七年级数学上册第四章知识点及练习题(优选.)
七年级数学上册第四章知识点及练习题
七年级数学上册第四章知识点及练习题第四章:平面图形及其位置关系知识梳理一、线段、射线、直线1、线段、射线、直线的定义线段是有两个端点的崩直线,可以量出长度。
将线段向一个方向无限延伸就形成了射线,射线有一个端点,无法量出长度。
将线段向两个方向无限延伸就形成了直线,直线没有端点,也无法量出长度。
结论:射线是直线的一部分,线段是射线和直线的一部分。
2、线段、射线、直线的表示方法线段的表示方法有两种:一是用两个端点来表示,二是用一个小写的英文字母来表示。
射线的表示方法只有一种:用端点和射线上的另一个点来表示,端点要写在前面。
直线的表示方法有两种:一是用直线上的两个点来表示,二是用一个小写的英文字母来表示。
3、直线公理过两点有且只有一条直线,简称两点确定一条直线。
4、线段的比较线段的比较有叠合比较法和度量比较法。
5、线段公理连接两点的线段是最短的,叫做这两点的距离。
6、线段的中点如果线段上有一点,把线段分成相等的两条线段,这个点叫这条线段的中点。
若C是线段AB的中点,则AC=BC=1/2 AB或AB=2AC=2BC。
例题:1、如果线段AB=5cm,BC=3cm,那么A、C两点间的距离是()解:无法确定A、B、C三点位置是否共线,无法确定答案,选D。
2、已知线段AB=20㎝,C为AB中点,D为CB上一点,E为DB的中点,且EB=3㎝,则CD= ________cm.解:BC=0.5AB=10cm,DB=2EB=6cm,CD=BC-DB=10-6=4cm。
3、平面上有三个点,可以确定直线的条数是()解:由直线公理,过两点有且只有一条直线,所以三个点可以确定三条直线,选C。
二、角1、角的概念角是由两条有共同端点的射线组成的图形,两条射线叫角的边,共同的端点叫角的顶点。
角还可以看成是一条射线绕着他的端点旋转所成的图形。
2、角的表示方法角用“∠”符号表示,分别用两条边上的两个点和顶点来表示(顶点必须在中间),或在角的内部写上阿拉伯数字或小写的希腊字母来表示。
新人教版数学七年级上册第四章同步习题+答案解析
人教版数学七年级上册第4章 4。
1.1立体图形与平面图形同步练习一、单选题1、下列说法中,正确的是( )A、用一个平面去截一个圆锥,可以是椭圆B、棱柱的所有侧棱长都相等C、用一个平面去截一个圆柱体,截面可以是梯形D、用一个平面去截一个长方体截面不能是正方形2、下列说法不正确的是( )A、球的截面一定是圆B、组成长方体的各个面中不可能有正方形C、从三个不同的方向看正方体,得到的都是正方形D、圆锥的截面可能是圆3、下列图形中,是棱锥展开图的是()A、 B、 C、 D、4、下面图形不能围成一个长方体的是( )A、 B、 C、 D、5、下列图形是四棱柱的侧面展开图的是()A、 B、 C、 D、6、下列图形中,是正方体的表面展开图的是()A、 B、 C、 D、7、将选项中的四个正方体分别展开后,所得的平面展开图与如图不同的是( )A、 B、 C、 D、8、如图是一个正方体的表面展开图,这个正方体可能是()A、 B、 C、 D、9、一个几何体的展开图如图所示,这个几何体是( )A、棱柱B、棱锥C、圆锥D、圆柱10、在下面的图形中,不可能是正方体的表面展开图的是()A、 B、 C、 D、11、下列图形中,是正方体表面展开图的是( )A、 B、 C、 D、12、下列四个图形中是如图展形图的立体图的是()A、 B、 C、 D、二、填空题(共6题;共12分)13、一个棱锥有7个面,这是________棱锥.14、如果一个棱柱共有15条棱,那么它的底面一定是________边形.15、长方体是一个立体图形,它有________个面,________条棱,________个顶点.16、六棱柱有________个顶点,________个面,________条棱.17、如图是由________、长方体、圆柱三种几何体组成的物体.18、将如图几何体分类,柱体有________,锥体有________,球体有________(填序号).三、解答题(共4题;共20分)19、如图是一个正方体的展开图,标注了字母A的面是正方体的正面,如果正方体的左面与右面所标注式子的值相等,求x的值.20、(2009春•滨湖区期中)人人争当小小设计师.一个工程队为建设一项重点工程,要在一块长方形荒地上建造几套简易住房,每一套简易住房的平面是由长4y、宽4x构成,要求建成:两室、一厅、一厨、一卫.其中客厅面积为6xy;两个卧室的面积和为8xy;厨房面积为xy;卫生间面积为xy.请你根据所学知识,在所给图中设计其中一套住房的平面结构示意图.21、如图,从一个多边形的某一条边上的一点(不与端点重合)出发,分别连接这个点与其他所有顶点,可以把这个多边形分割成若干个三角形,由三角形、四边形、五边形为例,你能总结出什么规律?n边形呢?22、如图,在无阴影的方格中选出两个画出阴影,使它们与图中4个有阴影的正方形一起可以构成一个正方体的表面展开图.(在图1和图2中任选一个进行解答,只填出一种答案即可)第4章 4.1.2点、线、面、体同步练习一、单选题(共12题;共24分)1、圆锥体是由下列哪个图形绕自身的对称轴旋转一周得到的()A、正方形B、等腰三角形C、圆D、等腰梯形2、下面现象能说明“面动成体”的是( )A、旋转一扇门,门运动的痕迹B、扔一块小石子,小石子在空中飞行的路线C、天空划过一道流星D、时钟秒针旋转时扫过的痕迹3、下列说法中,正确的是()A、棱柱的侧面可以是三角形B、四棱锥由四个面组成的C、正方体的各条棱都相等D、长方形纸板绕它的一条边旋转1周可以形成棱柱4、直角三角尺绕着它的一条直角边旋转一周后形成的几何体是( )A、圆柱B、球体C、圆锥D、一个不规则的几何体5、如图所示的几何体是由右边哪个图形绕虚线旋转一周得到()A、 B、 C、 D、6、如图,用水平的平面截几何体,所得几何体的截面图形标号是()A、 B、 C、 D、7、下列说法中,正确的是( )A、用一个平面去截一个圆锥,可以是椭圆B、棱柱的所有侧棱长都相等C、用一个平面去截一个圆柱体,截面可以是梯形D、用一个平面去截一个长方体截面不能是正方形8、下列说法不正确的是()A、球的截面一定是圆B、组成长方体的各个面中不可能有正方形C、从三个不同的方向看正方体,得到的都是正方形D、圆锥的截面可能是圆9、如图,将正方体沿面AB′C剪下,则截下的几何体为()A、三棱锥B、三棱柱C、四棱锥D、四棱柱10、如图,一个正方体截去一个角后,剩下的几何体面的个数和棱的条数分别为()A、6,11B、7,11C、7,12D、6,1211、用一个平面去截圆柱体,则截面形状不可能是( )A、梯形B、三角形C、长方形D、圆12、下列几何体:①球;②长方体;③圆柱;④圆锥;⑤正方体,用一个平面去截上面的几何体,其中能截出圆的几何体有( )A、4个B、3个C、2个D、1个二、填空题(共5题;共5分)13、飞机表演的“飞机拉线”用数学知识解释为:________.14、如图是棱长为2cm的正方体,过相邻三条棱的中点截取一个小正方体,则剩下部分的表面积为________cm2.15、正方体的截面中,边数最多的是________边形.16、用一个平面去截一个三棱柱,截面图形的边数最多的为________边形.17、用平面去截一个六棱柱,截面的形状最多是________边形.三、作图题(共1题;共5分)18、用一平面去截一个正方体,能截出梯形,请在如图的正方体中画出.四、解答题(共2题;共10分)19、将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现有一个长是5cm、宽是6cm的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱几何体,它们的体积分别是多大?20、如图所示为一个正方体截去两个角后的立体图形,如果照这样截取正方体的八个角,则新的几何体的棱有多少条?请说明你的理由.五、综合题(共2题;共20分)21、已知长方形的长为4cm.宽为3cm,将其绕它的一边所在的直线旋转一周,得到一个几何体,(1)求此几何体的体积;(2)求此几何体的表面积.(结果保留π)22、小明学习了“面动成体”之后,他用一个边长为3cm、4cm和5cm的直角三角形,绕其中一条边旋转一周,得到了一个几何体.(1)请画出可能得到的几何体简图.(2)分别计算出这些几何体的体积.(锥体体积= 底面积×高)4.2直线、射线与线段同步练习一、单选题(共10题;共20分)1、线段AB=5cm,BC=2cm,则线段AC的长度是( )A、3cmB、7cmC、3cm或7cm2、两条相交直线与另一条直线在同一平面,它们的交点个数是( )A、1B、2C、3或2D、1或2或33、平面上有四点,经过其中的两点画直线最多可画出()A、三条B、四条C、五条D、六条4、以下条件能确定点C是AB中点的条件是( )A、AC=BCB、C、AB=2CBD、AB=2AC=2CB5、平面内四条直线最少有a个交点,最多有b个交点,则a+b=()A、6B、4C、2D、06、如图,直线l与∠O的两边分别交于点A、B,则图中以O、A、B为端点的射线的条数总和是()A、5B、6C、7D、87、平面上有四个点,经过其中的两点画直线最少可画a条直线,最多可画b条直线,那么a+b的值为( )A、4B、5C、6D、78、下列说法中正确的是()A、两点之间线段最短B、若两个角的顶点重合,那么这两个角是对顶角C、一条射线把一个角分成两个角,那么这条射线是角的平分线D、过直线外一点有两条直线平行于已知直线9、下列说法:①平角就是一条直线;②直线比射线线长;③平面内三条互不重合的直线的公共点个数有0个、1个、2个或3个;④连接两点的线段叫两点之间的距离;⑤两条射线组成的图形叫做角;⑥一条射线把一个角分成两个角,这条射线是这个角的角平分线,其中正确的有()A、0个B、1个C、2个D、3个10、如图,点A,B在直线m上,点P在直线m外,点Q是直线m上异于点A,B的任意一点,则下列说法或结论正确的是()A、射线AB和射线BA表示同一条射线B、线段PQ的长度就是点P到直线m的距离C、连接AP,BP,则AP+BP>ABD、不论点Q在何处,AQ=AB-BQ或AQ=AB+BQ二、填空题(共5题;共11分)11、往返于甲,乙两地的客车,中途停靠3个车站(来回票价一样)准备________种车票.12、线段有________个端点,射线有________个端点,直线有________个端点.13、如图所示,共有线段________条,共有射线________条.14、如图,A,B,C,D是一直线上的四点,则________ +________=AD﹣AB, AB+CD =________﹣________.15、往返于两个城市的客车,中途停靠三个站,且任意两站间的票价都不同,则共有________种不同票价.三、作图题(共1题;共5分)16、按下列要求画出图形(在原图上画)如图,平面上有三点A,B,C①画直线AB ②画射线BC ③画线段AC.四、解答题(共5题;共25分)17、已知AB=10cm,点C在直线AB上,如果BC=4cm,点D是线段AC的中点,求线段BD的长度.18、如图,已知AB:BC:CD=2:3:4,E、F分别为AB、CD中点,且EF=15.求线段AD的长.19、如图,点D为线段CB的中点,AD=8cm,AB=10cm,求CB的长度.20、已知C,D两点将线段AB分为三部分,且AC:CD:DB=2:3:4,若AB的中点为M,BD的中点为N,且MN=5cm,求AB的长.21、如图,M是线段AC中点,B在线段AC上,且AB=2cm、BC=2AB,求BM长度.第4章 4.3.1角同步练习一、单选题(共12题;共24分)1、下列说法中,正确的是( )A、直线有两个端点B、射线有两个端点C、有六边相等的多边形叫做正六边形D、有公共端点的两条射线组成的图形叫做角2、如图已知点M是直线AB上一点,∠AMC=52°48′,∠BMD=72°19°,则∠CMD=()A、49°07′B、54°53′C、55°53′D、53°7′3、∠1=45゜24′,∠2=45。
北师大版七年级数学上册章节同步练习题(全册-共57页)
北师⼤版七年级数学上册章节同步练习题(全册-共57页)北师⼤版七年级数学上册章节同步练习题(全册,共57页)⽬录第⼀章丰富的图形世界1 ⽣活中的⽴体图形2 展开与折叠3 截⼀个⼏何体4 从三个⽅向看物体的形状单元测验第⼆章有理数及其运算1 有理数2 数轴3 绝对值4 有理数的加法5 有理数的减法6 有理数加减混合运算7 有理数的乘法 8 有理数的除法9 有理数的乘⽅ 10 科学记数法11 有理数的混合运算 12 ⽤计算器进⾏运算单元测验第三章整式及其加减1 字母表⽰数2 代数式3 整式4 整式的加减5 探索与表达规律单元测验第四章基本平⾯图形1 线段射线直线2 ⽐较线段的长短3 ⾓ 4⾓的⽐较5 多边形和圆的初步认识单元测验第五章⼀元⼀次⽅程1 认识⼀元⼀次⽅程2 求解⼀元⼀次⽅程3 应⽤⼀元⼀次⽅程——⽔箱变⾼了4 应⽤⼀元⼀次⽅程——打折销售5 应⽤⼀元⼀次⽅程——“希望⼯程”义演6 应⽤⼀元⼀次⽅程——追赶⼩明单元测验第六章数据的收集与整理1 数据的收集2 普查和抽样调查3 数据的表⽰4 统计图的选择第⼀章丰富的图形世界1.1⽣活中的⽴体图形(1)基础题:1.如下图中为棱柱的是()2.⼀个⼏何体的侧⾯是由若⼲个长⽅形组成的,则这个⼏何体是()A.棱柱 B.圆柱 C.棱锥 D.圆锥3.下列说法错误的是()A.长⽅体、正⽅体都是棱柱 B.三棱柱的侧⾯是三⾓形C.直六棱柱有六个侧⾯、侧⾯为矩形 D.球体和圆是不同的图形4.数学课本类似于,⾦字塔类似于,西⽠类似于,⽇光灯管类似于。
5.⼋棱柱有个⾯,个顶点,条棱。
6.⼀个漏⽃可以看做是由⼀个________和⼀个________组成的。
7.如图是⼀个正六棱柱,它的底⾯边长是3cm,⾼是5cm.(1)这个棱柱共有个⾯,它的侧⾯积是。
(2)这个棱柱共有条棱,所有棱的长度是。
提⾼题:⼀只⼩蚂蚁从如图所⽰的正⽅体的顶点A沿着棱爬向有蜜糖的点B,它只能经过三条棱,请你数⼀数,⼩蚂蚁有种爬⾏路线。
七年级上册数学有理数混合运算练习题及答案
七年级数学上学期期末考试真题汇编(人教版)探究与表达规律(八个考点) 专题讲练(解析版)
专题04 探究与表达规律(八个考点)专题讲练1、知识储备考点1. 数列的规律考点2. 数表的规律考点3..算式的规律考点4. 图形的规律(一次类)考点5 图形的规律(二次类)考点6. 图形的规律(指数类)考点7. 程序框图考点8. 新定义运算2、经典基础题3、优选提升题1. 解题思维过程:从简单、局部或特殊情况入手,经过提炼、归纳和猜想,探索规律,获得结论.有时候还需要通过类比联想才能找到隐含条件.一般有下列几个类型:1)数列的规律:把握常见几类数的排列规律及每个数与排列序号n之间的关系.2)等式的规律:用含有字母的代数式总结规律,注意此代数式与序号n之间的关系.3)图形(图表)规律:观察前几个图形,确定每个图形中图形的个数或图形总数与序号n之间的关系.4)图形变换的规律:找准循环周期内图形变换的特点,然后用图形变换总次数除以一个循环变换周期,进而观察商和余数.5)数形结合的规律:观察前n项(一般前3项)及利用题中的已知条件,归纳猜想一般性结论.2. 常见的数列规律:1)1,3,5,7,9,… ,21n-(n为正整数).2)2,4,6,8,10,…,2n(n为正整数).3)2,4,8,16,32,…,2n(n为正整数).4)2,6,12,20,…,(1)n n+(n为正整数).5)x-,x+,x-,x+,x-,x+,…,(1)n x-(n为正整数).6)特殊数列:①三角形数:1,3,6,10,15,21,…,(1)2n n+.②斐波那契数列:1,1,2,3,5,8,13,…,从第三个数开始每一个数等于与它相邻的前两个数的和.考点1. 数列的规律 【解题技巧】①符号规律:通常是正负间或出现的规律,常表示为(1)n -或1(1)n --或1(1)n +-;②数字规律:数字规律需要视题目而确定;○3字母规律:通常字母规律是呈指数变换,常表示为:n a 等形式。
例1.(2022·黑龙江牡丹江·七年级期末)按顺序观察下列五个数-1,5,-7,17,-31……,找出以上数据依次出现的规律,则第n 个数是_____________. 【答案】(2)1n -+【分析】所给的数可转化为:-1=1-21,5=1+22,-7=1-23,17=1+24,-31=1-25,…据此即可得第n 个数,从而可求解.【详解】解:∵-1=1-21,5=1+22,-7=1-23,17=1+24,-31=1-25,…,∵第奇数个数为:1-2n ;第偶数个数为:1+2n ;∵第n 个数为:()21n-+.故答案为:()21n-+. 【点睛】本题主要考查数字的变化规律,解答的关键是由所给的数字分析出存在的规律. 变式1.(2022·云南红河·八年级期末)一组按规律排列的单项式3a 、5a 2、7a 3、9a 4……,依这个规律用含字母n (n 为正整数,且n ≥1)的式子表示第n 个单项式为_______ 【答案】(21)n n a +【分析】找出前3项的规律,然后通过后面几项验证,找出规律得到答案. 【详解】解:3a =(2×1+1)a 1,5a 2=(2×2+1)a 2,7a 3=(2×3+1)a 3,… 第n 个单项式是:(2n +1)an .故答案为:(2n +1)an .【点睛】本题主要考查数字的变化规律,解题的关键是找出前几项的规律,然后验证,最后得到规律.变式2.(2022·山东烟台·七年级期末)按一定规律排列的单项式:3x ,5x -,7x ,9x -,11x ,……,第n 个单项式是( ) A .()211nn x -- B .()1211n n x -+-C .()1211n n x ---D .()211nn x +-【答案】B【分析】先观察系数与指数的规律,再根据规律定出第n 个单项式即可. 【详解】解:∵3x ,5x -,7x ,9x -,11x ,……,∵系数是奇数项为-1,偶数项为1,即系数的规律是(-1)n -1,指数的规律为2n +1,∵第n 个单项式为()1211n n x -+-,故选:B .【点睛】本题考查数式的变化规律,通过观察单项式的系数和指数,找到它们的规律是解题的关键.考点2. 数表的规律 【解题技巧】例1. (2022•绵阳市七年级期中)将正奇数按下表排成5列:第1列 第2列 第3列 第4列 第5列 第1行 1 3 5 7 第2行 15 13 11 9 第3行 17 19 21 23 ………2725若2021在第m 行第n 列,则m +n =( ) A .256B .257C .510D .511【分析】观察图表,每一行都有四个数,且奇数行排在第2﹣5列,偶数行排在第1﹣4列,根据2021在正奇数中的位置来推算m ,n .【解答】解:首先,从图表观察,每一行都有四个数,且奇数行排在第2﹣5列,偶数行排在第1﹣4列,其次,奇数可以用2x ﹣1表示,当x =1011时,2x ﹣1=2021,即2021是排在第1011个位置.在上表中,因为每行有4个数,且1011÷4=252•••••••3,因此2021应该在第253行,第4列,即m =253,n =4.∴m +n =257,故选:B .变式1.(2022·山东济南·七年级期末)将正整数按如图所示的规律排列,若用有序数对(a ,b )表示第a 行,从左至右第b 个数,例如(4,3)表示的数是9,则(15,10)表示的数是( )A .115B .114C .113D .112【答案】A【分析】观察图形可知,每一行的第一个数字都等于前面数字的个数再加1,即可得出(15,得出a,b的值分别为()A.9,10B.9,91C.10,91D.10,110【解题技巧】算式规律这一类没有固定的套路,主要依靠学生对已知算式的观察、总结、逻辑推理,发现期中的规律。
七年级数学上册代数式和有理数的四则运算(150道题)
初一数学有理数计算题分类及混合运算练习题(100题)有理数加法1、(-9)+(-13)2、(-12)+273、(-28)+(-34) =-22 =15 =-62原则一:所有正数求和,所有负数求和,最后计算两个数的差,取绝对值较大的数的符号。
7、|52+(-31)| =1518、(-52)+|―31| =-151 9、 38+(-22)+(+62)+(-78)=010、(-8)+(-10)+2+(-1) 11、(-32)+0+(+41)+(-61)+(-21) =-17 =-121316、 72+65+(-105)+(-28) 17、(-23)+|-63|+|-37|+(-77) =4 =018、19+(-195)+47 18、(+18)+(-32)+(-16)+(+26) =-129 =-420、(-0.8)+(-1.2)+(-0.6)+(-2.4) 21、(-8)+(-321)+2+(-21)+12=-5 =2 有理数减法7-9 ―7―9 0-(-9) (-25)-(-13) =-2 =-16 =9 =-12(-20)-(+5)-(-5)-(-12) (-23)―(-59)―(-3.5) |-32|―(-12)―72―(-5) =-8 =39.5 =-23(+103)―(-74)―(-52)―710 (-516)―3―(-3.2)―7 (+71)―(-72)―73=―7011 =-10 =00.5+(-41)-(-2.75)+21 (+4.3)-(-4)+(-2.3)-(+4)=3.5 =2原则三:结果的形式要与题目中数的形式保持一致。
如确定是分数还是小数,分数必须是带分数或真分数,不得是假分数,过程中无所谓。
有理数乘法 (-9)×32(-132)×(-0.26) (-2)×31×(-0.5)=-6 =0.04 =3131×(-5)+31×(-13) (-4)×(-10)×0.5×(-3) (-83)×34×(-1.8)=-6 =-60 =0.9(-0.25)×(-74)×4×(-7) (-73)×(-54)×(-127)=-4 =-51(-0.5)-(-341)+6.75-521 (+6.1)―(-4.3)―(-2.1)―5.1=4 =7.4 (-32)―(-143)―(-132)―(+1.75) (-332)―(-243)―(-132)―(-1.75)=1 =2.5-843-597+461-392 -443+61+(-32)―25 =-13127 =-743(-8)×4×(-21)×(-0.75) 4×(-96)×(-0.25)×481=-12 =2(74-181+143)×56 (65―43―97)×36=32—63+12 =30—27—28 =19 =-2525×43-(-25)×21+25×41 (-36)×(94+65-127) =25×(43+21+41) =-16-30+21=25×121 =-25 =3721原则四:巧妙运用运算律(187+43-65+97)×7231×(2143-72)×(-58)×(-165)=28+54-60+56 =31×(1427)×(-58)×(-165)=78 =289有理数除法18÷(-3) (-24)÷6 (-57)÷(-3) (-53)÷52(-42)÷(-6)= -6 =-4 =19 =-23 =7 (+215)÷(-73) (-139)÷9 0.25÷(-81) -36÷(-131)÷(-32)=-95 = -131=-2 =-4021-3÷(31-41) (-2476)÷(-6) 2÷(5-18)×181=-36 =471=-1171131÷(-3)×(-31) -87×(-143)÷(-83) (43-87)÷(-65) =274 =-21 =203(-1)÷(-4)÷74 3÷(-76)×(-97) 0÷[(-341)×(-7)] =167 =1849 =0(29-83+43)÷(-43) -3.5 ×(61-0.5)×73÷21 -172÷(-165)×183×(-7) =-6+21-1 =-27×(-31)×73×2 =-79×116×811×7 =-621 =1 =-427=-643原则五:结果的形式要与题目中数的形式保持一致。
七年级数学上册第四章单元测试题及答案
七年级数学上册第四章单元测试题及答案第四章平面图形及其位置关系检测时间:__________ 姓名:__________ 成绩:__________一、选择题(每小题4分,共32分)1、按下列线段长度,可以确定点A、B、C不在同一条直线上的是()A、AB=8㎝,BC=19㎝,AC=27㎝;B、AB=10㎝,BC=9㎝,AC=18㎝;C、AB=11㎝,BC=21㎝,AC=10㎝;D、AB=30㎝,BC=12㎝,AC=18㎝2、下列推理中,错误的是()A、在m、n、p三个量中,如果m=n,n=p,那么m=p。
B、在∠A、∠B、∠C、∠D四个角中,如果∠A=∠B,∠C=∠D,∠A=∠D,那么∠B=∠C;C、a、b、c是同一平面内的三条直线,如果a∥b,b∥c,那么a∥c;D、a、b、c是同一平面内的三条直线,如果a⊥b,b⊥c,那么a⊥c;3、垂直是指一位置特殊的()A、直线;B、直角;C、线段;D、射线4、如图,四条表示方向的射线中,表示XXX的是()5、一个人从A点出发向北偏东60°的方向走到B点,再从B点出发向南偏西15°方向走到C点,那么∠ABC的度数是()A、75°;B、105°;C、45°;D、135°6、同一平面内互不重合的三条直线的公共点的个数是()A、可能是1个,2个,3个;B、可能是0个,2个,3个;C、可能是1个,2个,或3个;D、可能是1个或3个。
7、已知四边形ABCD中,∠A+∠B=180°,则下列结论中正确的是()A、AB∥CD;B、∠B+∠C=180°;C、∠B=∠C;D、∠C+∠D=180°8、直线a外有一定点A,A到a的距离是5㎝,P是直线a上的任意一点,则()A、AP>5㎝;B、AP≥5㎝;C、AP=5㎝;D、AP<5㎝9、下列说法中正确的是()A、8时45分,时针与分针的夹角是30°;B、6时30分,时针与分针重合;C、3时30分,时针与分针的夹角是90°;D、3时整,时针与分针的夹角是30°。
人教版初一数学七年级数学上册练习题【附答案】
人教版初一数学七年级数学上册练习题【附答案】人教版七年级数学上册精品练习题七年级有理数一、境空题(每空2分,共38分)1、31-的倒数是____;321的相反数是____. 2、比–3小9的数是____;最小的正整数是____.3、在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是4、两个有理数的和为5,其中一个加数是–7,那么另一个加数是____.~5、某旅游景点11月5日的最低气温为2-,最高气温为8℃,那么该景点这天的温差是6、计算:.______)1()1(101100=-+-7、平方得412的数是____;立方得–64的数是____. 8、+2与2-是一对相反数,请赋予它实际的意义:___________________。
9、绝对值大于1而小于4的整数有____________,其和为_________。
10、若a 、b 互为相反数,c 、d 互为倒数,则 3 (a + b) 3-cd =__________。
11、若0|2|)1(2=++-b a ,则b a +=_________。
12、数轴上表示数5-和表示14-的两点之间的距离是__________。
%13、在数5-、 1、 3-、 5、 2-中任取三个数相乘,其中最大的积是___________,最小的积是____________。
14、若m ,n 互为相反数,则│m-1+n │=_________.二、选择题(每小题3分,共21分)15、有理数a 、b 在数轴上的对应的位置如图所示:则()0-11abA .a + b <0B .a + b >0;C .a -b = 0D .a -b >016、下列各式中正确的是()~A .22)(a a -=B .33)(a a -=;C .|| 22a a -=-D .|| 33a a =17、如果0a b +>,且0ab <,那么()A.0,0a b >> ;B.0,0a b << ;C.a 、b 异号;D. a 、b 异号且负数和绝对值较小18、下列代数式中,值一定是正数的是( )A .x 2 B.|-x+1| C.(-x)2+2 D.-x 2+119、算式(-343)×4可以化为()(A )-3×4-43×4 (B )-3×4+3 (C )-3×4+43×4 (D )-3×3-3上一页下一页。
最新人教版七年级数学上册全套同步练习题(课课练)及答案
第一章 有理数1.1 正数和负数基础检测 1.521,76,106,14.3,732.1,34,5.2,0,1----+-中,正数有 ,负数有 。
2.如果水位升高5m 时水位变化记作+5m ,那么水位下降3m 时水位变化记作 m ,水位不升不降时水位变化记作 m 。
3.在同一个问题中,分别用正数与负数表示的量具有 的意义。
4.2010年我国全年平均降水量比上年减少24㎜.2009年比上年增长8㎜.2008年比上年减少20㎜。
用正数和负数表示这三年我国全年平均降水量比上年的增长量。
拓展提高5.下列说法正确的是( )A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数6.向东行进-30米表示的意义是( )A.向东行进30米B.向东行进-30米C.向西行进30米D.向西行进-30米7.甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为 这时甲乙两人相距 m.8.某种药品的说明书上标明保存温度是(20±2)℃,由此可知在 ℃至 ℃范围内保存才合适。
9.如果把一个物体向右移动5m 记作移动-5m ,那么这个物体又移动+5m 是什么意思?这时物体离它两次移动前的位置多远?1.2.1有理数测试基础检测1、_____、______和______统称为整数;_____和_____统称为分数;______、______、______、______和______统称为有理数; ______和______统称为非负数;______和______统称为非正数;______和______统称为非正整数;______和______统称为非负整数.2、下列不是正有理数的是( )A 、-3.14B 、0C 、37 D 、3 3、既是分数又是正数的是( )A 、+2B 、-314 C 、0 D 、2.3拓展提高4、下列说法正确的是( )A 、正数、0、负数统称为有理数B 、分数和整数统称为有理数C 、正有理数、负有理数统称为有理数D 、以上都不对5、-a 一定是( )A 、正数B 、负数C 、正数或负数D 、正数或零或负数6、下列说法中,错误的有( ) ①742-是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。
七年级上册同步练习全套
第一章丰富的图形世界1.1 生活中的立体图形※课时达标1.立体图形的各个面都是________面,这样的立体图形称为多面体.2.图形是由_______,________,________构成的.3.物体的形状似于圆柱的有_____________; 类似于圆锥的有_____________________; 类似于球的有__________________.4.体有_____个顶点,经过每个顶点有_________条棱,这些棱都____________.5.圆柱,圆锥,球的共同点是______________ _______________.6.长方体共有()条棱.A.8B.6C.10D.127.从一个十边形的某个点出发,分别连接这个顶点与其余各顶点,可以把这个多边形分割成( )个三角形A. 10B. 9C. 8D. 7※课后作业★基础巩固1.四棱柱是由________个面组成的,且这几个面是_____________;圆锥是由_______ 个面围,它的侧面是_______,底面是____.2.假如我们把笔尖看作一个点,当笔尖在纸上移动时,就能画出线,说明了_________, 时钟秒针旋转时,形成一个圆面,这说明了_____________,三角板绕它的一条直角边旋转一周,形成一个圆锥体,这说明了____ _______________.3.在棱柱中,任何相邻的两个面的交线都叫做_____,相邻的两个侧面的交线叫做__________.棱柱所有侧棱长都________,上下底面是_____.4.七棱柱是由个面围成的,它有个顶点,有条棱.5.一个六棱柱共有条棱,如果六棱柱的底面边长都是3cm,侧棱长都是2cm,那么它所有棱长的和是___ cm.6.请写出下列几何体的名称.( ) ( ) ()( ) ( ) ( )7.用第一行的图形绕轴旋转一周,便得到第二行的几何体,用线连一连.☆能力提升8.下列几种图形:①三角形;②长方形;③体;④圆;⑤圆锥;⑥圆柱.其中属于立体图形的是().A.③⑤⑥B.①②③C.③⑥D.④⑤9.直角三角形绕它最长边(即斜边)旋转一周得到的几何体为( ).10.六棱锥共有()条侧棱.A.6B.7C.8D.1011.下列说法,不正确的是().A.圆锥和圆柱的底面都是圆.B.棱锥底面边数与侧棱数相等.C.棱柱的上、下底面是形状、大小相同的多边形.D.长方体是四棱柱,四棱柱是长方体.12.第一行的图形绕虚线转一周,能形成第二行的某个几何体,用线连起来.13.推理猜测题.(1)三棱锥有____条棱,四棱锥有_____条棱,十棱锥有____条棱.(2)_____棱锥有30条棱.(3)_____棱柱有60条棱.(4)一个多面体的棱数是8,则这个多面的面数是________.●中考在线14.右图是由( )图形饶虚线旋转一周形成的.15.图中为棱柱的是().16.下列说法中,正确的是().A.棱柱的侧面可以是三角形.B.由六个大小一样的形所组成的图形是体的展开图.C.体的各条棱都相等.D.棱柱的各条棱都相等.17.下列说法错误的是().A.若直棱柱的后面边长都相等,则它的各个侧面面积相等.B.n棱柱有n个面,n个顶点.C.长方体,体都是四棱柱.D.三棱柱的底面是三角形.18.在三棱锥5个面的18个角中,直角最多有()个.A.12个B.14个C.16个D.18个19.将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现在有一个长为4厘米,宽为3厘米的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱体,它们的体积分别是多大?1.2 展开与折叠※课时达标1.如图所示棱柱:(1)这个棱柱的底面是_______边形.(2)这个棱柱有_______个侧面,侧面的形状是_______边形.(3)侧面的个数与底面的边数_______.(填“相等”或“不相等”)(4)这个棱柱有_______条侧棱,一共有_______条棱.(5)如果CC′=3 cm,那么BB′=_______cm.2.棱柱中至少有_______个面的形状完全相同.3.判断题:(1)长方体和体不是棱柱. ()(2)五棱柱中五条侧棱长度相同. ()(3)三棱柱中底面三条边都相同. ()4.长方体共有_______个顶点________个面,其中有___________对平面相互平行.5.下面图形能围成一个长方体的是().6.圆锥的侧面展开图是( ).A.长方形B.形C.圆D.扇形7.下列平面图中不能围成立方体的是( ).※课后作业★基础巩固1.指出下列图形是什么图形的展开图:2.如图,把左边的图形折叠起来,它会变为().3.下面图形经过折叠不能围成棱柱().4.如图,把左边的图形折叠起来,它会变成().5.一个几何体的边面全部展开后铺在平面上,不可能是().A.一个三角形B.一个圆C.三个形D.一个小圆和半个大圆6.下面图形经过折叠不能围成棱柱的是().7.圆柱的底面是,侧面是,展开后的侧面是______________.8.圆锥的底面是,侧面是,展开后的侧面是_________.9.若要使图中平面展开图按虚线折叠成体后,相对面上两个数之和为6,x=___,y=______.10.用一个边长为10cm的形围成一个圆柱的侧面(接缝略去不计),求该圆柱的体积.11.用如图所示的长31.4cm,宽5cm的长方形,围成一个圆柱体,求需加上的两个底面圆的面积是多少平方厘米?( 取3.14)☆能力提升12.下面几何体的表面不能展开成平面的是().A.体B.圆柱C.圆锥D.球13.下面几何体中,表面都是平的是().A.圆柱B.圆锥C.棱柱D.球14.下列图形中( )可以折成体.15.如图中是体的展开图的有().A.2个B.3个C.4个D.5个16.小丽制作了一个如下左图所示的体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是().A B C D17.下列图形经过折叠不能围成棱柱的是().A B C D●中考在线18.面与面相交成______,线与线相交得到_______,点动成______,线动成_______,面动成_______.12 3x y 1 2543619.下面的图形中,是三棱柱的侧面展开图的为( ).A B C D1.3 截一个几何体※课时达标1.判断题:(1)用一个平面去截一个体,截出的面一定是形或长方形. ()(2)用一个平面去截一个圆柱,截出的面一定是圆. ()(3)用一个平面去截圆锥,截出的面一定是三角形. ()(4)用一个平面去截一个球,无论如何截,截面都是一个圆. ()2.下列说法中,正确的是().A.棱柱的侧面可以是三角形B.由六个大小一样的形所组成的图形是体的展开图C.体的各条棱都相等D.棱柱的各条棱都相等3.用一个平面去截一个体,截面不可能是().A.梯形B.五边形C.六边形D.圆4.下列立体图形中,有五个面的是().A.四棱锥B.五棱锥C.四棱柱D.五棱柱5.将一个体截去一个角,则其面数().A.增加B.不变C.减少D.上述三种情况均有可能6.用一个平面去截圆锥,得到的平面不可能是(). 7.用一个平面去截一个圆柱体,不可能的截面是().A B C D※课后作业★基础巩固1.如图,用平面去截一个体,所得截面的形状应是().2.下面几何体中,截面图形不可能是圆().A.圆柱B.圆锥C.球D.体3.如图,用平面去截圆锥,所得截面的形状是().4.用一个平面截体,若所得的截面是一个三角形,则留下的较大的一块几何体一定有().A.7个面B.15条棱C.7个顶点D.10个顶点5.用一个平面截圆柱,则截面形状不可能是().A.圆B.体C.长方体D.梯形6.用一个平面去截①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是( ).A.①②④B.①②③C.②③④D.①③④☆能力提升7.用一个平面去截一个体,截面的形状不可能是().A.梯形B.长方形C.六边形D.七边形8.用一个平面去截一个几何体,不能截得三角形截面的几何体是().A.圆柱B.圆锥C.三棱柱D.形9.如图,的一块长方体木头,想象沿虚线所示位置截下去所得到的截面图形是().●中考在线10.下列图形中可能是体展开图的是( ).11.明明用纸(如下图左)折成了一个体的盒子,里面装了一瓶墨水,混放在下面的盒子里,只凭观察,选出墨水在哪个盒子中.()A B C D12.观察下图,请把左边的图形绕着给定的直线旋转一周后可能形成的几何体选出来().13.用一个平面截一个圆锥,所得截面可能是三角形吗?可能是直角三角形吗?当截面是一个圆时,截面面积可能恰好等于底面面积的一半吗?14.试一试:用平面去截一个体,能得到一个等边三角形吗?能截到一个直角三角形或钝角三角形截面吗?A B C DA B C D1.4 从三个方向看物体的形状※课时达标1.观察下图1、2、3分别得它的主视图、左视图和俯视图,请写在对应图的下边.2.画出下图所示几何体的主视图,左视图与俯视图.3.下图是由五块积木搭成,这几块积木都是相同的体,请画出这个图形的主视图、左视图和俯视图.4.画出如图所示几何体的主视图,左视图和俯视图.5.圆锥的三视图是().A.主视图和俯视图是三角形,侧视图是圆B.主视图和侧视图是三角形,俯视图是圆C.主视图和侧视图是三角形,俯视图是圆和圆心D.主视图和俯视图是三角形,侧视图是圆和圆心6.物体的形状如图所示,则此物体的俯视图是().※课后作业 ★基础巩固1.我们从不同的方向观察同一物体时,可能 看到不同的图形,其中,把从正面看到的图 叫做_____________,从左面看到的图叫做 __________,从上面看到的图叫做______.2.主视图,左视图和俯视图都一样的几何体 有________(写出一种即可).3.圆柱的俯视图是_______,主视图是_____.4.体的俯视图是____________,圆锥的 主视图是_______________.5.如图,该物体的俯视图是( ).☆能力提升6.如图的几何体,左视图是( ).7.桌面上放着一个三棱锥和一个圆柱体,下 面的三幅图分别从哪个方向看的顺序是( ).图1 图2 图3A.正面.左面.上面B.正面.上面.左面C.左面.上面.正面D.以上都不对8.如图是由一些相同的小体构成几何体 的三种视图,那么构成这几何体的小 体有( ).A.4个B.5个C.6个D.无法确定俯视图左视图主视图 9.由六个小立方体搭成的几何体的俯视图如 图所示,小体中的数字表示在该位置 的小立方体的个数,请画出这个几何体的 主视图和左视图.10.用小立方块搭一个几何体,使得它的主视图和俯视图如图所示,这样的几何体只有一种吗?它最少要多少个立方块?最多要多少个立方块?●中考在线11.如图所示,是一个由小立方体搭成的几何体的俯视图,小形中数字表示该位置的小立方块的个数,则它的主视图为( 1 1 121主视图 俯视DCBAA B C D 12.下图是由五块积木搭成,这几块积木都是 相同的体,请画出这个图形的主视 图、左视图和俯视图.13.如图,已知一个由小体组成的几何体 的左视图和俯视图.(1)该几何体最少需要几块小体?最 多可以有几块小体?(2)请画出该几何体的所有可能的主视图.第二章 有理数及其运算2.1 有理数※课时达标1.(1)某工厂增产1200吨记为+1200吨, 那么减产13吨记为___________ . (2)高出海平面324米记为+324米,那么 -20表示_________________.2.把下面各数填在相应的大括号:1,51,0.6,+5,0,-3.3,-6,135,0.3,2%,-13.正数集合:{ …} 负数集合:{ …} 整数集合:{ …} 分数集合:{ …} 有理数集合:{ …} 3.下面是关于0的一些说法,其中正确说法 的个数是( ).①0既不是正数也不是负数;②0是最小的 自然数;③0是最小的正数;④0是最小的 非负数;⑤0既不是奇数也不是偶数. A.0B.1C.2D.3※课后作业 ★基础巩固 1.判断题.(1)零上5℃与零下5℃意思一样,都是5℃. ( )(2)正整数集合与负整数集合并在一起是整 数集合. ( ) (3)若-a 是负数,则a 是正数. ( ) (4)若+a 是正数,则-a 是负数.( )(5)收入-2000元表示支出2000元.( ) 2.大于-5.1的所有负整数为____________.3._____既不是正数,也不是负数.4.非负数是( ). A.正数B.零C.正数和零D.自然数5.文具店、书店和玩具店依次座落在一条东 西走向的大街上,文具店在书店西边20米 处,玩具店位于书店东边100米处,小明 从书店沿街向东走了40米,接着又向东走 了-60米,此时小明的位置在( ). A.文具店 B.玩具店C.文具店西40米处D.玩具店西60米处 ☆能力提升6. (1)-2.1_____1 (2)-3.2____-4.3(3)31____21-- (4)0____41-7.把下列各数填入相应的大括号里: 5,-1,0,-6,+8,0.3,-132,+154, -0.72,…数集合:{ …} ②负整数集合:{ …} ③负数集合:{ …} ④分数集合:{ …} 8.下列各数,正数一共有( ).-11,0,0.2,3,+71,32,1,-1 A.5个 B.6个 C.4个 D.3个 9.在0,21,-51,-8,+10,+19,+3,-3.4 中整数的个数是( ). A.6B.5C.4D.310.某地气象站测得某天的四个时刻气温分别 为:早晨6点为零下3℃,中午12点为零 上1℃,下午4点为零下8℃,晚上12点为 零下9℃.1.用正数或负数表示这四个不同时刻的 温度.2.早晨6点比晚上12点高多少度.3.下午4点比中午12点低多少度.●中考在线11.如果盈余15万元记作+15万元,那么-3 万元表示___________ .12.某地某天的最高气温为5℃,最低气温为 -3℃,这天的温差是 ℃. 13.最小的正整数是______,最大的负整数是 ______,绝对值最小的整数是______. 14.下面关于有理数的说确的是( ). A.有理数可分为正有理数和负有理数两大类 B.正整数集合与负整数集合合在一起就构成整数集合C.正数和负数统称为有理数D.正数、负数和零统称为有理数15.规定向北为正,某人走了+5米,又继续走 了﹣10米,那么,他实际上( ). A.向北走了15km B.向南走了15km C.向北走了5km D.向南走了5km 16.在–1,–2,1,2四个数中,最大的一个 数是( ).A.–1B.–2C.1D.217.π是( ).A.整数B.分数C.有理数D.以上都不对 18.如果水位下降3米记作-3米,那么水位上 升4米,记作( ).A.1米B.7米C.4米D.-7米 19.下列说确的是( ).A .整数包括正整数、负整数B .分数包括正分数、负分数和0C .有理数中不是负数就是正数D .有理数包括整数和分数 20.省元月份某一天的天气预报中, 市的最低气温为-6℃,市的最低气温 为2℃,这一天市的最低气温比 市的最低气温低( ).A .8℃B .-8℃C .6℃D .2℃ 21.下列说确的个数有( ).①0是整数;②π-是负分数;③5.2不是 正数;④自然数一定是正数;⑤负分数一定是负有理数;⑥a 一定是正数 A .1个 B .2个 C .3个 D .4个2.2 数轴※课时达标 1.判断题: (1)-31的相反数是3. ( ) (2)规定了向的直线叫数轴. ( ) (3)数轴上表示数0的点叫做原点.( )(4)如果A 、B 两点表示两个相邻的整数,那 么这两点之间的距离是一个单位长度. ( ) (5)如果A 、B 两点之间的距离是一个单位长 度,那么这两点表示的数一定是两个相邻 的整数.( )2.填空题:(1)在数轴上,-0.01表示A 点,-0.1表 示B 点,则离原点较近的是_______. (2)在所有大于负数的数中最小的数是 _______.(3)在所有小于正数的数中最大的数是 _________.(4)在数轴上有一个点,已知离原点的距离 是3个单位长度,这个点表示的数为 ______.(5)已知数轴上的一个点表示的数为3,这 个点离开原点的距离一定是_______个 单位长度.3.2013年1月19日至22日每天的最高 气温情况如下表:排列,用“<”号连接起来.4.选择适当的长度单位为单位长度.(1)原点表示的数是______.(2)原点右边的数是_____,左边的数是_____. ※课后作业 ★基础巩固1.在数轴上,原点及原点右边的点表示的数 是( ).A.正数B.整数C.非负数D.非正数 2.在数轴上有四个点A,B,C,D,分别表示数 a ,b ,c ,d ,已知B 在A 的左侧,B 在C 的 右侧,D 在A ,B 之间,则下列式子正确的 是( ).A.a<b<c<dB.b<d<c<aC.c<b<d<aD.d<a<c<b 3.写出所有比-5大的非正整数:__________. 4.最大的负整数_____,最小的正整数_____. 5.指出数轴上A 、B 、C 、D 、E 各点分别表示 什么数:A 点表示______,B 点表示______,C 点表示______,D 点表示______,E 点表示______. ☆能力提升6.在数轴上距离原点为2的点所对应的数为 _____,它们互为_____.7.数轴上A 、B 、C 三点所对应的实数为-32, -43,54,则此三点距原点由近及远的顺 序为__________________.8.数轴上-1所对应的点为A ,将A 点右移4 个单位再向左平移6个单位,则此时A 点 距原点的距离为__________. 9.一个数与它的相反数之和等于_____. 10.下面正确的是( ).A.数轴是一条规定了原点,向和长度单位的射线B.离原点近的点所对应的有理数较小C.数轴可以表示任意有理数D.原点在数轴的正中间11.关于相反数的叙述错误的是( ). A.两数之和为0,则这两个数为相反数 B.如果两数所对应的点到原点的距离相 等,这两个数互为相反数C.符号相反的两个数,一定互为相反数D.零的相反数为零12.下列表示数轴的图形中正确的是( ).13.若数轴上A 、B 两点所对应的有理数分别 为a 、b ,且B 在A 的右边,则a -b 一定 ( ). A.大于零 B.小于零 C.等于零D.无法确定●中考在线14.在数轴上有一个点,已知离原点的距离是 3个单位长度,这个点表示的数为____. 15.数轴上-1所对应点为A ,将A 右移4个单位 再向左移6个单位,此时A 点距原点距离为 _____.16.在数轴上,与原点相距3个单位长度的点 表示数 ,它们的关系是 . 17.每个有理数都可以用数轴上的以下哪项 来表示( ). A.一个点 B.线 C.单位D.长度18.下列图形中不是数轴的是( ).19.下列各式中正确的是( ). A.-3.14<-π B.-121>-1C.3.5>-3.4D.-21<-2 20.下列说法错误的是( ). A.零是最小的整数B.有最大的负整数,没有最大的正整数C.数轴上两点表示的数分别是-231与-2, 那么-2在右边D.所有的有理数都可以用数轴上的点表示出来21.非负数是( ).A.正数B.零C.正数和零D.自然数22.下列说法中不正确的是( ). A .任何一个有理数都有相反数B .数轴上表示+3的点离表示-2的点的距 离是5个单位长度C .数轴上表示2与-2的点离原点的距离 相等D .数轴上右边的点都表示正数23.A 为数轴上表示-1的点,将点A 在数轴上 向右平移3个单位长度到点B ,则点B 所 表示的实数为( ).A.3B.2C.-4D.2或-42.3 绝对值※课时达标 1.-51的相反数是( ). A.5 B.-5 C.51 D.51- 2.如5=a ,则a 的值是( ). A.-5 B.5 C.51D.5± 3.把下列各数用“>”连接起来,并求出各数 的绝对值.23-, +1, 0, -2, 3.4.一个数a 与原点的距离叫做该数的______.5._______的倒数是它本身,_______的绝对 值是它本身.6. -|-76|=_______,-(-76)=_______,-|+31|=_______,-(+31)=_______,+|-(21)|=_______,+(-21)=_______. 7. 在给出的数轴上,标出以下各数及它们的 相反数.-1,2,0,25,-4※课后作业 ★基础巩固1.下列说确的是( ). A.41-和0.25不是互为相反数 B.a -是负数C.任何一个是都有相反数D.正数与负数互为相反数 2.下列说确的是( ).①2的绝对值是2-;②一个有理数的绝对 值一定是正数;③一个非负数的绝对值是 它的相反数;④若两个有理数绝对值相等, 则这两个数一定相等;⑤到原点距离是2 的点有两个,分别是2和2-. A.1个 B.2个 C.3个 D.4个 3.绝对值是23的数是_____,绝对值是0的数 是____,绝对值小于3的非负整数是_____. 4.211-的相反数是________ . 5.若2-=a ,则=a ________.6.已知,020142013=-+-y x =x ____, =y _______. ☆能力提升7.若|x -2|+|y+3|+|z -5|=0, 则x=____,y=____,z=_______. 8.若|a|=2,|b|=5,则|a+b|=_______ . 9.互为相反数的两个数的绝对值_____. 10.一个数的绝对值越小,则该数在数轴上所 对应的点,离原点越_____. 11.绝对值最小的数是_____. 12.|x|=2,则这个数是( ). A.2 B.2和-2 C.-2 D.以上都错13.|21a|=-21a ,则a 一定是( ). A.负数 B .正数 C.非正数 D.非负数 14.若|x -2|+|y+3|+|z -5|=0 计算:(1)x,y ,z 的值. (2)求|x|+|y|+|z|的值.●中考在线15.一个数的倒数等于它的本身,这个数是 ____________ .16.绝对值等于5的数是_____,它们互为 _____.17.一个数在数轴上对应点到原点的距离为 m ,则这个数为( ). A.-mB.mC.±mD.2m18.如果一个数的绝对值等于这个数的相反 数,那么这个数是( ). A.正数B.负数C.正数、零D.负数、零19.下列说法中,正确的是( ). A.一个有理数的绝对值不小于它自身 B.若两个有理数的绝对值相等,则这两个 数相等C.若两个有理数的绝对值相等,则这两个 数互为相反数D.-a 的绝对值等于a20.若两个数绝对值之差为0,则这两个数 ( ).A.相等B.互为相反数C.两数均为0D.相等或互为相反数21.下列说确的是( ).A.一个有理数的绝对值一定大于它本身B.只有正数的绝对值等于它本身C.负数的绝对值是它的相反数D.一个数的绝对值是它的相反数,则这个 数一定是负数22.任何一个有理数的绝对值一定( ). A.大于0 B.小于0 C.不大于0 D.不小于023.如果|a-12|+|b-1|=0,那么a+b 等于 ( ). A .-12 B .12 C .32D .1 24.一个数是10,另一个数比10的相反数小 2,则这两个数的和为( ). A .18 B .-2 C .-18 D .2 25.一个数的绝对值是它本身,则这个数必为 ( ).A.这个数必为正数B.这个数必为0C. 这个数是正数和0D.这个数必为负数26.一个数大于另一个数的绝对值,则这两 个数的和是( ). A.正数 B.零C.负数D.和的符号无法确定 27.一个正数的绝对值小于另一个负数的绝 对值,则两数和( ) . A.正数 B.负数C.零D.不能确定和的符号 28.比3的相反数小3的数是( ). A.-6 B.6 C.±6 D.0 29.一个数的倒数等于它本身的数是( ).A .1 B .1- C .±1D .030.在–1,–2,1,2四个数中,最大的一个 数是( ).A.–1B.–2C.1D.2 31.已知:|X|=1,|Y|=3,求X +Y 的值.2.4 有理数的加法※课时达标 1.计算:(1)()()75-++ (2)2121+-(3)-1+2- (4)(-21)+(-31)(5)16+(-8)2.计算:272343272341++〉〈-+※课后作业 ★基础巩固1.下列计算错误的是( ).A.(211-)15.0-=+ B.(-2)+(-2)=4C.(-1.5) +(212-)=-4 D.(-71)+0=71 2.若两个有理数的和为正数,那么这两个有 理数( ).A.都是正数B.都是负数C.至少有一个是正数D.至少有一个是负数3.若,4,2==b a 则=+b a ( ). A.6 B.2 C.6或2 D.±6或±24.A 地的海拔高度是-78米,B 地比A 地高 38米,C 地又比B 地高12米,则B 地的海 拔高度是______米,C 地的海拔高度是 _____.5.绝对值小于5的所有整数的和为________; 绝对值不大于10的所有整数的和为_____.6.计算:(1)(-5)+(-4);(2)〉〈-+〉〈-+〉〈-327(3)(-0.6)+0.2+(-11.4)+0.8(4)(324-)+(313-)+(416+)+(412-)●中考在线7.计算:(-1)+2的结果是( ). A.-1 B.1 C.-3 D.3 8.小明家冰箱冷冻室的温度为-5℃,调高 4℃后的温度为( ).A.4℃B.9℃C.-1℃D.-9℃ 9.-2+5的相反数是( ). A.3 B.-3 C.-7 D.72.5 有理数的减法※课时达标1.两个加数的和是-10,其中一个加数是-1021,则另一个加数是多少?2.某地去年最高气温曾达到36.5℃,而冬季 最低气温为-20.5℃,该地去年最高气温 比最低气温高多少度?3.已知a=-83,b=-41,c=41.求代数式a -b -c 的值.4.一个数的相反数的绝对值等于这个数的绝 对值的相反数,问这个数是多少?5.用有理数减法解答下列问题:(1)某冷库温度是零下10℃,下降-3℃后 又下降5℃,两次变化后冷库温度是多少?(2)零下12℃比零上12℃低多少? 6.计算:(1)(-12)+(+23); (2)(+37)-(+68); (3)0-(-12); (4)(-16)-(-10).※课后作业 ★基础巩固1.下列说确的是( ).A.在有理数的减法中,被减数一定要大于 减数B.两个负数的差一定是负数C.正数减去负数的差是正数D.两个正数的差一定是正数 2.下列运算结果为1的是( ). A.43+-+ B.〉〈--〉〈-43 C.43--- D.43--+ 3.甲数减乙数差大于零,则( ). A.甲数大于乙数B.甲数大于零,乙数也大于零C.甲数小于零,乙数也小于零D.以上都不对4.比0小4的数是______,比3小4的数是 ____,比-5小-2的数是______ .5.月球表面的温度,中午是113℃,晚上是 -148℃,晚上比中午低______℃.6. ______+0=-0.3 (+5)+_____=-5 _____+(2115-)=0 0+_____=-77.在数轴上,表示-4与-6的点之间的距离 是_____. 8.计算:(1)(-3)-(+7) (2)31-(-21) (3)(212-)-21(4)0-(-5)9.若,6,8==b a 当b a ,异号时,求b a -的值.10.下表列出了国外几个城市与的时差 (带正号的数表示同一时刻比时间早 的小时数).现在巴黎时间是多少?(2)如果现在时间是晚上8点,那么 小明现在给在芝加哥的朋友打,你认 为合适吗?☆能力提升11.全班同学分为五个组进行游戏,每组基本 分为100分,答对一题加50分,答错一 题扣50分,游戏结束时各组的分数如下 表: (2)第一名超出第五名多少分?12.设A 是-4的相反数与-12的绝对值的差, B 是比-6大5的数. (1)求A-B 与B-A 的值.(2)从(1)的结果中,你知道A-B ,B-A 之 间的关系吗?●中考在线13.2-3的值等于( ).A.1B.-5C.5D.-1 14.计算:-1-2=( ).A.-1B.1C.-3D.3 15.今年1月份某天的最高气温为5℃, 最低气温为-1℃,则这天的温差为 ( ).A.4℃B.6℃C.-4℃D.-6℃2.6 有理数的加减混合运算※课时达标 1.计算题:(1)+3-(-7)=_______. (2)(-32)-(+19)=_______. (3)-7-(-21)=_______.(4)(-38)-(-24)-(+65)=_______. 2.某人从A 处出发,约定向东为正,向西为 负,从A 到B 所走的路线(单位:米),分 别为+10、-3、+4、-2、+13、-8、-7、 -5、-2,则此人走过的路程为____米. 3. 10名学生体检测体重,以50千克为基准, 超过的数记为正,不足的数记为负,结果 如下(单位:千克):2, 3, -7.5, -3, 5, -8, 3.5, 4.5, 8, -1.5,则10名学生的平均体重为_________.4.室温是32℃,小明开空调后,温度下降了6 ℃,记作-6℃,关上空调1小时后,空气 温度回升了2℃,此时室温度是______.5.A 、B 、C 三点相对于海平面分别是-13米、 -7米、-20米,那么最高的地方比最低 的地方高_______米.6.某汽车厂计划半年每月生产汽车20辆, 由于另有任务,每月上班人数不一定相等,实际每月生产量与计划量相比情况如下表 (增加为正,减少为负).天多生产多少辆?(2)半年总生产量是多少?比计划多了 还是少了,增或减多少? ※课后作业 ★基础巩固1.水池中的水位在某天8个时间测得的数据 记录如下(规定上升为正,单位:cm ):+3、 -6、-1、+5、-4、+2、-3、-2,那么这天 中水池水位最终的变化情况是 .2.数6,-1,15,-3中,任取三个不同的数 相加,其中和最小的是( ). A.-3 B.-1 C.3 D.23.计算:(1)23-17-(-7)+(-16)(2)32+(-51)-1+31(3)(-26.54)+(-6.4)-18.54+6.4(4)(-487)-(-521)+(-441)-381(5)(-2)-(-5)+(-9)-(-7)4.下表是某中学七年级5名学生的体重情况, 试完成下表.(2)最重的与最轻的相差多少?5.某摩托车厂本周计划每日生产300辆摩 托车,由于工人实行轮休,每日上班人数 不一定相等,实际每日生产量与计划量相 比情况如下表(增加的车辆数为正数,减少的车辆数为负数).(2)本周总生产量与计划生产量相比,是 增加还是减少?(3)产量最多的一天比产量最少的一天多生产了多少辆?6. 10袋小麦, 如果以40千克为准,超过的千克数记作正数,不足的千克数记做负数.称重的纪录如下:+2,+1,―0.5,―1,―2,+3,―0.5,―1,―1,0这10袋小麦的总重量是多少千克?☆能力提升7.某人用400元购买了8套儿童服装,准备以一定价格出售,如果以每套儿童服装55元的价格为标准,超出的记作正数,不足的记作负数,记录如下:+2,—3,+2,+1,—2,—1,0,—2.(单位:元)(1)当他卖完这八套儿童服装后是盈利还是亏损?(2)盈利(或亏损)了多少钱?8.有一架直升飞机从海拔1000米的高原上起飞,第一次上升了1500米,第二次上升上-1200米,第三次上升了1100米,第四次上升了-1700米,求此时这架飞机离海平面多少米?9.一辆汽车沿着一条南北方向的公路来回行驶。
七年级上数学第四章知识点
第三章:一元一次方程一、方程的有关概念1、方程的概念(1)含有未知数的等式叫方程。
(2)在一个方程中,只含有一个未知数,并且未知数的指数是1,系数不为0,这样的方程叫一元一次方程。
且一元一次方程的一般形式为:)0(0≠=+a b ax概念剖析:①方程一定是等式,但等式不一定都是方程,只有含未知数的等式叫方程;②等式:用等号“=”表示相等关系的式子叫做等式;③一元一次方程的条件:是方程;只含有一个未知数;未知数的指数是1;知数的系数不为0;例1、下列式子是方程的是( )A 、953++y xB 、0791≥-y xC 、11=xD 、21053-=+ 例2、下列方程是一元一次方程的是( )A 、92=+y xB 、132=-x xC 、11=xD 、x x 3121=- 例3、已知方程0213=++-b nx mx 是关于x 的一元一次方程,求m 、n 、b 的值;2、等式的基本性质(1)等式两边同时加上(或减去)同一个数或代数式,所得结果仍是等式。
若b a =,则cb c a +=+或c b c a -=-。
(2)等式两边同时乘以(或除以)同一个数(除数不能为0),所得结果仍是等式。
若b a =,则bcac =或cb c a =; (3)对称性:等式的左右两边交换位置,结果仍是等式。
若b a =,则a b =;(4)传递性:如果b a =,且c b =,那么c a =,这一性质叫等量代换。
例4、用适当的数或式子填空①如果532=-x ,那么+=52x ____________;②如果632=x ,那么=x ____________; ③如果1233+=+b a ,那么___________________b 3=;④如果a b 211=,那么=a 2___________________; 二、解方程1、解方程及解方程的解的含义求得方程的解的过程,叫做解方程。
使方程的左、右两边的值相等的未知数的值,叫做方程的解。
数学七年级上册第四章
数学七年级上册第四章
数学七年级上册的第四章通常涵盖了代数表达式和简单方程的内容。
这一章节主要包括以下几个主题:
1. 代数表达式的引入:介绍代数表达式的概念,包括变量、常数和运算符等基本概念,以及代数表达式的构成和意义。
2. 代数表达式的简单运算:学习如何对代数表达式进行简单的加减乘除运算,包括类似项的合并、同底数的幂运算等。
3. 代数表达式的展开和因式分解:学习如何将代数表达式用乘法展开,并了解如何进行因式分解,将一个代数表达式分解为乘积的形式。
4. 解一元一次方程:介绍一元一次方程的概念和解法,包括用逆运算法和等式的等价变形法解方程等。
这些只是一些可能在数学七年级上册第四章中涉及到的主题,具体内容可能因教材版本和学校的教学计划而有所不同。
七年级上册数学人教版第四章知识点
七年级上册数学人教版第四章知识点数学课要有一定的速度学习,慢腾腾的学习是训练不出思维速度,这就要求在数学学习中一定要有节奏,这样久而久之,思维的敏捷性和数学能力会逐步提高。
下面是我整理的七年级上册数学人教版第四章知识点,仅供参考希望能够帮助到大家。
七年级上册数学人教版第四章知识点1.我们把实物中抽象的各种图形统称为几何图形。
2.有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形。
3.有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形。
4.将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。
5.几何体简称为体。
6.包围着体的是面,面有平的面和曲的面两种。
7.面与面相交的地方形成线,线和线相交的地方是点。
8.点动成面,面动成线,线动成体。
9.经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。
简述为:两点确定一条直线(公理)。
10.当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。
11.点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点。
12.经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短。
简单说成:两点之间,线段最短。
(公理)13.连接两点间的线段的长度,叫做这两点的距离。
14.角∠也是一种基本的几何图形。
15.把一个周角360等分,每一份就是1度的角,记作1°;把一度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1〃。
16.从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
17.如果两个角的和等于90°(直角),就是说这两个叫互为余角,即其中的每一个角是另一个角的余角。
18.如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角19.等角的补角相等,等角的余角相等。
北师大版七年级上册数学书答案
北师大版七年级上册数学书答案篇一:北师大版七年级上册数学配套练习(带答案)北师大七年级上第一章丰富的图形世界第课时家庭作业生活中的立体图形1)学习目标:1.经历从现实世界中抽象出几何图表的过程,感受图形世界的丰富多彩。
2.在具体情境中认识圆柱、圆锥、正方体、长方体、棱柱、棱台、球,并能用自已的语言描述它们的某些特征。
一.填空题:1.立体图形的各个面都是__________的面,这样的立体图形称为多面体.;2.图形是由________,_________,________构成的;3.物体的形状似于圆柱的有________________,类似于圆锥的有_____________________,类似于球的有__________________;(各举一例)4.围成几何体的侧面中,至少有一个是曲面的是______________;(举一例)5.正方体有_____个顶点,经过每个顶点有_________条棱,这些棱都____________;6.圆柱、圆锥、球的共同点是_____________________________;7.假如我们把笔尖看作一个点,当笔尖在纸上移动时,就能画出线,说明了______________,时钟秒针旋转时,形成一个圆面,这说明了_______________,三角板绕它的一条直角边旋转一周,形成一个圆锥体,这说明了___________________;8.圆可以分割成_____ 个扇形,每个扇形都是由___________________;9.从一个七边形的某个顶点出发,分别连结这个点与其余各顶点,可以把七边形分割成__________个三角形;10.在乒乓球、橄榄球、足球、羽毛球、冰球中,是球体的有;11.将下列几何体分类,柱体有:,锥体有(填序号);12.长方体由_______________个面_______________条棱_______________个顶点;13.半圆面绕直径旋转一周形成__________;二.选择题114.观察下图,请把左边的图形绕着给定的直线旋转一周后可能形成的几何体选出来()A B CD 15.从一个十边形的某个点出发,分别连接这个顶点与其余各顶点,可以把这个多边形分割成三角形()(A) 10个(B) 9个(C)8个(D)7个16.如图的几何体是下面()平面图形绕轴旋转一周得到的()(A)(B)(C)(D)18.下面图形不能围成封闭几何体的是()(A)(B)(C)(D)三.解答题:19.指出下列平面图形是什么几何体的展开图:ACB20. ⑴.下面这些基本图形和你很熟悉,试一试在括号里写出它们的名称.2() () ( ) ()( )⑵. 将这些几何体分类,并写出分类的理由.第课时家庭作业参考答案一、1.平;2.点、线、面;3.略;4.略;5.8,3,相等;6.都有一个面是曲面;7.点动成线,线动成面,面动成体;8.无数,一条弧和两条半径组成的;9.5;10.乒乓球、足球;11.(1)(2)(3),(5)(6);12.6,12,8;13.球体;二、14.D;15.C;16.B; 17.A;三、18.长方体(四棱柱),圆锥,圆柱;19.(1)(从左至右)球、圆柱、圆锥、长方体、三棱柱;(2)按面分:曲面:球、圆柱、圆锥;平面:长方体、三棱柱;按柱体分:圆柱、长方体、三棱柱;球;圆锥;北师大七年级上第一章丰富的图形世界第课时家庭作业(平面内的立体图形2)姓名学习目标:1.通过丰富的实例,进一步认识点、线、面、初步感受点、线、面之间的关系.2.进一步经历从现实世界中抽象出图形的过程,从构成图形的基本元素的角度认识常见图形;二.填空题:1.围成球的面有个;2.圆柱有_____ 个面组成,这些面相交共得____ 条线,圆锥的侧面展开图是____ ;3.圆锥是由_ __个面围成,其中__ _个平面,____个曲面,圆锥的侧面与底面3相交成条线,是线;4.圆柱的表面展开图是________________________ (用语言描述);5.图形所表示的各个部分不在同一个平面内,这样的图形称为图形;6.图形所表示的各个部分都在同一个平面内,称为图形;二.选择题:7.圆锥的侧面展开图是()(A)长方形(B)正方形(C)圆(D)扇形8.将半圆绕它的直径旋转一周形成的几何体是()(A)圆柱(B)圆锥(C)球(D)正方体9.如图所示的图形绕虚线旋转一周,所形成的几何体是(()10.以下立体图形中是棱柱的有((A)①⑤(B)①②③(C)①②④⑤(D)①②⑤[ 11.下列说法中,正确的是((A)正方体不是棱柱(B)圆锥是由3个面围成(C)正方体的各条棱都相等(D)棱柱的各条棱都相等12.将一个直角三角形绕它的最长边旋转一周,得到的几何体是((A)(B)(C)(D)13.按组成面的平或曲划分,与圆锥为同一类几何体的是(4)))))(A)正方体(B)长方体(C)球(D)棱柱14.()(A)(B)(D)15.一个正方体锯掉一个角后,顶点的个数是()(A) 7个(B) 8个(C) 9个(D) 7个或8个或9个或10个三、解答题16.请写出下列几何体的名称() ( ) ( ) ( )( ) ( ) ( )17.如图,第二行的图形绕点划线旋转一周,便形成第一行的某个图形(几何体),将对应的两个图形用线联结起来.第课时家庭作业参考答案一、1.一个;2.三,二,扇形;3.二,一,一,一,曲;4.由一个长方形和两个相等的圆形组成;5.平面; 6.立体;[二、5篇二:2014年练习册上册数学七年级C北师大版答案篇三:七年级上册-北师大版-数学练习册解析与答案七年级上册-北师大版-数学练习册解析与答案北师大版七年级数学上册教学建议及期末调研要求⒈本学期(春节1月29日)的教学时间虽然不太长,但除去节假日外,实际上课也在20周左右(课时数120节),相对的下学期的时间短些;而七上教材教学课时为69—108节,七下教材教学课时为66—100节。
新人教版七年级数学上册专题训练:整式的化简求值(含答案).优选
专题训练整式的化简求值类型1化简后直接代入求值2221.(柳州期中)先化简,再求值:5x +4-3x -5x -2x -5+6x ,其中x =-3.2解:原式=(5-3-2)x +(-5+6)x +(4-5)=x -1.当x =-3时,原式=-3-1=-4.22222.(北流期中)先化简,再求值:(3a b -2ab )-2(ab -2a b),其中a =2,b =-1.2222解:原式=3a b -2ab -2ab +4a b22=7a b -4ab .当a =2,b =-1时,原式=-28-8=-36.223223.先化简,再求值:2(x +x y)-(3x y +x)-y ,其中x =1,y =-3.32解:原式=2x +2x y -2x y -x -y 2=x -y .当x =1,y =-3时,原式=1-9=-8.122224.(钦南期末)先化简,再求值:2x y -[2xy -2(-x y +4xy )],其中x =,y =-2.2解:原式=2x y -2xy -2x y +8xy 2=6xy .11当x =,y =-2时,原式=6××4=12.222225.(南宁四十七中月考)先化简,再求值:2(x y +xy)-3(x y -xy)-4x y ,其中x ,y 满足|x +1|+(y 12-)=0.2解:原式=2x y +2xy -3x y +3xy -4x y2=-5x y +5xy.222222222212因为|x +1|+(y -)=0,21所以x =-1,y =.255故原式=--=-5.22类型2整体代入求值2222226.若a +2b =5,求多项式(3a -2ab +b )-(a -2ab -3b )的值.2222解:原式=3a -2ab +b -a +2ab +3b 22=2a +4b .22当a +2b =5时,22原式=2(a +2b )=10.7.已知|m +n -2|+(mn +3)=0,求2(m +n)-2[mn +(m +n)]-3[2(m +n)-3mn]的值.解:由已知条件知m +n =2,mn =-3,所以原式=2(m +n)-2mn -2(m +n)-6(m +n)+9mn=-6(m +n)+7mn=-12-21=-33.2专题训练角的计算类型1利用角度的和、差关系找出待求的角与已知角的和、差关系,根据角度和、差来计算.1.如图,已知∠AOC=∠BOD=75°,∠BOC=30°,求∠AOD的度数.解:因为∠AOC=75°,∠BOC=30°,所以∠AO B=∠AOC-∠BOC=75°-30°=45°.又因为∠BOD=75°,所以∠AOD=∠AOB+∠BOD=45°+75°=120°.2.将一副三角板的两个顶点重叠放在一起.(两个三角板中的锐角分别为45°、45°和30°、60°)(1)如图1所示,在此种情形下,当∠DAC=4∠BAD时,求∠CAE的度数;(2)如图2所示,在此种情形下,当∠ACE=3∠BCD时,求∠ACD的度数.解:(1)因为∠BAD+∠DAC=90°,∠DAC=4∠B AD,所以5∠BAD=90°,即∠BAD=18°.所以∠DAC=4×18°=72°.因为∠DAE=90°,所以∠CAE=∠DAE-∠DAC=18°.(2)因为∠BCE=∠DCE-∠BCD=60°-∠BCD,∠ACE=3∠BCD,所以∠ACB=∠ACE+∠BCE=3∠BCD+60°-∠BCD=90°.解得∠BCD=15°.所以∠ACD=∠ACB+∠BCD=90°+15°=105°.类型2利用角平分线的性质角的平分线将角分成两个相等的角,利用角平分线的这个性质,再结合角的和、差关系进行计算.3.如图,点A,O,E在同一直线上,∠AOB=40°,∠EOD=28°46′,OD平分∠COE,求∠COB的度数.解:因为∠EOD=28°46′,OD平分∠COE,所以∠COE=2∠EOD=2×28°46′=57°32′.又因为∠AOB=40°,所以∠COB=180°-∠AOB-∠COE=180°-40°-57°32′=82°28′.4.已知∠AOB=40°,OD是∠BOC的平分线.(1)如图1,当∠AOB与∠BOC互补时,求∠COD的度数;(2)如图2,当∠AOB与∠BOC互余时,求∠COD的度数.解:(1)因为∠AOB与∠BOC互补,所以∠AOB+∠BOC=180°.又因为∠AOB=40°,所以∠BOC=180°-40°=140°.因为OD是∠BOC的平分线,1所以∠COD=∠BOC=70°.2(2)因为∠AOB与∠BOC互余,所以∠AOB+∠BOC=90°.又因为∠AOB=40°,所以∠BOC=90°-40°=50°.因为OD是∠BOC的平分线,1所以∠COD=∠BOC=25°.2类型3利用方程思想求解在解决有关余角、补角,角的比例关系或倍分关系问题时,常利用方程思想来求解,即通过设未知数,建立方程,通过解方程使问题得以解决.25.一个角的余角比它的补角的还少40°,求这个角的度数.3解:设这个角的度数为x°,根据题意,得290-x=(180-x)-40.3解得x=30.所以这个角的度数是30°.6.如图,已知∠AOE是平角,∠DOE=20°,OB平分∠AOC,且∠COD∶∠BOC=2∶3,求∠BOC的度数.解:设∠COD=2x°,则∠BOC=3x°.因为OB平分∠AOC,所以∠AOB=3x°.所以2x+3x+3x+20=180.解得x=20.所以∠BOC=3×20°=60°.17.如图,已知∠AOB=∠BOC,∠COD=∠AOD=3∠AOB,求∠AOB和∠COD的度数.2解:设∠AOB=x°,则∠COD=∠AOD=3∠AOB=3x°.1因为∠AOB=∠BOC,2所以∠BOC=2x°.所以3x+3x+2x+x=360.解得x=40.所以∠AOB=40°,∠COD=120°.类型4利用分类讨论思想求解在角度计算中,如果题目中无图,或补全图形时,常需分类讨论,确保答案的完整性.28.已知∠AOB=75°,∠AOC=∠AOB,OD平分∠AOC,求∠BOD的大小.32解:因为∠AOB=75°,∠AOC=∠AOB,32所以∠AOC=×75°=50°.3因为O D平分∠AOC,所以∠AOD=∠COD=25°.如图1,∠BOD=75°+25°=100°;如图2,∠BOD=75°-25°=50°.9.已知:如图,OC是∠AOB的平分线.(1)当∠AOB=60°时,求∠AOC的度数;(2)在(1)的条件下,∠EOC=90°,请在图中补全图形,并求∠AOE的度数;(3)当∠AOB=α时,∠EOC=90°,直接写出∠AOE的度数.(用含α的代数式表示)解:(1)因为OC是∠AOB的平分线,1所以∠AOC=∠AOB.2因为∠AOB=60°,所以∠AOC=30°.(2)如图1,∠AOE=∠EOC+∠AOC=90°+30°=120°;如图2,∠AOE=∠EOC-∠AOC=90°-30°=60°.αα(3)90°+或90°-.22专题训练整式的加减运算计算:222(1)(钦南期末)a b +3ab -a b ;2解:原式=3ab .(2)2(a -1)-(2a -3)+3;解:原式=4.22(3)2(2a +9b)+3(-5a -4b);2解:原式=-11a +6b.3232(4)3(x +2x -1)-(3x +4x -2);2解:原式=2x -1.1122(5)(钦南期末)(2x -+3x)-4(x -x +);22122解:原式=2x -+3x -4x +4x -2252=6x -x -.2222222(6)3(x -x y -2x y )-2(-x +2x y -3);解:原式=3x -3x y -6x y +2x -4x y +62222=5x -7x y -6x y +6.22(7)-(2x +3xy -1)+(3x -3xy +x -3);22解:原式=-2x -3xy +1+3x -3xy +x -32=x -6xy +x -2.222(8)(4ab -b )-2(a +2ab -b );222解:原式=4ab -b -2a -4ab +2b 22=-2a +b .22(9)-3(2x -xy)+4(x +xy -6);22解:原式=-6x +3xy +4x +4xy -242=-2x +7xy -24.22(10)(钦州期中)2a -[-5ab +(ab -a )]-2ab.22解:原式=2a +5ab -ab +a -2ab 2=3a +2ab.222222。
七年级数学上册第四章测试题及有答案[最终版]
七年级数学上册第四章测试题及有答案[最终版]第一篇:七年级数学上册第四章测试题及有答案[最终版]1.下面去括号错误的是(CX)TA.Xa-(b+c)=a-b-cTB.Xa+(b-c)=a+b-cTC.X3(a-b)=3a-bTD.X-(a-2b)=-a+2b2.-4x+313x-2等于(BX)TA.X-3x+6TB.X-3x-6TC.X-5x-6TD.X-5x+63.下列运算中,正确的是(DX)TA.X-2(a-b)=-2a-bTB.X-2(a-b)=-2a+bTC.X-2(a-b)=-2a-2bTD.X-2(a-b)=-2a+2b4.a-b+c的相反数是(CX)TA.X-a-b+cTB.Xa-b-cTC.Xb-a-cTD.Xa+b-c5.化简:(2x2+x-3)-3(x2-x+1)=-x2+4x-6.6.填空:(1)x2-y2+2y-1=x2-(y2-2y+1);(2)a-3b-4c=a-(3b+4c);(3)(5x2+6x-7)+[-4x2-(4x-8)]=x2+2x+1;(4)(x3-4x2y+11xy2-y3)+(7x2y-16xy2+y3)=x3+3x2y-5xy2.7.去括号,并合并同类项:(1)-2n-(3n-1);(2)a-(5a-3b)+(2b-a);(3)-3(2s-5)+6s;(4)1-(2a-1)-(3a+3).【解】(1)原式=-2n-3n+1=-5n+1.(2)原式=a-5a+3b+2b-a=-5a+5b.(3)原式=-6s+15+6s=15.(4)原式=1-2a+1-3a-3=-5a-1.(第8题)8.有理数a,b,c在数轴上的对应点如图所示,化简|a-b|-|a+c|-|b-c|.【解】由图可知:a3x2-(2x2-x+1)+2(-3+x-x2),其中x=-3.【解】原式=3x2+2x2+x-1+(-6)+2x-2x2=-x2+3x-7.当x=-3时,原式=-(-3)2+3×(-3)-7=-25.(第10题)10.如图,面积分别为25和9的两个正方形叠合在一起,所形成的两个阴影部分的面积分别为a,b(a>b),则代数式(a+5b)-412a+b 的值是多少?【解】设叠合部分的面积为x.则a=25-x,b=9-x.∴(a+5b)-412a+b=a+5b-2a-4b=b-a=(9-x)-(25-x)=9-x-25+x=-16.11.已知A=x3-2y3+3x2y+xy2-3xy+4,B=y3-x3-4x2y-3xy-3xy2+3,C=y3+x2y+2xy2+6xy-6.试说明不论x,y,z取何值,A+B+C都是常数.【解】∵A+B+C=(x3-2y3+3x2y+xy2-3xy+4)+(y3-x3-4x2y-3xy-3xy2+3)+(y3+x2y+2xy2+6xy-6)=1,∴不论x,y,z取何值,A+B+C都等于常数1.12.不改变a-(3b-5c)的值.把括号前的“-”号改成“+”号应为(CX)TA.Xa+(3b+5c)TB.Xa+(3b-5c)TC.Xa+(-3b+5c)TD.Xa+(-3b-5c)13.当a为整数时,多项式2a5-3a3-3a+7与多项式3a3-7a-2-2a5的和一定是(CX)TA.X3的倍数TB.X偶数TC.X5的倍数TD.X以上均不对【解】(2a5-3a3-3a+7)+(3a3-7a-2-2a5)=2a5-3a3-3a+7+3a3-7a-2-2a5=-10a+5=-5(2a-1),故选TCX.14.下面是小明做的一道多项式的加减运算题,但他不小心把一滴墨水滴在了上面:-x2+3xy-12y2--12x2+4xy-12y2=-12x2,污点处即墨迹弄污的部分,那么被墨迹遮住的一项应是(AX)TA.X-xyTB.X+xyTC.X-7xyTD.X+7xy【解】-x2+3xy-12y2--12x2+4xy-12y2=-x2+3xy-12y2+12x2-4xy+12y2=-12x2-xy,故选TAX.15.若m,n互为倒数,则mn2-(n-1)的值为__1__.【解】∵m,n互为倒数,∴mn=1.∴mn2-(n-1)=1n-(n-1)=n-n+1=1.16.比2x2-3x+7少4x2-1的多项式是-2x2-3x+8.【解】(2x2-3x+7)-(4x2-1)=2x2-3x+7-4x2+1=-2x2-3x+8.17.化简关于m的代数式(2m2+m)-[km2-(3m2-m+1)],并求使该代数式的值为常数的k的值.【解】原式=2m2+m-[km2-3m2+m-1]=2m2+m-km2+3m2-m+1=(5-k)m2+1.要使该代数式的值为常数,则5-k=0,∴k=5.18.某同学做一道代数题:当x=-1时,求代数式10x9+9x8+8x7+…+3x2+2x+1的值.该同学由于将式中某一项前的“+”看成了“-”,求得代数式的值为7,那么这位同学看错了几次项前的符号?【解】当x=-1时,第1,2;3,4;5,6;7,8;9,10项的和均为-1,∴结果应为-5.又∵看错符号后的代数式的值为7,∴看错的项应为+6x5.∴该同学看错了五次项前面的符号.19.有甲、乙、丙三种货物,若购买甲3件、乙7件、丙1件,共需315元;若购买甲4件、乙10件、丙1件共需420元.问:购买甲、乙、丙各1件共需多少元?【解】设甲、乙、丙的单价分别是x,y,z元,由题意,得3x+7y+z=315,4x+10y+z=420,∴x+y+z=3(3x+7y+z)-2(4x+10y+z)=3×315-2×420=105(元).答:购买甲、乙、丙各1件共需105元.第二篇:七年级数学上册第一单元测试题及答案七年级数学上册第一单元测试题(附答案)一、仔细选一选(30分)1.0是()A.正有理数 B.负有理数 C.整数 D.负整数2.中国第一座跨海大桥——杭州湾跨海大桥全长36千米,其中36属于()A.计数 B.测量 C.标号或排序 D.以上都不是3.下列说法不正确的是()A.0既不是正数,也不是负数 B.0的绝对值是0C.一个有理数不是整数就是分数 D.1是绝对值最小的数4.在数- , 0 , 4.5, |-9|, -6.79中,属于正数的有()个A.2 B.3 C.4 D.55.一个数的相反数是3,那么这个数是()A.3 B.-3 C. D.6.下列式子正确的是()A.2>0>-4>-1 B.-4>-1>2>0 C.-4-147.一个数的相反数是最大的负整数,则这个数是()A.1 B.±1 C.0 D.-18.把数轴上表示数2的点移动3个单位后,表示的数为()A.5 B.1 C.5或1 D.5或-19.大于-2.2的最小整数是()A.-2 B.-3 C.-1 D.010.学校、家、书店依次座落在一条东西走向的大街上,学校在家的西边20米,书店在家东边100米,张明同学从家里出发,向东走了50米,接着又向西走了70米,此时张明的位置在()A.在家B.在学校C.在书店D.不在上述地方二、认真填一填(本题共30分)11.若上升15米记作+15米,则-8米表示。
七年级上册数学第四章知识点
1.有理数的概念:有理数包括整数和分数,正数、负数和零都是有理数。
有理数可以用分数表示,也可以用小数表示。
2.有理数的绝对值:有理数的绝对值是其与零的距离,表示为,a。
正数的绝对值是其本身,负数的绝对值是其相反数。
3.有理数的加法和减法:有理数之间的加法和减法遵循下面的法则:-同号相加,数值相加,符号不变;-同号相减,数值相减,符号不变;-不同号相加,数值相减,结果的符号由大的数决定,绝对值取两数的差;-不同号相减,数值相加,结果的符号由大的数决定,绝对值取两数的和。
4.有理数的乘法和除法:有理数之间的乘法和除法遵循下面的法则:-同号相乘或相除,结果为正数;-不同号相乘或相除,结果为负数;-0乘以任何数的结果为0;-0不能作为除数。
5.分数的约分和扩展:分数可以进行约分和扩展。
约分是指将分子和分母同时除以一个数,使得两者之间的最大公约数为1、扩展是指将分子和分母同时乘以一个数,得到一个等值的分数。
6.分数的加法和减法:分数之间的加法和减法,需要将分数转化为相同的分母,然后进行相应的运算。
具体的步骤有:-找到两个分数的最小公倍数,将分母变为最小公倍数;-分子进行相应的运算;-约分。
7.分数的乘法和除法:分数之间的乘法和除法,直接将分子相乘或分子乘以除数的倒数即可。
8.实际问题中的运用:有理数的运算在实际问题中有广泛的应用。
例如在温度计上,正数表示温度高于摄氏度,负数表示温度低于摄氏度;在海拔高度的计算中,正数表示山上,负数表示山下等。
以上就是七年级上册数学第四章的主要知识点总结。
这些知识点是初步掌握有理数运算的基础,通过练习和实际问题的运用,可以更好地理解和应用这些概念。
初中数学正负数的加减乘除运算分类练习题 (优选.)
wo最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改 rd一、加减法法则、运算律的复习。
A .△同号两数相加,取__________________,并把____________________________。
1、(–3)+(–9)2、85+(+15)3、(–361)+(–332) 4、(–3.5)+(–532)△绝对值不相等的异号两数相加,取_________________________,并用____________________ . 互为__________________的两个数相加得0。
1、(–45) +(+23)2、(–1.35)+6.353、412+(–2.25) 4、(–9)+7△ 一个数同0相加,仍得_____________。
1、(–9)+ 0=______________;2、0 +(+15)=_____________。
B 1、(–1.76)+(–19.15)+ (–8.24) 2、23+(–17)+(+7)+(–13)3、(+ 341)+(–253)+ 543+(–852) 4、52+112+(–52) 5、-57+(+101)6、90-(-3)7、-0.5-(-341)+2.75-(+721)8、 712143269696⎛⎫⎛⎫⎛⎫⎛⎫----++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭C .有理数的减法可以转化为_____来进行。
△减法法则:减去一个数,等于_____________________________。
1、(–3)–(–5) 2、341–(–143) 3、0–(–7)D .加减混合运算可以统一为_______1、(–3)–(+5)+(–4)–(–10) 2、341–(+5)–(–143)+(–5)△把–2.4–(–3.5)+(–4.6)+ (+3.5)写成省略加号的和的形式是______________,读作:__________________________,也可以读作:__________________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章:平面图形及其位置关系知识梳理一、线段、射线、直线1、线段、射线、直线的定义(1)线段:线段可以近似地看成是一条有两个端点的崩直了的线。
线段可以量出长度。
(2)射线:将线段向一个方向无限延伸就形成了射线,射线有一个端点。
射线无法量出长度。
(3)直线:将线段向两个方向无限延伸就形成了直线,直线没有端点。
直线无法量出长度。
结论:直线、射线、线段之间的区别:联系:射线是直线的一部分。
线段是射线的一部分,也是直线的一部分2、线段、射线、直线的表示方法(1)线段的表示方法有两种:一是用两个端点来表示,二是用一个小写的英文字母来表示。
(2)射线的表示方法只有一种:用端点和射线上的另一个点来表示,端点要写在前面。
(3)直线的表示方法有两种:一是用直线上的两个点来表示,二是用一个小写的英文字母来表示。
3、直线公理:过两点有且只有一条直线。
简称两点确定一条直线。
4、线段的比较(1)叠合比较法;(2)度量比较法。
5、线段公理:“两点之间,线段最短”。
连接两点的线段的长度,叫做这两点的距离。
6、线段的中点:如果线段上有一点,把线段分成相等的两条线段,这个点叫这条线段的中点。
若C 是线段AB 的中点,则:AC=BC=21AB 或AB=2AC=2BC 。
例题:1、如果线段AB=5cm ,BC= 3cm ,那么A 、C 两点间的距离是( )A .8 cmB 、2㎝C .4 cmD .不能确定解:D 点拨:A 、B 、C 三点位置不确定,可能共线,也可能不共线.2、已知线段AB=20㎝,C 为 AB 中点,D 为CB 上一点,E 为DB 的中点,且EB=3 ㎝,则CD= ________cm .解:4 点拨:由题意,BC=0.5AB=10cm ,DB=2 EB=6cm ,则CD=BC -DB =10-6=4(cm )3、平面上有三个点,可以确定直线的条数是( )A 、1B .2C .3D .1或 3二、角1、角的概念:(1)角可以看成是由两条有共同端点的射线组成的图形。
两条射线叫角的边,共同的端点叫角的顶点。
(2)角还可以看成是一条射线绕着他的端点旋转所成的图形。
2、角的表示方法:角用“∠”符号表示(1)分别用两条边上的两个点和顶点来表示。
(顶点必须在中间)(2)在角的内部写上阿拉伯数字,然后用这个阿拉伯数字来表示角。
(3)在角的内部写上小写的希腊字母,然后用这个希腊字母来表示角。
(4)直接用一个大写英文字母来表示。
3、角的度量:会用量角器来度量角的大小。
4、角的单位:角的单位有度、分、秒,用°、′、″表示,角的单位是60进制与时间单位是类似的。
度、分、秒的换算:1°=60′,1′=60″。
5、锐角、直角、钝角、平角、周角的概念和大小(1)平角:角的两边成一条直线时,这个角叫平角。
(2)周角:角的一边旋转一周,与另一边重合时,这个角叫周角。
(3)0°<锐角<90°,直角=90°,90°<钝角<180°,平角=180°,周角=360°。
6、画两个角的和,以及画两个角的差(1)用量角器量出要画的两个角的大小,再用量角器来画。
(2)三角板的每个角的度数,30°、60°、90°、45°。
7、角的平分线从角的顶点出发将一个角分成两个相等的角的射线叫角的平分线。
若BD 是∠ABC 的平分线,则有:∠ABD=∠CBD=21∠ABC ;∠ABC=2∠ABD=2∠CBD 8、角的计算。
练习:1.已知αβ是两个钝角,计算16(α+β)的值,甲、乙、丙、丁四种不同的答案分别是24°,48°,76°,86°,其中只有一个答案是正确的,则正确的答案是( )A .86°B .76°C .48°D .24°2.甲同学看乙同学的方向为北偏东60°则乙同学看甲同学的方向为( )A .南偏东30°B .南偏西60°C .东偏南60°D .南偏西30°3.如图1―4-5所示,AC 为一条直线,O 是AC 上一点,∠AOB =120° ,OE 、OF 分别平分∠AOB 和∠BOC .(1)求∠EOF 的大小;(2)当OB绕O旋转时,OE、OF仍为∠AOB和∠BOC平分线,问:OF、OF有怎样的位置关系?为什么?三、平行线和垂线1、平行线的定义:(1)如果在同一平面内的两条不相交的直线叫平行线。
(2)平行线用“∥”来表示;强调要在同一平面内,若不在同一平面内的两条直线,又不平行,又不相交,叫异面直线;线段、射线的平行关系根据它所在的直线来决定,若它们所在的直线不相交,就平行,若所在的直线相交,就不平行。
2、平行的公理及推论:(1)平行公理:经过直线外一点,有且只有一条直线与已知直线平行。
(2)平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线互相平行。
(平行于同一直线的两直线平行)3、画已知直线的平行线的方法用直尺和三角板画平行线。
4、垂直的概念:(1)如果两条直线相交成直角,那么这两条直线互相垂直,其中一条直线叫另一条直线的垂线,它们的交点叫做垂足。
(2)两条线段互相垂直指它们所在的直线互相垂直。
(3)两条直线垂直用“⊥”来表示,如直线AB与直线CD垂直,记作:AB⊥BC5、垂线段的概念:(1)过一点A做直线a的垂线,垂足为B,则线段AB叫直线a的垂线段。
(2)直线外一点A到直线a的垂线段长度叫点A到直线a的距离。
(3)直线外一点与直线上各点连接的所有线段中,垂线段最短。
6、垂直的性质:平面内,过一点有且只有一条直线与已知直线垂直。
四、七巧板七巧板的制作:七巧板由5块三角形,1块正方形,一块平行四边形组成。
E课后作业1.下列说法正确的是( ) A. 两点之间的连线中,直线最短 B.若P 是线段AB 的中点,则AP=BPC. 若AP=BP , 则P 是线段AB 的中点D. 两点之间的线段叫做者两点之间的距离2.如果线段AB=5cm,线段BC=4cm,那么A,C 两点之间的距离是( )A. 9cmB.1cmC.1cm 或9cmD.以上答案都不对3.在直线L 上依次取三点M,N,P , 已知MN=5,NP=3, Q 是线段MP 的中点,则线段QN 的长度是( )A. 1B. 1.5C. 2.5D. 44.已知点C 是线段AB 上的一点,M,N 分别是线段AC,BC 的中点,则下列结论正确的是( )A. MC=21ABB. NC=21ABC.MN=21ABD.AM=21AB 5. 已知线段AB=6cm,C 是AB 的中点,C 是AC 的中点,则DB 等于( )A. 1.5cmB. 4.5 cm C3 cm. D.3.5 cm6.把两条线段AB 和CD 放在同一条直线上比较长短时,下列说法错误的是( )A. 如果线段AB 的两个端点均落在线段CD 的内部,那么AB<CDB. 如果A,C 重合,B 落在线段CD 的内部,那么AB<CDC. 如果线段AB 的一个端点在线段CD 的内部,另一个端点在线段CD 的外部,那么AB 〉CDD. 如果B ,D 重合,A ,C 位于点B 的同侧,且落在线段CD 的外部,则AB 〉CD7.如图,量一量线段AB,BC,CA 的长度,就能得到结论( ) A. AB=BC+CA B. AB<BC+CA C. AB < BC CA - D. AB=BC CA -8. 如图,BC=4 cm,BD=7 cm , D 是AC 的中点,则AC= cm , AB= cm9. 如图,从甲地到乙地有四条道路,其中最短的路线是 ,最长的路线是 。
10. 如图,D,E 分别是线段AB,AC 的中点,量一量线段DE 和BC 的长度,得到DE= BC(填一个数)第9 题图 第10题图11、如右图,点C 分AB 为2∶3,点D 分AB 为1∶4, 若AB 为5 cm,则AC=_____cm,BD=_____cm,CD=______cm.12、若线段AB=a,C 是线段AB 上任一点,MN 分别是AC 、BC 的中点,则MN=_______+_______=_______AC+_______BC=_______.13、 已知线段AB ,在AB 的延长线上取一点C ,使BC=2AB ,再在BA 的延长线上取一点D ,使DA=AC ,则线段DC=______AB ,BC=_____CD14、 已知线段AB=10㎝,点C 是AB 的中点,点D 是AC 中点,则线段CD=_________㎝。
15、计算=45.1______度 ______分______秒 =''0180______度______分______秒 =______度16、观察图中的图形,并阅读图形下面的相关文字: 四条直线相交,最多有6个交点.三条直线相交,最多有3个交点.两条直线相交,最多有1个交点.(1)像这样,10条直线相交,最多交点的个数是( )A.40个B.45个C.50个D.55个(2)像这样, n 条直线相交,最多交点的个数是 ( )17、平面上有四个点,过其中每两点画直线,可以画多少条?(画图说明)最新文件---------------- 仅供参考--------------------已改成-----------word文本--------------------- 方便更改赠人玫瑰,手留余香。