拉格朗日乘子法

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

z 3. the uncertainty principle
ΔpΔq ≥
1 2
h
the wavefunction for a particle at a well-defined location is a
sharply spiked function that has zero amplitude everywhere
p
a particle with high momentum has a wavefunction with a short wavelength(Fig11.14)
z 2. the sharply curved function corresponding to a higher kinetic energy than the less sharply curved function(Fig11.23,11.24,11.25)
11.2(b)
z Describe how a wavefunction determines the dynamical properties of a system and how those properties may be perdicted.
z 1. In quantum mechanics all dynamical properties of a physical system have associated with them a corresponding operator. The system itself is described by a wavefunction.
Hale Waihona Puke Baidu
11.1(b)
z Explain why Planck’s introduction of quantization accounted for the properties of black-body radiation
z 1. explain the energy density distribution of the radiation as a function of wavelength, in particular ,the observed drop to zero as λ 0
z 令其对x,y,z 的三个自变量的偏微熵分别为零,得到三 个新方程式: yz+2C(y+z)=0 xz+2C(x+z)=0 xy+2C(x+y)=0
z 把上面的式子相除得 (x/y)=(x+z)/(y+z) (y/z)=(x+y)/(x+z)
z 再由约束条件得到它们的值是 x=y=z=(a/√6)
∂F ∂x1
=
0
=
∂f ∂x1
+ C1
∂y1 ∂x1
+ C2
∂y2 ∂x1
+ LCm
∂ym ∂x1
L
∂F ∂xn
=
0=
∂f ∂xn
+ C1
∂y1 ∂xn
+ C2
∂y2 ∂xn
+ LCm
∂ym ∂xn
z 很显然,这n 个方程式已经巧妙地把约束条件融合到求解的要求之中 了。拉格朗日就是这样把约束条件的信息放到了求解进程中了。
〈Ω〉 = ∫ψ ∗ Ωψdτ
11.3(b)
z Suggest how the general shape of a wavefunction can be predicted without solving the schro&&dinger equation explicitly.
z 1. the de Broglie relation: λ = h
z 2. When the function representing the state of the system is an eigenfunction of the operator Ω,we solve the eigenvalue equation
Ωψ = ωψ
in order to obtain the observable values,ω ,of the dynamical
z 上面的n 个方程连同约束条件给的m 个方程式已经可以解出n+m 个未 知数。它们就是n 个x(即x1,x2,…,xn )和m 个C (即C1 ,C2 ,…, Cm )。于是我们就得到了这个函数达到极值时的各个自变量的值。可 以看到约束条件不同,得到的各个x 值也不同。这样就利用拉格朗日 方法解决了问题
拉格朗日乘子法(lagrange mutipliers)
z 欲y1求(x1n,元x2,函…数,xnf()x=10,x,2,…,xn)在如下m个约束条件(m<n) y2(x1,x2,…,xn)=0 … ym(x1,x2,…,xn )=0 下的极值
z 拉乘f格,y朗1 ,y日2 方,…法,y是m,以并1且,把C它1 ,C们2加,…起,来C,m 就这得些到未了知一常个数新(的待函求数的F)顺次 F(x1,x2,…,xn)=f(x1,x2,…,xn) +C1y1(x1,x2,…,xn,…) + C2 y2(x1,x2,…,xn) + … +Cm ym(x1,x2,…,xn )
z 注意到约束条件的各个函数都是零,所以新函数F 达到极值与原函数f 达到极值对自变量(各个x 值)的值是相同的。
z 函数F 既然是各个x 的函数,它达到极值时必然是对各个自变量x 的 偏微商分别等于零(由于是多元函数,所以过去的微分变成了偏微商 了)。根据这个分析,求多个偏微商以后我们就得到n 个新的方程
z 设长方体的三个棱长为x,y,z,则其体积f 为三个边长 的乘积:f(x,y,z)=xyz.要求表面积为a 的平方 于是长方体的6面的面积可以写成2xy+2xz+2yz=a2 即 2xy+2xz+2yz-a2 =0它也就是本问题中仅有一个约束条 件。根据前面介绍的拉格朗日方法制造一个新函数F,并 且放进一个未知的常数C ,于是有 F=xyz+C(2xy+2xz+2yz-a2 )
properties. z 3. When the function is not an eigenfunction of Ω, we can only
find the average or expectation value of dynamical properties by performing the integration
z 2. assume that the energy of the oscillators are quantized E = nhν = nhc / λ we see that at shortwavelength oscillators is very large. This energy is too large for the walls to supply it, so the shortwavelength oscillators remain unexcited.
except at the particle’s position.(Fig11.26,11.27)
相关文档
最新文档