高分子物理习题课1精品PPT课件
高分子物理第一章完整ppt课件
理研究组,开展了高分子溶液性质研究。
钱保功50年代初在应化所开始了高聚物粘
弹性和辐射化学的研究。
徐僖先生50年初成都工学院(四川大学)
开创了塑料工程专业。
王葆仁先生1952年上海有机所建立了集
PMMA、PA6研究完组整编。辑ppt
33
高分子工业:采取引进-消化-再引 进的道路。
高分子科学:则采取追踪、学习国外 的过程中不断发展。
完整编辑ppt
34
二、高分子结构的内容
构造
近程结构
链结构
构型
(一级结构)
高 分 子
远程结构 分子大小(分子量) 构象(柔顺性
(二级结构) )
结
晶态结构
构
非晶态结构
(三级结构)
聚集态结构 取向态结构
液晶态结构
织态结构
(更高级结构)
完整编辑ppt
35
完整编辑ppt
36
完整编辑ppt
37
三、 高分子结构的特点
Flory
完整编辑ppt
13
高分子发展上的几个重要事件
3)Merrifield和功能高分子的发展
70年代,固相有机合成创立 1984年诺贝尔化学奖。
完整编M辑pept rrifield,生物化学家 14
高分子发展上的几个重要事件
4)液晶高分子
1991年诺贝尔 物理学奖
Pierre-Gilles de
30完整编辑ppt来自31(四)高分子科学发展新动向
1、向生命现象靠拢 2、功能化、精细化、复合化。
完整编辑ppt
32
我国:
长春应化所1950年开始合成橡胶工作(王
佛松,沈之荃);
冯新德50年代在北大开设高分子化学专业。
高分子物理习题及习题解答解PPT文档共38页
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
高分子物理习题及习题解答解
11、用道德的示范来造就一个人,显然比用法律来约束他更有价值。—— 希腊
12、法律是无私的,对谁都一视同仁。在每件事上,她都不徇私情。—— 托马斯
13、公正的法律限制不了好的自由,因为好人不会去做法律不允许的事 情。——弗劳德
14、法律是为了保护无辜而制定的。——爱略特 15、像房子一样,法律和法律都是相互依存的。——伯克
55、 为 中 华 之 崛起而 读。 ——周 恩来
《高分子物理》ppt课件
高分子链形态与结晶
高分子链的形态
高分子链可以呈现线型、支化型、 交联型等多种形态。不同形态的 高分子链具有不同的物理性质和
用途。
高分子的结晶
高分子在特定条件下能够形成结 晶态,即分子链在空间中呈现有 序的排列。结晶态的高分子通常 具有较高的力学性能和热稳定性。
结晶的影响因素
影响高分子结晶的因素包括温度、 压力、时间以及高分子的化学结 构和规整性等。通过控制这些因 素,可以调控高分子的结晶行为
高分子链构象与柔性
高分子链的构象
高分子链的构象是指链上原子或 基团在空间的排列方式。不同的 构象会导致高分子链呈现不同的
形态和性质。
高分子链的柔性
高分子链的柔性是指链能够改变其 构象的能力。柔性好的高分子链容 易改变其形态,从而表现出较好的 弹性和可塑性。
影响柔性的因素
影响高分子链柔性的因素包括链的 化学结构、温度、外力等。例如, 含有较多单键的高分子链通常具有 较好的柔性。
松弛行为
高分子材料在恒定应变作用下,应力随时间逐渐减小的现象。松弛行为反映了 材料内部结构的调整和分子链的运动。
增强机制:纤维增强、填料增强等
纤维增强机制
通过向高分子基体中加入纤维(如玻璃纤维、碳纤维等),提 高材料的力学性能。纤维的加入可以显著提高材料的拉伸强度、 模量和韧性等。
填料增强机制
向高分子材料中加入适量的填料(如碳酸钙、滑石粉等),可 以改善材料的加工性能、降低成本并提高某些力学性能。填料 的种类、形状和含量对增强效果有显著影响。
研究高分子在溶液中的形态、高 分子液晶、高分子膜等。
高分子溶液性质
研究高分子溶液的粘度、扩散、 沉降、凝胶化等性质。
高分子固体性质
高分子物理优秀PPT完整PPT
的部分结晶度大于相对分子质量高的部分。
△高分子链的形状对结晶的影响
线型高分子链容易结晶,结晶度大;支链型次之;体型难于结晶。
▲外因
△温度
温度是最主要的外部条件。
在玻璃化温度与熔融温度之间 存在最佳的结晶温度,一般情况下, 最佳的结晶温度为:
4
结 晶 速 率
3
1
2
1-晶核生成速率 2-晶体成长速率 3-结晶总速率 4-黏度
二、高聚物的结晶形态与结构 ★高聚物的结晶形态
高聚物的结晶形态
稀溶液,缓慢降温 单晶 浓溶液或熔体冷却 球晶 挤出、吹塑、拉伸 纤维状晶体 熔体在应力下冷却 柱晶 极高压力下慢慢结晶 伸直链晶体
★晶态高聚物的结构
☆晶态高聚物的结构模型
(a)
(b)
缨状-胶束模型
(a)非取向高聚物 (b)取向高聚物
(a)
内聚能密度(CED) 单位体积的内聚能
★内聚能密度与高聚物的使用
内聚能密度小于290J/cm3的高聚物分子间作用力较小,分子链较柔顺,容易变形,具 有较好弹性,一般可以作为橡胶使用;内聚能密度较高的高聚物,分子链较刚性,属于典 型的塑料;内聚能密度大于400J/cm3的高聚物,具有较高的强度,一般作为纤维使用。
二、高聚物的结晶形态与结构
聚酰胺分子间的氢键示意图
与极性分子偶极距的平方成正比,与被诱导分子的变形性成正比;
★次价力与高聚物的使用
次价力小于4.4×103J/mol的高聚物用作橡胶;次价力大于2.1×103J/mol的高聚物用作
纤维;次价力介于两者之间的高聚物用作塑料。
★次价力的描述
内聚能 将一摩尔分子聚集在一起的部能量Tm
高聚物结晶速率与温度的关系
高分子物理(共90张PPT)
收缩与翘曲
高分子制品在成型后,由 于内应力的存在,会发生 收缩和翘曲现象,需通过
工艺控制减少其影响。
高分子加工过程中的物理和化学变化
01 热变化
高分子在加工过程中吸收或放 出热量,引起温度变化,对制 品性能产生影响。
02 力学变化
高分子在加工过程中受到剪切 、拉伸等力的作用,发生力学 状态的变化。
高分子物理(共90张PPT)
CONTENTS
• 高分子物理概述 • 高分子的结构与形态 • 高分子的物理性质 • 高分子的溶液性质 • 高分子的加工与成型 • 高分子物理的应用与发展前景
01
高分子物理概述
高分子的定义与分类
定义
高分子是由大量重复单元通过共价键 连接而成的长链化合物,分子量高达 数千至数百万。
弹性
高分子链的柔顺性和链段运动能力使其具 有弹性,如橡胶的弹性回复。
黏性
高分子链间的缠结和摩擦使其具有黏性, 如聚合物的熔融和溶液行为。
塑性
高分子在一定条件下可发生塑性变形,如 热塑性塑料的加工成型。
强度
高分子材料抵抗外力破坏的能力,如纤维 的强度和韧性。
高分子的热学性质
热容
高分子材料的热容通常较大,吸热和放热 过程中温度变化较小。
物理的研究提供了有力支持。
02
高分子的结构与形态
高分子的链结构
链的近程结构
包括键接方式、支化、交联等
链的远程结构
涉及链的柔顺性、构象和链的尺寸等
链结构的表征方法
如X射线衍射、中子散射、电子显微镜等
高分子的聚集态结构
高分子的分子间相互作用:包括范德华力 、氢键、离子键等
高分子的聚集态类型:如溶液、凝胶、晶 体、非晶态等
《高分子物理》课件
高分子加工技术
探索高分子材料的加工技术,如挤出、注塑、吹塑等,讨论每种技术的优缺点以及在实际生产中的应用。
高分子材料应用范围
展示高分子材料在不同领域的广泛应用,包括医疗、电子、汽车等,并讨论其在可持续发展中的作用。
总结与展望
总结高分子物理的重要概念,并展望未来的发展方向,探讨高分子物理在新材料研究中的前景。
《高分子物理》PPT课件
这份PPT课件将帮助您了解《高分子物理》的重要概念和应用。通过丰富的 内容和精美的图片,让我们一起探索高分子物理的奇妙世界。
高分子物理概述
介绍高分子物理学的基本概念和理论,包括分子结构、分子力学以及高分子 的物理特性。
高分子材料的物理性质
深入了解高分子材料的物理性质,例如强度、弹性、热传导性等,解释其在 不同应用领域中的优势。
高分子物理1.ppt
一般σ、C、A越小,分子链越柔 其中1~4是定性的, 5~7可定量。 前面的ne,le,这里σ、C、A都与h02有关。 h02—无扰末端距,它是在θ溶液中测定的。
5、h2和S2:越小,柔性越好
6、玻璃化温度Tg:链段长,Tg高,柔性差。 这是宏观上衡量柔性的办法,要求测试Tg的条 件,方法均相同。
7、σ、C、A
刚性因子(空间位阻参数) : σ=( h02/hf,r2)1/2
特征比:C= h02/hf,r2= h02/nl2
C=1
h02=nl2
无扰尺寸: A=( h02/M)1/2
1 cos 1 1 cos
1 cos 1 1 cos
如果cos 0,就是自由旋转链 hfj2 hfr2 hrr2
h2 Knl 2
1
k 1 cos 1 cos 1 cos • 1 cos 1 cos 1 cos
均方末端距的统计计算方法
在计算高分子链末端距的统计分布时,
z
可以套用古老的数学课题“三维空间无
h2 fj<h2 fr<h2 rr
真实高分子链的末端距
实际的高分子链的h2都是通过实验测定出来的,实际的高分 子链是无规线团
链段:在高分子链上划分出来的能独立取向的最小单元。 ⑴、大分子链由若干链段组成 ⑵、链段之间自由连接,无规取向 ⑶、链段长度是统计长度,具随机性 ⑷、链段长度可以量度大分子的柔性 ⑸、链段运动是重要的大分子运动
z
l2 max
h02
b h02 lmax
将试样测定h02和M(分子量),根据分子结构 求出主链中的总键数n及链的伸直长度lmax,代 入上两式就可求z和b了。
等效自由结合链和自由结合链的差别:
统计单元 内旋转 存在与否
高分子物理(共90张PPT)
高分子物理(共90张PPT)高分子物理是研究高分子的性质、结构和行为的物理学科。
高分子物理是在20世纪初形成的,它涉及的领域非常广泛,包括高分子合成、高分子材料制备、高分子加工与成型等。
本文将结合90张PPT,对高分子物理的基本概念、研究方法、高分子结构与性质、高分子的加工与成型等方面进行介绍。
第一部分:高分子物理的基本概念1、高分子的定义高分子是由无数个重复单元组成的巨大分子,其分子量通常大于10^3,由于其特殊的结构和物理化学性质,广泛应用于生活、工业等众多领域。
2、高分子物理的研究对象高分子物理的研究对象是大分子化合物。
这些化合物的分子量很大,通常大于10^3,有时甚至可达到10^7。
这就意味着高分子物理不仅涉及到分子级性质的研究,还要考虑宏观级别的物理特性。
3、高分子物理的主要内容高分子物理的主要内容包括高分子的结构、性质、动力学、形态、相变、流变、加工与成型等方面。
4、高分子物理的研究方法高分子物理的研究方法包括实验研究和计算模拟两种,其中实验研究主要包括材料合成与制备、结构表征、物理性质测试等,计算模拟主要包括分子动力学模拟、量子力学计算、有限元分析等。
第二部分:高分子结构与性质1、高分子的结构分类高分子可分为线性高分子、支化高分子、交联高分子、网络高分子等四种结构。
其中,线性高分子的分子结构最为简单,具有线性分子链结构;支化高分子分子链呈树枝状结构;交联高分子中分子链相互交联形成三维网格状结构;网络高分子则形成分子链与交联点间互相交联的巨分子结构。
2、高分子的物理性质由于高分子材料具有特殊的分子结构,因此具有一系列独特的物理性质,例如:高强度、高耐磨性、高耐热性、高透明度、高电绝缘性等。
在高分子加工中,可以通过改变处理条件和添加剂等方式来控制高分子的物理性质。
第三部分:高分子的加工与成型1、高分子的加工方法高分子的加工方法包括:挤出成型、注塑成型、压缩成型、吹塑成型、热模压成型、注液成型等多种方式,其中以挤出成型和注塑成型应用最为广泛。
高分子物理共90张PPT
高分子物理共90张PPT第一部分:高分子物理基础知识1. 高分子物理概述高分子物理是研究高分子材料的构造、力学性质及其在热、电、光等方面的行为规律的一门学科。
高分子物理的主要研究对象是具有大分子结构的聚合物和高聚物。
2. 高分子材料的结构高分子材料的分子结构可以分为线性、支化和交联三种。
其中,线性结构的高分子链是单纯的直线结构,支化结构则是在链上引入支链结构,交联结构则是在高分子链上形成水晶点,使高分子链之间发生交联作用。
3. 高分子材料的物理性质高分子材料的物理性质包括力学性质、热性质、电性质、光学性质和磁性质等。
其中,力学性质是高分子材料最基本的性质之一,包括拉伸、压缩、弯曲、挤压、剪切等方面的力学性能;热性质则包括高分子材料的热干扰系数、热导率、热膨胀系数等;电性质则包括高分子材料的电导率、介电常数、介质损耗等;光学性质包括吸收、散射、透射、反射等方面的反映;磁性质则包括磁导率、磁化率等。
4. 高分子材料的分子运动高分子材料的分子运动是高分子物理学研究的一个重要方面。
高分子分子的运动可分为平动、转动、振动三种类型,其中振动运动通常与分子中的化学键振动相关联。
第二部分:高分子材料的物理加工工艺1. 高分子材料的成型加工高分子材料的成型加工包括挤出、注塑、吹塑、压缩成型、旋压成型等多种技术,其中挤出、注塑和吹塑等工艺技术是广泛应用的成型技术,具有高效、经济绿色等优点。
2. 高分子材料的复合加工高分子材料的复合加工是目前最为关注的技术之一,它将高分子材料与其他材料进行有效的综合利用,并在性能上得到了显著的提高。
高分子复合材料广泛应用于航空航天、汽车、电子、建筑等领域。
3. 高分子材料的改性加工高分子材料的改性加工是指通过添加改性剂来改变高分子材料的属性,以得到更好的性能。
常见的改性剂包括增强剂、塑化剂、光稳定剂、抗氧化剂等。
4. 高分子材料的表面处理高分子材料的表面处理是一种重要的加工技术,它可以提高高分子材料的表面性能和增强其附着力,同时也可以达到美化、防腐蚀等目的。
高分子物理化学全套PPT课件课件
探索新型高分子材料的合成方法
发展新型的高分子合成方法,实现高效、环保、低成本的合成,提高 高分子材料的性能和功能。
拓展高分子材料的应用领域
将高分子材料应用于新能源、生物医学、环保等领域,开发具有创新 性和实用性的高分子材料。
高分子物理化学的发展历程
• 总结词:高分子物理化学的发展历程包括起步阶段、成长阶段和繁荣阶段,其 发展推动了人类社会的进步。
• 详细描述:高分子物理化学的发展历程可以追溯到20世纪初,当时科学家开 始对高分子物质进行研究,并发现了高分子化合物的长链结构和多分散性等特 点。随着研究的深入,人们逐渐认识到高分子物质的结构和性质在不同尺度上 存在差异,并开始从微观到宏观的不同尺度上进行研究。在成长阶段,高分子 物理化学的研究领域不断扩大,涉及的学科也越来越多,如物理学、化学、生 物学等。同时,人们开始将高分子物理化学应用于实际生产和生活中,推动了 相关产业的发展。进入21世纪后,随着科学技术的发展和人类对物质世界的 认识不断深入,高分子物理化学的研究进入繁荣阶段。人们开始深入研究高分 子物质的结构和性质,探索其在不同环境下的变化规律和机制,为解决实际问 题提供更加精准的理论支持。同时,随着计算机技术和数值模拟方法的不断发 展,人们可以更加方便地模拟和预测高分子物质的行为和性能,进一步推动相 关领域的发展。总之,高分子物理化学的发展历程是一个不断创新和发展的过 程,其发展推动了人类社会的进步。
高分子物理化学全套 ppt课件
目录
• 高分子物理化学概述 • 高分子结构与性质 • 高分子合成与制备 • 高分子反应与改性 • 高分子材料性能与应用 • 高分子物理化学前沿研究
高分子物理pptPPT课件演示文稿
态聚合物,玻璃化转变是指其中非晶部分的这 种转变。 发生玻璃化转变的温度叫做玻璃化温度Tg
27
第二十七页,共390页。
Tg的工艺意义
是非晶热塑性塑料(如PS, PMMA)使用温度的上限 是非晶性橡胶(如天然橡胶, 丁苯橡胶)使用温度的下限
41
第四十一页,共390页。
自由体积理论(Fox 、 Flory)
固体和液体总的体积(VT)由两部分组成: 占有
7. 高分子热运动是一个松弛过程,松弛时间的大小取决于(
)。
A、材料固有性质 B、温度 C、外力大小 D、以上三 者都有关系。
40
第四十页,共390页。
5.3 高聚物的玻璃化转变
5.3.2 玻璃化转变理论 The theories of glass transition
等自由体积理论 (半定量) 热力学理论 (定性) 动力学理论 (定性)
T
T
(时温等效原理)
112
对于链段运动,松弛时间与温度的关系遵循WLF方程
第十二页,共390页。
5.2 聚合物的力学状态和热转变
➢ 1. 线形非晶态聚合物的力学状态 ➢ 2. 晶态聚合物的力学状态 ➢ 3. 交联聚合物的力学状态
113 第十三页,共390页。
5.2.1 线形非晶态聚合物的力学状态
流动,但此时已超过Td , 所以已经分解。PTFE就是如此, 所以不能注射成型,只能用烧结法。 PVA和PAN也是如此,所以不能熔融法纺丝所以不能 熔融法纺丝,只能溶液纺丝。
224
第二十四页,共390页。
5.2.3 交联聚合物的力学状态
1. 分子链间的交联限制了整链运动,无Tf 。 2. 交联密度较小时, “网链”较长,外力作用下链
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
已知PE和PMMA流动活化能分别为41.8kJ. mol-1和192.3 kJ. mol-1,PE在473K时的粘度;而PMMA 在513K时的粘度。试求: (1)PE在483K和463K时的粘度,PMMA在523K和503K时的粘度; (2)说明链结构对聚合物粘度的影响;(3)说明温度对不同结构聚合物粘度的影响
• 一条大分子穿过数个晶胞;
• 晶体中分子链取稳定构象,并构象固定;
• 晶胞的各向异性;
• 具有同质多晶现象;
• 结晶的不完善性。
• 2:链的对称性:高分子链的结构对称性越高,
越容易结晶;
(2分)
• 链的规整性:规整性越高,越易结晶,键接顺 序应规整,构型应是全同或间同立构;对于二 烯类聚合物,反式的结晶能力大于顺式; (2分)
(3)刚性链的粘度比柔性链的粘度,受温度的影响大。
16 已知增塑PVC的Tg为338K,Tf为418K,流动活化能,433K时的粘 度为5Pa. s。求此增塑PVC在338K和473K时的粘度各为多大?
• 写出三个判别溶剂优劣的参数;并讨论它 们分别取何值时,该溶剂分别为聚合物的 良溶剂、不良溶剂、θ溶剂;高分子在上述 三种溶液中的热力学特征以及形态又如何?
• 回潮率大小:PA-6 > PA-66 > PA-1010 • 抗张强度:PA-6 > PA-66 > PA-1010
• 写出下列高聚物的结构式,比较Tg的高低, 并说明理由
• (1)顺丁橡胶、聚乙烯、 聚氯乙烯 、 氯 丁橡胶、 聚苯乙烯
学习总结
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
• 今有下列四种聚合物试样: • (1)分子量为2×103的环氧树脂; • (2)分子量为2×104的聚丙烯腈; • (3)分子量为2×105的聚苯乙烯; • (4)分子量为2×106的天然橡胶;
• 欲测知其平均分子量,试分别指出每种试样可采 用的最适当的方法(至少两种)和所测得的平均 分子量的统计意义。
• Si-O主链键长键角均大于C-C主链,且O上无取 代基,取代基对称,所以柔性最好;
• 其余三者主链组成相同,侧基都对称,侧基极性 甲基小于CL和氟原子,但氟原子体积小于氯原子, 所以排列如下:
• Tg:聚二甲基硅氧烷<聚异丁烯<聚偏二氟乙烯< 聚偏二氯乙烯
轻度交联橡胶
低密度PE
(2)ε1:普弹形变;ε2:高弹形变;ε3:塑性形变。
• 解:(1)端基分析法(),VPO法(); • (2)粘度法(),光散射法(); • (3)粘度法(),光散射法(); • (4)膜渗透法(),粘度法()。
• 在PET(聚对苯二甲酸酯)塑料加工 过程中, 通常会加入成核剂,试说明其原理及对产 品性能的影响。
• 试说明结晶高聚物的微观结构具有哪些特 征?高结晶度材料的分子链应具备什么结 构特点?
•
低密度PE由于结晶含量较少,有明显的玻璃化转变和熔融转变,
对于低分子量的PE,其Tf低于Tm,所以熔融后直接进入粘流态;对
于高分子量PE,其Tf高于Tm,有明显的粘流转变。
写出下列高聚物的结构式,比较Tg的高低,并说明理由
• (2)聚异丁烯、聚二甲基硅氧烷、聚偏二氟乙烯、 聚偏二氯乙烯
•
(手工画结构式)
• 图中:1为轻度交联橡胶的温度形变曲线;
• 2为低M低密度PE的温度形变曲线;
• 3为高M低密度PE的温度形变曲线;
• a:低密度PE的Tg ; b:轻度交联橡胶的Tg;
• c:低密度PE的Tm; d:高分子量低密度PE的Tf。
• 原因:因为是轻度交联,仍有明显的玻璃化转变,由于交联作用,没 有熔融和粘流。
• 结晶形态:球晶<串晶<伸直链晶片。 • (3)随交联密度提高,高聚物拉伸强度先增大后减小; • (4)平行于取向方向上拉伸强度增加,垂直于取向方向
上拉伸强度减小。
• 请分别画出低密度PE,轻度交联橡胶的下 列曲线,并说明理由。
• (1)温度形变曲线 • (2)蠕变及回复曲线 • (3)应力-应变曲线(并标明拉伸强度)
You Know, The More Powerful You Will Be
原因:轻度交联橡胶因交联键的限制,无明显的塑性形变, 但有普弹形变和高弹形变;
低密度PE中的结晶部分类似于交联点,但由于结晶含量 较低,所以在外力的作用下,除发生普弹和高弹形变外, 非晶部分仍能发生塑性形变。
• (3)
• 原因:轻度交联橡胶室温拉伸时应力-应变属高弹形变,
无屈服和冷拉,一般来说,拉伸强度等于断裂强度;
• 从分子的对称性和链的规整性来比较,PE 链的规整性最好,结晶度最高;链中氢被 氯取代后,在前,分子对称性破坏,使结 晶度和软化点都下降;当时,分子的对称 性又有恢复,因此产物软化温度又有些上 升,但不会高于原PE的软化温度。
• PA-6、PA-66、PA-1010回潮率和抗张强度 的大小;
• 链的柔顺性应适中:一定的柔顺性是结晶时链 段向结晶表面扩散和排列所必需的。
• 高度结晶材料应同时具备以上三个要求,缺一 不可。
简述聚合ห้องสมุดไป่ตู้共混体系相容性的判别 方法
• 聚乙烯有较高的结晶度(一般为70%), 当它被氯化时,链上的氢原子被氯原子无 规取代,发现当少量的氢(10~50%)被取 代时,其软化点下降,而大量的氢(>70%) 被取代时则软化点又上升,试解释之。
高分子物理习题课
• 试分析讨论分子结构、结晶、交联、取向对高聚物拉伸强 度的影响。
(1)凡使分子柔性减小的因素及分子间力增大如生成氢键 等都有利于高聚物拉伸强度的提高;分子量增大,拉伸强 度提高,但有极大值,之后变化不大;
(2)结晶度提高,拉伸强度提高,但有极大值,之后变化 不大,结晶度相同时,结晶尺寸减小,拉伸强度提高;