常用电动机原理与结构
电机的原理和功能图
电机的原理和功能图电动机原理和功能图电动机是将电能转化为机械能的一种设备,它是现代工业生产和日常生活中最常用的动力装置之一。
电动机工作的原理是基于磁力(电磁力)与电流的相互作用。
以下是电动机的原理和功能图的详细解释。
电动机的原理:电动机的工作原理基于法拉第电磁感应定律和安培力定律。
当通电线圈置于磁场中时,会产生磁力作用在电流上,导致线圈开始旋转。
这是因为线圈中的电流受到磁场力的作用,产生一个力矩,使电动机开始旋转。
电动机的核心部件是定子和转子。
定子是电动机的静部分,通常由一组线圈组成,这些线圈被安装在电机的壳体内,并由外部电源供电。
转子则是电动机的动部分,由导体制成而与定子相连,通过旋转转动来输出机械能。
电动机的功能图:电动机的功能图主要分为输入、输出和控制三个部分。
下面是电动机功能图的详细解释。
1. 输入部分:输入部分包括电源和电机开关,电源提供电能供给电动机工作。
开关用于控制电机的启动和停止。
2. 输出部分:输出部分包括轴承和负载。
轴承用于支撑转子的旋转,并减少因摩擦而产生的损耗。
负载是指电动机输出的机械能用于驱动的设备或机器。
3. 控制部分:控制部分是电动机的控制系统,包括控制器和传感器。
控制器用于控制电流的流向和大小,以及控制电机的启动和停止。
传感器用于检测电机输出的物理量,例如转速、温度、振动等,并将这些信号送回控制器进行处理。
电动机的功能图可以进一步扩展,加入其他辅助设备,如电容器和起动器。
电容器用于提供电流峰值和功率因数校正,以增强电机的性能。
起动器则用于启动大功率电机,通过逐渐增加电流将电机带动到额定工作速度。
总结:电动机的原理和功能图是电动机工作的基础理论和结构装置。
了解这些可以使我们更好地理解电动机的工作原理和构造,以及如何正确使用和维护电动机。
电动机在各个领域均广泛应用,包括工业制造、交通运输、家庭电器等,对于现代社会的发展起着重要的推动作用。
电动机的结构和工作原理
电动机的结构和工作原理
一、电动机的分类
电动机按照不同的标准可以分为多类,按照功率和用途分为小功率电动机和大
功率电动机;按照转速不同分为高速电动机和低速电动机;按照供电方式不同分为交流电动机和直流电动机等。
二、电动机的结构
电动机是由定子和转子两部分组成的,不同类型的电动机结构有所不同。
1. 直流电动机结构
直流电动机主要由定子、转子、集电刷和机壳等部分组成。
其中定子一般由铜
线绕制成线圈,转子一般由铁芯成型后安装电枢,集电刷连接电源和电枢,机壳起到保护及散热作用。
2. 交流电动机结构
交流电动机结构比较简单,在定子上绕制三组线圈,分别与三相交流电源相连,形成三相电流,通过磁场作用将转子带动旋转。
三、电动机的工作原理
不同类型的电动机工作原理不同,但总的来说,电动机的工作原理与电磁感应
原理有关。
以直流电动机为例,当电流通过电枢产生磁场时,与电枢磁场相互作用的磁场
引起了电枢的旋转,进而带动输出轴转动。
同时,集电刷将直流电源带入电枢,使电动机不断地转动。
交流电动机则是利用三相感应电动机原理实现电能转换,三相交流电源经过变
压器步骤降压后,分别由定子上三组绕组得到,形成三相交流电,使定子形成旋转磁场,再通过转子上的感应电流产生反磁场而带动转子旋转。
四、
电动机是电力工业中的重要设备之一。
电动机的结构和工作原理因种类不同而
有所不同,但都是基于电磁感应原理的。
在生产中,正确使用和维护电动机,可以提高电动机的使用寿命和效率。
电动机电动的组成和原理
电动机电动的组成和原理电动机是将电能转化为机械能的一种装置。
它由定子、转子和传动机构组成。
下面我将详细介绍电动机的组成和工作原理。
1. 定子:定子是电动机的固定部分,它通常由铁心和绕组组成。
铁心是由硅钢片叠压而成,具有较高的导磁性能和低的磁滞损耗。
绕组是由导电细线绕制而成,通常是采用铜线或铝线,绕制成多个线圈,连接成一个回路。
绕组一般分为主绕组和励磁绕组两个部分。
主绕组是用来产生磁场,励磁绕组则是用来提供励磁电流,增强磁场的强度。
2. 转子:转子是电动机的旋转部分,它通常由铁心和绕组组成。
铁心同样是由硅钢片叠压而成,其结构形式有螺线式、开口式等。
绕组则是由若干个线圈绕制而成,线圈之间通过电刷或集电环进行电气连接。
转子可以采用不同的结构形式,如直流电动机的转子通常采用换向器和电刷,而交流电动机的转子则通常采用感应电动机。
3. 传动机构:传动机构用来将电动机的旋转运动传递给外部负载。
传动机构一般由轴、联轴器、齿轮等组成。
轴是连接电动机转子和负载的关键部件,它负责传递转矩和承受轴向负载。
联轴器则用来连接轴与负载,它具有一定的柔软性,可以吸收转动不平衡和轴向偏差。
齿轮则用来增大或减小转子的转速,实现不同的传动比。
电动机的工作原理可以分为直流电动机和交流电动机两种类型。
直流电动机的工作原理:当直流电流通过电动机的主绕组和励磁绕组时,产生一个磁场。
根据左手定则,磁场的方向与通过绕组的电流方向相互垂直。
在转子上,感应出一个磁场,根据右手定则,磁场的方向与电流方向形成一个力的作用,使转子开始旋转。
当转子旋转一定角度时,刷子会与换向器接触,改变电流的方向,进而改变了磁场的方向,使转子继续旋转。
通过不断重复这个过程,直流电动机就能持续运转。
交流电动机的工作原理:交流电动机根据不同的原理可分为感应电动机和同步电动机两种类型。
感应电动机的工作原理是基于电磁感应现象。
当交流电通过主绕组时,会在定子上产生一个旋转磁场。
转子上感应到的磁场将导致感应电流的产生,而感应电流会在转子上产生一个旋转磁场。
四相步进电动机的原理
四相步进电动机的原理
四相步进电动机是一种常用的控制精度较高的电动机,广泛应用于自动化设备中。
其原理如下:
1. 结构组成:四相步进电动机由永磁转子和定子组成。
永磁转子上有固定的磁极,定子上有与之相对应的线圈。
2. 工作原理:四相步进电动机根据电流方向的改变来实现转子的逐步转动。
通过改变电流的流向,使得定子上的线圈产生磁场,与永磁转子上的磁场相互作用,从而使得转子逐步转动。
3. 驱动方式:通过电流控制来驱动四相步进电动机。
通过改变电流的大小和方向,可以实现步进电动机的正转、反转、加速、减速等控制。
4. 步进角度:四相步进电动机每次转动的角度称为步进角度。
步进角度的大小取决于所控制的电流脉冲的频率和控制方式。
常见的步进角度有1.8度和0.9度。
总之,四相步进电动机的原理是通过改变电流的流向,使得定子上的线圈产生磁场与永磁转子上的磁场相互作用,从而实现转子的逐步转动。
电动机的基本结构及工作原理
电动机的基本结构及工作原理电动机是一种将电能转化为机械能的设备,广泛应用于各个领域,例如电动汽车、工业生产以及家用电器等。
对于电动机的基本结构及工作原理的了解对于理解其工作原理以及性能优化具有重要意义。
本文将介绍电动机的基本结构以及其工作原理。
一、电动机的基本结构电动机的基本结构通常包括定子(或称为定子绕组)、转子、机壳、轴承、风扇、控制器等等。
以下将对这些组成部分进行详细说明。
1. 定子(定子绕组):定子由导线绕成的线圈组成,安装在机壳的内圆柱形铁心上。
定子线圈的数量和结构根据不同的电机类型而不同。
2. 转子:转子是电动机的旋转部分,由导体构成。
根据不同的电机类型,转子可以是绕组、永磁体或者铁芯。
3. 机壳:机壳是电动机的外壳,通常用金属材料制成,用于固定和保护内部构件。
机壳还可以起到屏蔽电磁干扰的作用。
4. 轴承:轴承用于支撑电机的转子。
它通常由金属球或滚柱组成,以减少转子的摩擦损失。
5. 风扇:风扇用于散热,保证电机在工作时能正常降温。
风扇通常安装在转子轴上,通过旋转产生气流。
6. 控制器:控制器是一种用来控制电动机速度和方向的设备。
它根据输入的信号,通过改变电机的电流或电压,来控制电机的转动。
二、电动机的工作原理电动机的工作原理基于法拉第电磁感应定律。
当有电流通过电动机的定子绕组时,会在定子绕组中产生磁场。
根据洛伦兹力定律,这个磁场将与转子中的磁场相互作用,从而产生一个力矩,使转子开始旋转。
具体来说,当电流通过定子绕组时,会在绕组周围产生一个磁场。
这个磁场会与转子中的永磁体或者有绕组产生的磁场相互作用。
根据库仑定律,当两个磁场相互作用时会产生一种力,这个力使转子开始旋转。
为了使电动机连续旋转,需要通过控制器提供持续的电流。
控制器根据输入的信号,检测电机的状态并相应地调整电流的大小和方向。
通过控制电流方向的变化,可以实现电机的正转和反转。
需要注意的是,电动机的效率受到多种因素的影响,例如电机的绕组材料、转子的设计以及控制器的性能等。
伺服电动机的基本结构和工作原理
伺服电动机的基本结构和工作原理1.电动机本体:伺服电动机的本体通常由定子和转子两部分组成。
定子是由一组线圈组成,通常由铜线绕成。
定子上的线圈通过外加电流产生磁场。
转子则是电动机内部的转动部分,通常由磁体组成。
通过定子的磁场与转子的磁场之间的相互作用,实现电能到机械能的转化。
2.编码器:编码器是伺服电动机功能的重要组成部分。
它能够实时监测电动机转子的位置,并将其反馈给控制器。
编码器通常分为绝对编码器和增量编码器两种类型。
绝对编码器可以直接读取到电动机转子在一个完整运动周期内的位置,不受电源开关等因素的影响。
而增量编码器则是根据转子的运动计算脉冲信号的数量,通过计算差值来获得转子的位置。
3.驱动器:驱动器是控制伺服电动机运转的重要组成部分。
它接收控制器发出的指令,并将其转化为电流或电压信号,控制电动机的旋转。
驱动器通常分为两种类型,即电流型驱动器和速度型驱动器。
电流型驱动器能够根据控制器发出的电流信号,调节电动机输出的扭矩大小。
速度型驱动器则是根据控制器发出的速度信号,调节电动机的旋转速度。
4.控制器:控制器是伺服电动机的大脑,负责整个系统的运行和控制。
控制器接收用户或系统发出的指令,并将其转化为相应的电流、电压或速度信号,与驱动器进行通信,控制电动机的运动。
当电能供给到伺服电动机时,电流通过定子线圈产生磁场。
在转子上的磁体感受到定子磁场的作用力,开始旋转。
转子的位置由编码器实时监测,并通过反馈信号传送给控制器。
控制器根据编码器的反馈信号与用户或系统发出的指令进行比较,计算出与转子位置相对应的控制信号,并将其发送给驱动器。
驱动器根据控制信号调节输出的电流或电压信号,控制电动机的扭矩或旋转速度。
驱动器将调节后的电流或电压信号传输到定子线圈,改变定子磁场的强度,从而调整转子的运动状态。
当电动机的转子运动偏离设定的位置时,编码器将再次监测到该偏差,并通过反馈信号传给控制器,控制器再次计算并发出相应的控制信号,驱动器调整电流或电压信号,使转子回到设定的位置。
三相异步电动机的结构与工作原理
三相异步电动机的结构与工作原理三相异步电动机是一种最为常见的交流电机,也是工业领域中最为常用的电机之一。
它具有结构简单、运行可靠、维护方便等特点,被广泛应用于各种工业场所、家庭及公共设施等领域。
本文将介绍三相异步电动机的结构、工作原理以及特点等内容。
一、三相异步电动机的结构三相异步电动机的主要部件包括转子、定子、端盖和风扇等。
其中,转子和定子分别对应于电机的运转部分和静止部分。
转子是由若干个零件组成的,常用的有铜导线、连接环等。
铜导线绕制在钢芯片上,钢芯片起着支撑和保护的作用,其形状可以是凸形或平面形。
定子是由铁芯和骨架两部分组成的。
铁芯是一种由硅铁片叠装而成的铁心,而骨架一般为铝制,其作用是固定铁芯。
二、三相异步电动机的工作原理三相异步电动机的工作原理是基于磁通交叉作用原理而得出的。
当三相电源加入到定子绕组上时,电流经过绕组后会产生磁通,使得磁场在定子上形成旋转磁场。
旋转磁场感应到转子中的铜导线时,它们就会受到旋转磁场的作用,从而也开始自转。
这样,外加的电能就被转化为了机械能,从而将电机带动起来。
在运行过程中,由于转子的自转速度不能与旋转磁场完全同步,故转子中的感应电动势会产生一个额外的励磁磁通,它的作用是使得转子中的磁通也不断地旋转。
这个过程就称为转子的感应,由此,三相异步电动机的名称也由此而来。
在实际应用中,三相异步电动机的运行速度一般是预先设定好的,由用户自行决定。
此时,如果转速过低或过高,就需要通过改变电源的频率或改变转子上的励磁磁通来改变运行速度。
三、三相异步电动机的特点1.结构简单。
三相异步电动机的结构简单,维护方便。
2.运行可靠。
三相异步电动机采用了隔离和防护等措施,能够保证电机的运行在恶劣条件下也能够运行稳定可靠。
3.效率高。
三相异步电动机采用优良的设计和制造工艺,能够保证电机的运行效率较高,能够适应不同的负载要求。
4.适应性强。
三相异步电动机适用于各种不同的负载,能够满足不同场合的需求。
同步电机原理和结构
6018.1同步电机原理和结构1 •同步发电机原理简述(1)结构模型:同步发电机和其它类型的旋转电机一样, 由固定的定子和可旋转的转子两大部分组成。
最常用的转场式同步电机的定子铁心的内圆均匀分布着定子槽,槽内嵌放着按一定规律排 列的三相对称交流绕组。
这种同步电机的定子又称为电枢,定子铁心和绕组又称为电枢铁 心和电枢绕组。
转子铁心上装有制成一定形状的成对磁极,磁极上绕有励磁绕组,通以直 流电流时,将会在电机的气隙中形成极性相间的分布磁场,称为励磁磁场(也称主磁场、转子磁场)。
除了转场式同步电机外, 还有转枢 式同步发电机,其磁极安装于定子上,而交流 绕组分布于转子表面的槽内,这种同步电机的 转子充当了电枢。
图 8-1-1给出了典型的转场 式同步发电机的结构模型。
图中用 AX 、BY , CZ 共3个在空间错开120°电角度分布的线 圈代表三相对称交流绕组。
(2 )工作原理同步电机电枢绕组是三相对称交流绕组,当 原动拖动转子旋转时,通入三相对称电流后,会产生高速旋转磁场,随轴一起旋转并顺次切割定子各相绕组(相当于绕组的导体反向切割励磁磁场),会在其中感应出大小和方向按周期性变化的交变电势,每相感应电势的有效值为, E o = 4.44fN ① f k w( 8-1-1 )式中f ――电源频率;①f ――每极平均磁通; N ——绕组总导体数;k w ---------------- 绕组系数;E 0是由励磁绕组产生的磁通 ①f 在电枢绕组中感应而得,称为 励磁电势(也称主电势、 空载电势、转子电势)。
由于三相电枢绕组在空间分布的对称性,决定了三相绕组中的感应 电势将在的时间上呈现出对称性,即在时间相位上相互错开 1/3周期。
通过绕组的出线端将三相感应电势引出后可以作为交流电源。
可见,同步发电机可以将原动机提供给转子的 旋转机械能转化为三相对称的交变电能。
感应电势的频率决定于同步电机的转速 n 和极对数p ,即同步电机图8-1-1 同步电机结构模型2供电品质考虑,由众多同步发电机并联构成的交流电网的频率应该是一个不变的值, 这就要求发电机的频率应该和电网的频率一致。
电机调速的原理与结构
电机调速的原理与结构
电机调速的原理与结构涉及到电动机的速度控制和调节。
下面是一般的电机调速原理和结构的概述:
1.原理:
(1)电压调制原理:通过改变电机供电电压的大小来实现调速,一般通过调节变压器、自耦变压器或电力电子器件(如晶闸管、可控硅等)来改变电压大小。
-频率调制原理:通过改变电机供电频率来实现调速,一般通过变频器或交流调频(PWM)技术来改变电源频率。
(2)极对数调制原理:通过改变电机的励磁方式,增加或减少电机的励磁磁场来实现调速。
2. 结构:
(1)传统直流电机:包括励磁电路、旋转子(转子)和定子构成。
通过改变电枢电流、励磁电流和引入可调制的电阻、变压器等元件来实现调速。
(2)交流异步电机:包括固定的定子和旋转的转子构成。
通过改变供电频率、改变励磁电流或改变转子结构等方式来实现调速。
(3)交流同步电机:具有固定的定子和旋转的转子构成。
通过改变供电频率、改变励磁电流或改变转子结构等方式来实现调速。
还存在其他一些特殊类型的电机,如步进电机和直线电机等,它们有自身的调速原理和结构。
电机调速系统一般包括传感器、控制器和执行机构。
传感器用于监测电机运行状态,控制器对传感器信号进行处理,并发出对应的控制信号,执行机构根据控制信号对电机的运行状态进行调整。
通过控制器对电机的调速处理,可以实现对电机的精确控制和调节。
三相异步电动机的结构和工作原理
三相异步电动机的结构和工作原理三相异步电动机是一种常用的交流电动机,具有结构简单、可靠性高、维护方便等特点,广泛应用于工业生产和家用电器中。
它的主要结构包括定子、转子、端盖和轴承等部分。
其工作原理是利用交变电流在定子中产生旋转磁场,使转子在磁场作用下转动,从而实现电能转化为机械能。
三相异步电动机的结构包括定子部分和转子部分。
定子由电磁铁芯和绕组组成。
电磁铁芯一般由硅钢片叠装而成,以减小铁损和磁滞效应。
绕组由若干个三相对称分布的线圈组成,每个线圈绕在一个铁芯槽中。
而转子是由铁芯、导体棒和端环组成。
导体棒焊接在两个端环上,导体棒的数量等于定子线圈的数目。
三相异步电动机的工作原理是基于电磁感应和电磁力的相互作用。
当三相交流电通过定子线圈时,会在定子中形成旋转磁场。
这个旋转磁场的频率与输入电源的频率相同,但转速略低于同步转速,所以称为异步电机。
此时,若在转子上施加一个恒定的力矩,转子将开始绕定子旋转,将电能转化为机械能。
具体来说,当三相交流电的一个相位通过定子的其中一个线圈时,这个线圈中会形成一个旋转磁场。
由于定子中的线圈是对称分布的,所以整个定子中会形成一个旋转磁场。
这个旋转磁场将穿透转子,使得转子内部的导体棒感受到电磁力,因而受到电磁力的作用而开始转动。
在转子旋转的过程中,转子上的导体棒会不断与定子旋转磁场的不同极性区域相遇,导致感应电动势的产生。
这产生的感应电动势会引起转子上的感应电流,并根据感应电流和转矩方向之间的相对角度来决定转子的转向。
当感应电流通过转子的导体棒时,又会产生一个磁场,与定子磁场相互作用,产生一个转矩,这个转矩将推动转子继续转动。
需要注意的是,由于转子的旋转磁场相对于定子的旋转磁场略慢,所以差值产生了转矩。
这个转矩试图将转子的转速拉近到同步转速,这个转矩被称为载荷转矩。
异步电动机的转速是根据负载和输入电源的频率来决定的,当负载增加时,转速会下降,当负载减小时,转速会提高。
总结起来,三相异步电动机的结构由定子和转子组成,利用交变电流在定子中产生旋转磁场,使转子在磁场作用下转动,实现了电能到机械能的转换。
简述三相异步电动机的主要结构及其工作原理
简述三相异步电动机的主要结构及其工作原理三相异步电动机是一种常见的电动机,它的主要结构包括定子、转子和端盖。
在工作时,三相异步电动机通过电磁感应的原理实现转动。
我们先来了解一下三相异步电动机的定子结构。
定子由若干个线圈组成,这些线圈被固定在定子铁心上。
定子铁心通常采用硅钢片叠压而成,以减小磁滞和铁损耗。
每个线圈都与电源相连,形成三个相位的交流电。
接下来,我们来看一下三相异步电动机的转子结构。
转子由铁芯和导体组成。
铁芯通常由堆叠的硅钢片制成,以减小涡流损耗和铁损耗。
导体则是通过将导电材料填充到转子铁芯的槽中而形成的。
当三相异步电动机通电后,定子线圈中的电流会产生旋转磁场。
这个旋转磁场会穿过转子,使得转子中的导体感受到磁力。
根据电磁感应的原理,当导体感受到磁力时,它会受到一个力矩的作用,从而开始转动。
在转动过程中,转子的导体会不断地与定子的旋转磁场相互作用,这样就会形成一个“追赶”现象。
由于定子旋转磁场的速度恒定,而转子的转速会逐渐接近定子旋转磁场的速度,所以这种电动机被称为“异步”电动机。
需要注意的是,由于转子是通过感应电流来产生转矩的,所以转子的转速不能超过定子旋转磁场的速度。
否则,转子将无法感受到磁力,也就无法继续转动。
因此,在实际应用中,三相异步电动机的转速是有一定限制的。
三相异步电动机还有一些其他的结构,比如定子和转子之间的间隙、轴承等。
这些结构在保证电动机正常运行的同时,也需要进行适当的维护和保养。
三相异步电动机是一种常见的电动机,它的主要结构包括定子、转子和端盖。
在工作时,定子通过电流产生旋转磁场,转子则通过感应电流产生转矩,从而实现电动机的转动。
这种电动机具有简单、可靠的特点,广泛应用于各个领域中。
三相异步电动机的结构及工作原理
三相异步电动机的结构及工作原理三相异步电动机是一种常见的电动机类型,广泛应用于工业生产和生活中的各个领域。
本文将从结构和工作原理两个方面来介绍三相异步电动机。
一、结构三相异步电动机主要由定子、转子、端盖、轴承和外壳等部分组成。
1. 定子:定子是三相异步电动机的固定部分,由定子铁心和绕组组成。
定子铁心是由许多硅钢片叠压而成,具有良好的导磁性能。
绕组是由三相绕组分别绕在定子铁心上,形成三个相位的绕组。
2. 转子:转子是三相异步电动机的旋转部分,由铸铁芯和导体组成。
转子铸铁芯是由许多铁心片叠压而成,中间留有空隙。
导体是将许多导体棒绑在转子铸铁芯上,导体棒与转子铸铁芯之间通过绝缘材料隔开。
3. 端盖:端盖是安装在电机两端的铸铁盖板,用于固定定子和转子,并起到密封作用,保护电机内部的部件。
4. 轴承:轴承是支撑转子的重要部件,用于减少转子的摩擦和摆动,保证电机的正常运转。
5. 外壳:外壳是保护电机内部部件的外部壳体,通常由铸铁或钢板制成。
二、工作原理三相异步电动机的工作原理基于电磁感应和磁场转动的原理。
1. 电磁感应:当通电时,三相绕组中的电流会产生磁场,这个磁场会感应在转子上。
由于转子上的导体被绝缘材料隔开,因此导体中会产生感应电流。
感应电流会在导体中形成一个磁场,这个磁场与定子磁场相互作用,产生一个旋转力矩。
2. 磁场转动:定子绕组中的三相电流是按照一定的时间顺序依次流过的,因此定子磁场也是按照一定的时间顺序变化的。
这个变化的磁场会导致转子上的感应电流和磁场随之变化,从而产生一个旋转磁场。
由于转子上的导体是固定在转子铸铁芯上的,所以转子会跟随旋转磁场一起旋转。
三、工作过程三相异步电动机的工作过程可以分为启动和运行两个阶段。
1. 启动阶段:在启动阶段,三相异步电动机需要通过外部的启动装置来提供起动转矩。
常见的启动装置有直接启动和星三角启动两种方式。
在启动过程中,通过逐渐增加电压或改变绕组连接方式,使得电机能够正常起动,并逐渐达到额定转速。
(完整)电机分类,结构和原理
电机知识学习总结1基本知识介绍1.1直流、单相交流、三相交流1。
2交流下有“同步和异步”的区别同步异步指的是转子转速与定子旋转磁场转速是同步(相同)还是异步(滞后),因而只有交流能产生旋转磁场,只有交流电机有同步异步的概念.同步电机——原理:靠“磁场总是沿着磁路最短的方向上走”实现转子磁极与定子旋转磁场磁极逐一对应,转子磁极转速与旋转磁场转速相同。
特点:同步电机无论作为电动机还是发电机使用,其转速与交流电频率之间将严格不变。
同步电机转速恒定,不受负载变化影响。
异步电机——原理:靠感应来实现运动,定子旋转磁场切割鼠笼,使鼠笼产生感应电流,感应电流受力使转子旋转。
转子转速与定子旋转磁场转速必须有转速差才能形成磁场切割鼠笼,产生感应电流。
区别:(1)同步电机可以发出无功功率,也可以吸收;异步电机只能吸收无功。
(2)同步电机的转速与交流工频50Hz电源同步,即2极电机3000转、4极1500、6极1000等。
异步电机的转速则稍微滞后,即2极2880、4极1440、6极960等。
(3)同步电动机的电流在相位上是超前于电压的,即同步电动机是一个容性负载。
同步电动机可以用以改进供电系统的功率因素.同步电机无法直接启动:刚通电一瞬间,通入直流电的转子励磁绕组是静止的,转子磁极静止;定子磁场立即具有高速。
假设此瞬间正好定子磁极与转子磁极一一对应吸引,在定子磁极在极短的时间内旋转半周的时间之内,会对转子产生吸引力,半周之后将会产生排斥力。
由于转子有转动惯量,转子不会转动起来,而是在接近于0的速度下左右震动.因此同步电机需要鼠笼绕组启动.转速差使其产生感应电流,而感应电流具有减小转速差的特性(四根金属棒搭成井形,内部磁场变密会减小面积,变疏会增加面积,阻止其变化趋势),因而会使转子转动起来,直到感应电流与转速差平衡(没有电流就不会有力,因而不会消除转速差,猜测与旋转阻力有关)。
1。
3永磁、电磁、感磁(构成定子、转子)永磁——永磁铁电磁——通电线圈感磁——无电闭合绕组、鼠笼永磁和电磁大多数情况下可以互换,感磁需要有旋转磁场的场合才能用,在三相同步电机中经常作为启动与电磁/永磁共用于转子.1.4有刷无刷电机有刷和无刷对电机结构影响很大,刷指的是转子通电时的电刷换向器、或者滑环。
电动机结构原理ppt课件
4.1.2 工作原理
1.旋转磁场的 产生
在空间 位置上对称的 定子绕组中通 入时间相位上 对称的三相交 流电。设:
iU sint
iV sin(t 120) iW sin(t 120)
图4.7 三相交流电流波形图
工作原理
设电流为正时,在 绕组中从首端流向 末端,为负时,从 末端流向首端。 当 0度瞬间,U为 零、V为负,W为 正,产生的合成磁 场,如图4.7(a) 所示,右边是N极, 左边是S极。
650
740
850
990
径(mm)
中心高度
375
450
500
560
620
(mm)
2.额定功率
满载运行时轴上所输出的额定机械功率(kW)
3.额定电压
•
指接到电动机绕组上的线电压,使用时应按规定加电压。
4.额定电流
• 在额定电压下,输出额定功率时,流入定子绕组的线电流。
• 额定功率与其他额定数据之间有如下关系式:
表4.2 小型异步三相电动机
机座号
1
2
3
4
5
6
7
8
9
定子铁心外 径(mm) 中心高度 (mm)
机座号
120 145 167 210 245 280 327
90 100 112 132 160 180 225
表4.33 中型异步三相电动机
11
12
13
14
368 423 250 280
15
定子铁心外
560
(1)连续
(2)短时
• (3)周期断续
主要系列
9.接法
星形(Y)和三角形(D)两种。定子绕 组的连接只能按规定方法连接,不能任意改变接 法,否则会损坏三相电动机。
直流电机的基本结构和工作原理
第二节 直流电机的铭牌数据及主要系列
一、直流电机的铭牌数据
指轴上输出 的机械功率
电动机
额定功率PN
额定条件下电机
发电机
指电刷间输出的 额定电功率
所能提供的功率
额定电压U N
额定电流I N
在额定工况下,电机 出线端的平均电压
转子逆时针方向旋转。
当电枢旋转到右图所示位置时
原N极性下导体ab转到S极下, 受力方向从左向右,原S 极下导 体cd转到N极下,受力方向从右 向左。该电磁力形成逆时针方向 的电磁转矩。线圈在该电磁力形 成的电磁转矩作用下继续逆时针 方向旋转。
与直流发电机相同,实际的直流电动机的电枢并非单一线圈, 磁极也并非一对。
第一节距 y1 :一个元件的两个有效边在电枢表面跨过的距离。
第二节距 y2 :连至同一换向片上的两个元件中第一个元件的下
层边与第二个元件的上层边间的距离。
合成节距 y :连接同一换向片上的两个元件对应边之间的距离。
单叠绕组
y y1 y2
单波绕组
y y1 y2
换向节距 yk :同一元件首末端连接的换向片之间的距离。
当原动机驱动电机转 子逆时针旋转时同,线 圈abcd将感应电动势。 如右图,导体ab在N极 下,a点高电位,b点低 电位;导体cd在S极下, c点高电位,d点低电位; 电刷A极性为正,电刷B 极性为负。
当原动机驱动电机转子逆时针
旋转180后0 ,如右图。
导体ab在S极下,a点低电位, b点高电位;导体cd在N极下,c 点低电位,d点高电位;电刷A极 性仍为正,电刷B极性仍为负。
直流电 动机的 工作原 理示意 图:
三相异步电动机结构与工作原理
三相异步电动机结构与工作原理引言:三相异步电动机是一种广泛应用于工业生产中的电动机,具有结构简单、使用方便、效率高等特点。
本文将介绍三相异步电动机的结构和工作原理。
一、三相异步电动机的结构1.定子:定子是电动机的固定部分,通常由线圈和铁心组成。
线圈是由电路导线绕制而成的,通常为三相对称的绕组。
铁心则是由高导磁率的材料制成,用于集中磁场。
在定子的绕组中,通过外界输入的交流电流会在绕组中产生旋转磁场。
2.转子:转子是电动机的旋转部分,它位于定子内部,可以自由地旋转。
转子通常由铁芯和导体组成。
铁芯一般采用短路形式,可以减小由于电流在转子上流动而产生的感应电动势。
导体则通常为铜条或铝条,它被固定在转子上,并与定子的旋转磁场相互作用,通过感应电势驱动转子运动。
转子与定子的相对运动产生了机械能。
二、三相异步电动机的工作原理1.定子和转子的相互作用:当通过定子绕组输入交流电流时,在定子绕组中产生旋转磁场。
在转子中感应出电动势,并产生对应的感应电流。
当转子中感应电流与定子旋转磁场相互作用时,会产生电磁力,从而驱动转子进行旋转。
2.磁通分布:定子绕组中产生的旋转磁场通过铁芯传导到转子。
在转子中,由于铁芯的存在,磁通分布呈现出鼓状。
这种磁通分布会导致转子中产生感应电势,从而驱动转子旋转。
同时,由于铁芯的高导磁性,可以减小磁通的漏磁,提高电机的效率。
3.转矩产生:当转子感应电流与定子旋转磁场相互作用时,产生的电磁力会驱动转子旋转。
这个电磁力的方向与转子的相对运动相对应,从而产生一个相对于定子的转矩。
这个转矩可以通过转子上的铁芯和转子轴向的设计来产生。
三、总结通过对三相异步电动机的结构和工作原理的介绍,可以得知三相异步电动机是一种由定子和转子构成的电动机,通过定子输入的旋转磁场与转子感应电流的相互作用,产生转矩驱动转子旋转。
它具有结构简单、使用方便、效率高等优点,被广泛应用于工业生产中。
交流电动机类型及构造特点、工作原理
交流电动机类型及构造特点、工作原理交流电动机是一种将交流电能转化为机械能的电机,广泛应用于工业生产和家用电器中。
交流电动机根据结构特点和工作原理可分为诸多类型,包括感应电动机、同步电动机、单相电动机、三相电动机等。
感应电动机是最常见的交流电动机之一,它由定子和转子组成。
定子绕组通电产生磁场,使转子感应出电动势,从而在转子中产生感应电流,进而产生转矩。
感应电动机的转子有两种类型:鼠笼式转子和绕线式转子。
鼠笼式转子由许多平行的导体环组成,导体环的两端通过短路环连接起来,形成一个闭合回路。
绕线式转子由许多绕组组成,每个绕组都与集电环相连。
感应电动机的工作原理是利用感应现象,通过电磁感应的原理将电能转化为机械能。
同步电动机是另一种常见的交流电动机类型,它的转速与电源的频率和极对数有关。
同步电动机的转子与定子的磁场同步旋转,因此称为同步电动机。
同步电动机的转子通常由励磁绕组构成,通过外部直流电源提供励磁电流。
当同步电动机与电源同步转速时,转子上的磁场与定子磁场同步,产生转矩。
同步电动机的工作原理是通过磁场的作用,使得转子与定子同步旋转,将电能转化为机械能。
单相电动机是一种特殊的交流电动机,它只需要单相交流电源即可工作。
单相电动机的转子通常采用鼠笼式结构,通过感应电流产生转矩。
单相电动机的工作原理是通过单相电源产生的磁场,使得转子感应出电动势,从而产生转矩。
单相电动机的构造相对简单,成本较低,广泛应用于家用电器和小型设备中。
三相电动机是最常用的交流电动机类型之一,它需要三相交流电源才能正常运行。
三相电动机通常由定子和转子两部分组成。
定子绕组通电产生旋转磁场,转子感应出电动势并产生转矩。
三相电动机的转子通常采用鼠笼式结构,通过感应电流产生转矩。
三相电动机的工作原理是利用三相交流电源产生的旋转磁场,使得转子感应出电动势,从而产生转矩。
三相电动机具有结构简单、可靠性高、运行平稳等优点,广泛应用于各个领域。
总结起来,交流电动机有多种类型,包括感应电动机、同步电动机、单相电动机和三相电动机等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用电动机原理与结构电动机的分类按电动机绕组结构可分为三相和单相电动机、笼型、绕线型。
按电源可分为高压、低压电动机、交流和直流电动机。
电动机又可分为同步和异步电动机。
单相电动机又分为交流分相电动机、交直流两用串励电动为机和罩极电动机。
还有按电动机使用环境、条件等可分为很多种类,不过大致可按下面几种方式归类:按电动机结构尺寸分为大型(机座中心高H )630MM,或者定子铁心外径大于90MM者)、中型(机座中心高H为355-630MM,或者定子铁心外径在560—990MM之间者)、小型(机座中心高H为80-315MM,或者定子铁心外径在125—560MM之间者)。
例如Y112M-4 中的112的意思是代表电动机的机座中心高为112MM,小于315MM,属于小型电动机。
按防护型式分为开启式(如IP11、IP22):电动机除必要的支撑结构外,对于转动及带电部分没有专门的保护。
封闭式(如IP44、IP54 ):电动机机壳内部的转动部分及带电部分有必要的机械保护,以防止意外的接触,但并不明显的防碍通风。
防护式电动机按其通风防护结构不同,又分为:网罩式:电动机的通风口用穿孔的遮盖物遮盖起来,使电动机的转动部分及带电部分不能与外物相接触。
防滴式:电动机通风口的结构能够防止垂直下落的液体或固体直接进入电动机内部。
防溅式:电动机通风口的结构可以防止与垂直接成100度角范围内任何方向的液体或固体进入电动机内部。
封闭式:电动机机壳的结构能够阻止机壳内外空气的自由交换,但并不要求完全的密封。
防水式:电动机机壳的结构能够阻止具有一定压力的水进入电动机内部。
水密式:当电动机浸在水中时,电动机机壳的结构能阻止水进入电动机内部。
潜水式:电动机在额定的水压下,能长期在水中运行。
隔爆式:电动机机壳的结构足以阻止电动机内部的气体爆炸传递到电动机外部,而引起电动机外部的燃烧性气体的爆炸。
例:IP44标志电动机能防护大于1MM的固体异物入内,同时能防溅水。
IP后面第一位数字的意义0无防护,没有专门的防护1能防止直径大于50MM的固体异物进入机壳内,能防止人体的大面积(如手)偶然触及壳内带电或运动部分,但不能防止有意识的接近这些部分。
2能防止直径大于12MM的固体异物进入机壳内,能防止手指触及壳内带电或运动部分3能防止直径大于2.5MM的固体异物进入机壳内,能防止厚度(或直径)大于2.5的工具、金属等触及壳内带电或运动部分。
4能防止直径大于1MM的固体异物进入机壳内,能防止厚度(或直径)大于1MM的工具、金属等触及壳内带电或运动部分。
5能防止灰尘进入达到影响产品正常运行的程度,完全防止触及壳内带电或运动部分。
6 完全防止灰尘进入,完全防止触及壳内带电或运动部分。
IP后面第二位数字的意义0 无防护,没有专门的防护1 防滴,垂直的滴水应不能直接进入产品内部2 15゜防滴,与铅垂线成15度角范围内的滴水应不能直接进入产品内部3 防淋水,与铅垂线成60度角范围内的淋水应不能直接进入产品内部4 防溅水,任何方向的溅水对产品应无有害的影响5 防喷水,任何方向的喷水对产品应无有害的影响6 猛烈的海浪或强力喷水对产品应无有害的影响7 防浸水,产品在规定的时间和压力下浸在水中,进水量对产品应无有害影响8潜水,产品在规定的压力下长时间浸在水中,进水量对产品应无有害影响按通风冷却方式分为1.自冷式:电动机仅依靠表面的辐射和空气的自然流动获得冷却。
2.自扇冷式:电动机由本身驱动的风扇,供给冷却空气以冷却电动机表面或其、内部。
3.他扇冷式:供给冷却空气的风扇不是由电动机本身驱动,而是独立驱动的。
4.管道通风式:冷却空气不是直接由电动机外部进入电动机或直接由电动机内部排出,而是经过管道引入或排出电动机,管道通风的风机可以是自扇冷式或他扇冷式。
5.液体冷却:电动机用液体冷却6.闭路循环气体冷却:冷却电动机的介质循环在包括电动机和冷却器的封闭回路里,却介质经过电动机时吸收热量,经过冷却器时放出热量。
7.表面冷却和内部冷却:冷却介质不经过电动机导体内部称为表面冷却,冷却介质经过电动机导体内部者称为内部冷却按安装结构型式:电动机安装型式通常用代号表示。
代号采用国际安装的缩写字母IM表示,在IM 的第一个字母表示安装类型代号,B表示卧式安装,V表示立式安装;第二位数字表示特征代号,用阿拉伯数字表示。
例如IMB5型表示机座无底座,端盖上有大凸缘,轴伸在凸缘端。
安装型式有B3、BB3、B5、B35、BB5、BB35、V1、V5、V6等。
按绝缘等级分为:A级、E级、B级、F级、H级、C级。
按额定工作制分为:连续、断续、短时工作制。
连续工作制(SI):电动机在铭牌规定的额定值条件下,保证长期运行短时工作制(S2):电动机在铭牌规定的额定值条件下,只能在限定的时间内短时运行。
短时运行的持续时间标准有四种:10min 、30min 、60min及90min。
断续工作制(S3):电动机在铭牌规定的额定值条件下只能断续周期性使用,用每周期10min的百分比表示。
如:FC=25%;其中包括S4—S10都属于几种不同条件的断续运行工作制。
电动机产品型号及用途产品型号是便于使用、设计、制造等部门进行业务联系和简化技术文件中产品名称、规格、型式等叙述而引用的一种代号。
产品代号是由电动机类型代号、特点代号和设计序号等三个小节顺序组成。
电动机类型代号用:Y——表示异步电动机;T——表示同步电动机;电动机特点代号表征电动机的性能、结构或用途而采用的汉语拼音字母。
如防爆类型的字母EXE(增安型)、EXB(隔爆型)、EXP(正压型)等。
设计序号是用中心高、铁心外径、机座号、凸缘代号、机座长度、铁心长度、功率、转速或级数等表示。
如:Y2-- 160 M1 – 8Y:机型,表示异步电动机;2:设计序号,“2”表示第一次基础上改进设计的产品;160:中心高,是轴中心到机座平面高度;M1:机座长度规格,M是中型,其中脚注“2”是M型铁心的第二种规格,而“2”型比“1”型铁心长。
8:极数,“8”是指8极电动机。
如:Y 630—10 /1180Y表示异步电动机;630表示功率630KW;10极、定子铁心外径1180MM;机座长度的字母代号采用国际通用符号表示;S是短机座型,M是中机座型,L是长机座型。
铁心长度的字母代号用数字1、2、3、-------依次表示。
电动机铭牌数据及额定值型号;表示电动机的系列品种、性能、防护结构形式、转子类型等产品代号。
功率:表示额定运行时电动机轴上输出的额定机械功率,单位KW或HP ,1HP=0.736KW 。
电压:直接到定子绕组上的线电压(V),电机有Y形和△形两种接法,其接法应与电机铭牌规定的接法相符,以保证与额定电压相适应。
电流:电动机在额定电压和额定频率下,并输出额定功率时定子绕组的三相线电流频率:指电动机所接交流电源的频率,我国规定为50HZ±1转速:电动机在额定电压、额定频率、额定负载下,电动机每分钟的转速(r/min);2极电机的同步转速为3000r/min工作定额:指电动机运行的持续时间绝缘等级:电动机绝缘材料的等级,决定电机的允许温升标准编号:表示设计电机的技术文件依据励磁电压:指同步电机在额定工作时的励磁电压(V)励磁电流:指同步电机在额定工作时的励磁电流(A)我公司常用电动机简介Y系列三相(高)低压笼型异步电动机三相异步电动机中,鼠笼式异步电动机具有结构简单、运行可靠、价格低廉的特点。
他由定子、转子两大部分组成。
定子由机座、定子铁心和定子绕组几部分构成,机座上设有接线盒,用以连接绕组引出线和接入电源。
电机出线端标志是以字母和数字组成;同一类型的绕组线端用同样字母表示时,绕组字母前冠以数字用以区别。
如U1、U2;V1、V2、W1、W2。
转子是鼠笼式结构,是由若干根导条在两端由端环短接而成,整体性好,运行中故障率低。
转子铁心也由硅钢片叠成。
定转子之间,由滚动轴承和前后端盖支承以形成均匀的气隙。
为保证轴承的润滑,轴承内加有润滑脂,并用轴承内、外盖把轴承与外界隔开。
在转轴的一端安装有风叶,鼠笼转子端环上也铸有内风扇。
随着转子转动,它们对电机进行鼓风散热。
三相异步电动机工作原理:当三相交流电流通入三相定子绕组后,在定子腔内便产生一个旋转磁场。
转子导体在旋转磁场作用下,相对地切割磁场的磁力线,从而在转子导体中产生了感应电流(电磁感应原理)。
这些带感应电流的转子导体在磁场中便会发生运动(电流的效应——电磁力)。
由于转子内导体总是对称布置的,因而导体上产生的电磁力正好方向相反,从而形成电磁转矩,使转子转动起来。
由于转子导体中的电流是定子旋转磁场感应产生的,因此也称感应电动机。
又由于转子的转速始终低于定子旋转磁场的转速,所以又称为异步电动机直流电动机结构和原理直流电动机和普通交流电动机一样也是由定子和转子组成,定转子之间有气隙。
定子为了导磁,机座采用钢板或铸刚制成,或用硅钢片冲压制成。
为了帮助换向,定子除主磁极外,还有换向极和补偿极,转子称为电枢,由0.5MM硅钢片制成电枢铁心,其槽内嵌电枢绕组,另外转轴上还设有换向器和电刷装置。
不同容量的直流电动机,其结构会有一定差别。
直流电动机具有以下特点:调速特性好,具有调速方便、平滑、调速范围广等特点能承受频繁冲击负荷,过载能力强,能满足各种机械负载的特性要求能实现频繁快速起动、制动以及逆向旋转,适应工矿企业自动化系统的各种不同要求直流电动机工作原理:直流电动机是将电源的电能转变为从转轴上输出的机械能的电磁转换装置。
定子励磁绕组通入直流励磁电流,产生励磁磁场。
当电枢从外界引入直流电,经电刷传给换向器,再通过换向器将此直流电转化成交流电引入电枢绕组,并产生电枢电流,此电流产生磁场,与励磁磁场合成为气隙磁场。
电枢绕组切割合成气隙磁场,按左手定则可判断出电枢产生转距。
直流电动机的分类及产品代号:直流电动机按励磁方式分为自励和他励两种,自励方式包括:并励、半励、复励等。
直流电动机型号含义:Z4—280/4—2Z4:直流电动机,第四次统一设计280:机座中心高度4:4极2:2号铁心长度起重行车用三相锥形绕线转子异步电动机行车用电动机转子是绕线型转子,启动性能好,可获得教稳定的低速运行,具有教大的过载能力和较高的机械强度。
适用于需要高启动转距、低启动电流的场合。
可频繁地启动及逆转,频繁地机械震动及冲击。
电机频繁启动时必须在转子回路内加入附加电阻,控制定子启动电流在1.5—1.8倍的额定电流范围内启动。
潜水电动机与潜水电泵概述潜水电泵由潜水电机与潜水泵组装成机组,或由潜水电动机轴伸端直接装上泵部件组成机泵合一的产品,潜入水下工作。
具有体积小、重量轻、启动前不需要引水,不受吸程限制,不需另设泵房,安装使用方便、性能可靠、效率高、价格低廉等优点。