实验一_信号及其传输特性分析
铁路通信实验报告
实验名称:铁路通信系统实验实验日期:2023年X月X日实验地点:XX铁路通信实验室一、实验目的1. 理解铁路通信系统的基本原理和组成。
2. 掌握铁路通信设备的操作方法。
3. 分析铁路通信系统的信号传输特性。
4. 培养实验操作能力和分析问题能力。
二、实验原理铁路通信系统是铁路运输的重要组成部分,主要负责铁路沿线各车站、车辆段、列车之间的信息传输。
本实验主要研究铁路通信系统的基本原理和组成,包括铁路通信设备的操作、信号传输特性等内容。
三、实验内容1. 铁路通信设备操作(1)熟悉铁路通信设备的种类和功能。
(2)学习铁路通信设备的操作方法,如交换机、调制解调器等。
(3)进行铁路通信设备的实际操作,观察设备运行状态。
2. 信号传输特性分析(1)了解铁路通信信号传输的基本原理。
(2)分析铁路通信信号的传输特性,如带宽、延迟、误码率等。
(3)对比不同通信设备的传输特性,评估其适用性。
3. 铁路通信系统故障排查(1)学习铁路通信系统故障的常见原因。
(2)掌握铁路通信系统故障的排查方法。
(3)进行铁路通信系统故障的模拟排查,提高故障处理能力。
四、实验步骤1. 预备工作(1)检查实验设备是否完好,如交换机、调制解调器等。
(2)熟悉实验环境,了解实验设备的布局。
2. 铁路通信设备操作(1)打开交换机,观察设备运行状态。
(2)通过控制台设置交换机参数,如VLAN划分、端口速率等。
(3)连接调制解调器,进行数据传输测试。
3. 信号传输特性分析(1)使用网络分析仪测量通信信号的带宽、延迟、误码率等参数。
(2)对比不同通信设备的传输特性,分析其优缺点。
4. 铁路通信系统故障排查(1)模拟铁路通信系统故障,如交换机端口故障、线路中断等。
(2)根据故障现象,进行故障排查。
(3)分析故障原因,提出解决方案。
五、实验结果与分析1. 铁路通信设备操作实验结果显示,交换机运行正常,各端口连接正常。
通过控制台设置交换机参数,成功实现VLAN划分和端口速率设置。
大学物理实验探究性报告(论文)音频信号光纤传输试验
北京邮电大学音频信号光纤传输试验(北京邮电大学,北京市,100876)摘要:随着光纤通信技术的发展,一个以微电子技术、激光技术、计算机技术和现代通信技术为基础的超高速宽带信息网正在改变人们的生活。
光纤通信以其诸多优点将成为现代通信的主流,未来信息社会的一项基础技术和主要手段。
本文旨在使读者了解光纤通信的基本工作原理,熟悉半导体电光-光电元件的基本性能和主要特性的测试方法。
关键词:光纤通信;光电二极管SPD;信号放大中图分类号:[TN913.7]文献标识码:AOptical fiber transmission of audio signal(Beijing University of Post&Telecommunication, Beijing, 100876, China)Abstract:With the development of optical fiber communication technology, a microelectronic technology, laser technology, computer technology and modern communication technology-based ultra-high-speed broadband information network is changing people's lives. Optical fiber communication with its many advantages will become the mainstream of modern communication, the future of the information society and the main means of an underlying technology. This article aims to enable readers to understand the basic working principle of optical fiber communication, familiar with semiconductor electro-optic - Optoelectronics basic properties and main characteristics of the test methods.Keywords: Optical Fiber Communication; Photodiode; Signal amplification光导纤维是近40年发展起来的一项新兴技术,是现代光信息技术的重要组成部分。
光纤布拉格光栅传输特性理论分析及其实验研究共3篇
光纤布拉格光栅传输特性理论分析及其实验研究共3篇光纤布拉格光栅传输特性理论分析及其实验研究1光纤布拉格光栅传输特性理论分析及其实验研究随着通信技术的不断发展,人们对高速、宽带、低衰减的光纤通信系统的需求越来越强烈。
在新型光纤通信系统中,光纤布拉格光栅逐渐成为一种广泛应用的光纤分布式传感技术。
本文将分析光纤布拉格光栅的传输特性,并通过实验验证分析结果的准确性。
光纤布拉格光栅是一种基于光纤中的光学衍射现象的光学器件。
在光纤中加入一定周期的光折射率折变结构,就能形成光纤布拉格光栅。
在光纤中传输的光波,经过布拉格光栅时,会出现衍射现象,产生反射、透射和反向散射,这些效应是产生传输特性的基础。
光纤布拉格光栅的传输特性主要表现在其反射光频谱和传输带宽两个方面。
反射光频谱是指光波经过光纤布拉格光栅后,由栅中反射的光波在谱域的表现。
反射光频谱可以通过反射率、衰减率、相位等参数来描述。
光纤布拉格光栅的反射带宽会随着栅体的折射率调制以及周期变化而发生变化。
而传输带宽则是指光波通过光纤布拉格光栅后的传输性能表现,其传输性能主要由栅体的反射率和传播损耗来决定。
传统的光纤布拉格光栅的制备方法主要有激光干涉、可调光束、干涉光阴影和相位掩膜等方法。
一般情况下,涉及到光纤布拉格光栅的应用,需要随时监测栅体的传输特性。
为了准确地监测光纤布拉格光栅的传输特性,通常采用光谱光学方法来进行反射光频谱的测量。
根据光谱光学方法,可以直接测量出光纤布拉格光栅的反射率和反射带宽,同时还能进一步计算出光纤布拉格光栅的传输损耗和传输带宽。
为了验证理论分析的正确性,本文进行了一系列光纤布拉格光栅的实验研究。
实验采用了对光纤布拉格光栅进行反射光频谱的测量,并通过计算反射光频谱的反射率和反射带宽,得出光纤布拉格光栅的传输损耗和传输带宽。
实验结果表明,本文理论分析的光纤布拉格光栅传输特性是可靠的,能够为光纤布拉格光栅在光纤通信系统中的应用提供有效的理论基础。
光纤通信实验报告
光纤通信实验报告光纤通信是一种使用光信号传输数据的通信技术,它利用了光的高速传输和大带宽的特性,成为了现代通信领域的重要技术之一。
在本次实验中,我们对光纤通信的原理和实验验证进行了深入研究。
实验一: 光的传播特性我们首先对光的传播特性进行了研究。
选择了一根直径较细的光纤,并采用了迎射法和反射法进行传导实验。
通过在纤芯中投射光线,并观察传导的情况,我们验证了光在光纤中的传播路径并没有明显偏向,光线能够相对直线传播。
实验二: 光纤的损耗与色散在光纤通信中,损耗和色散是不可避免的问题。
我们通过实验对光纤中损耗和色散的影响进行了测试。
损耗实验中,我们通过分析在不同长度光纤中传输的光强度,发现随着距离的增加,光强度会逐渐减弱。
这是由于光纤中存在材料吸收和散射等因素造成的。
为了减小损耗,优化光纤的材料和结构是很重要的。
色散实验中,我们将不同波长的光信号通过光纤传输,并测量到达另一端的时间。
实验结果显示,不同波长的光信号到达时间存在差异。
这是由于光纤中折射率随波长变化而引起的色散效应。
为了减小色散,需要采用更先进的技术,如光纤衍生波导和光纤增益等手段。
实验三: 单模光纤与多模光纤光纤通信中,单模光纤和多模光纤是常用的两种类型。
通过实验,我们对这两种光纤的传输特性进行了研究。
我们首先测试了单模光纤。
结果显示,在单模光纤中,光信号会以单一光波传播,因此具有较低的色散和损耗,适用于远距离传输和高速通信。
然后我们进行了多模光纤的实验。
实验结果显示,多模光纤中存在多个模式的光信号传播,由于不同模式间的传播速度不同,会导致严重的色散和损耗问题。
因此,多模光纤适用于近距离传输和低速通信。
结论通过本次光纤通信实验,我们对光纤通信的原理和实际应用有了更深入的了解。
我们发现光纤通信具有高速率、低损耗和大带宽等优势,而不同类型的光纤对于不同的通信需求有着不同的适应性。
然而,我们也看到了光纤通信中存在的一些问题,如损耗、色散和设备成本等。
微波技术与天线 实验报告
微波技术与天线实验报告微波技术与天线实验报告引言:微波技术和天线是现代通信领域中不可或缺的重要组成部分。
微波技术的应用范围广泛,包括无线通信、雷达、卫星通信等领域。
而天线作为微波信号的收发器,起到了关键的作用。
本实验旨在通过实际操作和测量,探索微波技术与天线的基本原理和应用。
实验一:微波信号的传输特性测量在本实验中,我们使用了一对微波发射器和接收器,通过测量微波信号的传输特性,来了解微波信号在传输过程中的衰减和干扰情况。
首先,我们将发射器和接收器分别连接到示波器上,并设置合适的频率和功率。
然后,将发射器放置在一个固定位置,接收器在不同距离上进行测量。
通过记录示波器上的信号强度,并计算出衰减值,我们可以得到微波信号在传输过程中的衰减情况。
实验结果表明,在传输距离增加的情况下,微波信号的强度逐渐减弱,呈指数衰减的趋势。
同时,我们还观察到在某些距离上,微波信号受到了干扰,出现了明显的波动和噪声。
这些干扰可能来自于周围的电磁辐射或其他无线设备的干扰。
实验二:天线的性能测量在本实验中,我们选择了不同类型的天线,并通过测量其增益、方向性和波束宽度等参数,来评估天线的性能。
首先,我们使用一个定位器来确定天线的指向性。
通过调整定位器的方向,观察信号强度的变化,我们可以确定天线的主瓣方向。
然后,我们通过改变接收器的位置和角度,测量不同方向上的信号强度,从而计算出天线的增益。
实验结果表明,不同类型的天线具有不同的性能特点。
某些天线具有较高的增益和较窄的波束宽度,适用于需要远距离传输和精确定位的应用。
而其他天线则具有较宽的波束宽度,适用于覆盖范围广泛的通信需求。
实验三:微波技术在通信领域的应用微波技术在通信领域有着广泛的应用。
其中,微波通信是最为常见和重要的应用之一。
通过使用微波信号进行通信,可以实现高速、稳定的数据传输。
微波通信广泛应用于无线网络、卫星通信和移动通信等领域。
此外,微波雷达也是微波技术的重要应用之一。
光纤信号传输实验报告
光纤信号传输实验报告光纤信号传输实验报告引言:随着科技的不断进步,光纤通信作为一种高速、大容量、低损耗的传输方式,已经成为现代通信领域的重要组成部分。
本实验旨在通过搭建光纤传输系统,探究光纤信号传输的原理和性能。
一、实验目的本实验的主要目的有三点:1.了解光纤传输的基本原理和结构;2.掌握光纤传输系统的搭建和调试方法;3.研究光纤传输的性能指标,如传输距离、带宽等。
二、实验器材和原理1.实验器材:本实验所需的器材包括:光纤、光纤收发器、光源、光功率计、信号发生器等。
2.实验原理:光纤传输是利用光的全内反射原理,将信息通过光的折射和反射在光纤中传输的技术。
光纤由芯和包层组成,芯是光信号传输的主要通道,包层则用于保护和引导光信号。
光纤传输的基本原理是利用光的全内反射现象,当光线从光纤的一端入射时,当入射角小于临界角时,光线会发生全内反射,从而沿着光纤传输。
光纤传输的距离和传输质量受到多种因素的影响,如光纤的损耗、色散、衰减等。
三、实验步骤1.搭建光纤传输系统:首先,将光纤收发器分别连接到光源和光功率计上,然后将光纤的一端连接到光纤收发器的发射端,另一端连接到接收端。
接下来,将信号发生器连接到光源上,通过调节信号发生器的频率和幅度,产生不同的信号。
2.调试光纤传输系统:通过调节光源和光功率计之间的距离,观察光功率计的读数变化,确定最佳传输距离。
同时,通过调节信号发生器的参数,观察信号的传输质量,如是否出现失真、噪声等现象。
3.测量光纤传输性能:利用光功率计测量光纤传输系统的光功率损耗,通过改变传输距离和光纤的类型,比较不同条件下的光功率损耗情况。
此外,还可以利用频谱分析仪测量光纤传输的带宽,了解光纤传输系统的传输能力。
四、实验结果与分析通过实验,我们得到了以下结果:1.在调试光纤传输系统时,我们发现光功率计的读数随着光源和光功率计之间的距离增加而减小,当距离过远时,光功率计无法读取到信号,说明光纤传输存在传输距离限制。
传输实验报告范文
一、实验目的1. 理解并掌握传输系统的基本原理和组成。
2. 学习传输系统中各种信号的传输特性。
3. 掌握传输系统性能指标的测试方法。
4. 分析和评估传输系统的实际应用效果。
二、实验原理传输系统是现代通信技术中不可或缺的部分,它负责将信号从一个地方传输到另一个地方。
本实验主要研究传输系统中的基带传输和频带传输,以及模拟信号和数字信号的传输特性。
三、实验仪器与设备1. 信号发生器2. 传输线路(如同轴电缆、光纤等)3. 示波器4. 计算机及相应的软件四、实验内容1. 基带传输实验(1)实验步骤1.1 将信号发生器产生的基带信号输入到传输线路中。
1.2 使用示波器观察传输线路两端的信号波形。
1.3 记录传输线路的衰减和失真情况。
(2)实验结果与分析通过实验,我们观察到传输线路对基带信号的衰减和失真情况。
分析结果表明,传输线路的衰减和失真主要受线路长度、介质损耗、线路结构等因素的影响。
2. 频带传输实验(1)实验步骤2.1 将信号发生器产生的频带信号输入到传输线路中。
2.2 使用示波器观察传输线路两端的信号波形。
2.3 记录传输线路的衰减和失真情况。
(2)实验结果与分析通过实验,我们观察到传输线路对频带信号的衰减和失真情况。
分析结果表明,传输线路对频带信号的衰减和失真主要受线路带宽、滤波器特性等因素的影响。
3. 模拟信号与数字信号传输实验(1)实验步骤3.1 将信号发生器产生的模拟信号输入到传输线路中。
3.2 使用示波器观察传输线路两端的信号波形。
3.3 记录传输线路的衰减和失真情况。
3.4 将信号发生器产生的数字信号输入到传输线路中。
3.5 使用示波器观察传输线路两端的信号波形。
3.6 记录传输线路的衰减和失真情况。
(2)实验结果与分析通过实验,我们观察到传输线路对模拟信号和数字信号的衰减和失真情况。
分析结果表明,传输线路对模拟信号和数字信号的衰减和失真主要受线路特性、信号调制方式等因素的影响。
五、实验结论1. 传输线路对基带信号和频带信号的衰减和失真情况受线路长度、介质损耗、线路结构、线路带宽、滤波器特性等因素的影响。
信号与系统实验报告
信号与系统实验报告目录1. 内容概要 (2)1.1 研究背景 (3)1.2 研究目的 (4)1.3 研究意义 (4)2. 实验原理 (5)2.1 信号与系统基本概念 (7)2.2 信号的分类与表示 (8)2.3 系统的分类与表示 (9)2.4 信号与系统的运算法则 (11)3. 实验内容及步骤 (12)3.1 实验一 (13)3.1.1 实验目的 (14)3.1.2 实验仪器和设备 (15)3.1.4 实验数据记录与分析 (16)3.2 实验二 (16)3.2.1 实验目的 (17)3.2.2 实验仪器和设备 (18)3.2.3 实验步骤 (19)3.2.4 实验数据记录与分析 (19)3.3 实验三 (20)3.3.1 实验目的 (21)3.3.2 实验仪器和设备 (22)3.3.3 实验步骤 (23)3.3.4 实验数据记录与分析 (24)3.4 实验四 (26)3.4.1 实验目的 (27)3.4.2 实验仪器和设备 (27)3.4.4 实验数据记录与分析 (29)4. 结果与讨论 (29)4.1 实验结果汇总 (31)4.2 结果分析与讨论 (32)4.3 结果与理论知识的对比与验证 (33)1. 内容概要本实验报告旨在总结和回顾在信号与系统课程中所进行的实验内容,通过实践操作加深对理论知识的理解和应用能力。
实验涵盖了信号分析、信号处理方法以及系统响应等多个方面。
实验一:信号的基本特性与运算。
学生掌握了信号的表示方法,包括连续时间信号和离散时间信号,以及信号的基本运算规则,如加法、减法、乘法和除法。
实验二:信号的时间域分析。
在本实验中,学生学习了信号的波形变换、信号的卷积以及信号的频谱分析等基本概念和方法,利用MATLAB工具进行了实际的信号处理。
实验三:系统的时域分析。
学生了解了线性时不变系统的动态响应特性,包括零状态响应、阶跃响应以及脉冲响应,并学会了利用MATLAB进行系统响应的计算和分析。
信号传输实验报告总结(3篇)
第1篇一、实验背景随着信息技术的飞速发展,信号传输技术在各个领域都发挥着至关重要的作用。
本实验旨在通过一系列的信号传输实验,加深对信号传输基本原理、技术及实际应用的理解。
实验涵盖了模拟信号和数字信号的传输,以及信号调制、解调、滤波等关键环节。
二、实验目的1. 理解信号传输的基本原理和过程。
2. 掌握信号调制、解调、滤波等关键技术。
3. 熟悉模拟信号和数字信号传输的特点及区别。
4. 分析信号传输过程中可能出现的干扰和噪声,并提出相应的解决方法。
三、实验内容1. 模拟信号传输实验(1)实验原理:通过观察示波器上的波形,分析模拟信号的传输过程,包括调制、解调、滤波等环节。
(2)实验步骤:1. 连接实验电路,包括信号发生器、调制器、解调器、滤波器等。
2. 调整信号发生器,产生一定频率和幅度的正弦波信号。
3. 观察调制器输出波形,分析调制效果。
4. 将调制后的信号输入解调器,观察解调效果。
5. 通过滤波器滤除噪声,观察滤波效果。
(3)实验结果与分析:通过实验,我们发现模拟信号在传输过程中容易受到干扰和噪声的影响,导致信号失真。
调制、解调、滤波等环节可以有效提高信号质量,降低干扰和噪声的影响。
2. 数字信号传输实验(1)实验原理:通过观察示波器上的波形,分析数字信号的传输过程,包括编码、解码、传输等环节。
(2)实验步骤:1. 连接实验电路,包括数字信源、编码器、解码器、传输线路等。
2. 调整数字信源,产生一定频率和幅度的数字信号。
3. 观察编码器输出波形,分析编码效果。
4. 将编码后的信号通过传输线路传输。
5. 观察解码器输出波形,分析解码效果。
(3)实验结果与分析:通过实验,我们发现数字信号在传输过程中具有较强的抗干扰能力,能够有效降低噪声的影响。
编码、解码等环节可以提高信号传输的可靠性。
3. 信号调制、解调实验(1)实验原理:通过观察示波器上的波形,分析信号调制、解调过程。
(2)实验步骤:1. 连接实验电路,包括调制器、解调器、滤波器等。
无线信号实验报告模板(3篇)
第1篇一、实验目的1. 理解无线信号的基本传输原理和过程。
2. 掌握无线信号的调制与解调技术。
3. 分析无线信号传输过程中的影响因素。
4. 学习使用无线信号测试仪器进行实验操作。
5. 培养实验报告撰写能力。
二、实验原理无线信号传输是利用电磁波在空间传播,将信息从一个地点传输到另一个地点的过程。
实验主要涉及以下原理:1. 调制与解调:调制是将信息信号与载波信号进行叠加的过程,解调则是从叠加后的信号中提取出信息信号的过程。
2. 频率选择:根据无线信号的频率范围选择合适的频率,以减少干扰和提高传输效率。
3. 天线设计:天线是无线信号发射和接收的关键部件,其设计对信号传输性能有重要影响。
4. 信号衰减与反射:无线信号在传播过程中会因距离、障碍物等因素发生衰减和反射,影响信号强度和稳定性。
三、实验仪器与设备1. 无线信号发射器2. 无线信号接收器3. 无线信号测试仪器(如频谱分析仪、功率计等)4. 计算机及实验软件5. 天线(发射天线和接收天线)四、实验步骤1. 实验准备:熟悉实验仪器与设备的使用方法,了解实验原理和步骤。
2. 搭建实验平台:将发射器和接收器连接好,确保信号传输通道畅通。
3. 信号发射:调整发射器参数,如频率、功率等,使信号稳定发射。
4. 信号接收:调整接收器参数,如增益、带宽等,接收发射器发出的信号。
5. 信号测试:使用无线信号测试仪器对信号进行测试,如测量信号的功率、频率、带宽等参数。
6. 数据分析:分析实验数据,探讨无线信号传输过程中的影响因素。
7. 撰写实验报告。
五、实验数据记录与分析1. 信号发射参数:记录发射器的频率、功率等参数。
2. 信号接收参数:记录接收器的频率、增益、带宽等参数。
3. 信号测试结果:记录信号的功率、频率、带宽等测试数据。
4. 数据分析:分析实验数据,探讨无线信号传输过程中的影响因素,如信号衰减、干扰等。
六、实验结论根据实验数据和数据分析,总结无线信号传输过程中的关键因素,提出改进措施,以提高无线信号传输性能。
移动通信实验报告
移动通信实验报告一、实验目的移动通信实验的主要目的是深入了解移动通信系统的工作原理、关键技术以及性能特点。
通过实际操作和数据分析,掌握移动通信中的信号传输、调制解调、信道编码、多址接入等重要概念,并能够运用所学知识解决实际问题,提高对移动通信领域的综合理解和应用能力。
二、实验设备本次实验所使用的设备包括移动通信实验箱、信号发生器、频谱分析仪、示波器、计算机等。
移动通信实验箱是核心设备,集成了移动通信系统的各个模块,能够模拟不同的通信场景和参数设置。
三、实验原理(一)信号传输在移动通信中,信号以电磁波的形式在空间中传播。
电磁波的频率、幅度、相位等参数携带了信息。
信号在传输过程中会受到衰减、干扰、多径效应等影响,导致信号质量下降。
(二)调制解调调制是将数字或模拟信号转换为适合在信道中传输的高频信号的过程。
常见的调制方式有幅度调制(AM)、频率调制(FM)和相位调制(PM)等。
解调则是将接收到的调制信号还原为原始信号的过程。
(三)信道编码为了提高信号在信道中传输的可靠性,需要对原始数据进行信道编码。
常见的信道编码方式有卷积码、Turbo 码等。
信道编码通过增加冗余信息,使得接收端能够检测和纠正传输过程中产生的错误。
(四)多址接入在移动通信系统中,多个用户需要同时共享有限的频谱资源。
多址接入技术用于区分不同用户的信号,常见的多址接入方式有频分多址(FDMA)、时分多址(TDMA)和码分多址(CDMA)等。
四、实验内容及步骤(一)信号传输特性测试1、连接实验设备,设置信号发生器的输出频率和幅度,产生一个正弦波信号。
2、通过移动通信实验箱的发射模块将信号发送出去,在不同距离和障碍物条件下,使用示波器观察接收端的信号幅度和波形变化。
3、记录实验数据,分析信号传输的衰减特性和障碍物对信号的影响。
(二)调制解调实验1、在实验箱中设置不同的调制方式(如 AM、FM、PM),输入一个数字或模拟信号。
2、观察调制后的信号频谱和波形,分析调制方式对信号频谱和带宽的影响。
传输实验报告
一、实验目的1. 了解传输实验的基本原理和操作步骤。
2. 熟悉传输实验仪器的使用方法。
3. 通过实验,验证传输系统的工作性能,分析传输过程中的信号失真和衰减。
4. 培养实际操作能力和问题分析能力。
二、实验原理传输实验是通过模拟实际通信环境,对信号在传输过程中的衰减、失真和干扰进行研究和分析。
实验中,通过传输实验仪器的搭建,模拟信号的发送、传输和接收过程,测量信号的各项性能指标,从而评估传输系统的质量。
三、实验仪器与设备1. 传输实验仪2. 信号发生器3. 示波器4. 数字多用表5. 同轴电缆6. 网络分析仪7. 负载电阻四、实验步骤1. 搭建实验电路:将传输实验仪、信号发生器、示波器、数字多用表、同轴电缆、网络分析仪和负载电阻等设备按照实验要求连接好。
2. 设置信号参数:根据实验要求,设置信号发生器的频率、幅度和波形等参数。
3. 测量信号传输性能:将信号发生器输出的信号通过同轴电缆传输到接收端,使用示波器观察信号的波形变化,使用数字多用表测量信号的幅度、失真度等参数。
4. 分析传输过程中的衰减和失真:根据实验数据,分析传输过程中的信号衰减和失真情况,计算传输系统的信噪比和误码率等性能指标。
5. 调整实验参数:根据实验结果,调整实验参数,优化传输系统的性能。
五、实验数据与结果1. 信号传输幅度:实验中,信号传输幅度为2Vpp。
2. 信号传输频率:实验中,信号传输频率为1MHz。
3. 信号传输失真度:实验中,信号传输失真度为3%。
4. 信号传输衰减:实验中,信号传输衰减为20dB。
5. 信噪比:实验中,信噪比为50dB。
6. 误码率:实验中,误码率为1%。
六、实验分析与讨论1. 实验结果表明,在实验条件下,传输系统的性能指标符合设计要求。
2. 在信号传输过程中,信号幅度、频率和波形等参数基本保持稳定,说明传输系统具有较高的抗干扰能力。
3. 实验中,信号传输衰减和失真度均在可接受范围内,说明传输系统的传输性能较好。
光纤传输实验实验报告
光纤传输实验实验报告光纤传输实验实验报告引言光纤传输技术作为一种高速、高带宽、低损耗的通信传输方式,已经广泛应用于各个领域。
本实验旨在通过实际操作,探究光纤传输的原理和特性,并对其性能进行测试和评估。
一、实验设备和方法1. 实验设备本实验采用的设备包括光纤传输装置、光源、光探测器、光纤衰减器等。
2. 实验方法首先,将光源与光纤传输装置连接,通过调节光源的功率,观察光纤传输的亮度和稳定性。
然后,将光探测器与光纤传输装置连接,记录光探测器输出的信号强度。
最后,通过调节光纤衰减器,模拟不同距离下的光纤传输损耗情况。
二、实验结果和分析1. 光源功率调节通过调节光源的功率,我们观察到光纤传输的亮度和稳定性会有所变化。
当光源功率较低时,光纤传输的亮度较暗,且容易受到外界干扰而不稳定;当光源功率较高时,光纤传输的亮度较亮,但也容易产生过度饱和的现象。
因此,在实际应用中,需要根据具体需求调节光源功率,以保证光纤传输的稳定性和适当的亮度。
2. 光探测器输出信号强度将光探测器与光纤传输装置连接后,我们记录了光探测器输出的信号强度。
实验结果显示,随着光源功率的增加,光探测器输出的信号强度也相应增加。
这表明光纤传输的信号强度与光源功率存在一定的正相关关系。
此外,我们还发现,当光源功率过高时,光探测器输出的信号强度会达到一个饱和值,进一步增加光源功率并不会显著提高信号强度。
因此,在实际应用中,需要根据光纤传输的距离和信号要求,选择适当的光源功率。
3. 光纤传输损耗通过调节光纤衰减器,我们模拟了不同距离下的光纤传输损耗情况。
实验结果显示,随着光纤传输距离的增加,光纤传输的信号强度会逐渐减弱。
这是由于光在光纤中的传输过程中会发生一定的损耗,导致信号衰减。
此外,我们还观察到,当光纤传输距离较长时,信号强度的衰减速度会更快。
因此,在实际应用中,需要根据光纤传输的距离和信号要求,选择合适的光纤衰减器,以保证信号的传输质量。
三、实验结论通过本实验,我们对光纤传输的原理和特性有了更深入的了解。
微波的测量实验报告
微波的测量实验报告微波的测量实验报告引言:微波技术是一门应用广泛的电磁波技术,它在通信、雷达、医疗等领域发挥着重要作用。
本实验旨在通过测量微波信号的传输特性和功率传输特性,探索微波的性质和应用。
实验一:微波信号的传输特性在实验一中,我们使用了一台微波信号发生器、一根微波传输线和一台微波功率计。
首先,我们将微波信号发生器的输出端连接到微波传输线的输入端,然后将微波传输线的输出端连接到微波功率计。
接下来,我们调节微波信号发生器的频率,并通过微波功率计测量微波信号的功率。
实验结果表明,微波信号的传输特性与频率密切相关。
当微波信号的频率增加时,传输线上的功率损耗也会增加。
这是因为微波信号在传输过程中会受到传输线的阻抗匹配、衰减和反射等因素的影响。
因此,在实际应用中,我们需要根据传输线的特性和工作频率来选择合适的传输线,以确保信号传输的稳定和可靠。
实验二:微波功率传输特性在实验二中,我们使用了一台微波信号发生器、一根微波传输线、一台微波功率计和一个负载。
首先,我们将微波信号发生器的输出端连接到微波传输线的输入端,然后将微波传输线的输出端连接到负载。
接下来,我们调节微波信号发生器的功率,并通过微波功率计测量微波信号在传输线和负载上的功率。
实验结果表明,微波功率的传输特性与功率和负载的阻抗匹配程度密切相关。
当功率和负载的阻抗匹配较好时,微波功率能够有效地传输到负载上,并且功率损耗较小。
然而,当功率和负载的阻抗不匹配时,微波功率会发生反射和衰减,导致功率损耗增加。
因此,在微波电路设计中,我们需要注意功率和负载的阻抗匹配问题,以提高功率传输效率。
实验三:微波的应用微波技术在通信、雷达、医疗等领域有着广泛的应用。
在通信领域,微波信号可以传输大量的数据,并且具有较高的传输速率和稳定性。
在雷达领域,微波信号可以用于探测和测量目标物体的距离、速度和方位。
在医疗领域,微波信号可以用于医学成像和治疗,如MRI和微波消融术等。
无线网络实验报告
无线网络实验报告无线网络实验报告引言:无线网络已经成为现代社会中不可或缺的一部分。
在这个信息时代,人们对无线网络的需求越来越高,无线网络技术的发展也日新月异。
为了更好地了解无线网络的工作原理和性能表现,我们进行了一系列的实验。
本报告将详细介绍我们的实验过程、结果和分析。
实验一:无线信号的传输距离与障碍物的关系我们首先测试了无线信号的传输距离与障碍物的关系。
我们在一个开放的室外空间设置了不同距离的接收器,并逐渐增加了障碍物的数量和密度。
通过测量接收器收到的信号强度,我们得出了以下结论:1. 障碍物的数量和密度对无线信号的传输距离有明显的影响。
障碍物越多,信号传输距离越短。
2. 不同类型的障碍物对信号传输的影响也不同。
例如,金属障碍物对信号的阻挡作用更大,而木质障碍物的影响较小。
3. 信号的传输距离还受到环境因素的影响,如天气条件和地形等。
在恶劣的天气条件下,信号传输距离会进一步减小。
实验二:无线网络速度与设备数量的关系接下来,我们测试了无线网络的速度与设备数量的关系。
我们在一个封闭的室内环境中设置了一个路由器,并连接了不同数量的设备进行测试。
通过测量每个设备的下载速度,我们得出了以下结论:1. 设备数量的增加会导致无线网络速度的下降。
当设备数量超过路由器的处理能力时,每个设备的下载速度将明显减慢。
2. 无线网络的速度还受到设备之间的干扰影响。
当设备之间距离过近时,它们之间的信号干扰会导致速度下降。
3. 使用更先进的无线网络技术,如802.11ac或802.11ax,可以提高无线网络的速度和容量,从而更好地支持大量设备的连接。
实验三:无线网络安全性的评估最后,我们评估了无线网络的安全性。
我们使用了常见的无线网络安全漏洞测试工具,如Aircrack-ng和Wireshark,对一个开放的无线网络进行了渗透测试。
通过分析测试结果,我们得出了以下结论:1. 开放的无线网络存在被攻击的风险。
攻击者可以通过监听、劫持或破解无线网络的通信,获取用户的敏感信息。
光纤特性及传输实验
光纤特性及传输实验光纤是一种能够将光信号传输的纤维材料,由于其具有高带宽、低衰减等优点,广泛应用于通信、医疗、工业等领域。
本文将介绍光纤的特性以及光纤传输实验。
首先,光纤具有以下几个重要特性:1. 高带宽:光纤的传输速度非常快,可以达到光速的70%以上,因此能够传输大量的数据。
2. 低衰减:光纤的衰减很小,一般在每公里0.2-0.5 dB以内,因此信号的传输损失较小,可以实现长距离的传输。
3. 抗干扰能力强:光纤的信号传输是通过光的全内反射实现的,不会受到电磁干扰的影响,因此具有较高的抗干扰能力。
4. 安全性高:光信号传输不会产生电磁辐射,不易被窃听,因此具有较高的安全性。
光纤传输实验是通过实际操作来验证光纤的传输性能和特性。
下面将介绍一种常见的光纤传输实验方法。
实验材料:1. 光纤:可以使用单模光纤或多模光纤,长度约为几十米至几百米。
2. 光源:可以使用激光器或LED作为光源。
3. 接收器:用于接收光信号的光电二极管或光电探测器。
4. 信号发生器:用于产生测试信号。
实验步骤:1. 将光纤的一端连接到光源,另一端连接到接收器。
2. 设置信号发生器的输出信号,并将信号输入到光源端。
3. 观察接收器的输出信号,并记录下来。
4. 改变光纤的长度、弯曲程度等条件,再次观察并记录输出信号。
5. 根据实验记录,分析光纤在不同条件下的传输性能。
实验结果分析:通过实验可以得到光纤在不同条件下的传输结果。
例如,当光纤长度增加时,输出信号的衰减程度会增加;当光纤弯曲程度增加时,输出信号的衰减程度也会增加。
这些结果验证了光纤的低衰减特性以及对弯曲的敏感性。
此外,实验还可以验证光纤的带宽特性。
可以通过改变信号发生器的频率,观察输出信号的变化。
当信号频率增加时,输出信号的衰减程度会增加,说明光纤的传输带宽有限。
总结:光纤具有高带宽、低衰减、抗干扰能力强和安全性高等特性,在实际应用中具有广泛的应用前景。
通过光纤传输实验,可以验证光纤的传输性能和特性,为光纤通信的设计和应用提供参考。
光纤传输特性实验实验报告
光纤传输特性实验实验报告实验报告:光纤传输特性实验一、实验目的1. 了解光纤传输的基本原理和特性;2. 掌握光纤传输信号损耗的测量方法;3. 了解光纤覆盖层的保护作用和光纤附加噪声。
二、实验仪器1. 光纤传输箱;2. 光纤光源;3. 光纤接收仪;4. 光纤带宽检测装置;5. 光源电源。
三、实验原理1. 光纤传输基本原理:光纤传输是利用光在纤维中的反射和折射来传输信息的一种方式。
光纤由纤芯、包层和裸露纤芯组成,光信号通过射入纤芯,然后沿着纤芯的光轴传播。
纤芯是光传输的核心,包层则用于保护光传输中的信号。
2. 光纤传输信号损耗的测量方法:光纤传输中的信号衰减主要包括衰减损耗和连接损耗。
衰减损耗是指光信号沿光纤传输中由于各种原因所导致的信号强度的损失。
连接损耗是指光纤之间的连接所带来的光信号损失。
测量光纤传输中的信号损耗常用的方法是利用光纤接收仪读取光源发出的光强度,然后与光源发出的光强度进行比较,计算信号损耗。
3. 光纤覆盖层的保护作用:光纤的包层主要用于保护光纤的传输信号,减少信号损耗。
光纤的包层一般由石英、聚合物等材料构成,具有较高的折射率,能够使光信号在纤芯中传播时发生全内反射。
同时,包层还能够阻止外界的干扰信号进入纤芯中。
4. 光纤附加噪声:光纤传输过程中,会产生一些附加噪声,如光源的热噪声、光纤中的射频噪声等。
这些噪声会对信号的传输质量产生影响。
因此,为了保证光纤传输信号的质量,需要对光纤信号进行接收时进行噪声的抑制。
四、实验步骤1. 打开光纤传输箱,接通光纤光源和接收仪的电源;2. 将纤芯连接器插入光纤光源的输出接口,将接收仪的接收端与纤芯接收端连接;3. 在光纤光源仪器上设置输出功率为一定的数值,如10mW;4. 使用光纤带宽检测装置测量光纤传输的带宽;5. 测量信号损耗,调整光源的输出功率,记录不同功率下的信号强度;6. 记录实验数据。
五、实验结果分析1. 光纤传输的信号损耗:根据实验数据计算出不同功率下信号的损耗率,并观察信号损耗与功率之间的关系;2. 光纤传输的带宽:根据光纤带宽检测装置的测量结果,计算出光纤的带宽范围;3. 光纤传输的附加噪声:观察实验数据中的噪声情况,并分析噪声对信号传输的影响。
移动通信期末实验报告(3篇)
第1篇一、实验背景随着信息技术的飞速发展,移动通信技术已成为现代社会不可或缺的一部分。
为了更好地理解和掌握移动通信的基本原理和应用,本学期我们进行了移动通信期末实验。
本次实验旨在通过实际操作,加深对移动通信系统组成、信号调制解调、信道特性等方面的理解。
二、实验目的1. 熟悉移动通信系统的组成和基本功能。
2. 掌握信号调制解调的基本原理和方法。
3. 了解移动通信信道的特性和建模方法。
4. 提高动手实践能力和分析问题的能力。
三、实验内容1. 移动通信系统组成及功能实验本实验通过观察移动通信设备,了解其组成和基本功能。
实验内容如下:(1)观察GSM手机,了解其外观、按键、屏幕等组成部分;(2)观察GSM基站,了解其外观、天线、设备室等组成部分;(3)分析GSM手机与基站之间的通信过程,理解其基本功能。
2. 信号调制解调实验本实验通过实际操作,掌握信号调制解调的基本原理和方法。
实验内容如下:(1)观察GSM手机的信号调制解调过程,了解其工作原理;(2)通过实验软件,实现信号的调制解调过程,验证调制解调效果;(3)分析不同调制方式(如QAM、GMSK)的特点和适用场景。
3. 移动通信信道建模实验本实验通过模拟实验,了解移动通信信道的特性和建模方法。
实验内容如下:(1)观察白噪声信道的特性,了解其产生原因和影响;(2)通过实验软件,模拟白噪声信道对信号的影响,分析信噪比的变化;(3)研究多径干扰对信号的影响,了解其产生原因和抑制方法。
4. 移动通信系统仿真实验本实验通过仿真软件,模拟移动通信系统的性能。
实验内容如下:(1)使用OFDM仿真软件,模拟OFDM调制解调过程,分析其性能;(2)研究DSSS调制解调过程,了解其抗干扰能力;(3)分析不同信道条件下的系统性能,评估系统可靠性。
四、实验结果与分析1. 移动通信系统组成及功能实验通过观察GSM手机和基站,我们了解了其组成和基本功能。
实验结果表明,GSM手机主要由天线、射频模块、基带处理器、显示屏等部分组成,基站主要由天线、射频模块、基带处理器、控制单元等部分组成。
实验一-信号及传输特性分析
实验一练习一信号的特性及其频谱分分析实验原理一. 信号的概念和分类1. 信号在通信与信息系统中,传输的主体是信号,系统所包含的各种电路、设备都是为了实施这种传输。
因此,电路系统设计和制造的要求,必然要取决于信号的特性。
随着待传输信号的日益复杂,相应地,信号传输系统中的元器件、电路的结构等也日益复杂。
因此,对信号进行分析变得越来越重要。
2. 信号的分类下面从不同角度对信号进行分类。
确定信号和随机信号:若其在任何时间的值都是确定已知的,那么是确定信号;若信号在实际发生之前具有一定的不确定性,则表明信号是随机信号。
连续信号和离散信号:将一个信号表示成为时间t的函数,如果其时间变量t的取值是连续的,那么这个信号就称为连续信号。
若信号只在某些不连续的时间点上有确定的取值,则称信号是离散信号。
模拟信号和数字信号:时间或幅度连续的信号称为模拟信号,时间和幅度都离散的信号称为数字信号。
周期信号和非周期信号:在一个可以测量的时间范围内完成一种模式,并且在后续的相同时间范围内重复这一模式,这种信号是周期信号;不随时间变化出现重复的模式或循环,则是非周期信号。
二. 周期模拟信号周期模拟信号可以分为简单类型或复合类型两种。
简单类型模拟信号,即正弦波,不能再分解为更简单的信号。
而复合型模拟信号则是由多个正弦波信号组成的。
正弦波是周期模拟信号的最基本形式。
可以看做一条简单的震荡曲线,在一个周期内的变化是平滑、一直的、连续的、起伏的曲线。
下图就是一个正弦波,每个循环由时间轴上方的单弧和后跟着的时间轴下方的单弧构成。
图1-1-1 正弦波单个正弦波可以用三个参数表示:峰值振幅、频率和相位。
这三个参数完全决定正弦波。
1. 峰值振幅信号的峰值振幅是其最高强度的绝对值,与其携带的能量成正比。
图1-1-2表示了两个信号和它们的峰值振幅。
图1-1-2 相位和频率相同但振幅不同的两个信号2. 周期和频率周期是信号完成一个循环所需要的时间,以秒为单位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
周期信号和非周期信号:在一个可以测量的时间范围内完成一种模式,并且在后续的相同时间范围内重复这一模式,这种信号是周期信号;不随时间变化出现重复的模式或循环,则是非周期信号。
二.周期模拟信号
周期模拟信号可以分为简单类型或复合类型两种。简单类型模拟信号,即正弦波,不能再分解为更简单的信号。而复合型模拟信号则是由多个正弦波信号组成的。
图1-2-2失真
四.噪声(动画演示)
1.噪声及其分类
噪声(noise)是另一种减损原因。
下面从不同的角度对噪声进行分类并加以分析。
(1)乘性噪声和加性噪声
信道是通信系统必不可少的组成部分,而信道中又不可避免地存在着噪声。以调制信道为例,它的数学模型可表示成。信道对信号的影响可归结到两点:一是乘性干扰k(t),二是加性干扰n(t)。
3.应用举例
假设信号通过一种传输介质传输后,它的功率降低了一半。这可以表示为,这种情况下衰减(损失的能量)可以计算为:
-3dB或者3dB衰减等价于功率损失了一半。
三.失真(动画演示)
1.什么是失真
失真(distortion)意味着信号改变了形态或者形状。失真产生在由不同频率成分组成的复合信号当中。每一个信号成分在通过介质时有自己的传播速度,所以到达最终目的节点时有各自的延迟。如果延迟与周期时间不完全一致,那么延迟的差异就会产生相位的差异。换言之,接收方的信号成分与发送方的信号成分存在相位差异。因此复合信号的形状会不一样。图1-2-2说明了复合信号中失真的影响。
图1-1-8复合周期信号在时域和频域中的分解
图1-1-9表示了一个非周期复合信号。它可以在一个或两个词发音时由麦克风或电话产生。这种情况下,复合信号不可能是周期的,因为我们不可能以完全相同的音调重复相同的词或语句。
图1-1-9非周期信号的时域和频域
信号的频率分解后得到的是一条连续曲线。在实际区间[0.0,4000.0]内有无数个(实际值)频率。为了找到频率为f的振幅,我们在f处画一条垂直线与曲线相交。垂直线的高度就是相应频率的振幅。
(2)重新调整正弦/余弦波参数,重新运行,对比上面的结果进行分析;
(3)记录实验结果数据。
任务
本任务每台主机为一组。现仅以主机A所在组为例,其它组的操作参考主机A所在组的操作。
1.搭建仿真线路
(1)在虚拟通信工具中,新建实验区;
(2)选择正弦/余弦波、加法器、傅里叶变换器、信号输出器,连接分析复合信号的时域和频域特性的仿真线路,如下图所示;
波长是最简单信号在一个周期能传播的距离,通常以微米而不是米为单位计量。
5.时域和频域
前面我们使用的是时域图来表示正弦波。时域图显示了信号振幅随时间的变化情况(振幅的时间图)。
为了表示振幅和频率的关系,可以使用频域图。频域图只和峰值和频率相关,不显示一个周期中的振幅变化。图1-1-6显示了信号的时域图和频域图。
例1:假定我们需要每分钟100页的速度下载文本文档。所需要的通道比特率是多少?
解:
一页平均24行,每行80个字符,如果我们假定每个字符需要8位,比特率
(100×24×80×8)/60=(1636000)/60bps=256Kbps
例2:高清晰电视(HDTV)的比特率是多少?
解:
HDTV使用数字信号广播高质量视频信号。HDTV屏幕通常为16:9(普通电视为4:3),表示屏幕更宽。每屏有1920×1080个像素,每秒刷新30次。24位代表一种颜色像素,我们计算比特率如下:
实验一
练习一
实验原理
一.信号的概念和分类
1.信号
在通信与信息系统中,传输的主体是信号,系统所包含的各种电路、设备都是为了实施这种传输。因此,电路系统设计和制造的要求,必然要取决于信号的特性。随着待传输信号的日益复杂,相应地,信号传输系统中的元器件、电路的结构等也日益复杂。因此,对信号进行分析变得越来越重要。
四.数字信号
数据除了可以用模拟信号表示以外,还可以使用数字信号表示。例如,1可以编码为正电平,0可以编码为0电平。一个数字信号可以多于两个。在这种情况下,每个电平就可以发送多个位。图1-1-10表示了两个信号,一个信号有两个电平而另一个信号有四个电平。
图1-1-10两个数字信号:一个有两个电平而另一个有四个电平
通常乘性干扰k(t)是一个复杂的函数,它可能包括各种线性畸变、非线性畸变。同时由于信道的迟延特性和损耗特性随时间作随机变化,故k(t)往往只能用随机过程来表述。
加性噪声虽然独立于有用信号,但它却始终干扰有用信号,因而不可避免地对通信造成危害。
通信信道中加性噪声(简称噪声)的来源,一般可以分为三方面:(1)人为噪声;(2)自然噪声;(3)内部噪声。人为噪声来源于无关的其他信号源,例如:外台信号、开关接触噪声、工业的点火辐射及荧光灯干扰等;自然噪声是指自然界存在的各种电磁波源,例如:闪电、大气中的电暴、银河系噪声及其他各种宇宙噪声等;内部噪声是系统设备本身产生的各种噪声,例如:在电阻一类的导体中自由电子的热运动(常称为热噪声)、真空管中电子的起伏发射和半导体中载流子的起伏变化(常称为散弹噪声)及电源哼声等。
图1-2-1衰减
2.分贝
为了说明信号损失或增益的强度,工程上使用分贝的概念。分贝(decibel,dB)用于计算两种信号之间或者同一信号在两个不同位置之间的相对强度。若信号被减损了,则分贝为负值,若信号被放大了,则分贝为正值。
和分别是信号在位置1和位置2的功率。注意一些工程书籍中以电压而不是功率定义分贝。这种情况下,因为功率和电压的平方成正比,所以公式变为。在这里我们以功率表示分贝。
图1-1-4振幅和频率相同但相位不同的三条正弦波
从图中我们可以看出:
●相位为0度的正弦波在0时刻以零振幅开始,然后振幅递增。
●相位为90度的正弦波在0时刻以峰值振幅开始,然后振幅递减。
●相位为180度的正弦波在0时刻以零振幅开始,然后振幅递减。
另一种看相位的方式是位移或偏移。我们可以看出:
●相位为0度的正弦波没有位移。
图1-1-3振幅和相位相同但频率不同的两个信号
通常周期用秒(s)来表示,频率用赫兹(Hz)来表示。
3.相位
相位是指波形相对于时间零的位置。如果我们将波形想象为能够沿时间轴向后或者向前平移,则相位描述的就是这种偏移的数量。它指明了第一个循环的状态。
相位使用角度或者弧度来进行计量,如下图1-1-4所示。
(2)随机噪声
在通信系统中,某些类型的噪声是确知的,例如电源哼声、自激振荡、各种内部的谐波干涉等。虽然消除这些噪声不一定很容易,但至少在原理上可消除或基本消除。另一些噪声则往往不能准确预测其波形。这种不能预测的噪声统称为随机噪声。我们所关心的只是随机噪声。
正弦波是周期模拟信号的最基本形式。可以看做一条简单的震荡曲线,在一个周期内的变化是平滑、一直的、连续的、起伏的曲线。下图就是一个正弦波,每个循环由时间轴上方的单弧和后跟着的时间轴下方的单弧构成。
图1-1-1正弦波
单个正弦波可以用三个参数表示:峰值振幅、频率和相位。这三个参数完全决定正弦波。
1.峰值振幅
●相位为90度的正弦波向左位移1/4个周期。但是,注意在0时刻前信号并不真的存在。
●相位为180度的正弦波向左位移1/2个周期。但是,注意在0时刻前信号并不真的存在。
4.波长
波长是信号通过传输介质传播的另一个特性。波长将简单正弦波的周期或频率与介质的传播速度结合在一起,如下图1-1-5所示。
图1-1-5波长和周期
1.搭建仿真线路
(1)打开虚拟通信工具,新建仿真视图;
(2)选择正弦/余弦波、傅里叶变换器、信号输出器,连接分析正弦波的时域和频域特性的仿真线路图,如下图所示;
2.器件参数设置
(1)设置正弦/余弦波的频率为6Hz,振幅为5V;
(2)其他器件参数保持默,观察正弦/余弦波信号的时域波形和频谱图;
信号的峰值振幅是其最高强度的绝对值,与其携带的能量成正比。图1-1-2表示了两个信号和它们的峰值振幅。
图1-1-2相位和频率相同但振幅不同的两个信号
2.周期和频率
周期是信号完成一个循环所需要的时间,以秒为单位。频率是指1秒内的周期数。周期是频率的倒数,频率是周期的倒数,如下列公式所示。
图1-1-3显示了两个信号和它们的频率。
(2)重新调整三个正弦/余弦波振幅和频率,重新运行,对比上面的结果进行分析;
(3)记录实验结果数据。
任务三
本任务每台主机为一组。现仅以主机A所在组为例,其它组的操作参考主机A所在组的操作。
数字化语音通道是通过数字化4KHz宽带的模拟语音信号形成的。我们需要以最高频率的2倍对信号进行采样(即每赫兹两个样本)。我们假定每个样本需要8位。根据实验原理的学习,计算所需的比特率是多少。
2.器件参数设置
(1)设置三个正弦/余弦波的振幅和频率分别为不同的值,为了便于观察复合信号的频谱,我们这里设置与原理相同的复合信号,三个正弦波振幅依次为:9、3和1,频率依次为10、30和90,其他参数可以保持默认值;
(2)其他器件参数保持默认值;
3.仿真结果分析
(1)运行仿真线路,观察三个正弦/余弦波信号经过加法器后形成的复合信号的时域波形和频谱图,查看设置的频率与频谱图的对应关系;
图1-1-6正弦波的时域图和频域图
很明显频域图更容易画,并且传递了时域图中能够找到的信息。频域的优点是我们能够直接看到频率值和峰值振幅值。完整的正弦波通过一个尖峰表示。尖峰的位置表示了频率,尖峰的高度表示了峰值振幅。
三.复合信号
复合信号是由许多具有不同频率、相位和振幅的简单正弦波组合而成的。如果复合信号是周期性的,分解得到的是一系列具有离散频率的信号。如果复合信号是非周期性的,分解得到的是具有连续频率的正弦波组合。
2.信号的分类
下面从不同角度对信号进行分类。