C~(B C)=_BU_C_ =E_E= 特殊集合的表示复数集C 实数集R正实数集R+负实数集R-整数集Z正整数集Z+负整数集Z-有理数集Q 正有理数集Q+负有理数集Q-不含0的有理数集Q_高一数学知识点总结4直线和平面的位置关系:直线和平面只有三种位置关系:在平面内.与平面相交.与平面平行①直线在平面内有无数个公共点②直线和平面相交有且只有一个公共点直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角. esp.空间向量法(找平面的法向量)规定:a.直线与平面垂直时,所成的角为直角,b.直线与平面平行或在平面内,所成的角为0 角由此得直线和平面所成角的取值范围为[0 ,90 ]最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角三垂线定理及逆定理:如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直esp.直线和平面垂直直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面.直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.③直线和平面平行没有公共点直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行.直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.高一数学知识点总结51.进行集合的交.并.补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道〝否命题〞与〝命题的否定形式〞的区别.6.求解与函数有关的问题易忽略定义域优先的原则.7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:._.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法_.求函数单调性时,易错误地在多个单调区间之间添加符号〝〞和〝或〞;单调区间不能用集合或不等式表示._.求函数的值域必须先求函数的定义域._.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?_.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论_.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?_.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围._.〝实系数一元二次方程有实数解〞转化时,你是否注意到:当时,〝方程有解〞不能转化为.若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?_.利用均值不等式求最值时,你是否注意到:〝一正;二定;三等〞._.绝对值不等式的解法及其几何意义是什么?_.解分式不等式应注意什么问题?用〝根轴法〞解整式(分式)不等式的注意事项是什么?_.解含参数不等式的通法是〝定义域为前提,函数的单调性为基础,分类讨论是关键〞,注意解完之后要写上:〝综上,原不等式的解集是〞._.在求不等式的解集.定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意〝同号可倒〞即a b 0,a 0.24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?25.在〝已知,求〞的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数.26.你知道存在的条件吗?(你理解数列.有穷数列.无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?27.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的.)28.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立.29.正角.负角.零角.象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?30.三角函数的定义及单位圆内的三角函数线(正弦线.余弦线.正切线)的定义你知道吗?31.在解三角问题时,你注意到正切函数.余切函数的定义域了吗?你注意到正弦函数.余弦函数的有界性了吗?32.你还记得三角化简的通性通法吗?(切割化弦.降幂公式.用三角公式转化出现特殊角.异角化同角,异名化同名,高次化低次)33.反正弦.反余弦.反正切函数的取值范围分别是34.你还记得某些特殊角的三角函数值吗?35.掌握正弦函数.余弦函数及正切函数的图象和性质.你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?36.函数的图象的平移,方程的平移以及点的平移公式易混:(1)函数的图象的平移为〝左+右-,上+下-〞;如函数的图象左移2个单位且下移3个单位得到的图象的解析式为,即.(2)方程表示的图形的平移为〝左+右-,上-下+〞;如直线左移2个个单位且下移3个单位得到的图象的解析式为,即.(3)点的平移公式:点按向量平移到点,则.37.在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)38.形如的周期都是,但的周期为.39.正弦定理时易忘比值还等于2R.1.精选最新高一数学知识点总结归纳5篇2.精选高一数学知识点总结归纳5篇3.最新高一数学知识点总结5篇4.最新_高一数学知识点总结归纳5篇5._最新高一数学知识点归纳总结5篇高一作文开学第一天优秀范文今天是开学第一天.这一天是令人激动的,是崭新的一天.下面是小编给大家带来的开学第借物喻人作文6_字高一闻着春的气息,听见春的脚步,看见春的身影.已是六年级的毕业班学生,随之而来的压力以生活启示为题的作文高一在生活中启示无处不在,每个人都会受到启发.我也是这样,就在今天我受到了蚂蚁的启示英语自我介绍作文高一五篇开学的时候我们总是要有一个精彩的自我介绍才能给别人留下深刻的印象.下面是小编给大。
高一数学必修一知识点总结归纳五篇精选
高一数学必修一知识点总结归纳五篇精选对于很多刚上高中的同学们来说,高一数学必修一是噩梦一般的存在,其知识点非常的繁琐复杂,让同学们头疼不已。
下面就是给大家带来的高一数学必修一知识点总结,希望能帮助到大家!高一数学必修一知识点总结1I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c (a,b,c为常数,a≠0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质1.抛物线是轴对称图形。
对称轴为直线x=-b/2a。
对称轴与抛物线的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a0时,抛物线向上开口;当a0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
高一数学必修一知识点总结21、柱、锥、台、球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.(2)棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.(3)棱台:几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形.(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形.(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形.(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径.3、空间几何体的直观图——斜二测画法斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;②原来与y轴平行的线段仍然与y平行,长度为原来的一半.4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和.(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)(3)柱体、锥体、台体的体积公式高一数学必修一知识点总结3幂函数定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
高一数学知识点总结模板(五篇)
高一数学知识点总结模板两个平面的位置关系只有两种。
两个平面的位置关系:(1)两个平面互相平行的定义:空间两平面没有公共点(2)两个平面的位置关系:两个平面平行-----没有公共点;两个平面相交-----有一条公共直线。
a、平行两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。
b、相交二面角(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。
(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。
二面角的取值范围为[0,____](3)二面角的'棱:这一条直线叫做二面角的棱。
(4)二面角的面:这两个半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
esp。
两平面垂直两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。
记为两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。
Attention:二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)高一数学知识点总结模板(二)知识点一:棱柱的结构特征1、定义:一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱.在棱柱中,两个相互平行的面叫做棱柱的底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱.侧面与底的公共顶点叫做棱柱的顶点.棱柱中不在同一平面上的两个顶点的连线叫做棱柱的对角线.过不相邻的两条侧棱所形成的面叫做棱柱的对角面.2、棱柱的分类:底面是三角形、四边形、五边形、的棱柱分别叫做三棱柱、四棱柱、五棱柱①用表示底面的各顶点的字母表示棱柱,如下图,四棱柱、五棱柱、六棱柱可分别表示为、②用棱柱的对角线表示棱柱,如上图,四棱柱可以表示为棱柱或棱柱等;五棱柱可表示为棱柱、棱柱等;六棱柱可表示为棱柱、棱柱、棱柱等.4、棱柱的性质:棱柱的侧棱相互平行.知识点二:棱锥的结构特征1、定义:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥.这个多边形面叫做棱锥的底面.有公共顶点的各个三角形叫做棱锥的侧面.各侧面的公共顶点叫做棱锥的顶点.相邻侧面的公共边叫做棱锥的侧棱;2、棱锥的分类:按底面多边形的边数,可以分为三棱锥、四棱锥、五棱锥3、棱锥的表示方法:用表示顶点和底面的字母表示,如四棱锥;知识点三:圆柱的结构特征1、定义:以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体叫做圆柱.旋转轴叫做圆柱的轴.垂直于轴的边旋转而成的曲面叫做圆柱的底面.平行于轴的边旋转而成的曲面叫做圆柱的侧面.无论旋转到什么位置不垂直于轴的边都叫做圆柱的母线.2、圆柱的表示方法:用表示它的轴的字母表示,如圆柱知识点四:圆锥的结构特征1、定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥.旋转轴叫做圆锥的轴.垂直于轴的边旋转而成的曲面叫做圆锥的底面.不垂直于轴的边旋转而成的曲面叫做圆锥的侧面.无论旋转到什么位置不垂直于轴的边都叫做圆锥的母线.2、圆锥的表示方法:用表示它的轴的字母表示,如圆锥.知识点五:棱台和圆台的结构特征1、定义:用一个平行于棱锥(圆锥)底面的平面去截棱锥(圆锥),底面和截面之间的部分叫做棱台(圆台);原棱锥(圆锥)的底面和截面分别叫做棱台(圆台)的下底面和上底面;原棱锥(圆锥)的侧面被截去后剩余的曲面叫做棱台(圆台)的侧面;原棱锥的侧棱被平面截去后剩余的部分叫做棱台的侧棱;原圆锥的母线被平面截去后剩余的部分叫做圆台的母线;棱台的侧面与底面的公共顶点叫做棱台的顶点;圆台可以看做由直角梯形绕直角边旋转而成,因此旋转的轴叫做圆台的轴.2、棱台的表示方法:用各顶点表示,如四棱台;3、圆台的表示方法:用表示轴的字母表示,如圆台;注:圆台可以看做由圆锥截得,也可以看做是由直角梯形绕其直角边旋转而成.知识点六:球的结构特征1、定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称球.半圆的半径叫做球的半径.半圆的圆心叫做球心.半圆的直径叫做球的直径.2、球的表示方法:用表示球心的字母表示,如球O.知识点七:特殊的棱柱、棱锥、棱台特殊的棱柱:侧棱不垂直于底面的棱柱称为斜棱柱;垂直于底面的棱柱称为直棱柱;底面是正多边形的直棱柱是正棱柱;底面是矩形的直棱柱叫做长方体;棱长都相等的长方体叫做正方体;特殊的棱锥:如果棱锥的底面是正多边形,且各侧面是全等的等腰三角形,那么这样的棱锥称为正棱锥;侧棱长等于底面边长的正三棱锥又称为正四面体;特殊的棱台:由正棱锥截得的棱台叫做正棱台;注:简单几何体的分类如下表:知识点八:简单组合体的结构特征1、组合体的基本形式:①由简单几何体拼接而成的简单组合体;②由简单几何体截去或挖去一部分而成的几何体;2、常见的组合体有三种:①多面体与多面体的组合;②多面体与旋转体的组合;③旋转体与旋转体的组合.知识点九:中心投影与平行投影1、投影、投影线和投影面:由于光的照射,在不透明物体后面的屏幕上会留下这个物体的影子,这种现象叫做投影,其中光线叫做投影线,屏幕叫做投影面.2、中心投影:把光由一点向外散射形成的投影叫做中心投影.3、中心投影的性质:①中心投影的投影线交于一点;②点光源距离物体越近,投影形成的影子越大.4、平行投影:把一束平行光线照射下形成的投影叫做平行投影,投影线正对着投影面时叫做正投影,否则叫做斜投影.5、平行投影的性质:平行投影的投影线相互平行.知识点十:常见几何体的三视图:1、圆柱的正视图和侧视图是全等的矩形,俯视图为圆;2、圆锥的正视图和侧视图是三角形,俯视图为圆和圆心;3、圆台的正视图和侧视图都是等腰梯形,俯视图为两个同心圆;4、球的三视图都是圆.注:1、三视图的排列方法是侧视图在正视图的右边;俯视图在正视图的下面;2、一个几何体的侧视图和正视图高度一样,俯视图和正视图的长度一样,侧视图和俯视图的宽度一样,即:长对正,高平齐,宽相等.高一数学知识点总结模板(三)一、直线与方程(1)直线的倾斜角定义:____轴正向与直线向上方向之间所成的角叫直线的倾斜角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学知识点总结归纳5篇最新
一、集合有关概念
1.集合的含义
2.集合的中元素的三个特性:
(1)元素的确定性如:世界上的山
(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}
(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合
3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:
非负整数集(即自然数集)记作:N
正整数集:N_或N+
整数集:Z
有理数集:Q
实数集:R
1)列举法:{a,b,c……}
2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{xÎR|x-3>2},{x|x-3>2}
3)语言描述法:例:{不是直角三角形的三角形}
4)Venn图:
4、集合的分类:
(1)有限集含有有限个元素的集合
(2)无限集含有无限个元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
二、集合间的基本关系
1.“包含”关系—子集
注意:有两种可能
(1)A是B的一部分,;
(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
2.“相等”关系:A=B(5≥5,且5≤5,则5=5)实
例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”
即:
①任何一个集合是它本身的子集。
AíA
②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)
③如果AíB,BíC,那么AíC
④如果AíB同时BíA那么A=B
3.不含任何元素的集合叫做空集,记为Φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
4.子集个数:
有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集
三、集合的运算
运算类型交集并集补集
定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.
由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B
的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}).
高一数学知识点2
立体几何初步
NO.1柱、锥、台、球的结构特征
棱柱
定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都
是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的
多边形。
棱锥
定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等
表示:用各顶点字母,如五棱锥
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面
相似,其相似比等于顶点到截面距离与高的比的平方。
棱台
定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。
分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等
表示:用各顶点字母,如五棱台
几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点
圆柱
定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
圆锥
定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
圆台
定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分
几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶
点;③侧面展开图是一个弓形。
球体
定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
高一数学知识点3
一、集合有关概念
1.集合的含义
2.集合的中元素的三个特性:
(1)元素的确定性如:世界上最高的山
(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}
(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合
3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:
非负整数集(即自然数集)记作:N
正整数集:N_或N+
整数集:Z
有理数集:Q
实数集:R
1)列举法:{a,b,c……}
2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{xÎR|x-3>2},{x|x-3>2}
3)语言描述法:例:{不是直角三角形的三角形}
4)Venn图:
4、集合的分类:
(1)有限集含有有限个元素的集合
(2)无限集含有无限个元素的集合
(3)空集不含任何元素的集合
高一数学知识点4
1.“包含”关系—子集
注意:A?B有两种可能(1)A是B的一部分;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作A?/B
或B?/A
2.“相等”关系:A=B(5≥5,且5≤5,则5=5)
实例:设A={x|x2
-1=0}B={-1,1}“元素相同则两集合相等”即:①任何一个集合
是它本身的子集。
A?A
②真子集:如果A?B,且A≠B那就说集合A是集合B的真子集,
记作AB(或BA)
③如果A?B,B?C,那么A?C
④如果A?B同时B?A那么A=B
3.不含任何元素的集合叫做空集,记为Φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集
一般我们把不含任何元素的集合叫做空集。
高一数学知识点5
两个平面的位置关系:
(1)两个平面互相平行的定义:空间两平面没有公共点
(2)两个平面的位置关系:
两个平面平行——没有公共点;两个平面相交——有一条公共直线。
a、平行
两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。
b、相交
二面角
(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。
(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。
二面角的取值范围为[0°,180°]
(3)二面角的棱:这一条直线叫做二面角的棱。
(4)二面角的面:这两个半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
两平面垂直
两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。
记为⊥
两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直
两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。
二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)
棱锥
棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥。
棱锥的性质:
(1)侧棱交于一点。
侧面都是三角形
(2)平行于底面的截面与底面是相似的多边形。
且其面积比等于截得的棱锥的高与远棱锥高的比的平方
正棱锥
正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。
正棱锥的性质:
(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。
各等腰三角形底边上的高相等,它叫做正棱锥的斜高。
(3)多个特殊的直角三角形
a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。
b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。
且顶点在底面的射影为底面三角形的垂心。