氢脆问题汇总

合集下载

螺丝电镀后氢脆问题及解决方案

螺丝电镀后氢脆问题及解决方案

螺丝电镀后氢脆问题及解决方案直接说结论:以合金钢作原料生产的10.9级、12.9级、14.9级高强度螺栓电镀后(或仅酸洗后),必须在第一时间除氢脆处理,除氢脆处理的方法是:200度烘箱加热3-4小时析出氢原子。

以下内容是唠叨:第二次世界大战初期,英国皇家空军一架Spitpie战斗机由于引擎主轴断裂而坠落,机毁人亡,此事曾震惊英国朝野。

1975年美国芝加哥一家炼油厂,因一根15cm的不锈钢管突然破裂,引起爆炸和火灾,造成长期停产。

法国在开采克拉克气田时,由于管道破裂,造成持续一个月的大火。

我国在开发某大油田时,也曾因管道破裂发生过井喷,损失惨重。

在军事方面还有:美国“北极星”导弹因固体燃料发动机机壳破裂而不能发射,美空军F-11战斗机在空中突然坠毁等。

途中行驶的汽车因传动轴突然断裂而翻车,正在机床上切削的刀具突然断裂等事故枚不胜举。

这些灾难性的恶性事故,瞬时发生,事先毫无征兆,断裂无商量,严重地威胁着人们生产财产安全。

起初科学工作者们对出事原因,众说纷纭,一筹莫展。

后来经过长期观察和研究,终于探明这一系列的恶性事故的罪魁祸首——氢脆。

1、氢脆的原因氢脆通常表现为钢材的塑性显著下降,脆性急剧增加,并在静载荷下(往往低于材料的σb)经过一段时间后发生破裂破坏的趋势。

众所周知,氢在钢中有一定的溶解度。

炼钢过程中,钢液凝固后,微量的氢还会留在钢中。

通常生产的钢,其含氢量在一个很小的范围内。

氢在钢中的溶解度随温度下降而迅速降低,过饱和的氢将要析出。

氢是在钢铁中扩散速度最快的元素,其原子半径最小,在低温区仍有很强的扩散能力。

如果冷却时有足够的时间使钢中的氢逸出表面或钢中的氢含量较低时,则氢脆就不易发生。

如果冷却速度快,钢件断面尺寸比较大或钢中氢含量较高时,位于钢件中心部分的氢来不及逸出,过剩的氢将进入钢的一些缺陷中去,如枝晶间隙、气孔内。

若缺陷附近由于氢的聚集会产生强大的内压而导致微裂纹的萌生与扩展。

这是由于缺陷吸附了氢原子之后,使表面能大大降低,从而导致钢材破坏所需的临界应力也急剧降低。

氢脆机理及其防止办法

氢脆机理及其防止办法

氢脆机理及其防止办法氢脆是氢原子和位错交互作用的结果。

氢脆的位错理论能成功地解释以下几个重要实验结果:(1)氢脆对温度和形变速率的依赖关系。

氢脆只发生在一定的温度范围和慢的形变速率情况下。

当温度太低时,氢原子的扩散速率太慢,能与位错结合形成气团的机会甚少; 反之,当温度太高时,氢原子扩散速率太快,热激活作用很强,氢原子很难固定在位错下方,位错能自由运动,因此,也不易产生氢脆。

对钢来说,对氢脆最敏感的温度就在室温附近。

同样,可以理解形变速率的影响。

当形变速率太高时,位错运动太快,氢原子的扩散跟不上位错的运动,因而显示不出脆性。

(2)氢脆的裂纹扩展特性。

高强度钢产生的氢脆,其裂纹扩展是跳跃式前进的。

先是在裂纹尖端不远的地方出现一个细小的裂纹,之后这个裂纹在某个时刻突然和原有裂纹连接起来。

新裂纹形核地点一般是在裂纹前沿的塑性区与弹性区的交界上。

氢要扩散到这里并达到一临界浓度时才能形成裂纹,所需的时间就是裂纹的孕育期。

(3)氢脆氢纹扩展第二阶段的特性。

在dt∕da-K的关系中,氢脆裂纹扩展出现一水平台,是谓裂纹扩展第二阶段,这一阶段裂纹扩展速率恒定,与应力强度因子无关,而与温度有关,说明dt/da在这一阶段主要决定于化学因素,是一典型的热激活过程。

氢原子扩散到裂纹尖端并保持某一浓度是裂纹扩展的决定性因素。

金属材料在氢中裂纹扩展速率主要决定于氢原子在基体中的扩散速率。

对于主要是内部氢脆产生的,要多从严格执行工艺规定着手。

对于环境氢脆,首要的一条是尽量不用高强度材料,村料强度越高,对氢脆越敏感。

减少氢脆的办法大致有以下几个方面:应力腐蚀和氢脆的相互比较应力腐蚀氧脆L 裂纹从表而开始;2.裂纹分叉.仃较多的二次裂纹:3.裂纹源区行较多的腐蚀产物依篙柠:4.裂纹源可能仃个或多个•不•定在应力集中处萌生裂纹源:5. 般为沿晶断裂,也仃穿晶解理断裂:6.必定要行拉伸应力(或残余拉应力)作Ifl:7.只有合金中发牛,纯金帆不发牛应力增蚀:8. 神合金只对少数特定化学介质敏煜.浓度可以很低:9.无应力时∙合金对腐蚀环境可能是情性的:10.与材料的轧制方响无关:11.阴极保护能明显诚援应力腐蚀H裂1.裂纹从内部开始:2.裂纹几乎不分叉,仃.次裂纹:3.腐蚀产物较少:4.裂纹源可能是•个或多个.多在;.向应力区萌生裂纹源:5.多数为沿M断裂,也可能出现穿岛解理或准W理断裂:6.内部辄脆不定要仃拉应力作用:7.合金和纯金帆均可能发生:8.只要在含氧的环境或在能产生乳的情况(如酸洗、电彼)下都能发生:9.必须含仃翅,强度越高.所需的含履状越低:10.对轧制方向敏感:H.阴极保护反而促进高强钢的气脆倾向.。

氢脆原因机理及常见控制手段

氢脆原因机理及常见控制手段

一、氢脆产生的机理因热处理、机加工、电镀、电焊、酸洗、磷化、材料腐蚀等因素导致氢原子渗入钢和其他金属如铝、钛合金中,由于在每一个铁离子的立方晶格中只能容纳一个氢原子,所以它虽自由的移动和扩散,但不可能有二个氢原子相遇形成氢分子,但被吸收的氢原子具有向应力集中的部位扩散和移动的能力,这时,如果在应力集中部位由于位错而产生晶格缺陷时,氢原子进入晶格间隙,相互汇合形成氢分子,从而致使钢的组织破坏,形成钢的氢脆。

而由于氢原子向应力集中的部位扩散和积聚需要时间,这就是为何氢脆主要的表现特征为延迟断裂。

二、造成产品氢脆的几大因素1、原材料钢的强度越高越容易导致氢脆。

高强度钢的韧性会随着其强度的增高而下降,因此这种材料对缺口、氢脆以及应力腐蚀很敏感,尤其是氢脆性会使这些材料在其设计载荷能力以下发生破坏。

也就是说材料在渗氢的情况下,在低于其屈服强度的应力条件下,容易发生早期脆性断裂,而且材料强度级别越高,渗氢程度越严重,所受应力越大,氢脆风险性也越大。

美国对氢脆敏感的SAE4340钢做过实验,当其抗拉强度低于1250MPa 时,吸收了1〜IOPPM的氢而不会发生氢脆,但经过热处理后,强度达到1760MPa〜1920MPa时,仅吸收了0.03〜0.05PPM的氢,就会发生显著的氢脆断裂。

而采用抗拉强度小于780MPa的普通钢,即使吸收了10~30PPM的氢,也未发现有氢脆断裂现象。

2、机械加工在电镀前的加工过程中,如轧制成型、机械加工、钻孔、磨削中,由于润滑剂的选用不当造成分解会导致氢渗入金属中。

硬化热处理后经机械加工、磨削、冷成型冷矫直处理的制件对氢脆损伤特别敏感。

同时如在冷轧、冲裁、压弯、磨削等机加工过程中使得零件表面产生加工裂纹,会导致零件裂纹处渗氢后很难经烘烤将氢析出。

同时裂纹处又是应力集中区,很容易造成零件在裂纹处延时断裂。

下图所示为一款65Mn材料的组合螺母,因表面有严重的机加工裂纹,导致在电镀后采用GBT/3098.17进行氢脆测试过程中发生氢脆断裂。

氢内燃机氢脆问题

氢内燃机氢脆问题

氢内燃机氢脆问题
氢内燃机氢脆问题是指在高压和高温下,氢气与金属发生反应导致金属材料变脆的现象。

这种现象主要是由于氢气的渗入和吸附引起的。

氢气能够渗入金属晶粒结构中,导致晶格的扩散和膨胀,从而使金属材料变脆。

氢脆问题对于氢内燃机来说是一个严重的技术挑战。

因为氢是一种极小的分子,能够渗透进入金属材料的晶粒和孔隙中。

一旦氢气进入金属材料,就会导致金属的力学性能降低,甚至引发断裂。

为了解决氢脆问题,可以采取以下措施:
1. 选择合适的材料:选择具有较高的抗氢脆性能的金属材料,如高强度合金和不锈钢等。

这些材料具有较高的强度和韧性,对氢气的渗透具有一定的抵抗能力。

2. 控制氢气浓度:通过合理的设计和优化氢气供应系统,控制氢气浓度的大小,以减少金属材料与氢气的接触,从而降低氢脆问题的发生。

3. 温度和压力控制:在氢内燃机的运行中,控制温度和压力的大小,避免金属材料受到过高的温度和压力的影响,从而减少氢脆问题的发生。

4. 添加抗氢脆剂:在金属材料中添加一些抗氢脆剂,能够减缓氢气的渗透和吸附,提高材料的抗氢脆性能。

总之,氢脆问题是氢内燃机开发和应用中需要解决的重要难题,需要通过材料选择、气体控制和添加剂等多种手段来降低氢脆的发生,确保氢内燃机的安全可靠运行。

氢脆问题培训

氢脆问题培训
2 55 3 60 4 65
5 70
6 70 7 80 8 85
9 90
10 95 11 100 12 105
34
二 氢脆试验方法
一航材料院
持续载荷试验——快速试验方法
(1)逐步加载试验 分步加载试验的根据是Traiono的试验
图2-20 利用在149℃(300℉)烘烤不同时间所得各种氢浓度下的 持续载荷破断曲线、尖缺口试样、强度水平230ksi,按Traiono 35
Nd
H
氢测定条
NdH2
2H
Nd
H
飞机主起落架装臵(AISI4340) Nd+2H
300℉(149℃),1h
NdH2
测试结果:如果NdH2反应部位是直观(肉眼)可见,局部氢浓度将大于 150ppm;光学显微镜和扫描电镜读数可连续测定从150到1ppm以下(在 1μm的位臵)。光学显微镜到0.01ppm,扫描电镜到0.001ppm。
90%极限抗拉强度下,168h不断为合格。
应力环敏感性试验:
¤ 3个应力环,光亮氰化镀镉,10A/ft2下镀30min,375℉除氢8h, 加载90%σb ,24h内应断裂; ¤ 3个应力环,按DPS9.28松孔镀镉,60A/ft2下镀6min,375℉除氢 23h,加载90%σb ,应该168h不断(ASTM F519规定200h)。 评价: 应力环灵敏度比缺口根部半径为0.003英寸的缺口拉棒试样低;
(1)逐步加载试验
¤ ASTM F519 附录A3 ¤ ASTM F1624 钢的氢脆门槛值 ¤ ASTM F1940 紧固件工艺控制检验
缺口方棒试样 四点弯曲加载
逐渐分步加载
32
二 氢脆试验方法

金属材料氢脆研究及防护措施

金属材料氢脆研究及防护措施

金属材料氢脆研究及防护措施氢脆是指金属在使用过程中与氢气发生反应,导致其脆性增加,易于发生裂纹和断裂。

这是金属材料出现的一个严重问题,对于工业生产和使用中的金属材料有很大的不利影响。

氢脆的原因是金属与氢气发生反应,导致氢分子渗透到金属内部,并与金属原子结合成为氢化物,在细小的缺陷处形成高应力区,导致金属发生塑性变形,产生微裂纹,最终导致金属材料的断裂。

为了解决氢脆问题,工业生产中采取了多种措施。

其中最常用的方法是在生产中控制氢气的来源和含量,尽可能降低金属与氢气发生反应的可能性。

此外,在金属材料的加工和使用过程中,需要特别注意减少金属表面裂纹和缺陷的产生,避免强化材料上的应力和变形。

通过这些措施可以有效地预防金属材料的氢脆现象。

除了采取预防措施,科学家们还在积极研究氢脆的成因和防护方法。

他们发现,氢分子与金属原子发生反应时,需要一定的能量才能形成氢化物。

因此,如果能够控制金属表面的能量状态,就有可能避免氢分子与金属原子发生反应,从而防止氢脆现象的产生。

为了实现这一点,研究人员提出了各种抗氢脆防护措施。

其中最常用的方法就是采用钼、铬等金属元素将金属材料的表面覆盖,从而防止氢分子与金属原子直接接触。

另外,还可以采用涂层、膜、纳米材料等方法来包裹金属,形成保护层,隔绝金属与氢分子的接触,从而减少氢脆的发生。

此外,科学家们还在研究新型抗氢脆材料和涂层,以及新的氢脆防护体系。

他们采用分子层析、光学、表面分析等各种技术手段,探索金属和氢气之间的反应机制,开发高效的抗氢脆材料。

同时,他们也在研究氢脆防护系统的优化和改进,以提高其防护性能和可靠性。

总之,氢脆是金属材料在使用过程中面临的一个重要问题。

为了解决这个问题,工业生产研究中采取了多种预防措施,同时科学家们也在积极研究新的抗氢脆材料和防护系统。

这将有助于提高工业生产效率和质量,推动金属材料产业进一步的发展。

(完整版)氢脆问题汇总

(完整版)氢脆问题汇总

氢脆(hydrogen embrittlement)是指金属材料在冶炼,加工,热处理,酸洗和电镀等过程中,或在含氢介质中长期使用时,材料由于吸氢或氢渗而造成机械性能严重退化,发生脆断的现象.从机械性能上看,氢脆有以下表现:氢对金属材料的屈服强度和极限强度影响不大,但使延伸率是断面收缩率严重下降,疲劳寿命明显缩短,冲击韧性值显著降低.在低于断裂强度拉伸应力的持续作用下,材料经过一段时期后会突然脆断.氢脆的机理学术界还有争议,但大多数学者认为以下几种效应是氢脆发生的主要原因:1. 在金属凝固的过程中,溶入其中的氢没能及时释放出来,向金属中缺陷附近扩散,到室温时原子氢在缺陷处结合成分子氢并不断聚集,从而产生巨大的内压力,使金属发生裂纹.2. 在石油工业的加氢裂解炉里,工作温度为300-500度,氢气压力高达几十个到上百个大气压力,这时氢可渗入钢中与碳发生化学反应生成甲烷.甲烷气泡可在钢中夹杂物或晶界等场所成核,长大,并产生高压导致钢材损伤.3. 在应力作用下,固溶在金属中的氢也可能引起氢脆.金属中的原子是按一定的规则周期性地排列起来的,称为晶格.氢原子一般处于金属原子之间的空隙中,晶格中发生原子错排的局部地方称为位错,氢原子易于聚集在位错附近.金属材料所外力作用时,材料内部的应力分布是不均匀的,在材料外形迅速过渡区域或在材料内部缺陷和微裂纹处会发生应力集中.在应力梯度作用下氢原子在晶格内扩散或跟随位错运动向应力集中区域.由于氢和金属原子之间的交互作用使金属原子间的结合力变弱,这样在高氢区会萌生出裂纹并扩展,导致了脆断.另外,由于氢在应力集中区富集促进了该区域塑性变形,从而产生裂纹并扩展.还有,在晶体中存在着很多的微裂纹,氢向裂纹聚集时有吸附在裂纹表面,使表面能降低,因此裂纹容易扩展.4. 某些金属与氢有较大的亲和力,过饱和氢与这种金属原子易结合生成氢化物,或在外力作用下应力集中区聚集的高浓度的氢与该种金属原子结合生成氢化物.氢化物是一种脆性相组织,在外力作用下往往成为断裂源,从而导致脆性断裂.氢脆给人类利用金属带来了风险,因此研究氢脆的目的主要在于防止氢脆,由于氢脆的原因很多,而且人类的认识也不够透彻完整,所以现在还无法完全防止氢脆.目前防止氢脆的措施有以下几种:1. 避免过量氢带入--在金属的冶炼过程中降低相对湿度,对各种添加剂和钢锭模进行烘烤保持干燥.2. 去氢处理--减缓钢锭冷却速度使氢有足够的时间逸出,或把钢材放在真空炉中退火除氢.3. 钢中添加适当的合金元素,形成弥散分布的第二相,做为氢的不可逆陷阱,使得材料中的可活动氢的含量相对地减少,从而降低材料的氢脆倾向.4. 发展新的抗氢钢种,氢在体心立方晶体结构中的扩散速度比六角密堆结构或面心立方结构中的扩散速度高得多,所以抗氢钢常以具有面心立方结构的相为基,再加其他强化措施,可使其满足使用强度要求.5. 采用适当的防护措施--在酸洗或电镀时在酸液或电解液中添加缓蚀剂,使溶液中产生的大量氢原子在金属表面相互结合成氢分子直接从溶液中逸出,避免氢原子进入金属内部.此外,在构件外涂敷防腐层或在工作介质中施加保护电位,可避免构件与介质反应生成氢.一般在使用氧炔焰时产生氢脆的可能性比较小。

氢脆的概念问题回答

氢脆的概念问题回答

氢脆的概念
氢脆是指在高强度应力下,钢材等金属材料中的氢原子会发生脆化现象,导致材料的强度和韧性急剧下降,甚至会发生断裂。

这种现象在
工业生产中经常出现,给生产和使用带来了很大的安全隐患。

氢脆的产生原因主要是由于氢原子在金属材料中的扩散和积聚。

在金
属材料的制造和使用过程中,氢原子会从外部环境中吸收并进入材料
内部,然后在材料中扩散和积聚。

当材料受到高强度应力时,氢原子
会聚集在材料的应力集中区域,导致材料的强度和韧性急剧下降,从
而引发氢脆现象。

为了避免氢脆现象的发生,工业生产中需要采取一系列的措施。

首先,需要在制造和使用金属材料时,尽可能减少氢原子的吸收和积聚。

其次,需要对金属材料进行适当的热处理,以促进氢原子的扩散和释放。

此外,还需要对金属材料进行严格的检测和监控,及时发现和处理氢
脆现象。

总之,氢脆是一种在工业生产中经常出现的现象,给生产和使用带来
了很大的安全隐患。

为了避免氢脆现象的发生,需要采取一系列的措施,包括减少氢原子的吸收和积聚、适当的热处理以及严格的检测和
监控。

只有这样,才能保证金属材料的强度和韧性,确保工业生产的安全和稳定。

于关于氢脆的问题讨论

于关于氢脆的问题讨论

关于氢脆的问题讨论1、关于氢脆的概念及其危害(1)氢脆[1]:由于吸收和固溶氢原子而导致的脆性。

(2)酸脆[1]:由于酸洗以致氢原子扩散到钢内而导致的氢脆。

(3)氢脆[2]:工件因吸氢或原材料含氢过高而导致的韧度和延时断裂强度降低的现象。

(4)白点[1]:钢经热加工后,在一定温度范围内冷却较快时,由于过饱和的原子氢脱溶进入钢内微隙中合成分子氢,形成巨大压应力,并和钢相变时所产生的局部内应力相结合时,超过钢在这一温度的破断强度而产生的钢材内部的细小裂缝。

这种细小裂缝在纵向断口上呈银亮色晶状斑点,所以叫做白点,在横向热酸浸宏观试样上呈细小裂缝,所以也叫发裂(或发纹)。

一般认为:氢含量低于2~3cm3/100g便不会产生白点[3],此极限含量与钢的成分、锻件尺寸、偏析程度有关。

(5)氢损伤[4] :氢对金属的作用往往表现在使金属产生脆性,因而有时把金属的氢损伤统称为氢脆。

氢与金属的相互作用可分为物理作用和化学作用两类;氢溶解于金属中形成固溶体,氢原子在金属的缺陷中形成氢分子,这是其物理作用;氢与金属生成氢化物,氢与金属中的第二相作用生成气体产物,这些是化学作用。

氢与钢的化学作用主要是与钢中碳化物等第二相反应生成甲烷等气体。

氢分子和甲烷分子的体积比氢原子大得多,形成后被封闭在钢材的微隙中,逐渐形成高压,高压作用使微隙壁萌生裂源至发展成裂纹,最终导致钢材的力学性能下降而至构件丧失承载能力。

习惯上把氢对钢的物理作用所引起的损伤叫钢的氢脆,而把氢与钢的化学作用引起的损伤叫腐蚀。

后者比前者破坏性更大。

(6)应力腐蚀开裂[4]:如果钢在冶炼过程中伴有过量氢进入,会使钢件在腐蚀环境服役时由于氢脆而引起应力腐蚀开裂。

2、关于“氢脆”的形成原因(1)冶炼时进入[3](2)钢及低合金钢,经锻造(或重新加热奥氏体化)后在冷却过程中的过冷奥氏体最不稳定区冷却太快,从而使氢原子不能逸出;(3)钢件在表面处理的酸洗过程伴有氢原子渗入。

螺丝电镀后氢脆问题及解决方案

螺丝电镀后氢脆问题及解决方案

螺丝电镀后氢脆问题及解决方案直接说结论:以合金钢作原料生产的10.9级、12.9级、14.9级高强度螺栓电镀后(或仅酸洗后),必须在第一时间除氢脆处理,除氢脆处理的方法是:200度烘箱加热3-4小时析出氢原子。

以下内容是唠叨:第二次世界大战初期,英国皇家空军一架Spitpie战斗机由于引擎主轴断裂而坠落,机毁人亡,此事曾震惊英国朝野。

1975年美国芝加哥一家炼油厂,因一根15cm的不锈钢管突然破裂,引起爆炸和火灾,造成长期停产。

法国在开采克拉克气田时,由于管道破裂,造成持续一个月的大火。

我国在开发某大油田时,也曾因管道破裂发生过井喷,损失惨重。

在军事方面还有:美国北极星”导弹因固体燃料发动机机壳破裂而不能发射,美空军F-11战斗机在空中突然坠毁等。

途中行驶的汽车因传动轴突然断裂而翻车,正在机床上切削的刀具突然断裂等事故枚不胜举。

这些灾难性的恶性事故,瞬时发生,事先毫无征兆,断裂无商量,严重地威胁着人们生产财产安全。

起初科学工作者们对出事原因,众说纷纭,一筹莫展。

后来经过长期观察和研究,终于探明这一系列的恶性事故的罪魁祸首一一氢脆。

1、氢脆的原因氢脆通常表现为钢材的塑性显著下降,脆性急剧增加,并在静载荷下(往往低于材料的(7 b)经过一段时间后发生破裂破坏的趋势。

众所周知,氢在钢中有一定的溶解度。

炼钢过程中,钢液凝固后,微量的氢还会留在钢中。

通常生产的钢,其含氢量在一个很小的范围内。

氢在钢中的溶解度随温度下降而迅速降低,过饱和的氢将要析出。

咖rog'n uJfido氢是在钢铁中扩散速度最快的元素,其原子半径最小,在低温区仍有很强的扩散能力。

如果冷却时有足够的时间使钢中的氢逸出表面或钢中的氢含量较低时,则氢脆就不易发生。

如果冷却速度快,钢件断面尺寸比较大或钢中氢含量较高时,位于钢件中心部分的氢来不及逸出,过剩的氢将进入钢的一些缺陷中去,如枝晶间隙、气孔内。

若缺陷附近由于氢的聚集会产生强大的内压而导致微裂纹的萌生与扩展。

完整版氢脆问题汇总

完整版氢脆问题汇总

氢脆(hydrogen embrittlement )是指金属资料在冶炼,加工,热办理,酸洗和电镀等过程中,或在含氢介质中长久使用时,资料因为吸氢或氢渗而造成机械性能严重退化,发生脆断的现象.从机械性能上看,氢脆有以下表现:氢对金属资料的佩服强度和极限强度影响不大,但使延伸率是断面缩短率严重降落,疲备寿命显然缩短,冲击韧性值显然降低.在低于断裂强度拉伸应力的连续作用下,资料经过一段期间后会忽然脆断.氢脆的机理学术界还有争议,但大多数学者以为以下几种效应是氢脆发生的主要原由:1.在金属凝固的过程中,溶入此中的氢没能及时开释出来,向金属中缺点周边扩散,到室温时原子氢在缺点处结合成分子氢其实不停齐集,从而产生巨大的内压力,使金属发生裂纹.2.在石油工业的加氢裂解炉里,工作温度为 300-500 度,氢气压力高达几十个到上百个大气压力,这时氢可浸透钢中与碳发生化学反应生成甲烷.甲烷气泡可在钢中夹杂物或晶界等场所成核,长大,并产生高压以致钢材损害.3.在应力作用下,固溶在金属中的氢也可能惹起氢脆.金属中的原子是按必定的规则周期性地摆列起来的,称为晶格.氢原子一般处于金属原子之间的空隙中,晶格中发生原子错排的局部地方称为位错,氢原子易于齐集在位错周边.金属材料所外力作用时,资料内部的应力分布是不平均的,在资料外形迅速过渡地域或在资料内部缺点和微裂纹处会发生应力会合.在应力梯度作用下氢原子在晶格内扩散或随从位错运动向应力会合地域.因为氢和金属原子之间的交互作用使金属原子间的结合力变弱,这样在高氢区会萌生出裂纹并扩展,以致了脆断.其余,因为氢在应力会合区富集促进了该地域塑性变形,从而产生裂纹并扩展.还有,在晶体中存在着很多的微裂纹,氢向裂纹齐集时有吸附在裂纹表面,使表面能降低,所以裂纹简单扩展.4.某些金属与氢有较大的亲和力,过饱和氢与这类金属原子易结合生成氢化物,或在外力作用下应力会合区齐集的高浓度的氢与该种金属原子结合生成氢化物.氢化物是一种脆性相组织,在外力作用下常常成为断裂源,从而以致脆性断裂.氢脆给人类利用金属带来了风险,所以研究氢脆的目的主要在于防范氢脆,因为氢脆的原由很多,并且人类的认识也不够透辟圆满,所以此刻还没法圆满防范氢脆.目前防范氢脆的措施有以下几种:1.防范过分氢带入 --在金属的冶炼过程中降低相对湿度,对各种增添剂和钢锭模进行烘烤保持干燥.2.去氢办理 --减缓钢锭冷却速度使氢有足够的时间逸出,或把钢材放在真空炉中退火除氢.3.钢中增添合适的合金元素,形成弥散分布的第二相,做为氢的不能够逆骗局,使得资猜中的可活动氢的含量相对地减少,从而降低资料的氢脆偏向.4.发展新的抗氢钢种,氢在体心立方晶体结构中的扩散速度比六角密堆结构或面心立方结构中的扩散速度高得多,所以抗氢钢常以拥有面心立方结构的相为基,再加其余增强措施,可使其满足使用强度要求.5.采纳合适的防范措施 --在酸洗或电镀时在酸液或电解液中增添缓蚀剂,使溶液中产生的大批氢原子在金属表面互相结合成氢分子直接从溶液中逸出,防范氢原子进入金属内部.其余,在构件外涂敷防腐层或在工作介质中施加保护电位,可防范构件与介质反应生成氢.一般在使用氧炔焰时产生氢脆的可能性比较小。

氢内燃机氢脆问题

氢内燃机氢脆问题

氢内燃机氢脆问题氢内燃机氢脆问题是指在氢气环境中,金属材料会发生脆性断裂的现象。

这一问题在氢能源应用领域中具有重要的意义,但同时也是限制氢能源商业化的一个关键因素。

本文将从氢脆问题的原因、影响和解决方法等方面进行论述。

首先,氢脆的原因主要是氢气的渗入和吸附导致金属内部发生氢化反应。

氢气具有较小的原子半径,在金属晶格中容易渗透并形成氢化物。

氢化物的形成会导致金属晶格膨胀,加剧材料的应力和应变。

当内部应力超过材料的强度极限时,金属材料就会发生脆性断裂。

氢脆问题在氢燃料电池车辆和储氢装置等氢能源应用中尤为突出。

汽车发动机和燃料电池堆中的金属材料都容易受到氢脆的影响。

例如,氢燃料电池堆中使用的电解质膜需要由金属材料支撑,而氢气在高压状态下容易渗透到金属中,导致电解质膜支撑材料发生氢脆。

这不仅会降低材料的强度和韧性,同时也会影响燃料电池堆的性能和寿命。

针对氢脆问题,研究人员提出了多种解决方法。

首先是通过选择合适的金属材料来降低氢脆的发生。

目前,钢材被广泛应用于氢能源领域,并且通过添加合金元素来提高其抗氢脆性能。

此外,一些新型金属材料,如氢吸附合金以及具有良好抗脆性的高熵合金,也被提出并正在进行研究。

其次,金属材料的维护和保护也对减轻氢脆问题具有重要意义。

利用表面涂层和镀层技术可以有效降低氢气的渗透和吸附,并增强金属材料的耐腐蚀性和抗氢脆性能。

此外,对金属材料进行定期检测和维修,以及严格的质量控制和生产过程控制,也能减少氢脆问题的发生。

最后,研究人员还在寻找新的氢脆问题解决方法。

一些研究集中在了解氢脆机理和预测氢脆的模型和方法上。

通过深入研究材料的内部结构和应力状态,可以更好地预测氢脆的发生,并提出相应的解决方法。

综上所述,氢脆问题是氢能源应用领域中的一个重要问题,但同时也是限制氢能源商业化的一个关键因素。

通过选择合适的金属材料、维护和保护金属材料以及研究新的解决方法,可以有效减轻氢脆问题的影响,推动氢能源的商业化发展。

氢脆现象的原因和处理措施

氢脆现象的原因和处理措施

氢脆钢材中的氢会使材料的力性能脆化,这种现象称为氢脆。

氢脆主要发生在碳钢和低合金钢。

钢中氢的来源主要为下列四个方面:(1)冶炼过程中溶解在钢水中的氢,在结晶冷凝时没有能及时逸出而存留在钢材中;(2)焊接过程中由于水分或油污在电弧高温下分解出的氢溶解入钢材中;(3)设备运行过程中,工作介质中的氢进入钢材中;(4)钢试件酸洗不当也可能导致氢脆。

含氢的钢材,当应力大于某一临界值时,就会发生氢脆断裂。

氢对钢材的脆化过程是一个微观裂纹在高应力作用下的扩展过程。

脆断应力可低达屈服极限的20%。

钢材的强度愈高(所承受的应力愈大),对氢脆愈敏感。

容器中的应力水平,包括工作应力及残余应力是导致氢脆很重要的因素。

氢脆是一种延迟断裂,断裂迟延的时间可以仅几分钟,也可能几天。

氢脆断裂只发生在100~150C的温度范围内,很低的温度不利于氢的移动和聚集,不易发生氢脆,而较高的温度可以使氢从钢中逸出,减少钢中的氢浓度,从而避免脆化。

焊后保温及热处理就是利用高温下氢能从钢中扩散逸出的原理,用来降低焊缝中氢含量,它是改善焊接接头力学性能的有效措施。

氢对钢铁材料的危害性较大,由于氢而导致材质劣化的现象统称为氢损伤。

氢损伤的形式有很多种,除了氢脆以外,还有因氢在钢板分层处聚集引起的氢鼓泡;氢在钢材中心部位聚集造成的细微裂纹群,称为白点;以及钢在高温高压氢(对碳钢,温度大于250℃.氢分压大于2MPa)作用下的氢腐蚀。

发生氢腐蚀时,钢的组织发生脱碳,渗碳体分解,沿晶界出现大量微裂纹,钢的强度、韧性丧失殆尽。

无损检测不能检测和判定清脆。

其余种类的氢损伤检测:氢鼓泡一般用肉眼便可观察到;白点可应用超声波检测方法测出来;氢致表面裂纹可应用磁粉或渗透方法检测出来;氢腐蚀可通过硬度试验和金相方法检测和判定。

氢脆现象解释

氢脆现象解释

氢脆现象解释
氢脆现象是指在高强度金属中,如钢和铁合金中,当金属在加工过程中或在使用过程中接触到氢气时,会出现脆性破裂现象。

氢脆的主要解释有三个方面:
1. 氢渗透:氢气在金属中运动并渗透进入金属晶粒中,会导致晶粒边界处的氢浓度升高。

当氢浓度超过金属破裂强度的临界值时,氢在晶粒内部形成气泡,增加了晶体的内部应力和负面应力。

这使得金属变得脆弱,容易发生脆性断裂。

2. 氢吸收:金属表面与氢气发生反应,形成金属与氢的化合物,这种化合物可被金属晶界吸收。

当晶界吸收了大量氢时,会导致晶界的强度减弱,从而引发氢脆现象。

3. 奥氏体转变:某些钢和铁合金的冷加工或焊接过程中会发生奥氏体亚晶的形成。

在奥氏体亚晶中,氢原子可以通过间隙位错或溶质排斥的机制嵌入金属晶体中,从而导致亚晶区域的氢浓度升高。

当氢浓度超过亚晶区的承受能力时,亚晶很容易发生断裂。

为了减少氢脆现象,可以采取以下措施:
1. 预处理:在金属加工或焊接之前,可以对金属进行退火或热处理,以减少在金属中的氢含量。

2. 控制加工条件:在金属加工过程中,控制加工速度、温度和
应变速率,以减少金属中的氢渗透和吸收。

3. 添加抑制剂:在金属中添加特定的元素,如钼、钛、铝等,可以减少氢对金属的吸收和渗透。

4. 使用防脆剂:在金属表面形成一层防脆剂涂层,可以减少金属与氢气的接触,从而减少氢脆现象的发生。

总之,氢脆现象是金属与氢气相互作用的结果,通过控制氢含量和加工条件,以及采取防护措施,可以减少或避免氢脆现象的发生。

金属氢脆原因及去氢脆方法

金属氢脆原因及去氢脆方法

金属氢脆原因及去氢脆方法嘿,咱今儿个就来聊聊金属氢脆这档子事儿!你说这金属平日里看着挺结实的呀,咋就会出现氢脆呢?其实啊,这就好比一个人平时身体倍儿棒,可要是不小心被一些“坏东西”给缠上了,那也会变得虚弱呀!金属氢脆的原因呢,就像是有一些“小捣蛋鬼”在金属里面捣乱。

比如说,在一些生产过程中,像电镀、酸洗这些,就可能会让氢原子趁机钻进金属里。

这氢原子就像个调皮的孩子,在金属里面这儿晃晃,那儿荡荡,时间一长,就把金属的结构给搞坏了,让金属变得容易断裂。

那怎么解决这个问题呢?这就有不少去氢脆的方法啦!就好像我们要把那些捣乱的“小捣蛋鬼”给揪出来一样。

一种方法就是进行热处理。

这就好比给金属来个“桑拿浴”,把氢原子给赶跑。

通过加热,让氢原子赶紧离开金属,恢复金属原本的强壮。

还有呢,就是改进生产工艺。

这就像是给生产过程来个大整顿,尽量减少氢原子进入金属的机会。

比如说,选择更合适的电镀液,或者调整酸洗的条件。

另外啊,对金属进行防护也很重要。

就像给金属穿上一件“保护衣”,让氢原子不容易靠近它。

咱再想想,要是不重视金属氢脆这个问题,那会咋样呢?那可能好多金属制品用着用着就突然坏掉了,多吓人呀!那不是给我们的生活和工作带来很多麻烦吗?所以啊,了解金属氢脆的原因和去氢脆的方法,那可真是太重要啦!在实际生活中,我们可不能小瞧了这个问题呀!比如说汽车上的一些零部件,要是因为氢脆出了问题,那可不是闹着玩的。

还有那些大型的机械设备,要是因为氢脆导致故障,那损失可就大了去了。

总之呢,金属氢脆可不是个小事情,我们得认真对待。

要像爱护我们自己的身体一样,好好地保护金属,让它们能更好地为我们服务。

这样,我们的生活才能更加安全、可靠、舒适呀!难道不是吗?大家可得记住这些方法哦,可别让氢脆给我们的金属制品捣乱啦!。

螺丝电镀后氢脆问题及解决方案

螺丝电镀后氢脆问题及解决方案

螺丝电镀后氢脆问题及解决方案直接说结论:以合金钢作原料生产的级、级、级高强度螺栓电镀后(或仅酸洗后),必须在第一时间除氢脆处理,除氢脆处理的方法是:200度烘箱加热3-4小时析出氢原子。

以下内容是唠叨:第二次世界大战初期,英国皇家空军一架Spitpie战斗机由于引擎主轴断裂而坠落,机毁人亡,此事曾震惊英国朝野。

1975年美国芝加哥一家炼油厂,因一根15cm 的不锈钢管突然破裂,引起爆炸和火灾,造成长期停产。

法国在开采克拉克气田时,由于管道破裂,造成持续一个月的大火。

我国在开发某大油田时,也曾因管道破裂发生过井喷,损失惨重。

在军事方面还有:美国“北极星”导弹因固体燃料发动机机壳破裂而不能发射,美空军F-11战斗机在空中突然坠毁等。

途中行驶的汽车因传动轴突然断裂而翻车,正在机床上切削的刀具突然断裂等事故枚不胜举。

这些灾难性的恶性事故,瞬时发生,事先毫无征兆,断裂无商量,严重地威胁着人们生产财产安全。

起初科学工作者们对出事原因,众说纷纭,一筹莫展。

后来经过长期观察和研究,终于探明这一系列的恶性事故的罪魁祸首——氢脆。

1、氢脆的原因氢脆通常表现为钢材的塑性显著下降,脆性急剧增加,并在静载荷下(往往低于材料的σb)经过一段时间后发生破裂破坏的趋势。

众所周知,氢在钢中有一定的溶解度。

炼钢过程中,钢液凝固后,微量的氢还会留在钢中。

通常生产的钢,其含氢量在一个很小的范围内。

氢在钢中的溶解度随温度下降而迅速降低,过饱和的氢将要析出。

氢是在钢铁中扩散速度最快的元素,其原子半径最小,在低温区仍有很强的扩散能力。

如果冷却时有足够的时间使钢中的氢逸出表面或钢中的氢含量较低时,则氢脆就不易发生。

如果冷却速度快,钢件断面尺寸比较大或钢中氢含量较高时,位于钢件中心部分的氢来不及逸出,过剩的氢将进入钢的一些缺陷中去,如枝晶间隙、气孔内。

若缺陷附近由于氢的聚集会产生强大的内压而导致微裂纹的萌生与扩展。

这是由于缺陷吸附了氢原子之后,使表面能大大降低,从而导致钢材破坏所需的临界应力也急剧降低。

关于氢脆问题

关于氢脆问题

关于氢脆问题1、螺纹紧固件氢脆产生的原因及危害螺纹紧固件在制造的过程(如:调质(淬火+高温回火)、氰化、渗炭、化学清洗、磷化、电镀、滚压碾制和机加工(不适当的润滑而烧焦)等工序)和服役环境中,由于阴极保护的反作用或腐蚀的反作用,氢原子有可能进入钢或其他金属的基体,并滞留在基体内,在低于屈服强度(合金的公称强度)的应力状态下,它将可能导致延伸性或承载能力的降低或丧失、裂纹(通常是亚微观的),直致在服役过程或储存过程中发生突然断裂,造成严重的脆性失效。

螺纹紧固件,尤其是高强度紧固件经冷拔、冷成形、碾制螺纹、机加工、磨削后,再进行淬硬热处理、电镀处理,极易受氢脆的破坏。

导致紧固件氢脆的原因很多,但是电镀处理工序是关键的因素之一。

紧固件由于氢脆产生的脆性断裂,一般发生的很突然,是无法预料的,故这种失效的形式造成的后果是很严重的。

尤其是在有安全性能要求时,减少氢脆的产生是很有必要的,因此,电镀紧固件去除氢脆是一项很重要的工作工作。

2、紧固件易产生氢脆失效危险的情况及特征A、高抗拉强度或硬化或表面淬硬;B、吸附氢原子;C、在拉伸应力状态下。

随着零件硬度的提高、含碳量的增加、冷作硬化程度的强化,在酸洗和电镀过程中。

氢的溶解度和因此产生吸收氢的总量也将增加,也就是说零件的氢脆敏感性就越强。

直径较小的零件比直径较大的零件氢脆敏感性就强。

3、减少电镀紧固件氢脆的措施A、加工硬度大于或等于320HV的电镀紧固件,在清洗过程前,应增加应力释放过程;在清洗过程中,应使用防腐蚀酸、碱性或机械方法进行。

浸入到防腐酸的时间尽可能的设计为最小持续时间。

B、硬度超过320HV的紧固件在进行冷拔、冷成形、机械加工、磨削后进行热处理工序时,则应符合ISO9587D的规定;C、应尽可能避免有意引入残余应力办法。

如:螺栓、螺钉在热处理后碾制螺纹;D、经热处理或冷作硬化的硬度超过385HV或性能等级12.9级及其以上的紧固件不适宜采用酸洗处理,应使用无酸的特殊方法,如:碱性清洗、喷砂等方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

氢脆(hydrogen embrittlement)是指金属材料在冶炼,加工,热处理,酸洗和电镀等过程中,或在含氢介质中长期使用时,材料由于吸氢或氢渗而造成机械性能严重退化,发生脆断的现象.
从机械性能上看,氢脆有以下表现:氢对金属材料的屈服强度和极限强度影响不大,但使延伸率是断面收缩率严重下降,疲劳寿命明显缩短,冲击韧性值显著降低.在低于断裂强度拉伸应力的持续作用下,材料经过一段时期后会突然脆断.氢脆的机理学术界还有争议,但大多数学者认为以下几种效应是氢脆发生的主要原因:
1. 在金属凝固的过程中,溶入其中的氢没能及时释放出来,向金属中缺陷附近扩散,到室温时原子氢在缺陷处结合成分子氢并不断聚集,从而产生巨大的内压力,使金属发生裂纹.
2. 在石油工业的加氢裂解炉里,工作温度为300-500度,氢气压力高达几十个到上百个大气压力,这时氢可渗入钢中与碳发生化学反应生成甲烷.甲烷气泡可在钢中夹杂物或晶界等场所成核,长大,并产生高压导致钢材损伤.
3. 在应力作用下,固溶在金属中的氢也可能引起氢脆.金属中的原子是按一定的规则周期性地排列起来的,称为晶格.氢原子一般处于金属原子之间的空隙中,晶格中发生原子错排的局部地方称为位错,氢原子易于聚集在位错附近.金属材料所外力作用时,材料内部的应力分布是不均匀的,在材料外形迅速过渡区域或在材料内部缺陷和微裂纹处会发生应力集中.在应力梯度作用下氢原子在晶格内扩散或跟随位错运动向应力集中区域.由于氢和金属原子之间的交互作用使金属原子间的结合力变弱,这样在高氢区会萌生出裂纹并扩展,导致了脆断.另外,由于氢在应力集中区富集促进了该区域塑性变形,从而产生裂纹并扩展.还有,在晶体中存在着很多的微裂纹,氢向裂纹聚集时有吸附在裂纹表面,使表面能降低,因此裂纹容易扩展.
4. 某些金属与氢有较大的亲和力,过饱和氢与这种金属原子易结合生成氢化物,或在外力作用下应力集中区聚集的高浓度的氢与该种金属原子结合生成氢化物.氢化物是一种脆性相组织,在外力作用下往往成为断裂源,从而导致脆性断裂.
氢脆给人类利用金属带来了风险,因此研究氢脆的目的主要在于防止氢脆,由于氢脆的原因很多,而且人类的认识也不够透彻完整,所以现在还无法完全防止氢脆.
目前防止氢脆的措施有以下几种:
1. 避免过量氢带入--在金属的冶炼过程中降低相对湿度,对各种添加剂和钢锭模进行烘烤保持干燥.
2. 去氢处理--减缓钢锭冷却速度使氢有足够的时间逸出,或把钢材放在真空炉中退火除氢.
3. 钢中添加适当的合金元素,形成弥散分布的第二相,做为氢的不可逆陷阱,使得材料中的可活动氢的含量相对地减少,从而降低材料的氢脆倾向.
4. 发展新的抗氢钢种,氢在体心立方晶体结构中的扩散速度比六角密堆结构或面心立方结构中的扩散速度高得多,所以抗氢钢常以具有面心立方结构的相为基,再加其他强化措施,可使其满足使用强度要求.
5. 采用适当的防护措施--在酸洗或电镀时在酸液或电解液中添加缓蚀剂,使溶液中产生的大量氢原子在金属表面相互结合成氢分子直接从溶液中逸出,避免氢原子进入金属内部.
此外,在构件外涂敷防腐层或在工作介质中施加保护电位,可避免构件与介质反应生成氢.
一般在使用氧炔焰时产生氢脆的可能性比较小。

相关文档
最新文档