2006年兰州大学高等代数考研真题-考研真题资料

合集下载

兰州大学2006年攻读硕士研究生入学考试试题(b)

兰州大学2006年攻读硕士研究生入学考试试题(b)

兰州大学2006年攻读硕士研究生入学考试试题(文献学)专业:汉语言文字学科目:古代汉语和现代汉语古代汉语部分一、解释名词术语(30分)右文说诗词曲语词汇释叶音(叶句)之言(之为言)古赋黏对二、指出下列加点词(或语素)的词性及语法、词汇意义(以王力《古汉》中的解释为准)。

(10分)1.臣之壮也,犹不如人。

2.昭王之不复,君其问诸水滨。

3.天曷不降威。

4.王之所大欲可得闻与?5.君子于役,不知其期。

三、古代汉语中宾语前置的条件主要有哪三个?请各举一例。

(10)四、给下列两段古文加上现代标点。

(30分)1.武安者貌侵生貴甚又以為諸侯王多長上初即位富於春秋蚡以肺腑為京師相非痛折節以禮詘之天下不肅當時是丞相入奏事坐語移日所言皆聽薦人或起家至二千石權移主上上乃曰君除吏已盡未吾亦欲除吏嘗請考工地益宅上怒曰君何不遂取武庫是後乃退嘗召客飲坐其兄南鄉自坐東鄉以為漢相尊不可以兄故私橈武安由此滋驕治宅甲諸地田園極膏腴而市郡縣器物相屬於道前堂羅鐘鼓立曲旃後房婦女以百數諸侯奉金玉狗馬玩好不可勝數2.盖文字者,经艺之本,王政之始。

前人所以垂后,后人所以识古。

故曰:「本立而道生。

」知天下之至赜而不可乱也。

今叙篆文,合以古籀。

博采通人,至於小大。

信而有证,稽撰其说。

将以理群类,解谬误,晓学者,达神恉。

分别部居,不相杂厕也。

万物咸睹,靡不兼载。

厥谊不昭,爰明以喻。

其称易孟氏、书孔氏、诗毛氏、礼周官、春秋左氏、论语、孝经,皆古文也。

其於所不知,盖阙如也。

现代汉语部分一、解释术语(30)四呼词的民族性基本词汇构形形态当事主语正反问二、回答问题(40)1.什么是儿化?儿化有哪三方面的作用?请各举一例说明。

2.什么是附加式?这种构词方式有哪向种类型?请举例说明。

3.请写出现代汉语中单音的趋向动词和双音的趋向动词,并列出一个配合表。

4.什么是主谓谓语句?根据施受关系及动作可分为哪两小类?请各举一例说明。

兰州大学《数学分析》《高等代数》考研真题汇总(2009-2018历年真题)

兰州大学《数学分析》《高等代数》考研真题汇总(2009-2018历年真题)

Dn = −a −a x · · · a ;
... ... ...
...
−a −a −a · · · x
1 3 3 ··· 3
3 2 3 ··· 3
Dn = 3 3 3 · · · 3 .
... ... ...
...
3 3 3 ··· n
A, B, C, D Ñ´ n ?¢Ý , … AC = CA. y²:
AB = |AD − CB|.
CD
o. ( 20 ©) y²: n ?Ý A •˜ Ý (A2 = A) ¿©7‡^‡´ r(A) + r(E − A) = n.
Ê. ( 13 ©) A ´ n ? Ý , ÙA Šþ•¢ê. y²: A ´é¡Ý .
8. ( 15 ©) A, B Ñ´ n ? ½Ý . y²: A−1, A + B ´ ½Ý .
(2) f (x) = (x − a1)(x − a2) · · · (x − an) − 1, Ù¥ a1, a2, · · · , an ´ n ‡üüØ knê•þØŒ .
ê. y²: f (x) 3
. ( 16 ©) OŽe 1 ª Š.
(1)
1 + x1 1 + x21 · · · 1 + xn1
20
13 =²ŒÆ 2011 cïÄ)\Æ•ÁÁKêÆ©Û
21
14 =²ŒÆ 2012 cïÄ)\Æ•ÁÁKêÆ©Û
23
15 =²ŒÆ 2013 cïÄ)\Æ•ÁÁKêÆ©Û
24
16 =²ŒÆ 2014 cïÄ)\Æ•ÁÁKêÆ©Û
25
17 =²ŒÆ 2015 cïÄ)\Æ•ÁÁKêÆ©Û
26
18 =²ŒÆ 2016 cïÄ)\Æ•ÁÁKêÆ©Û

2006年全国硕士研究生入学统一考试数学真题数二

2006年全国硕士研究生入学统一考试数学真题数二

2006年全国硕士研究生入学统一考试数学二试题一、填空题:1~6小题,每小题4分,共24分.把答案填在题中横线上. (1)曲线xx xx ycos 25sin 4-+=的水平渐近线方程为______.【答案】51=y【考点】水平渐近线 【难易度】★★ 【详解】解析:,51cos 25sin 41lim cos 25sin 4lim lim =-+=-+=∞→∞→∞→xx x xx x x x y x x x 所以水平渐近线方程为51=y . (2)设函数⎪⎩⎪⎨⎧==/=⎰,,0,d sin 1)(023x a x t t x x f x在x =0处连续,则a =______.【答案】13【考点】函数连续的概念 【难易度】★★ 【详解】解析:按连续性定义,313sin lim d sin lim)(lim )0(220320=====→→→⎰x x x t t x f f a x xx x . (3)广义积分⎰+∞+022)1(d x xx =______.【答案】12【考点】无穷限的反常积分 【难易度】★★ 【详解】 解析:211121)1(d 21)1(d 02022222=+-=+=++∞∞+∞+⎰⎰x x x x x x(4)微分方程xx y y )1(-='的通解是______. 【答案】xy Cxe -=,C 为∀常数 【考点】变量可分离的微分方程【难易度】★★ 【详解】解析:这是可变量分离的一阶方程,分离变量得x xy y d )11(d -=. 积分得 1ln ln y x x C =-+,即1C x y ex e -=.因此,通解为xy Cxe -=,C 为∀常数. (5)设函数()y y x =由方程1yy xe =-确定,则0|d d =x xy=______. 【答案】e -【考点】隐函数的导数 【难易度】★★ 【详解】解析:在原方程中令0(0)1x y =⇒=.将方程两边对x 求导,并令0x =得y y y e xe y ''=--,(0)(0)y y e e '=-=-.(6)设矩阵⎪⎪⎭⎫⎝⎛-=2112A ,E 为2阶单位矩阵,矩阵B 满足BA =B +2E ,则B =______.【答案】2【考点】抽象型行列式的计算 【难易度】★★★ 【详解】解析:由BA =B +2E 得()2B A E E -=,两边取行列式,有4B A E ⋅-=.因为11211A E -==-,所以2B =. 二、选择题:7~14小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)设函数y =f (x )具有二阶导数,且x x f x f ∆>">',0)(,0)(为自变量x 在点x 0处的增量,∆y 与d y 分别为f (x )在点x 0处对应的增量与微分,若∆x >0,则( ) (A )0<d y <∆y . (B )0<∆y <d y . (C )∆y <d y <0. (D )d y <∆y <0. 【答案】(A )【考点】函数单调性的判别;函数图形的凹凸性 【难易度】★★★ 【详解】解析:方法1:因为()0,f x '>则()f x 严格单调增加()0,f x ''> 则()f x 是凹的又0x >V ,故0dy y <<V .方法2:用两次拉格朗日中值定理000()()()y dy f x x f x f x x '-=+--V V V0()()f x f x x ξ''=-V V0()()f x x ηξ''=-V 其中000,x x x x ξηξ<<+<<V由于()0f x ''>,从而0y dy ->V 又由于0()0dy f x x '=>V ,故选(A )(8)设()f x 是奇函数,除x =0外处处连续,x =0是其第一类间断点,则t t f xd )(0⎰是( )(A )连续的奇函数. (B )连续的偶函数.(C )在x =0间断的奇函数. (D )在x =0间断的偶函数.【答案】(B )【考点】积分上限的函数及其导数 【难易度】★★★ 【详解】解析:方法1(排除法): 设 ()f x =1,00,01,0x x x >⎧⎪=⎨⎪-<⎩此()f x 满足题设条件,它是一个奇函数,除0x =外处处连续,0x =是其第一类间断点.0()()0xxx F x f t dt xx >⎧==⎨-<⎩⎰当当并且0(0)()0F f t dt ==⎰即 0()()000xx x F x f t dt x x x >⎧⎪==>⎨⎪-<⎩⎰当当当 ()F x 是一个连续的偶函数,所以不选(A )、(C )、(D ),只能选(B ).方法2(论证法):由题设条件,()f x 除0x =外,处处连续,在0x =处为第一类间断点,且()f x 为奇函数,从而知,(0)0f =,且00lim ()lim ()0x x f x A f x A A +-→→-≠存在记为,存在, 作函数 (),0)0,0(),0f x A x x x f x A x ϕ->⎧⎪==⎨⎪-<⎩当(当当)x ϕ(为连续的奇函数,0()xt dt ϕ⎰为可导的偶函数.另一方面,00(),0()0,0(),0x x xf t dt Ax x t dt x f t dt Ax x ϕ⎧->⎪⎪==⎨⎪+<⎪⎩⎰⎰⎰当当当所以,00(),0()0,0(),0x xxt dt Ax x f t dt x t dt Ax x ϕϕ⎧->⎪⎪==⎨⎪+<⎪⎩⎰⎰⎰当当当 即()()xxf t dt t dt A x ϕ=+⎰⎰,所以0()xf t dt ⎰为连续的偶函数,故选(B ).(9)设函数()g x 可微,1()()g x h x e +=,(1)1h '=,(1)2g '=,则(1)g 等于( )(A )ln3-1. (B )-ln3-1.(C )-ln2-1.(D )ln2-1.【答案】(C )【考点】复合函数的求导法则 【难易度】★★ 【详解】 解析:由1()()g x h x e +=两边对x 求导,得1()()()g x h x g x e+''=,再以1x =代入,并由已知数值得1(1)12g e+=,于是1(1)ln1ln 212g =-=--.故选(C ). (10)函数212x x xy C e C e xe -=++满足的一个微分方程是( )(A ).e 32xx y y y =-'-" (B ).e 32xy y y =-'-"(C ).e 32xx y y y =-'+" (D ).e 32xy y y =-'+"【答案】(D ) 【考点】线性微分方程解的结构定理;自由项为指数函数的二阶常系数非齐次线性微分方程 【难易度】★★★ 【详解】解析:该方程对应的齐次方程的特征根为1和-2,于是特征方程为2(1)(2)20λλλλ-+=+-=对应的齐次微分方程为 -20y y y '''+= 所以不选(A )与(B ),为了确定是(C )还是(D ),只要将特解xy xe *=代入方程左边,计算得()()-23xy y y e ***'''+=,故选(D ).(11)设f (x ,y )为连续函数,则r r r r f d )sin ,cos (d 14π0θθθ⎰⎰等于( )(A )⋅⎰⎰-y y x f x x xd ),(d 21220(B )⋅⎰⎰-y y x f x x d ),(d 210220(C ).d ),(d 22012x y x f y y y⎰⎰- (D ).d ),(d 210220x y x f y y ⎰⎰-【答案】(C )【考点】交换累次积分的次序与坐标系的转换 【难易度】★★ 【详解】 解析:y x y x f r r r r f Dd d ),(d )sin ,cos (d 14π0⎰⎰⎰⎰=θθθ.D 的极坐标表示是:0≤r ≤1,4π0≤≤θ.见右图.现转换为先x 后y 的积分顺序. 原式x y x f y y yd ),(d 21220⎰⎰-=.因此选(C ).(12)设(,)f x y 与(,)x y ϕ均为可微函数,且0),(=/'y x y ϕ.已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是( ) (A )若00(,)0x f x y '=,则00(,)0y f x y '=. (B )若00(,)0x f x y '=,则00(,)0y f x y '≠. (C )若00(,)0x f x y '≠,则00(,)0y f x y '=. (D )若00(,)0x f x y '≠,则00(,)0y f x y '≠.【答案】(D )【考点】多元函数极值存在的必要条件;拉格朗日乘数法 【难易度】★★★ 【详解】解析:引入函数(,,)(,)(,)F x y f x y x y λλϕ=+,有(,)(,)0(1)(,)(,)0(2)(,)0x x xy y y f x y x y f x y x y x y λλϕλϕϕ'''⎧+=⎪'''+=⎨⎪'=⎩F =F =F =000000(,)(,)0,(,)y y y f x y x y x y ϕλϕ''≠∴=-'Q 代入(1)得00000000(,)(,)(,)(,)y xx y f x y x y f x y x y ϕϕ'''='若00(,)0x f x y '≠,则00(,)0y f x y '≠.故选D.(13)设12,,,s αααL 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是( ) (A )若12,,,s αααL 线性相关,则12,,,s A A A αααL 线性相关. (B )若12,,,s αααL 线性相关,则12,,,s A A A αααL 线性无关. (C )若12,,,s αααL 线性无关,则12,,,s A A A αααL 线性相关. (D )若12,,,s αααL 线性无关,则12,,,s A A A αααL 线性无关. 【答案】(A )【考点】向量组线性相关的判别法 【难易度】★★ 【详解】解析:方法1:若12,,,s αααL 线性相关,则存在不全为0的数12s ,,,k k k L 使得11220s s k k k ααα+++=L用A 左乘等式两边,得11220s s k A k A k A ααα+++=L于是12,,,s A A A αααL 线性相关. 方法2:因为:1.12,,,s αααL 线性相关⇔ 12(,,,)s r s ααα<L .2.()()r AB r B <. 所以有:矩阵1212(,,,)(,,,)s s A A A A αααααα=L L ,因此1212(,,,)(,,,)s s r A A A r s αααααα≤<L L由此可判断答案应为A .(14)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100010011P ,则( ) (A )1C P AP -=. (B )1C PAP -=.(C )T C P AP =.(D )TC PAP =.【答案】(B )【考点】矩阵的初等变换;逆矩阵的计算 【难易度】★★ 【详解】解析:将A 的第2行加到第1行得B ,即 110010001B A ⎛⎫ ⎪= ⎪ ⎪⎝⎭=PA将B 的第1列的-1倍加到第2列得C ,即110010001C B -⎛⎫ ⎪= ⎪ ⎪⎝⎭记 BQ因PQ =110010001⎛⎫ ⎪ ⎪ ⎪⎝⎭110010001-⎛⎫⎪ ⎪ ⎪⎝⎭E =,故1Q P -=从而 11C BP PAP --== ,故选(B ).三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)试确定常数A ,B ,C 的值,使得23(1)1()x e Bx Cx Ax o x ++=++,其中3()o x 是当0x →时比3x 高阶的无穷小.【考点】高阶无穷小;泰勒公式;洛必达法则 【难易度】★★★ 【详解】解析:方法一:泰勒公式2331()26xx x e x o x =++++代入已知等式得 23323[1()][1]1()26x x x o x Bx Cx Ax o x ++++++=++整理得233111(1)()()1()226BB xC B x C o x Ax o x ⎛⎫+++++++++=++ ⎪⎝⎭比较两边同次幂函数得11021026B A C B B C ⎧⎪+=⎪⎪++=⎨⎪⎪++=⎪⎩由此可解得13A =, 23B =-,16C =方法二:用洛必达法则.由23(1)1()x e Bx Cx Ax o x ++=++,(0x →)⇒ )(记J0)1(e )1(lim 320=+-++-→x Ax Cx Bx x x ⇒ 203])1[(e 2limx Ax A Cx B x x +-++-→ (要求分子极限为0,即1+B -A =0,否则J =∞)⇒ xAx A C J x x 6)12(e 2lim0--+=-→ (要求分子极限为0,即2A +2C -1=0,否则J =∞),⇒ 06316)31(e lim0=-=+-=-→AAx A J x x ,即1-3A =0. 解 ⎪⎩⎪⎨⎧=-=-+=-+,031,0122,01A C A A B 得61,32,31=-==C B A . (16)(本题满分10分)求.d e e sin arc x xx⎰【考点】不定积分的分部积分法;不定积分的第二类换元法 【难易度】★ 【详解】解析:x x xx x x x xx x x 2e1d e ee sin arc e de e sin arc d e e sin arc -+-=-=---⎰⎰⎰ 1)e (de e sin arc e 2---=---⎰x x xx其中,22sec tan sec sec ln sec tan ln ()1tan ()1x x x x x t te t dt tdt t t C e e C te -----===++=+-+-⎰⎰⎰因此,x x xd ee sin arc ⎰.|1e e |ln e sin arc e 2C x x x x +-+--=--- (17)(本题满分10分)设区域{}22(,)1,0D x y x y x =+≤≥,计算二重积分⎰⎰⋅+++-=Dy x y x xyI d d 1122【考点】二重积分的计算;利用极坐标计算二重积分 【难易度】★★★ 【详解】解析:D 为右半单位圆,它关于x 轴对称,于是0d d 122=++⎰⎰y x y x xyD, 从而 ⎰⎰⎰⎰++=++=122221d d 2d d 11D Dy x yx y x yxI . 又 {}10D D y =⋂≥,如图,作极坐标变换,cos x r θ=,sin y r θ=, 则 10,2π0:1≤≤≤≤r D θ.因此 2ln 2π)1ln(2πd 11d 21221022π0=+=+=⎰⎰r r r r I θ.(18)(本题满分12分)设数列{}n x 满足10x π<<,1sin n n x x +=(1,2,n =L ). (Ⅰ)证明n n x ∞→lim 存在,并求该极限;(Ⅱ)计算.)(lim 211n x nn n x x +∞→【考点】函数极限与数列极限的关系;单调有界准则【难易度】★★★★ 【详解】解析:(Ⅰ)由于0x π<<时,0sin x x <<,于是10sin n n n x x x +<=≤ 说明数列{}n x 单调减少且0n x >.由单调有界准则知lim n n x →∞存在.记为A递推公式两边取极限得 sin ,0A A A =∴=(Ⅱ)原式21sin lim(),n x n n nx x →∞=为∞"1"型 由于离散型不能直接用洛比达法则先考虑22011sin lim ln()0sin lim()t ttt t t t e t→→=用洛比达法则2323203311(cos sin )1110()0()lim 26cos sin sin 1262limlim2262t t t t t t t t t t t t t t tt t t ttteeeee →→→⎡⎤⎡⎤--+--+⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦-=====g g(19)(本题满分10分)证明:当0a b π<<<时,sin 2cos sin 2cos b b b b a a a a ππ++>++. 【考点】函数单调性的判别 【难易度】★★★ 【详解】证明:令()sin 2cos f x x x x x π=++ 只需证明0x π<<时,()f x 单调增加(严格)()sin cos 2sin f x x x x x π'=+-+cos sin x x x π=-+ ()cos sin cos sin 0f x x x x x x x ''=--=-<()f x '∴ 单调减少(严格)又()cos 0f ππππ'=+=,故0()0()x f x f x π'<< >时则单调增加(严格)()()b a f b f a >>由则,即sin 2cos sin 2cos b b b b a a a a ππ++>++.(20)(本题满分12分)设函数()f u 在(0,)+∞内具有二阶导数,且)(22y x f z +=满足等式.02222=∂∂+∂∂yzx z (Ⅰ)验证;0)()(='+"uu f u f (Ⅱ)若1)1(,0)1(='=f f ,求函数()f u 的表达式. 【考点】多元复合函数的求导法;变量可分离的微分方程 【难易度】★★★ 【详解】解析:(I)z zf fx y∂∂''==∂∂()22222z xf fx x y x y ∂'''=+∂++()()22322222x yf fx y x y '''=+++()() 22232 22222z y xf fy x y x y∂'''=+∂++同理222200()()0z zfx yf uf uu∂∂''+==∂∂'''∴+=代入得成立(II)令(),f u p'=于是上述方程成为dp pdu u=-,则dp ducp u=-+⎰⎰ln ln,()cp u c f u pu'=-+∴==22(1)1,1,()ln||,(1)0,0()ln||f c f u u c f c f u u'===+===由得,于是22(1)1,1,()ln||,(1)0,0()ln||f c f u u c f c f u u'===+==∴=由,(21)(本题满分12分)已知曲线L的方程为)0(4,122≥⎪⎩⎪⎨⎧-=+=tttytx,(Ⅰ)讨论L的凹凸性;(Ⅱ)过点(-1,0)引L的切线,求切点(x0,y0),并写出切线的方程;(Ⅲ)求此切线与L(对应于x≤x0的部分)及x轴所围成的平面图形的面积.【考点】导数的几何意义;由参数方程所确定的函数的导数;平面图形的面积【难易度】★★★【详解】解析:(Ⅰ)4222,42,12dx dy dy tt tdt dt dx t t-==-==-222312110(0)2dydd y dxtdxdx dt t t tdt⎛⎫⎪⎛⎫⎝⎭=⋅=-⋅=-<>⎪⎝⎭处∴曲线L (在0t >处)是凸.(Ⅱ)切线方程为201(1)y x t ⎛⎫-=-+⎪⎝⎭,设2001x t =+,20004y t t =-,则 2223200000000241(2),4(2)(2)t t t t t t t t ⎛⎫-=-+-=-+⎪⎝⎭得 200000020,(1)(2)001t t t t t t +-=-+=>∴=Q点为(2,3),切线方程为1y x =+(Ⅲ)设L 的方程()x g y =, 则 ()3()(1)S g y y dy =--⎡⎤⎣⎦⎰(2240221t t y x -+==±=±+解出t 得由于(2,3)在L上,由(23221()y x x g y ===-+=得可知(309(1)S y y d y ⎡⎤=----⎣⎦⎰33(102)4y dy y =--⎰33332202(10)4(4)214(4)3y y y y =-+-=+⨯⨯-8642213333=+-=-(22)(本题满分9分)已知非齐次线性方程组⎪⎩⎪⎨⎧=+++-=-++-=+++13,1534,1432143214321bx x x ax x x x x x x x x有3个线性无关的解.(Ⅰ)证明方程组系数矩阵A 的秩()2r A =;(Ⅱ)求a ,b 的值及方程组的通解.【考点】非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系;非齐次线性方程组的通解 【难易度】★★★ 【详解】解析:(Ⅰ)设123,,ααα是方程组的3个线性无关的解,则2131,αααα--是0Ax =的两个线性无关的解.于是0Ax =的基础解系中解的个数不少于2,即4()2r A -≥,从而()2r A ≤.又因为A 的行向量是两两线性无关的,所以()2r A ≥. 两个不等式说明()2r A =.(Ⅱ)对方程组的增广矩阵作初等行变换:[]A b = 1111|11111|14351|10115|3,13|1004245|42a b a a b a --⎡⎤⎡⎤⎢⎥⎢⎥--→--⎢⎥⎢⎥⎢⎥⎢⎥-+--⎣⎦⎣⎦由()2r A =,得出 2,a = 3b =-.代入后继续作初等行变换:1024|20115|3.0000|0-⎡⎤⎢⎥→---⎢⎥⎢⎥⎣⎦得同解方程组 1342342-24-3-5x x x x x x =+⎧⎨=+⎩求出一个特解(2,3,0,0)T-和0Ax =的基础解系(2,1,1,0)T-,(4,5,0,1)T-.得到方程组的通解: 12(2,3,0,0)(2,1,1,0)(4,5,0,1)T T Tc c -+-+-,12,c c 任意.(23)(本题满分9分)设3阶实对称矩阵A 的各行元素之和均为3,向量1(1,2,1)T α=--,2(0,1,1)Tα=-是线性方程组0Ax =的两个解.(Ⅰ)求A 的特征值与特征向量;(Ⅱ)求正交矩阵Q 和对角矩阵Λ,使得Q T AQ =Λ.【考点】矩阵的特征值的计算;矩阵的特征向量的计算;施密特正交化;相似对角矩阵 【难易度】★★★ 【详解】解析:(Ⅰ) 由A 的每行元素之和为3,有(1,1,1)(3,3,3)T TA =故,0(1,1,1)Tα=是A 的特征向量,特征值为3.又12,αα都是0AX =的解说明它们也都是A 的特征向量,特征值为0.由于12,αα线性无关, 特征值0的重数大于1. 于是A 的特征值为3,0,0.属于3的特征向量:0c α, c 0≠.属于0的特征向量: 1122c c αα+,12,c c 不都为0. (Ⅱ)将0α单位化,得0333(, , )333T η=. 对12,αα作施密特正交化,得122(0, , )22T η=-,2666( )366Tη=--. 作123(,,)Q ηηη=,则Q 是正交矩阵,并且-13 0 00 0 00 0 0T Q AQ Q AQ ⎛⎫ ⎪== ⎪ ⎪⎝⎭。

2006—数一真题、标准答案及解析

2006—数一真题、标准答案及解析

2006年全国硕士研究生入学考试数学一真题一、填空题(1) lim Xln(1 x)X 01 COSX -----------------(2 )微分方程y y(1 x)的通解是__________________ .X(3)设是锥面z x2—y2( 0 z 1)的下侧,贝U xdydz 2ydzdx 3(z 1)dxdy(4)点(2,1, 0)到平面3x 4y 5z 0的距离z =(5 )设矩阵A E为2阶单位矩阵,矩阵B满足BA B 2E ,贝U B(6)设随机变量X与Y相互独立,且均服从区间[0, 3]上的均匀分布,则P max{X,Y} 1 = ______________、选择题(7)设函数y f(x)具有二阶导数,且f (x) 0, f (x) 0 ,x为自变量x在x0处的增量, y与dy(A) 0 dx y. (B) 0 y dy(C)y dy 0. (D)dy y 0104d 0f(rcos,rsin )rdr等于(A) 02dx x f (X, y)dy.(B) 0勺x°1x2f(x,y)dy.(C) 0「y1y2f(x,y)dx. (C) ^dy J 7 f(x, y)dx. 【】(9)若级数a n收敛,则级数n 1(A) a n收敛.n 1(C) a n a n 1收敛. (B) ( 1)n a n收敛.n 1(D) 3n 3n 1收敛. 【】分别为f(x)在点X。

处对应的增量与微分,若x 0,则(8)设f(x, y)为连续函数,则(10)设f (x, y)与(x, y)均为可微函数,且y (x, y) 0 •已知(x 0, y 0)是f (x, y)在约束条件(x, y) 0 下的一个极值点,下列选项正确的是 0,则 f y (x 0, y 0) 0 0,则 f y (x 0, y 0) 00,则 f y (x 0, y 0) 00,则 f y (x 0, y 0) 0(A) 若a !, a 2,L , a,线性相关,则 (B) 若a !, a ?丄,a,线性相关,则 (C) 若印,玄2丄,a,线性无关,则(A ) P(A B) P(A). (B )P(A B)P(B). (C ) P(A B) P(A).(D )P(A B)P(B). 【】14 )设随机变量X 服从正态分布N( 1, 212) , Y 服从正态分布N( 2, 2),且P{| X1| 1} P{| Y 2| 1},(A ) 1 2.(B ) 1 2.( C )12.(D )1 2.【 】(12 )设A 为3 阶矩阵,将A 的第 2 行加到第 1 行得B ,再将B 的第 1 列的 -1 倍加到第 2 列得C ,记1 10P0 1 0 ,则0 01(A ) CP 1AP.(B ) C PAP 1.(C )C P T AP . (D )C PAP T .【】13)设 A, B 为随机事件,且p(B) 0, p(A|B)1, 则必有(D) 若a !, a ?丄,a,线性无关,则】(A) 若 f x (x 。

2006考研数学(二)真题及参考答案

2006考研数学(二)真题及参考答案

2006年全国硕士研究生入学考试数学(二)一、填空题 (1)曲线4sin 52cos x xy x x+=-的水平渐近线方程为 .(2)设函数231sin ,0,(),x t dt x f x x a x ⎧≠⎪=⎨⎪=⎩⎰在0x =处连续,则a = .(3)广义积分22(1)xdxx +∞=+⎰.(4)微分方程(1)y x y x-'=的通解是 . (5)设函数()y y x =由方程1yy xe =-确定,则A dy dx== .(6)设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2B A BE =+,则B = . 二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则 (A )0.dy y <<∆ (B )0.y dy <∆<(C )0.y dy ∆<<(D )0.dy y <∆<【 】(8)设()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则()x f t dt ⎰是(A )连续的奇函数. (B )连续的偶函数(C )在0x =间断的奇函数 (D )在0x =间断的偶函数. 【 】(9)设函数()g x 可微,1()(),(1)1,(1)2g x h x e h g +''===,则(1)g 等于(A )ln 31-. (B )ln 3 1.--(C )ln 2 1.--(D )ln 2 1.-【 】(10)函数212xxx y C e C e xe -=++满足一个微分方程是(A )23.xy y y xe '''--= (B )23.xy y y e '''--=(C )23.xy y y xe '''+-=(D )23.xy y y e '''+-=(11)设(,)f x y 为连续函数,则140(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A )22120(,).x xdx f x y dy -⎰⎰(B )22120(,).x dx f x y dy -⎰⎰(C )22120(,).y ydy f x y dx -⎰⎰(D )22120(,).y dy f x y dx -⎰⎰【 】(12)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠. 已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A )若00(,)0x f x y '=,则00(,)0y f x y '=. (B )若00(,)0x f x y '=,则00(,)0y f x y '≠. (C )若00(,)0x f x y '≠,则00(,)0y f x y '=. (D )若00(,)0x f x y '≠,则00(,)0y f x y '≠.【 】(13)设12,,,,a a a 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是 (A )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性相关. (B )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性无关.(C )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性相关.(D )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性无关. 【 】(14)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001P ⎛⎫⎪= ⎪ ⎪⎝⎭,则(A )1.C P AP -= (B )1.C PAP -=(C ).T C P AP =(D ).TC PAP =三 解答题15.试确定A ,B ,C 的常数值,使得23(1)1()xe Bx Cx Ax o x ++=++,其中3()o x 是当30x x →时比的高阶无穷小.16.arcsin xxe dx e ⎰求. 17.{}22(,)1,0D x y x y x =+≤≥设区域,221.1DxyI dxdy x y +=++⎰⎰计算二重积分 18.{}110,sin (0,1,2,)n n n x x x x n π+<<== 设数列满足1lim n x x +→∞证明: (1) 存在,并求极限;211(2)lim()n x n x nx x +→∞计算. 19.sin 2cos sin cos .<a <b b b b b a a a a a πππ<++>++证明: 当0时, 20 设函数()()0,,f u +∞在内具有二阶导数且()22z fx y=+满足等式22220z zx y∂∂+=∂∂.(Ⅰ)验证()()0f u f u u'''+=;(Ⅱ)若()()()10,11,f f f u '==求函数的表达式. 21 已知曲线L 的方程为221,(0),4x l t y l t⎧=+≥⎨=-⎩(Ⅰ)讨论L 的凹凸性;(Ⅱ)过点(-1,0)引L 的切线,求切点00(,)x y ,并写出切线的方程; (Ⅲ)求此切线与L (对应于0x x ≤的部分)及x 轴所围成的平面图形的面积.22 已知非齐次线性方程组12341234123414351331x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪++-=⎩有个线性无关的解Ⅰ证明方程组系数矩阵A 的秩()2r A =; Ⅱ求,a b 的值及方程组的通解.23 设3阶实对称矩阵A 的各行元素之和均为3,向量()()121,2,1,0,1,1TTαα=--=-是线性方程组A x =0的两个解, (Ⅰ)求A 的特征值与特征向量 (Ⅱ)求正交矩阵Q 和对角矩阵A,使得TQ AQ A =.真题解析一、填空题 (1)曲线4sin 52cos x xy x x+=-的水平渐近线方程为15y =4sin 11lim lim2cos 55x x xx y x x→∞→∞+==-(2)设函数2301sin ,0(),0xt dt x f x x a x ⎧≠⎪=⎨⎪=⎩⎰ 在x =0处连续,则a =132200()1lim ()lim 33x x sm x f x x →→==(3)广义积分22(1)xdxx +∞=+⎰1222222201(1)11110(1)2(1)2(1)22xdx d x x x x +∞+∞+∞+==-⋅=+=+++⎰⎰(4)微分方程(1)y x y x-'=的通解是xy cxe -=)0(≠x(5)设函数()y y x =由方程1yy xe =-确定,则0x dy dx==e-当x =0时,y =1,又把方程每一项对x 求导,y yy e xe y ''=--01(1)1x x y yyyye y xe ey e xe ===''+=-=-=-+(6) 设A = 2 1 ,2阶矩阵B 满足BA =B +2E ,则|B |= .-1 2解:由BA =B +2E 化得B (A -E )=2E ,两边取行列式,得|B ||A -E |=|2E |=4, 计算出|A -E |=2,因此|B |=2. 二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0,f x f x x '''>>∆为自变量x 在点x 0处的增量,0()y dy f x x ∆与分别为在点处对应增量与微分,若0x ∆>,则[A](A )0dy y <<∆(B )0y dy <∆<(C )0y dy ∆<<(D )0dy y <∆<由()0()f x f x '>可知严格单调增加()0()f x f x ''>可知是凹的即知(8)设()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则()xf t dt ⎰是[B](A )连续的奇函数 (B )连续的偶函数(C )在x =0间断的奇函数 (D )在x =0间断的偶函数(9)设函数()g x 可微,1()(),(1)1,(1)2,g x h x e h g +''===则g (1)等于[C] (A )ln 31- (B )ln 31--(C )ln 21--(D )ln 21- ∵ 1()()()g x h x g x e +''=,1(1)12g e+= g (1)= ln 21--(10)函数212x x x y c e c xe -=++满足的一个微分方程是[D] (A )23x y y y xe '''--= (B )23x y y y e '''--=(C )23xy y y xe '''+-=(D )23xy y y e '''+-=将函数212x x x y c e c xe -=++代入答案中验证即可.(11)设(,)f x y 为连续函数,则14(cos ,sin )d f r r rd πθθθγ⎰⎰等于[C](A )2212(,)x xdx f x y dy -⎰⎰(B )2212(,)x dx f x y dy -⎰⎰(C )2212(,)y ydy f x y dx -⎰⎰(D )2212(,)y dy f x y dx -⎰⎰(12)设(,)(,)f xyxy ϕ与均为可微函数,且(,)0,y x y ϕ'≠已知00(,)(,)x y f x y 是在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是[D](A )若0000(,)0,(,)0x y f x y f x y ''==则(B )若0000(,)0,(,)0x y f x y f x y ''=≠则 (C )若0000(,)0,(,)0x y f x y f x y ''≠=则 (D )若0000(,)0,(,)0x y f x y f x y ''≠≠则(,)(,)(,)(,)0(1)(,)(,)0(2)(,)0x x xy y y F f x y x y F f x y x y F f x y x y F x y λλϕλϕλϕϕ=+'''=+=⎧⎪'''=+=⎨⎪'==⎩令今000000(,)(,)0,(,)y y y f x y x y x y ϕλϕ''≠∴=-'代入(1) 得 00000000(,)(,)(,)(,)y xx y f x y x y f x y x y ϕϕ'''='今 00000000(,)0,(,)(,)0(,)0x y xy f x y f x y x y f x y ϕ''''≠∴≠≠则 故选[D] (13)设α1,α2,…,αs 都是n 维向量,A 是m ⨯n 矩阵,则( )成立.(A) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性相关. (B) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性无关. (C) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性相关. (D) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性无关. 解: (A)本题考的是线性相关性的判断问题,可以用定义解.若α1,α2,…,αs 线性相关,则存在不全为0的数c 1,c 2,…,c s 使得c 1α1+c 2α2+…+c s αs =0,用A 左乘等式两边,得c 1A α1+c 2A α2+…+c s A αs =0,于是A α1,A α2,…,A αs 线性相关.如果用秩来解,则更加简单明了.只要熟悉两个基本性质,它们是: 1. α1,α2,…,αs 线性无关⇔ r(α1,α2,…,αs )=s. 2. r(AB )≤ r(B ).矩阵(A α1,A α2,…,A αs )=A ( α1, α2,…,αs ),因此r(A α1,A α2,…,A αs )≤ r(α1, α2,…,αs ).由此马上可判断答案应该为(A).(14)设A 是3阶矩阵,将A 的第2列加到第1列上得B ,将B 的第1列的-1倍加到第2列上得C .记 1 1 0P = 0 1 0 ,则 0 0 1(A) C =P -1AP . (B) C =PAP -1. (C) C =P TAP . (D) C =PAP T. 解: (B)用初等矩阵在乘法中的作用得出B =PA , 1 -1 0C =B 0 1 0 =BP -1= PAP -1. 0 0 1三、解答题(15)试确定A ,B ,C 的常数值,使23(1)1()x e Bx Cx Ax o x ++=++其中3()o x 是当30x x →时比的高阶无穷小.解:泰勒公式2331()26xx x e x o x =++++代入已知等式得 23323[1()][1]1()26x x x o x Bx Cx Ax o x ++++++=++整理得233111(1)()()1()226BB xC B x C o x Ax o x ⎛⎫+++++++++=++ ⎪⎝⎭比较两边同次幂函数得B +1=A ①C +B +12=0 ② 1026B C ++= ③ 式②-③得120233B B +==-则 代入①得13A = 代入②得16C = (16)求arcsin xxe dx e ⎰.解:原式=22arcsin arcsin ()x x xx e t de e t dt e t =⎰⎰令21arcsin arcsin ()1t dttd t t t t =-=-+-⎰⎰2222arcsin arcsin 1(2)12(1)1t tdt t udu t u t t u u t t -=-+-==-+--⎰⎰令2arcsin 1t dut u =-+-⎰arcsin 11ln 21t u C t u -=-+++22arcsin arcsin 111ln 211x x x x x x e e e dx C e e e --∴=-++-+⎰. (17)设区域22{(,)||,0}D x y x y x =+≤≥,计算二重积分2211DxyI dxdy x y +=++⎰⎰.解:用极坐标系2201D xydxdy x y ⎛⎫= ⎪++⎝⎭⎰⎰11222002ln(1)ln 2122r I d dr r r ππππθ-==+=+⎰⎰. (18)设数列{}n x 满足10x π<<,1sin (1,2,3,)n n x x n +==证明:(1)1lim n n x +→∞存在,并求极限;(2)计算211lim n x n n n x x +→∞⎛⎫ ⎪⎝⎭. 证:(1)212sin ,01,2x x x n =∴<≤≥ 因此 1sin ,{}n n n n x x x x +=≤单调减少有下界()0n x ≥根据准则1,lim n n x A →∞=存在在1sin n n x x +=两边取极限得sin 0A A A =∴=因此1lim 0n n x +→∞=(2)原式21sin lim "1"n x n n n x x ∞→∞⎛⎫= ⎪⎝⎭为型 离散型不能直接用洛必达法则先考虑 22011s i n l i m l n 0s i n l i m t t t t t t t e t →⎡⎤⎢⎥⎣⎦→⎛⎫= ⎪⎝⎭用洛必达法则2011(cos sin )limsin 2t t t t t tt te→-=23233310()0()26cos sin limlim22t t t t t t t t t t tt t ee →→⎡⎤⎡⎤-+--+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦==3330110()261lim26t t t t ee →⎛⎫-++ ⎪⎝⎭-==.(19)证明:当0a b π<<<时,1sin 2cos sin 2cos b b b b a a a aππ++>++. 证:令()sin 2cos f x x x x x π=++ 只需证明0a x π<<<时,()f x 严格单调增加()sin cos 2sin f x x x x x π'=+-+cos sin x x x π=-+()cos sin cos sin 0f x x x x x x x ''=--=-< ()f x '∴严格单调减少又()cos 0f ππππ'=+=故0()0()a x f x f x π'<<<>时则单调增加(严格)()()b a f b f a >>由则得证(20)设函数()(0,)f u +∞在内具有二阶导数,且()22Z fx y=+满足等式22220z zx y∂∂+=∂∂.(I )验证()()0f u f u u'''+=; (II )若(1)0,(1)1f f '== 求函数()f u 的表达式.证:(I )()()22222222;zx zy f x y f x y xyx yx y∂∂''=+=+∂∂++()()()()22222223222222zx y f x yf x yx x y x y ∂'''=+++∂++()()()()22222223222222zy x f x yf x yy x y x y ∂'''=+++∂++()2222222222()0()()0f x y z zf x yx y x yf u f u u'+∂∂''+=++=∂∂+'''∴+=代入方程得成立(II )令(),;,dp p dp du c f u p c p du u p u u'==-=-+=⎰⎰则22(1)1,1,()ln ||,(1)0,0()ln ||f c f u u c f c f u u '===+==∴= 由(21)已知曲线L 的方程221(0)4x t t y t t⎧=+≥⎨=-⎩(I )讨论L 的凹凸性;(II )过点(1,0)-引L 的切线,求切点00(,)x y ,并写出切线的方程; (III )求此切线与L (对应0x x ≤部分)及x 轴所围的平面图形的面积.解:(I )4222,42,12dx dy dy t t t dt dt dx t t-==-==-222312110(0)2dy d d y dx t dx dx dt t t t dt ⎛⎫⎪⎛⎫⎝⎭=⋅=-⋅=-<> ⎪⎝⎭处(0L t ∴>曲线在处)是凸(II )切线方程为201(1)y x t ⎛⎫-=-+⎪⎝⎭,设2001x t =+,20004y t t =-,则2223200000000241(2),4(2)(2)t t t t t t t t ⎛⎫-=-+-=-+⎪⎝⎭得200000020,(1)(2)001t t t t t t +-=-+=>∴=点为(2,3),切线方程为1y x =+(III )设L 的方程()x g y =则()3()(1)S g y y dy =--⎡⎤⎣⎦⎰ ()224024241t t y y x y -+==±-=±-+解出t 得由于(2,3)在L 上,由()232241()y x x y g y ===--+=得可知()30944(1)S y y y dy ⎡⎤=-----⎣⎦⎰ 3300(102)44y dy ydy =---⎰⎰3333220002(10)44(4)214(4)3y y yd y y =-+--=+⨯⨯-⎰8642213333=+-=- (22)已知非齐次线性方程组 x 1+x 2+x 3+x 4=-1,4x 1+3x 2+5x 3-x 4=-1,a x 1+x 2+3x 3+bx 4=1有3个线性无关的解.① 证明此方程组的系数矩阵A 的秩为2.② 求a,b 的值和方程组的通解.解:① 设α1,α2,α3是方程组的3个线性无关的解,则α2-α1,α3-α1是AX =0的两个线性无关的解.于是AX =0的基础解系中解的个数不少于2,即4-r(A )≥2,从而r(A )≤2.又因为A 的行向量是两两线性无关的,所以r(A )≥2.两个不等式说明r(A )=2.② 对方程组的增广矩阵作初等行变换:1 1 1 1 -1 1 1 1 1 -1(A |β)= 4 3 5 -1 -1 → 0 –1 1 –5 3 ,a 1 3b 1 0 0 4-2a 4a+b-5 4-2a由r(A )=2,得出a=2,b=-3.代入后继续作初等行变换:1 02 -4 2→ 0 1 -1 5 -3 .0 0 0 0 0得同解方程组x 1=2-2x 3+4x 4,x 2=-3+x 3-5x 4,求出一个特解(2,-3,0,0)T 和AX =0的基础解系(-2,1,1,0)T ,(4,-5,0,1) T.得到方程组的通解: (2,-3,0,0)T +c 1(-2,1,1,0)T +c 2(4,-5,0,1)T , c 1,c 2任意.(23) 设3阶实对称矩阵A 的各行元素之和都为3,向量α1=(-1,2,-1)T , α2=(0,-1,1)T 都是齐次线性方程组AX =0的解.① 求A 的特征值和特征向量.② 求作正交矩阵Q 和对角矩阵Λ,使得 Q T AQ =Λ.解:① 条件说明A (1,1,1)T =(3,3,3)T ,即 α0=(1,1,1)T 是A 的特征向量,特征值为3.又α1,α2都是AX =0的解说明它们也都是A 的特征向量,特征值为0.由于α1,α2线性无关, 特征值0的重数大于1.于是A 的特征值为3,0,0.属于3的特征向量:c α0, c ≠0.属于0的特征向量:c 1α1+c 2α2, c 1,c 2不都为0.② 将α0单位化,得η0=(33,33,33)T . 对α1,α2作施密特正交化,的η1=(0,-22,22)T , η2=(-36,66,66)T . 作Q =(η0,η1,η2),则Q 是正交矩阵,并且 3 0 0Q T AQ =Q -1AQ = 0 0 0 .0 0 0。

兰州大学 2006年招收攻读硕士学位研究生考试试题

兰州大学 2006年招收攻读硕士学位研究生考试试题

兰州大学 2006 年招收攻读硕士学位研究生考试试题招生专业:生物学各专业考试科目:细胞生物学注意:答案请一律写在答题纸上,写在试题上无效一、名词解释(每个名词 2 分,共 20 分)1.第二信使:细胞外的信号分子与受体作用后,在胞内最早产生或发生浓度变化的信号分子称为第二信使,再通过作用于靶酶或胞内受体,将信号传递到级联反应的下游。

2.G 蛋白偶联受体:是指受体-配体复合物与靶蛋白的作用要通过与G蛋白的偶联,在胞内产生第二信使,从而将胞外信号跨膜传递到胞内影响细胞的行为。

所有G蛋白偶联受体都含有7个疏水残基肽段形成跨膜α螺旋区和相似的三维结构,N末端在细胞外侧,C末端在细胞胞质侧。

3.间隙联连接:存在与几乎所有的动物组织中的一种细胞连接方式,构成间隙连接的基本单位为连接子,每个连接子由6个相同或相似的跨膜蛋白亚单位连接蛋白环绕,中心形成一个直径约为1.5nm的孔道,相邻细胞膜上的两个连接子对接便形成一个间隙连接单位。

4.钠-钾泵:属于P型泵,分布于细胞质膜,含有α、β两种亚基,α大亚基是多次跨膜的膜整合蛋白,具有ATP酶的活性,β小亚基是糖蛋白,钠钾泵属于主动运输,直接消耗ATP进行跨膜转运5.动作电位:是指可兴奋细胞受到刺激时在静息电位的基础上产生的可扩布的电位变化过程6.chromatin:染色质;指间期细胞核内由DNA、组蛋白、非组蛋白及少量RNA组成的线性复合结构,是间期细胞遗传物质存在的形式7.archaebactria:古细菌;是一些生长在极端特殊环境中的“细菌”,其形态结构、遗传装置及其基本生命活动方式虽然与原核细胞相似,但16SrRNA序列同源性和其他一些基本分子生物学特点又与真核接近8.anaphase:分裂后期;每一个着丝点分裂成两个,原来连接在同一个着丝点上的两条姐妹染色单体也随着分离开来,成为两条子染色体9.ATP synthetase:ATP合酶;广泛分布于线粒体内膜,叶绿体类囊体,异养菌和光合菌的质膜上,参与氧化磷酸化和光合磷酸化,在跨膜质子动力势的推动下合成ATP。

2006年考研数学一真题及参考答案

2006年考研数学一真题及参考答案

2006年全国硕士研究生入学考试数学(一)一、填空题(1)0ln(1)lim1cos x x x x→+=-. (2)微分方程(1)y x y x-'=的通解是 .(3)设∑是锥面22z x y =+(01z ≤≤)的下侧,则23(1)xdydz ydzdx z dxdy ∑++-=⎰⎰ .(4)点(2,1,0)到平面3450x y z ++=的距离z = .(5)设矩阵2112A ⎛⎫=⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则B =16 .(6)设随机变量X 与Y 相互独立,且均服从区间[0, 3]上的均匀分布,则{}max{,}1P X Y ≤= .二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A )0.dx y <<∆ (B )0.y dy <∆<(C )0.y dy ∆<<(D )0.dy y <∆<【 】(8)设(,)f x y 为连续函数,则14(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A )2210(,).x xf x y dy -⎰⎰(B )2210(,).x f x y dy -⎰⎰(C )2210(,).y yf x y dx -⎰⎰(C )2210(,).y f x y dx -⎰⎰【 】(9)若级数1nn a∞=∑收敛,则级数(A )1nn a∞=∑收敛. (B )1(1)nn n a ∞=-∑收敛.(C )11n n n a a ∞+=∑收敛.(D )112n n n a a ∞+=+∑收敛. 【 】 (10)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠. 已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是 (A )若00(,)0x f x y '=,则00(,)0y f x y '=. (B )若00(,)0x f x y '=,则00(,)0y f x y '≠. (C )若00(,)0x f x y '≠,则00(,)0y f x y '=. (D )若00(,)0x f x y '≠,则00(,)0y f x y '≠.【 】(11)设12,,,,a a a L 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是 (A )若12,,,,a a a L 线性相关,则12,,,,Aa Aa Aa L 线性相关. (B )若12,,,,a a a L 线性相关,则12,,,,Aa Aa Aa L 线性无关.(C )若12,,,,a a a L 线性无关,则12,,,,Aa Aa Aa L 线性相关.(D )若12,,,,a a a L 线性无关,则12,,,,Aa Aa Aa L 线性无关. 【 A 】 (12)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001P ⎛⎫⎪= ⎪ ⎪⎝⎭,则(A )1.C P AP -= (B )1.C PAP -=(C ).T C P AP =(D ).TC PAP = 【 B 】(13)设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有 (A )()().P A B P A ⋃> (B )()().P A B P B ⋃>(C )()().P A B P A ⋃=(D )()().P A B P B ⋃= 【 】(14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且12{||1}{||1},P X P Y μμ-<>-<(A )1 2.σσ< (B )1 2.σσ>(C )1 2.μμ<(D )1 2.μμ> 【 】三 解答题 15 设区域D=(){}22,1,0x y x y x +≤≥,计算二重积分2211DxyI dxdy x y +=++⎰⎰。

2006年考研数学一真题及解析

2006年考研数学一真题及解析

2006 年全国硕士研究生入学统一考试数学一试题解析一、填空题(1)【答案】2.【详解】由等价无穷小替换,0x →时,21ln(1),1cos 2x x x x +-,2002ln(1)limlim 11cos 2x x x x x x x →→+=-=2(2)【答案】xCxe-.【详解】分离变量,(1)dy y x dx x -=⇒(1)dy x dx y x -=⇒1(1)dy dx y x =-⇒1dy dx dxy x =-⎰⎰⎰⇒ln ln y x x c =-+⇒ln ln yx x cee-+=⇒xy Cxe-=(3)【答案】2π【详解】补一个曲面221:1x y z ⎧+≤∑⎨=⎩1,取上侧,则1∑+∑组成的封闭立体Ω满足高斯公式,1()P Q R dv Pdydz Qdzdx Rdxdy I x y z Ω∑+∑∂∂∂++=++=∂∂∂⎰⎰⎰⎰⎰ 设,2,3(1)P x Q y R z ===-,则1236P Q Rx y z∂∂∂++=++=∂∂∂∴I =6dxdydz Ω⎰⎰⎰(Ω为锥面∑和平面1∑所围区域)6V =(V 为上述圆锥体体积)注:以下几种解法针对于不同的方法求圆锥体体积V 方法1:I 623ππ=⨯=(高中方法,圆锥的体积公式,这种方法最简便)而123(1)0xdydz ydzdx z dxdy ∑++-=⎰⎰( 在1∑上:1,0z dz ==)方法2:先二重积分,后定积分.因为1V Sdz =⎰,r =222r x y =+,22r z =,22S r z ππ==,所以1122001133V z dz z πππ===⎰.从而6623I V ππ==⨯=方法3:利用球面坐标.1z =在球坐标下为:1cos ρθ=,1224cos 0006sin I d d d ππϕθϕρϕρ=⎰⎰⎰243002sin cos d d ππϕθϕϕ=⎰⎰2430cos (2)cos d d ππϕθϕ=-⎰⎰422001(2)()cos 2d ππθϕ-=--⎰202d πθπ==⎰方法4:利用柱面坐标.21106rI d dr rdz πθ=⎰⎰⎰216(1)d r rdrπθ=-⎰⎰122300116()23d r r πθ=-⎰202d πθπ==⎰(4)【详解】代入点000(,,)P x y z 到平面0Ax By Cz D +++=的距离公式d ===(5)【答案】2【详解】由已知条件2BA B E =+变形得,2BA E B -=⇒()2B A E E -=,两边取行列式,得()244B A E E E -===其中,2110112120111A E ⎡⎤⎡⎤-=-==⎢⎥⎢⎥--⎣⎦⎣⎦,222E 4E ==因此,2422E B A E===-.(6)【答案】19【详解】根据独立性原理:若事件1,,n A A 独立,则{}{}{}{}1212n n P A A A P A P A P A =事件{}{}{}{}max{,}11,111X Y X Y X Y ≤=≤≤=≤≤ ,而随机变量X 与Y 均服从区间[0,3]上的均匀分布,有{}1011133P X dx ≤==⎰和{}1011133P Y dy ≤==⎰.又随机变量X 与Y 相互独立,所以,{}{}{}{}max(,)11,111P x y P x Y P x P Y ≤=≤≤=≤⋅≤1133=⨯19=二、选择题.(7)【答案】A 【详解】方法1:图示法.因为()0,f x '>则()f x 严格单调增加;因为()0,f x ''>则()f x 是凹函数,又0x > ,画2()f x x =的图形结合图形分析,就可以明显得出结论:0dy y << .方法2:用两次拉格朗日中值定理000()()()y dy f x x f x f x x '-=+-- (前两项用拉氏定理)0()()f x f x xξ''=- (再用一次拉氏定理)0()()f x x ηξ=-'' ,其中000,x x x x ξηξ<<+<< 由于()0f x ''>,从而0y dy -> .又由于0()0dy f x x '=> ,故选[]A 方法3:用拉格朗日余项一阶泰勒公式.泰勒公式:000()()()()f x f x f x x x '=+-()20000()()()()2!!n n n f x f x x x x x R n ''+-++-+ ,其中(1)00()()(1)!n nn fx R x x n +=-+.此时n 取1代入,可得20001()()()()()02y dy f x x f x f x x f x ξ'''∆-=+∆--∆=∆>又由0()0dy f x x '=∆>,选()A .O x 0x 0+Δx xyy=f (x )Δydy(8)【答案】()C 【详解】记140(cos ,sin )(,)Dd f r r rdr f x y dxdy πθθθ=⎰⎰⎰⎰,则区域D 的极坐标表示是:01r ≤≤,04πθ≤≤.题目考察极坐标和直角坐标的互化问题,画出积分区间,结合图形可以看出,直角坐标的积分范围(注意y x =与221x y +=在第一象限的交点是2222,)),于是2:02D y y x ≤≤≤≤所以,原式0(,)ydy f x y dx =.因此选()C (9)【答案】D 【详解】方法1:数列收敛的性质:收敛数列的四则运算后形成的新数列依然收敛因为1nn a ∞=∑收敛,所以11n n a ∞+=∑也收敛,所以11()n n n a a ∞+=+∑收敛,从而112n n n a a ∞+=+∑也收敛.选D.方法2:记n n a =,则1n n a ∞=∑收敛.但11n n n a ∞∞===∑(p 级数,12p =级数发散);111n n n n a a ∞∞+===∑∑p 级数,1p =级数发散)均发散。

2006—2011考研真题(线性代数)

2006—2011考研真题(线性代数)

考研真题(线性代数)2006数(一)(5)设___,222112=+=⎪⎪⎭⎫⎝⎛-=B E B BA B E A 则满足阶单位矩阵,矩阵为,(11)设矩阵,下列选项是维向量,均为,,,n m A n s ⨯ααα 21正确的是: s s A A A A αααααα,,)(2121 ,线性相关,则,,,若线性相关; s s A A A B αααααα,,)(2121 ,线性无关,则,,,若线性相关; s s A A A C αααααα,,)(2121 ,线性无关,则,,,若线性无关; s s A A A D αααααα,,)(2121 ,线性相关,则,,,若线性无关;(12) 设B B A A ,再将到的第二行加到第一行得阶矩阵,将为3的第一列的)1(-倍加到第2列得到,记C⎪⎪⎪⎭⎫⎝⎛=100010011P则:11)(--==PAP C B AP P C A )(T T PAP C D APP C C ==)()(20 已知非线性方程组:有三个线性无关的解;⎪⎩⎪⎨⎧=-++-=-++-=+++1315341432143214321bx x x ax x x x x x x x x 证明(1)方程组系数矩阵A 的秩2)(=A r (2)求b a ,的值及其方程组的解。

21 设3阶实对称矩阵A 的各行元素之和均为3,向量()T1211--=α,()T 1102-=α是线性方程组的两个解,(1)求A 的特征值;(2) 求正交矩阵Λ=ΛAQ Q Q T 使得和对角矩阵。

(6)设___,222112=+=⎪⎪⎭⎫⎝⎛-=B E B BA B E A 则满足阶单位矩阵,矩阵为,(13)设矩阵,下列选项是维向量,均为,,,n m A n s ⨯ααα 21正确的是: s s A A A A αααααα,,)(2121 ,线性相关,则,,,若线性相关; s s A A A B αααααα,,)(2121 ,线性无关,则,,,若线性相关; s s A A A C αααααα,,)(2121 ,线性无关,则,,,若线性无关; s s A A A D αααααα,,)(2121 ,线性相关,则,,,若线性无关; (14)设B B A A ,再将到的第二行加到第一行得阶矩阵,将为3的第一列的)1(-倍加到第2列得到,记C⎪⎪⎪⎭⎫⎝⎛=100010011P则:11)(--==PAP C B AP P C A )( T T PAP C D AP P C C ==)()(22 已知非线性方程组:有三个线性无关的解;⎪⎩⎪⎨⎧=-++-=-++-=+++1315341432143214321bx x x ax x x x x x x x x 证明(1)方程组系数矩阵A 的秩2)(=A r (2)求b a ,的值及其方程组的解。

兰州大学数学与统计学院《801高等代数》历年考研真题(含部分答案)专业课考试试题

兰州大学数学与统计学院《801高等代数》历年考研真题(含部分答案)专业课考试试题

2011年兰州大学801高等代数考研真题
2010年兰州大学801高等代数考研真题
2009年兰州大学801高等代数考研真题
2008年兰州大学801高等代数考研真题及详 解
2007年兰州大学401高等代数考研真题
2006年兰州大学高等代数考研真题
2005年兰州大学高等代数考研真题
2004年兰州大学高等代数考研真题
2003年兰州大学高等代数考研真题
Байду номын сангаас
2002年兰州大学高等代数考研真题
2001年兰州大学高等代数考研真题
目 录
2011年兰州大学801高等代数考研真题 2010年兰州大学801高等代数考研真题 2009年兰州大学801高等代数考研真题 2008年兰州大学801高等代数考研真题及详解 2007年兰州大学401高等代数考研真题 2006年兰州大学高等代数考研真题 2005年兰州大学高等代数考研真题 2004年兰州大学高等代数考研真题 2003年兰州大学高等代数考研真题 2002年兰州大学高等代数考研真题 2001年兰州大学高等代数考研真题

2006考研数学二真题及答案解析

2006考研数学二真题及答案解析

( ) 设函数 f (u)在(0, +∞) 内具有二阶导数,= 且 Z f
x2 + y2
满足等式
∂2z ∂x2
+
∂2z ∂y 2
= 0
(I)验证 f ′′(u) + f ′(u) = 0 ; (II)若= f (1) 0= , f ′(1) 1, 求函数 f (u)的表达式 . u
(21)(本题满分 12 分)
增量, y 与 dy 分别为 f (x) 在点 x0 处对应增量与微分,若 x > 0 ,则( )
(A) 0 < dy < y
(B) 0 < y < dy
(C) y < dy < 0
(D) dy < y < 0
x
∫ (8) 设 f (x) 是奇函数,除 x = 0 外处处连续, x = 0 是其第一类间断点,则 f (t)dt 是( ) 0
=1 3
注: 0 型未定式,可以采用洛必达法则;等价无穷小量的替换 sin x2 x2 0

(3)【答案】1 2
【详解】
∫ ∫ +∞ xdx =1 +∞ dx2 =− 1 ⋅ 1 +∞ =1
0 (1+ x2 )2 2 0 (1+ x2 )2 2 1+ x2 0 2
(4) 【答案】 Cxe− x .
(A)连续的奇函数
(C)在 x = 0 间断的奇函数
(B)连续的偶函数
(D)在 x = 0 间断的偶函数
(9) 设函数 g(x) 可微,= h(x) e1+g(x)= , h′(1) 1,= g′(1) 2, 则 g(1) 等于( )

2006年考研数学一真题及解析

2006年考研数学一真题及解析

Aα 1 , Aα 2 ,⋯ , Aα s 也线性相关,故应选( A).
(12)设 A 为 3 阶矩阵,将 A 的第 2 行加到第 1 行得 B ,再将 B 的第 1 列的 −1 倍加到第 2
⎛ 1 1 0⎞ ⎜ ⎟ 列得 C ,记 P = 0 1 0 ,则 ⎜ ⎟ ⎜ 0 0 1⎟ ⎝ ⎠
(A) C = P 1 AP . (C) C = P T AP .
(1) lim
x→ 0
【分析】 本方程为可分离变量型,先分离变量,然后两边积分即可 【详解】 原方程等价为
dy ⎛ 1 ⎞ = ⎜ − 1⎟ dx , y ⎝x ⎠
两边积分得
ln y = ln x − x + C1 ,整理得
y = Cxe − x .( C = eC1 )
(3)设 Σ 是锥面 z =
消去 λ0 ,得
f x′ ( x 0 , y 0 )ϕ y′ ( x 0 , y 0 ) − f y′ ( x 0 , y 0 )ϕ x′ ( x0 , y0 ) = 0 ,
整理得
f x′ ( x0 , y0 ) =
1
ϕ y′ ( x0 , y0 )
, f y′ ( x0 , y0 )ϕx′ ( x0 , y0 ) .(因为 ϕ y ′ ( x, y) ≠ 0 )
若 f x′ ( x0 , y0 ) ≠ 0 ,则 f y ′ ( x0 , y 0 ) ≠ 0 .故选(D). (11)设 α1 , α 2 ,⋯ , α s 均为 n 维列向量, A 为 m × n 矩阵,下列选项正确的是 (A) (B) (C) 若 α1 ,α 2 ,⋯ ,α s 线性相关,则 Aα 1 , Aα 2 ,⋯ , Aα s 线性相关. 若 α1 ,α 2 ,⋯ ,α s 线性相关,则 Aα 1 , Aα 2 ,⋯ , Aα s 线性无关. 若 α1 ,α 2 ,⋯ ,α s 线性无关,则 Aα 1 , Aα 2 ,⋯ , Aα s 线性相关.

高等代数考研真题 第一章 多项式

高等代数考研真题  第一章 多项式

第一章 多项式1、(清华2000—20分)试求7次多项式()f x ,使()1f x +能被4(1)X -整除,而()1f x -能被4(1)X +整除。

2、(南航2001—20分)(1)设x 2-2px+2∣x 4+3x 2+px+q ,求p,q 之值。

(2)设f(x),g(x),h(x)∈R[x],而满足以下等式(x 2+1)h(x)+(x -1) f(x)+ (x -2) g(x)=0(x 2+1)h(x)+(x+1) f(x)+ (x+2) g(x)=0证明:x 2+1∣f(x),x 2+1∣g(x)3、(北邮2002—12分)证明:x d -1∣x n-1的充分必要条件是d ∣n (这里里记号d ∣n 表示正整数d 整除正整数n )。

4、、(北邮2003—15分)设在数域P 上的多项式g 1(x),g 2(x),g 3(x),f(x),已知g 1(x)∣f(x),g 2(x)∣f(x), g 3(x)∣f(x),试问下列命题是否成立,并说明理由:(1)如果g 1(x),g 2(x), g 3(x)两两互素,则一定有g 1(x),g 2(x),g 3(x)∣f(x) (2)如果g 1(x),g 2(x), g 3(x)互素,则一定有g 1(x)g 2(x)g 3(x)∣f(x) 5、(北师大2003—25分)一个大于1的整数若和其因子只有1和本身,则称之为素数。

证明P 是素数当且仅当任取正整数a ,b 若p ∣ab 则p ∣a 或p ∣b 。

6、(大连理工2003—12分)证明:次数>0且首项系数为1的多项式f(x)是某一不可约多项式的方幂主充分必要条件是,对任意的多项式g(x),h(x) ,由f(x)∣g(x) h(x)可以推出f(x)∣g(x),或者对某一正整数m ,f(x)∣h m(x)。

7、(厦门2004—16分)设f(x),g(x)是有理数域上的多项式,且f(x)在有理数域上不可约。

2006年考研数学一真题与答案

2006年考研数学一真题与答案

2006年考研数学一真题一、填空题(1~6小题,每小题4分,共24分。

)(1)。

【答案】2。

【解析】等价无穷小代换:当时,所以综上所述,本题正确答案是2。

【考点】高等数学—函数、极限、连续—无穷小量的性质及无穷小量的比较(2)微分方程的通解为__________。

【答案】,为任意常数。

【解析】原式等价于(两边积分)即,为任意常数综上所述,本题正确答案是。

【考点】高等数学—常微分方程—一阶线性微分方程(3)设是锥面的下侧,则。

【答案】。

【解析】设,取上侧,则而所以综上所述,本题正确答案是。

【考点】高等数学—多元函数积分学—两类曲面积分的概念、性质及计算(4)点(2,1,0)到平面的距离。

【答案】。

【解析】点到平面的距离公式:其中为点的坐标,为平面方程所以综上所述,本题正确答案是。

【考点】高等数学—向量代数和空间解析几何—点到平面和点到直线的距离(5)设矩阵,为二阶单位矩阵,矩阵满足,则___________。

【答案】2。

【解析】因为,所以。

综上所述,本题正确答案是。

【考点】线性代数—行列式—行列式的概念和基本性质线性代数—矩阵—矩阵的线性运算(6)设随机变量与相互独立,且均服从区间上的均匀分布,则___________。

【答案】。

【解析】本题考查均匀分布,两个随机变量的独立性和他们的简单函数的分布。

事件又根据相互独立,均服从均匀分布,可以直接写出综上所述,本题正确答案是。

【考点】概率论—多维随机变量的分布—二维随机变量的分布二、选择题(7~14小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项是符合题目要求的。

)(7)设函数具有二阶导数,且,为自变量在点处的增量,与分别为在点处对应的增量与微分,若,则(A) (B)(C) (D)【答案】A。

【解析】【方法一】由函数单调上升且凹,根据和的几何意义,得如下所示的图由图可得【方法二】由凹曲线的性质,得,于是,即综上所述,本题正确答案是A。

高等代数考研真题 第一章 多项式

高等代数考研真题  第一章 多项式

第一章 多项式1、(清华2000—20分)试求7次多项式()f x ,使()1f x +能被4(1)X -整除,而()1f x -能被4(1)X +整除。

2、(南航2001—20分)(1)设x 2-2px+2∣x 4+3x 2+px+q ,求p,q 之值。

(2)设f(x),g(x),h(x)∈R[x],而满足以下等式 (x 2+1)h(x)+(x -1) f(x)+ (x -2) g(x)=0 (x 2+1)h(x)+(x+1) f(x)+ (x+2) g(x)=0 证明:x 2+1∣f(x),x 2+1∣g(x) 3、(北邮2002—12分)证明:x d -1∣x n -1的充分必要条件是d ∣n (这里里记号d ∣n 表示正整数d 整除正整数n )。

4、、(北邮2003—15分)设在数域P 上的多项式g 1(x),g 2(x ),g 3(x ),f(x),已知g 1(x)∣f(x),g 2(x)∣f(x), g 3(x)∣f(x),试问下列命题是否成立,并说明理由:(1)如果g 1(x),g 2(x), g 3(x)两两互素,则一定有g 1(x),g 2(x),g 3(x)∣f(x) (2)如果g 1(x),g 2(x), g 3(x)互素,则一定有g 1(x)g 2(x)g 3(x)∣f(x) 5、(北师大2003—25分)一个大于1的整数若和其因子只有1和本身,则称之为素数。

证明P 是素数当且仅当任取正整数a ,b 若p ∣ab 则p ∣a 或p ∣b 。

6、(大连理工2003—12分)证明:次数>0且首项系数为1的多项式f(x)是某一不可约多项式的方幂主充分必要条件是,对任意的多项式g(x),h(x) ,由f(x)∣g(x) h(x)可以推出f(x)∣g(x),或者对某一正整数m ,f(x)∣h m (x)。

7、(厦门2004—16分)设f(x),g(x)是有理数域上的多项式,且f(x)在有理数域上不可约。

06年考研数四真题及答案解析

06年考研数四真题及答案解析

2006年全国硕士研究生入学考试数学(四)一、填空 1.(1)1lim()nn n n-→∞+= 2.设函数()f x 在2x =的某邻域内可导,且()()(2)1f x f x e f '-⋅=,则法(2)f '=3.设函数()f u 可微,且1()2f u '=,则22(4)z f x y =-在点(1,2)处的全微分 (1,2)|dz =4.已知12,a a 为2维列向量,矩阵1212(2,)A a a a a =+-,12(,)B a a =。

若行列式||6A =,则||B =5.设矩阵2112A ⎡⎤=⎢⎥-⎣⎦,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则B 。

6.设随机变量X 与Y 相互独立,且均服从区间[1,3]上的均匀分布,由{max(,)1}P x y ≤=二、选择7.设函数()y f x =具有二阶导数,且()0f x '>,()0f x ''>,x 为自变量x 在点0x 处的增量y 与dy 分别为()f x 在点0x 处对应的增量与微分,若0x > ,则( ) (A )0dy y << (B )0y dy << (C )0y dy <<(D )0dy y <<8.设函数()f x 在0x =处连续,且220()lim 1n f n n→==,则( ) (A )(0)0f =且(0)f '存在 (B )(0)1f =且(0)f '存在 (C )(0)0f =且(0)f +'存在(D )(0)1f =且(0)f +'存在9.设函数()f x 与()g x 在[0,1]上连续,且()()f x g x ≤,且对任何(0,1)C ∈( ) (A )1122()()c cf t dtg t dt ≥⎰⎰(B )1122()()c cf t dtg t dt ≤⎰⎰(C )11()()ccf t dtg t dt ≥⎰⎰(D )11()()ccf t dtg t dt ≤⎰⎰10.设非齐次线性微分方程()()y P x y Q x '+=有两个不同的解1()y x ,2()y x ,C 为任何常数,则该方程通解是( ) (A )12[()()]C y x y x - (B )112()[()()]y x C y x y x +- (C )12[()()]C y x y x +(D )112()[()()]y x C y x y x ++11.设(,)f x y 与(,)G x y 均为可微函数,且(,)0G x y '≠,已知00(,)x y 是(,)f x y 在约束条件(,)0G x y =下的一个极值点。

名校高等代数历年考研试题(1-3章)

名校高等代数历年考研试题(1-3章)

第一章 多项式例 1.1(华南理工大学, 2006年) 设 ( ) ( ) x g x f , 是数域F 上的多项式. 证明:( ) ( ) x g x f | 当且仅当对于任意的大于1的自然数n 有, ( ) ( ). | xg x f n n 证明 必要性显然成立,下证充分性. 设 ( ) g x 在数域F 上的不可约分解为( ) ( ) ( ) ( ) 12 12 k lllk g x cp x p x p x =××× ,其中 ( ) ,1,2,..., il i p x i k = 是互不相同的不可约多项式.若有 ( ) ( ) | nnf xg x ,则( ) ( ) ( ) ( ) 12 12 ,0,1,2,...,.k nf nf nfn k i i f x dp x p x p x f l i k =×××££= 其中d 是某个常数,因此有( ) ( ) x g x f | .例 1.2(大连理工大学,2007 年)设 ( ) ( ) ( ) x hx g x f , , 是实系数多项式,如果 ( ) ( ) ( ) x xhx xg x f 22 2 + = ,则 ( ) ( ) ( ) . 0 = = = x h x g x f 证明 由 ( ) ( ) ( ) ( ) 222 f x x g x h x =+ ,可知 ( ) 2 | x f x ,易推得 ( ) | x f x . 于是有 ( ) ( ) 2221 f x x f x= ,代入方程并在两边约去 x 有 () ( ) ( ) x h x g x xf 2 2 21 + = (*)于是有 ( ) ( ) ( ) 22 | x g x h x + ,若多项式 ( ) g x 或 ( ) h x 中的常数项不为零的话,都可 以推出( ) ( )( )x h x g x 2 2 | + 于是有( ) ( ) ( ) () ( )x h x g x x h x g 21 2 1 2 2 2 + = + 代入(*)式并约去 x 有( ) ( ) () ( )x h x g x x f 21 2 1 21 + = 这样又回到原来的方程,所不同的是 ( ) ( ) ( ) 111 ,, f x g x h x 比 ( ) ( ) ( ) ,, f x g x h x 的次数要小 1. 于是经过有限次后必可以使得方程的左边为零次多项式,即为某个常 数c ,使得( ) () ( )x h x g x c k k 22 + = 比较两边的次数易得 0 = c ,并代入方程有( ) () 0 22 = + x h x g k k 于是( ) () 0 = = x h x g k k 那么 ( ) ( ) ( ) ,, f x g x h x 都是某个多项式乘以数0. 由此可推得( ) ( ) ( ) 0 = = = x h x g xf . 例 1.3(大连理工大学,2007年)证明多项式 1 | 1 - - n d x x 的充分必要条件是n d | .证明 充分性显然,下证必要性.若 d r r dq n < < + = 0 ,,则 ( ) ( )11 1 1 - + - = - + - = - r dq r r r n n x x x x x x x 由于 1 - dq x 可被 1 - d x 整除, 而 1 - r x 不能被 1 - d x 整除, 于是 1 - n x 不能被 1 - dx 整除.由其逆否命题可知必要性成立.例 1.4 (北京科技大学,2004年)求一个三次多项式 ( ) x f ,使得 ( ) 1 + x f 能 被( ) 21 - x 整除,而 ( ) 1 - x f 能被( ) 21 + x 整除.解 由题知 ( ) 'f x 能被( ) 1 x - 和( ) 1 x + 整除,又由 ( ) f x 是一个三次多项式, 那么 ( ) 'f x 是一个二次多项式,于是可设( ) ( )( ) aax x x a x f - = - + = 2 ' 1 1 积分易得( ) 33a f x x axb =-+ (其中a, b 为常数) 由题设可知 ( ) 1 f x =- ,易解得3 2 0a b ì = ïí ï = î 那么显然有( ) xx x f 2 3 2 1 3 - = .例 1.5(兰州大学,2004)设 () f x 和 () g x 是数域F 上的两个不完全为零的多 项式,令{ [ ]}()()()()(),() I u x f x v x g x u x v x F x =+Î 证明:(1) I 关于多项式的加法和乘法封闭,并且对任意的 () h x I Î 和任意的 [ ] (), k x F x Î 有 ()() h x k x I Î .(2) I 中存在次数最小的首项系数为 1 的多项式 () d x , 并且()((),()) d x f x g x = .证明 (1) 容易证明,略.(2) 考虑{ [ ] 0 (()()()())(),() I u x f x v x g x u x v x F x =¶+Î 且 } ()()()()0 u x f x v x g x +¹ 则 0 I 是非负整数的一个子集,由最小数原理, 0 I 中存在最小数,也就是说,I 中存在次数最小的首项系数为1的多项式:11 ()()()()()d x u x f x v x g x =+ 设 () h x 是 I 中任意多项式,且 ()()()() h x d x q x r x =+ ,其中 ()0 r x = 或者(()) r x ¶< (()) d x ¶ .若 (()) r x ¶< (()) d x ¶ , 则 ()()()() r x h x d x q x =- .由(1)可知 () r x I Î , 与 () d x 是I 中次数最小的多项式矛盾. 故 ()0 r x = ,所以 ()() d x h x .显然 (),() f x g x I Î ,所以 ()() d x f x , ()() d x g x .如果 ()() p x f x , ()() p x g x ,则11 ()()()()()p x u x f x v x g x +即 ()() p x d x ,所以 ()((),()) d x f x g x = .例 1.6(上海交通大学,2004)假设 1 () f x 与 2 () f x 为次数不超过 3 的首项系数为1的互异多项式,若 42343 12 1()() x x f x x f x +++ ,试求 1 () f x 与 2 () f x 的最大公因式.解 由于42 1x x ++ = 22222 (1)(1)(1) x x x x x x +-=++-+ 设它的4个根分别为 1212 ,,, w w e e 其中1212 13131313 ,,, 2222i i i i w w e e -+--+- ==== 由于 4234312 1()() x x f x x f x +++ ,就有 343 12 ()() f x x f x + = 42 (1) x x ++ () g x . 于是有下面的方程组112 122 (1)(1)0 (1)(1)0 f f f f w w += ì í+= î 与 112 122 (1)(1)0 (1)(1)0f f f f e e ---= ì í ---= î 分别解这两个方程组得,12 (1)(1)0 f f == , 12 (1)(1)0f f -=-= 于是有,11 (1)(),(1)() x f x x f x +- , 22 (1)(),(1)() x f x x f x +- .进而有 1 (1)(1)() x x f x +- , 2 (1)(1)() x x f x +- .而 1 () f x , 2 ,() f x 是互异的次数不超过 3 的首系数为 1 的多项式,所以 2 12 ((),())1 f x f x x =- .例 1.7 (浙江大学,2006 年)设 P 为数域, ( ) [] i i f f x p x =Î , ( ) [],1,2 i i g g x p x i =Î= .证明:( )( ) ( )2 1 2 1 2 1 2 1 2 2 1 1 , , , , , g g f g g f f f g f g f = 证明 设 ( )( ), , , , 2 2 2 1 1 1 g f d g f d = = 有( ) ( ) ( ) ( ) ( ) ( ) ( )( )12121212 12121212 1212 1121122 ,,, ,,, , , ,,. f f f g g f g g f f f g g f g g f d g d f g d f g f g = = = = 例 1.8 (哈尔滨工业大学, 2005年) 设 ( ) ( ) x g x f , 都是实数R 上的多项式,R a Î (1) 证明: ( ) ( ) ( ) ( ) ( ) ( ).| a g f x g f a g x g - - (2) 问 ( )( ) a f x f a x - - 33 | 是否成立,为什么?解 (1) 令 ( ), y g x = 考虑多项式( ) ( ) ( ) ( ) a g f y f y h- = 由 ( ) ( ) ( ) ( ) ( ) ( ) 0= - = a g f a g f a g h 可知 ( ) ( ) ( )y h a g y | - 即( ) ( ) ( ) ( ) ( ) ( ) a g f x g f a g x g - - | .(2) 令 3 b a R =Î ,注意用到(1)的结论,将(1)中a 的换成这里的b ,将(1)的( ) g x 换成这里的 3 x ,可得( ) ( ) 33 | x a f x f a -- .例 1.9(上海大学,2005)设22 1231 1(1)()()()() n n n n n nn x x f x xf x x f x x f x - - éù --++++ ëûL ( 2 n ³ )求证: 1() i x f x - (1,2,,1) i n =- L . 证明 由题设易知1222 1231 1()()()()n n n n n n n n x x x f x xf x x f x x f x --- - ++++++++ L L 这里令e 是n 次本原单位根,那么22 1231 22222 1231 11212 1231 (1)(1)(1)(1)0(1)(1)()(1)()(1)0(1)(1)()(1)()(1)0n n n n n n n n n f f f f f f f f f f f f e e e e e e e e e - - - - ---- - ì ++++= ï ++++= ï íï ï ++++= î L L L LL于是关于 1231 (1),(1),(1),,(1) n f f f f - L 的齐次线性方程组的系数行列式为22 22222112121 1()() 0 1()()n n n n n n ee e e e e e e e - - ---- ¹ L L MMMML .故齐次线性方程组只有零解,于是 121 (1)(1)(1)0 n f f f - ==== L ,所以 1()i x f x - (1,2,,1) i n =- L .例 1.10(哈尔滨工业大学,2006 年)已知 ( ) ( ) x g x f , 是数域 P 上两个次数大 于零的多项式,且存在 ( ) ( ) 11 ,[], u x v x p x Î 使得 ( ) ( ) ( ) ( ) 1 1 1 = + x g x v x f x u ,问是否存 在 ( ) ( ) ,[] u x v x p x Î ,使得 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) x f x v x g x u x g x v x f x u ¶ < ¶ ¶ < ¶ = + , , 1 . 如果存在,这样是唯一的吗?说明理由.解 由于 ( ) ( ) ( ) 11 ()1 u x f x v x g x += ,若 ( ) 1 u x 的次数大于 ( ) g x 的次数,则由 带余除法得( ) ( ) ( ) ( ) 1 u x g x q x u x =+ , ( ) ( ) ( ) ( )u x g x ¶<¶ 代入上式得( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1f xg x q x u x g x v x ++= 即( ) ( ) ( ) ( ) ( ) () ( ) 1 1 = + + x v x q x f x g x u x f 令 ( ) ( ) ( ) ( ) 1 v x f x q x v x =+ ,则有( ) ( ) ( ) ( )x f x v ¶ > ¶ 否则由比较次数可知上式将不可能成立.关于唯一性的证明,可以假设 ( ) 2 u x , ( ) 2 v x 也满足条件,那么有( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1122 1f x u xg x v x f x u x g x v x +=+= 易得( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1221 f x u x u x g x v x v x -=- 由 ( ) f x 与 ( ) g x 互素,可知 ( ) ( ) ( ) ( ) 12 | g x u x u x - .又由 ( ) ( ) ( ) ( ) ( ) 12 u x u x g x ¶-<¶ ,可得 ( ) ( ) 12 0 u x u x -= ,即 ( ) ( ) 12 u x u x = ,这时有( ) ( ) 12 v x v x = .例 1.11(华南理工大学,2005年)证明:如果 ( ) ( )( ) 1 , = x g x f ,那么 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1f xg x f x g x f x f x g x g x +++= 证明 由已知条件有 ( ) ( ) ( ) ( ) ,1 f x f x g x += , ( ) ( ) ( ) ( ) ,1 g x f x g x += ,由多 项式互素的性质可得( ) ( ) ( ) ( ) ( ) ,1f xg x f x g x += 于是有( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1f xg x f x g x f x g x ++= ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1f xg x f x g x f x g x +++= 综合上述两个等式以及多项式互素的性质有( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1 f x g x f x g x f x g x f x g x +++= .例 1.12(苏州大学,2005)设 () f x 是一个整系数多项式,证明:如果存在 一个偶数m 和一个奇数n ,使得 () f m 和 () f n 都是奇数,则 () f x 没有整数根.证明 (反证法) 假设 () f x 有整数根k ,则 ()()() f x x k g x =- ,因为x k - 是 本原多项式,故 () g x 是整系数多项式. 又由于()()() f m m k g m =- , ()()() f n n k g n =- .且 () f m 和 () f n 都是奇数,那么m k - ,n k - 都是奇数,与m 是偶数且n 是 奇数矛盾,所以 () f x 没有整数根.例1.13 (四川大学, 2004年) (1) 设多项式 ( ) ( )( ) ( ) ( ) 1 1 2 2 1 + - - × × × - - = n x x x x f , 其中n 为非负整数. 证明: ( ) x f 在有理数域上一定不可约.(2) 在有理数域上求多项式 ( ) 36 12 11 2 2 3 4 + - - + = x x x x x g 的标准分解式.(1) 证明 假设 ( ) f x 在有理数域上可约, 故 ( ) f x 可分解为两个整系数多项式 的积, 即存在两个整系数多项式 ( ) ( ) , h x k x 使得( ) ( ) ( )f x h x k x = 注意到 ( ) 1,1,2,,21 f i i n ==×××- ,于是( ) ( ) 1,1,2,,21h i k i i n ==×××- 令 ( ) ( ) ( ) l x h x k x =- ,由 ( ) h x 与 ( ) k x 的次数小于21 n - 知 ( ) l x 的次数也小于 21 n - ,但是 ( ) l x 有21 n - 个不同的根为 1,2,,21 x n =×××- ,那么有 ( ) 0 l x º ,于是 ( ) ( ) h x k x = ,推得( ) ( ) ( ) 2f x k x =³ 但是 ( ) 00 f = ,矛盾. 于是 ( ) f x 在有理数域上不可约.(2) 注意到 ( ) ( ) 230 g g =-= ,由综合除法可得( ) ( ) ( )2223 g x x x =-+ 上式为 ( ) g x 在有理数域上的标准分解式.例 1.14(上海大学,2005)设 1 ()2n nf x x x + =+- (1) n ³ ,求 () f x 在有理数域上的不可约因式并说明理由. 解11 ()2(1)(1)n n n nf x x x x x ++ =+-=-+- 112 12 (1)(1)(1)(1) (1)(2222)(1)()n n n n n n n x x x x x x x x x x x x g x --- -- =-++++-+++ =-+++++ =- L L L 对 () g x , 令 2 p = , 用Eisenstein 判别法容易证明 () g x 在有理数域上不可约, 因此 () f x 在有理数域的不可约因式是: 1 x - 及 12 2222 n n n x x x x -- +++++ L .例 1.15(大连理工大学,2004)设R Q 分别表示实数域和有理数域,(),()[] f x g x Q x Î . 证明:(1) 若在 [] R x 中有 ()() g x f x ,则在 [] Q x 中也有 ()() g x f x .(2) () f x 与 () g x 在 [] Q x 中互素,当且仅当 () f x 与 () g x 在 [] R x 中互素.(3) 设 () f x 是 [] Q x 中不可约多项式,则 () f x 的根都是单根.证明 (1)(反证)假设在 [] Q x 中 () g x 不能整除 () f x ,作带余除法有()()()(),(),()[]f x q xg x r x q x r x Q x =+Î 且 (()) r x ¶< (()) g x ¶ .以上带余除法的结果在 [] R x 中也成立,所以在 [] R x 中 () g x 不能整除 () f x , 与在 [] R x 中有 ()() g x f x 矛盾. 因此,结论成立.(2) 如果 () f x 与 () g x 在 [] Q x 中互素,那么存在 (),()[] u x v x Q x Î ,使得()()()()1 f x u x g x v x += .以上等式在 [] R x 中也成立,所以 () f x 与 () g x 在 [] R x 中互素.如果 () f x 与() g x 在 [] Q x 中不互素,那么 () f x 与 () g x 在 [] Q x 存在非零次公因式.即()[] d x Q x Î , (())1,d x ¶³ 1 ()()() f x d x f x = , 1 ()()() g x d x g x = ,11 (),()[]f xg x Q x Î 以上两个等式在 [] R x 中也成立. 因此, () f x 与 () g x 在 [] R x 中不互素. (3) () f x 是 [] Q x 中的不可约多项式 , 则 ' ((),())1 f x f x = , 否则 ' ((),())()1, f x f x d x =¹ 则 () f x 有重因式, 与 () f x 不可约矛盾. 于是 () f x 没有重 因式,所以 () f x 的根都是单根.例 1.16(南京理工大学,2005年)设 p 是奇素数,试证 1 + + px x p 在有理数 域上不可约.证明 令 1 x y =- ,代入 ( ) 1 p f x x px =++ 有( ) ( ) ( ) ( ) ( ) 1111 pg y f x f y y p y ==-=-+-+ .考查多项式 ( ) ( ) ( ) 1! h y p g y =- ,注意到 p 是一个奇素数,那么 ( ) h y 的常数项为 ! p - ,于是对于素数 p 有, |! p p - ,而 2p 不整除 ! p - ,对于 ( ) h y 的首项,显然有 ( ) |1! p p - .对于其他的项,利用二项式定理对( ) ( ) 1!1 pp y -- 展开可知 p 能整除除了首项和 常数项之外的所有项系数. 又 ( ) 1 p y - 中关于 y 的一次项的系数也为 p 的倍数, 于是 p 整除 ( ) h y 的除了首项和常数项之外的所有系数. 利用Eisenstein 判别法可 知 ( ) h y 在有理数域上不可约,即 ( ) g y 在有理数域上不可约,也即 ( ) f x 有理数 域上不可约.例 1.17(陕西师范大学, 2006年) 11 ()()(),()()(), f x af x bg x g x cf x dg x =+=+ 且0 a bc d¹ ,证明: 11 ((),())((),()) f x g x f x g x= . 证明 令 111 ()((),()) d x f x g x = , ()((),()) d x f x g x = .由1 ()()() f x af x bg x =+ (*) 1 ()()()g x cf x dg x =+ (**)于是 1 ()() d x f x , 1 ()() d x g x . 那么 1 ()() d x d x .由式(*)与式(**)可以看成是关于 (),() f x g x 的线性方程组,解得,( ) ( )11 11 1()()() 1()()() g x ag x cf x ad bc f x df x bg x ad bc=- - =- - 于是 11 ()() d x f x , 11 ()() d x g x . 那么 1 ()() d x d x . 显然 1 ()() d x d x .于是11 ((),())((),()) f x g x f x g x = .例 1.18(华南理工大学,2006年)设 ( ) 1 2 34 + + + + = x x x x x f .(1) 将 ( ) x f 在实数域上分解因式.(2) 证明: ( ) x f 在有理数域上不可约. 由此证明 ( ) 5/ 2 cos p 不是有理数. (1) 解 不妨设 2 2 5, i e pa b a == , 于是 ,,, a a b b 是1的四个非实数的 5次方根. 显然有( ) ( )( )( )( )( ) ( ) ( ) ( )2222 11 24 2cos 12cos 1 55 f x x x x x x x x x x x x x a ab b a a b b p p =---- =-++-++ æöæö =-+-+ ç÷ç÷èøèø上式为 ( ) f x 在实数域上的因式分解. (2) 证明 令 1 x y =+ ,代入 ( ) f x .有( ) ( )1 g y f y =+ ( ) ( ) 5432 11 11510105y y y y y y +- =+- =++++ 对素数5 用Eisenstein 判别法可得 ( ) g y 是有理数域上不可约的多项式, 于是 有 ( ) f x 在有理数域上不可约 . 若 ( ) cos 2/5 p 是有理数 , 由 ( ) ( ) 2 cos 4/52cos 2/51 p p =- 可知 ( ) cos 4/5 p 也是有理数.于是由(1)的结论可知( ) 22 24 2cos 12cos 1 55 f x x x x x p p æöæö=-+-+ ç÷ç÷ èøèø.上式为 ( ) f x 在有理数域上的分解,这将导致 ( ) f x 在有理数域上可约,矛盾. 故结论成立.例 1.19(华东师范大学,2005 年)试在有理数域、实数域及复数域上将 ( ) 1 7 8 9 + + × × × + + + = x x x x x f 分解为不可约因式的乘积(结果用根式表示),并简 述理由.解 由( ) ( ) 1011 x f x x -=- ( )( )( )( )1 1 1 1 23 4 2 3 4 + - + - + + + + + - = x x x x x x x x x x 可知它在有理数域上的不可约分解为( ) ( )( )( )432432 111 f x x x x x x x x x x =+++++-+-+ (这里设 ( ) 432 1 1 g x x x x x =++++ ,并取 1 x y =+ 代入,并对素数 5用 Eisenstein 判别法可知 ( ) 1 1 g y + 在有理数域上不可约. 同理设 ( ) 432 2 1 g x x x x x =-+-+ ,并取 1 x y =- 代入,可知 ( ) 2 1 g y - 在有理数域上不可约.)设 243 55551212 ,,, i iii eee e pp ppa ab b ==== ,显然 1 的五次方根为 1122 1,,,, a a a a ;‐1的五次方根为 1122 1,,,, b b b b - . 于是在实数域上 ( ) f x 可分解为( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2222 11221122 11111f x x x x x x x x x x a a a a b b b b =+-++-++-++-++ 显然在复数域上 ( ) f x 可分解为( ) ( )( )( )( )( )( )( )( )( ) 112211221 f x x x x x x x x x x a a a a b b b b =+-------- .第二章 行列式例 2.1(兰州大学,2004年) 计算下列行列式的值121 121 121 1231 n n n n n n n n xa a a a a x a a a D a a x a a a a a a x- - - - = L L L M M M M M L 解 将 n D 的第2列到第 1 n +列加到第1列,且提取公因子有 121 21 21 1231 1 1 ()1 1 n n n n nn i n n i n a a a a xa a a D x a a x a a a a a x- - - = - =+ å L L L M M M M M L 121 12121213212 1 00()000 0 n n ni i n n na a a a x a x a a a x a a a a a a a x a - = -- - =+-- ---- å L LL M M M M M L 11()() nni i i i x a x a = = =+- å Õ .例 2.2(中山大学,2009年) 计算n 阶行列式22 111122 2222 22 111122 1...1... ..................1... 1... n n n nn n nn n n n n nn n n nx x x x x x x x D x x x x x x x x - - - ---- - = 解 首先考虑 1 n + 阶范德蒙行列式221 1111 1 221 2222 2 221 1111 1 221 2211... 1... .................. ... () 1... 1 (1)... n n n n n n n n n n n n n n n n n n n n n nn n n x x x x x x x x x x g x x x x x x x x x x x x xx x x-- -- -- ---- - -- -- =213111 3222 ()()...()() .()...()()...()n n n x x x x x x x x x x x x x x x x =---- ---- 从上面 1 n + 阶范德蒙行列式知,多项式 () g x 的 1 n x - 的系数为 21(1) n D D + -=- ;但从上式右端看, 1 n x - 的系数为12 1 (...).()n ji i j nx x x xx £<£ -+++- Õ 二者应相等,故 12 1 (...).() n n ji i j nD x x x xx £<£ =+++- Õ .例 2.3(北京交通大学,2004年)计算n 阶行列式111 23 222341222123 111 122111...11... 1... ............1 (1)... nn n n n n n n n n n nn n C C C C C C D C C C C C C + --- -- --- +- =.解 从最后一行起将每一行减去前面一行便可将行列式降一阶, 再对降一阶的行列式做同样的处理,不断这样下去可得 1 D = .例 2.4(大连理工大学,2005年) n 阶行列式21...11 13 (11) (1)1...11n =+ .解 答案是 1 1!(1) ni n i= + å . 这是因为原式 21...1111...11 13 (1102)...11 (1)1...1101...11n n ==++ 将上述行列式的第二行到 1 n + 行分别减去第一行,可得原式 11...11 11...00 (1)...n- =- 然后依次将第二列乘以1,第三列乘以 1 2 ,........,第 1 n + 列乘以 1n都加到第一列可得1 11 11...1 (11)2 101...00 !(1) ............... 00...0 ni n n i n= ++++ =+ å .例 2.5(南开大学,2003年) 计算下列行列式的值1112121 1212222 1122 ... ... ............... n n n n n n n n n na b c a b c a b c a b c a b c a b c D a b c a b c a b c +++ +++ =+++ 解法 1 将 n D 按第一行拆成两个n 阶行列式相加,并由于 3 n ³ ,故得1211121 12122221212222 11221122 ...... ...... .............................. n n n n n nn n n n n nn n n n n a a a b c b c b c a b c a b c a b c a b c a b c a b c D a b c a b c a b c a b c a b c a b c++++++ =+++++++ 000=+= 解法 2 将原n 阶行列式加边成一个 1 n + 阶行列式11112121 21212222 112 100...0 ... ... ............... ... n nn n nnn n n n n x a b c a b c a b c D x a b c a b c a b c x a b c a b c a b c+++ =+++ +++由于 3 n ³ ,故对上面的 1 n + 阶行列式按第一行展开可知,其每个元素的余子式 都是一个至少有两列元素对应成比例的n 阶行列式,从而都等于零. 因此 0 D = .例 2.6(浙江大学,2004年) 计算n 阶行列式... ... .................. ... ... ... n b b b b a b b b a b D b b a b b b a b b b a b b b b=解 ......() ......0 .................................... ......0 ......0 ......0 n b b b b a b b b b a b b b b b a b b b b a b D b b a b b b b a b b b a b b b b a b b b abbbb a b b b b -+ + == + + + 11 ... ... .................. (1)() ... ... ...n n b b b b b b b b a b a b D b b a b b b a b b b a bbbb+ - =--+(3) 1121 (1)()(1)()n n n n n a b D b a b + +- - =--+-- 注意到 222 D b a=- 递推可得(3) 1 2(1)()((1)) n n n n D a b a n b + - =--+- .例 2.7(复旦大学,2005年) 设 12 ...,0,1,2,... k k kk n s x x x k =+++= , 计算 1 n + 阶行列式11 121122 121 ...1 ... .................. ... n nn n n n n nnn n s s s s s s xD s s s xs s s x- - -- -- = 解 根据 k s 的定义、行列式的乘法以及范德蒙行列式知,所给的 1 n + 阶行列 式D可表示成两个 1 n + 阶行列式相乘111112 221111 112 12 11...11 1...0 ...1...0 ................................ 1...0 ... 00 (01)n n nn n n n n n n n n nnnn n x x x x x x x x D x x x x x x x x x x - - ---- - = 2 11 ()(())nj ji i i j nx x xx =£<£ =-- ÕÕ 211 ()() ni ij i i j nx x xx =£<£ =-- ÕÕ .例 2.8(华东师范大学,2008年) 计算n 阶行列式1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 32 1 L L M M M M M L L L n n n n n n D n- - - - - = ∙ 解 将第2列,第 3列,…,第n 列都加到第 1 列上11 11 01 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 32 2 ) 1 ( L L M M M M M L LL nn nn n n n n D n - - - - - + =111 1 1 1 1 1 11 11 1 1 11 2) 1 ( LL M M MM L L n n n n n n - - - - + = 1111 1 1 1 1 11 11 1 1 1 1 2) 1 ( LL M M MM L L - - - - - - - + = n n n n n111 10 0 0 0 0 00 0 0 2) 1 ( L L M M M ML L - - - - + = n n n n n 2)1 ,2 , 2 , 1 ( ) ( ) 1 ( ) 1 ( 2) 1 ( - - - - × - - + =n n n n n n L t 21 2)2 )( 1 ( ) ( ) 1 ( )1 (2 ) 1 ( - - - - - × - - + = n n n n n n n 2)1 ( )1 ( 1 2)1 ( + ×- = - - n n n n n 1) 2 )]( 1 ( 2 [ - - - = = n x n x 例 2.9(大连理工大学, 2004年) 计算n 阶行列式1 1 1 12 1 2 1 1 12 1 1 1 1 L M M M M M L L nn n D n - - - =解 将第2行,第 3行,…,第n 行都加到第 1 行上1 1 1 12 1 2 1 1 11 1 1 1 1 L M M M M M L L n n D n - - =0 01 0 1 0 0 0 1 1 1 1 1 L M M M M M L L nn - - =1 2) 1 ( )1 ,2 , , 1 , ( 1 ) 1 ( ) 1 ( ) 1 ( ) 1 ( - - - - - - = - - = n n n n n n n n L t .例 2.10(北京航空航天大学, 2004年) 计算下列行列式的值.12 12 12... .................. n n n n a a a a a a D a a a l l l+ + =+ 解 将行列式的所有列加到第一列, 并提取公因子 12 (...) n a a a l ++++ 可得1212 1212 1 1212...... ......().............................. n n nn n i i n n a a a a a a a a a a a a a a a a a a a l l l l l l l= ++ ++ =+ ++ å 然后将第 2 列到第n 列依次减去第一列乘以 12 ,,..., n a a a 得到一个下三角的行列式, 易得12 12 1112... ...()............... n nn n i i n a a a a a a a a a a l l ll l- = + + =+ + å 例 2.11(上海交通大学,2004年)求下面多项式的所有根23 2 3 23 2 3 3 2 3 2 22 23 2 2 2 2 3 ) ( nn n n nnna x a a a a a a a a x a a a a a a a a x a a a a x x f - - - - - - - - - - - - - - - - - - - = L MM M M L L L 解 将第一列的 2 a - 倍,3 a - 倍,L , n a - 倍分别加到第 2 列,第3列, L ,第n 列2323 221 3333 100100 ()010(2)010 0101n n n nnx a a a x a a a a a f x a x a a a - ------- -- =-=-- -- L L L L L L M M M M M M M M LL第2列的 2 a 倍,第 3列的 3 a倍,L ,第n 列的 n a 倍都加到第一列 22223 13 0100 ()(2)0010 001n n n x a a a a a f x x - ------ =- L L L L M M M M L1222 (2)(3)n n x x a a - =---- L 所以, 2 x = 是 () f x 的 1 n - 重根, 222 3 n a a +++ L 是 () f x的单根. 例 2.12 (北京交通大学,2005年)计算 1 n + 阶行列式11111 (1)(2)...()(1)(2)...()............... 12... 111 (1)n n n nn n n n n x x x x n x x x x n D x x x x n ---- + +++ +++ = +++ 解 注意到依次把第一行和第 1 n + 行交换次序,第2行和第n 行交换次序, ...,可得2 1 1111111...1 12... (1) ............... (1)(2)...()(1)(2)...() nn n n n n n n n nx x x x n D x x x x n x x x x n + ---- +++ =-+++ +++ 21 (1)(()()) n i j n x j x i £<£ =-+-+ Õ 21 (1)()n i j nj i £<£ =-- Õ 第三章 线 性 方 程 组例 3.1(清华大学,2006 年)设 12 ,,, s a a a L 是一组线性无关的向量,则122311 ,,,, s s s a a a a a a a a - ++++ L 是否线性无关? 证明之.证明 若 112223111()()()()0 s s s s s k k k k a a a a a a a a -- ++++++++= L 将上式展开并利用 12 ,,, s a a a L 的线性无关,可得关于 121 ,,, s s k k k k - L 的线性方程 组为1 2 1 100...10 110...00 ... 011...0... ...............0 00...110 s s k k k k - æö æöæö ç÷ ç÷ç÷ ç÷ ç÷ç÷ ç÷ ç÷ç÷= ç÷ ç÷ç÷ ç÷ ç÷ç÷ ç÷ç÷ ç÷ èøèø èø 令其系数矩阵为 A ,显然有 1 1(1) s A + =+- .当 S 为偶数时 , 0 A = , 则方程组有非零解 , 这是122311 ,,,, s s s a a a a a a a a - ++++ L 线性相关.当 S 为奇数时 , 0 A ¹ , 则方程组仅有零解 , 这是122311 ,,,, s s s a a a a a a a a - ++++ L 线性无关.例3.2 (北京科技大学, 2005年) 设 0 h 是线性方程组的一个解, 而 12 th h h L , , , 是它的导出方程组的一个基础解系, 1021010 ,,..., t t g h g h h g h h + ==+=+ .证明:线性方程组的任一解g , 都可表成 112211 ... t t g m g m g m g ++ =+++ , 其中 121 (1)t m m m + +++= . 证明 设 0211 ... t t g h m h m h + =+++ ,令 121 1... t m m m - =--- , 即 121 ...1 t m m m - +++= ,则由于 1021010 ,,..., t t g h g h h g h h + ==+=+ ,1210211 (...)... t t tg m m m h m h m h ++ =++++++ 1021010 ()...() t t m h m h h m h h + =+++++ 112211... t t m g m g m g ++ =+++ 例 3.3(哈尔滨工业大学,2005 年)设 12 ,,, r a a a L 是一组线性无关的向量,1,1,2,..., ri ij j j k i r b a = == å ,证明: 12 ,,, r b b b L 线性相关的充要条件是矩阵11121 21222 12... ... ............ ... r r r r rr k k k k k k K k k k æöç÷ ç÷ = ç÷ ç÷ èø不可逆.证明 12 ,,, r b b b L 线性无关Û 10 ri i b = = å 仅有零解Û 10 rij i j j k x a = = å 仅有零解Û(由 12 ,,, r a a a L 线性无关性仅有零解)方程组 ' 0 K X = 仅有零解Û ' K 可逆Û矩阵 11121 21222 12... ... ............ ... r r r r rr k k k kk k K k k k æöç÷ ç÷ = ç÷ ç÷ èø是可逆的.例 3.4(上海大学,2005 年)设b 是非齐次线性方程组AX b = 的一个解,12 ,,, n r a a a - L 是其导出组的一个基础解系,证明:(1) 12 ,,,, n r a a a b - L 线性无关.(2) 12 ,,,, n r b a b a b a b - +++ L 线性无关.证明 (1) 假定 12 ,,,, n r a a a b - L 线性相关,而 12 ,,, n r a a a - L 线性无关,那么b 可由 12 ,,, n r a a a - L 线性表出,则b 是导出组的一个解与b 是AX b = 的一个解矛 盾.(2)令( ) ( ) ( ) 1122 0n r n r x x x x b a b a b a b -- +++++++= L 于是( ) 112212 0n r n r n r x x x x x x x a a a b --- ++++++++= L L 由 12 ,,,, n r a a a b - L 线性无关,则12 0n r x x x - ==== L 且12 0 n r x x x x - ++++= L ,于是 12 0 n r x x x x - ===== L ,故(2)成立.例 3.5(东北大学, 2003年) 设 1 2 ... r A a aa æö ç÷ ç÷ = ç÷ ç÷ èø是一个r n ´ 阶矩阵() r n < 且秩为r ,已知:b 是 0 AX = 的非零解,讨论 12 ,,, r a a a L 与b 的线性相关性.证明 由于对矩阵A , 有 () r A r = , 记 12 ,,, r U a a a =<> L . 显然有 12 ,,, ra a a L 为空间U 的一组基,由于b 是方程组 0 AX = 的一个非零解,所以有 T b 与12 ,,, r a a a L 相正交,于是有 U b ^^ Î ,对于 12 ,,, r a a a L 与 T b 的线性组合1122 0T r r l l l l a a a b ++++= L 两边同时与 T b 做内积,注意到 T U b ^ ,可得(,)0T T l b b = 由于 0 T b ¹ ,可得 0 l = ,于是1122 0r r l l l a a a +++= L 由 12 ,,, r a a a L 的线性无关性可得0(1,2,...,)i l i r == 即 12 ,,,, r a a a b L 的线性无关.例 3.6(浙江大学,2004 年) 令 12 ,,, s a a a L 是 n R 中s 个线性无关的向量, 证明:存在含n 个未知量的齐次线性方程组,使得 12 ,,, s a a a L 是它的一个基础解 系.证明 以列向量 12 ,,, s a a a L 的转置为行构成矩阵A1 2 TT T s A a a a æö ç÷ ç÷= ç÷ ç÷ ç÷ èøM 考虑以A 为系数矩阵的齐次线性方程组AX = 它的基础解系由 n s - 个 n 维列向量组成,设基础解系为 12 ,,, n s b b b - L 以12 ,,, T T T n s b b b - L 为行构成矩阵B ,则以B 为系数矩阵的齐次线性方程组 0 BX = 满足要求.因为 12 ,,, n s b b b - L 是 0 AX = 的解,则 0,1,,;1,, T j i s j n s a b ===- L L .它同 时说明,作为 n 维向量, 12 ,,, s a a a L 是齐次线性方程组 0 BX = 的解,而() r B n s =- .故 12 ,,, s a a a L 是 0 BX = 的一个基础解系.例 3.7(西安交通大学,2005年)讨论 , a b 为何值时,如下方程组有唯一解?无解?无穷多解? 当有无穷多解时,求出它的通解.1234 234 234 1234 0 221 (3)2 321 x x x x x x x x a x x b x x x ax +++= ì ï ++= ï í-+--= ï ï +++=- î解 将增广矩阵进行初等行变换化为行阶梯形矩阵,有1111011110 0122101221 01320132 321101231 A a b a b a a æöæö ç÷ç÷ ç÷ç÷ =® ç÷ç÷ ------ ç÷ç÷ ---- èøèø11110 01221 00101 00010 a b a æöç÷ ç÷ ® ç÷ -+ ç÷- èø.(1)当 1 a ¹ 时方程组有唯一解. (2)当 1 a = 且 1 b ¹- 时方程组无解. (3)当 1 a = 且 1 b =- 时方程组有无穷多解. 解方程组1234 234 0 221 x x x x x x x+++= ì í++= î 方程组的特解为 0 1 1 0 0 a - æöç÷ç÷ = ç÷ ç÷ èø,导出组的基础解系为 12 11 22 , 10 00 h h æöæö ç÷ç÷ -- ç÷ç÷ == ç÷ç÷ ç÷ç÷ èøèø, 于是通解为 01122 k k a a h h =++ .例 3.8(东南大学,2005年) 问:参数 , a b 取何值时,线性方程组1234 1234 234 1234 1 32 223 54(3)3 x x x x x x x x a x x xx x a x x b +++= ì ï+++= ï í++= ï ï ++++= î有解?当线性方程组有解时,求出其通解.解 将增广矩阵做初等行变换可化为10112 01223 0002 0000 a b a --- æöç÷ç÷ç÷ - ç÷èø. 显然若要方程组有解,必须有 0 a = 且 2 b = , 这时增广矩阵变为10112 01223 0002 0000 a b a --- æöç÷ç÷ ç÷- ç÷èø 方程组的一个特解为 ' (2,3,0,0) - ,基础解系为 ''(1,2,1,0),(1,2,0,1) -- ,于是通解为12 211 322 010 001 x C C - æöæöæöç÷ç÷ç÷ -- ç÷ç÷ç÷ =++ ç÷ç÷ç÷ ç÷ç÷ç÷ èøèøèø. 例 3.9(东南大学,2004年) 已知线性方程组1122 1122 1122 () 0()...0 ........................... ...()0 n n n n n na b x a x a x a x a b x a x a x a x a b x ++++= ì ï++++= ï íï ï ++++= î (*)其中 10 ni i a = ¹ å .试讨论 12 ,,, n a a a L 和b 满足什么条件时,(1)方程组仅有零解.(2)方程组有非零解,此时用基础解系表示所有解.解 由于方程组(*)的系数行列式为2 1 12 12 2 111 ............ ............... ... nin i n n n in i nn nin n i b a a a a b a a a a b a b a a b a a a a bb a a a b = = = + + + ++ =+ ++ å å å .2 2 1111 1100 1 10()()() ............ ............1 (1)0... n nnnn n i i i i i i nn a a a b a bb a b a b a ba a bb- === + =+=+=+ + ååå(1)当 0 b ¹ ,且 1()0 ni i b a = +¹ å 时,方程组(*)的系数行列式不等于零. 于是此方程组只有唯一零解.(2) 当 0 b ¹ ,且 1()0 ni i b a = += å 时,方程组(*)的系数行列式为零. 因此方程组(1)有非零解,它的基础解系为 '(1,1,...,1) ,此时方程组的一切解可表为' (1,1,...,1), k k R Î .(3) 当 0 b = 时,方程组的系数行列式为零. 此时方程组(*)有非零解,并且方 程组等价于1122 0n n a x a x a x +++= (**)由于 10 ni i a = ¹ å ,故在 12 ,,, n a a a L 中必有一个不为零,不妨设 0 ia ¹ ,则有 11 1111 ....... i i n i i i n i i i i a a a a x x x x x a a a a-+ -+ =------ 其中 111 ,...,,,..., i i n x x x x -+ 为自由未知量,因此原方程组的一个基础解系为' 1 1 (1,0,...,0,,0, 0i aah =- ..................................' 11 (0,0,...,1,,0,...,0) i i i a a h - - =-' 11 (0,0,...,0,,1,...,0) i i i a ah + + =-..................................' (0,0,...,0,,0,...,1) nn i a ah =-此时,方程组(*)的一切解可表为111111 ...() i i i i n n i X k k k k k Rh h h h --++ =+++++Î L . 例 3.10(大连理工大学,2004年)设 A 是n 阶矩阵,若 ()1 r A n =- ,且代数 余子式 11 0 A ¹ ,则齐次线性方程组 0 AX = 的通解是.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档