l-雨水管渠设计流量计算公式

合集下载

雨水管道的设计计算

雨水管道的设计计算

地面种类
ψ
各种屋面、混凝土和沥青路面
0.90
大块石铺砌路面和沥青表面处理的碎石路面
0.60
级配碎石路面
0.45
干砌砖石和碎石路面
0.40
非铺砌地面
0.30
公园或绿地
0.15
1.2 雨水管道的设计
尽量利用池塘、 河浜受纳地面径 流,最大限度地 减少雨水管道的 设置。
利用地形, 就近排放 地面水体, 降低造价。
平坦地区:为避免干沟埋深过 大,增加造价,干沟应设在流域 的中部,以减少两侧支沟长度。
陡坡地区:为避免因沟道坡度太陡, 设跌水窨井等特殊构筑物,使干沟与 等高线斜交,以适当减少干沟坡度。
雨水沟系常沿道路铺设, 设在道路中线的一侧,与道路 相平行,尽量在快车道以外。
雨水口的设置位置,要 配合道路边沟,在道路交叉 口处,雨水不应漫过路面。
设计降雨历时:以排水面积中最远的一点到集水 点的雨水流行时间作为设计降雨历时。
t t1 t2
t2
l 60 v
(min)
式中: t——设计降雨历时(排水面积的集水时间),min;
t1——地面积水时间,min; t2——在管道中流行的时间,min; l——集中点上游各沟段的长度,m;
v——相应各管段的设计流速,m/s。
步骤5:根据各管段的假定流速,算出集流时间t,比流量q0, 设计流量qv,而后从水力学算图上选定管径D与坡度I,并确定相 应的流速v,当所确定的流速v与假定流速有出入时,再调假定 流速并进行重新计算,最终使假定流速与确定的流速两者一致
步骤6:计算各管底高程,并填入表格
雨水管道平面图的绘制
规划阶段
雨水管道水力学设计的准则
管道按满流设计,明沟应留超高,不小于0.2m。 最小设计流速为0.75m/s,明沟为0.4 m/s。 管道可不考虑最大流速,明沟的最大流速按下页表采用。 最小管径300mm,最小坡度0.003;雨水口连接管管径 200mm,最小坡度0.01。 雨水沟道流速公式。 管段衔接一般用管顶平接,当条件不利时也可用管底平接。 最小覆土厚度,在车行道下时,一般不小于0.7m,基础应 设在冰冻线以下。 在直线管段上窨井的最大间距见下表。

雨水流量公式详解(含计算过程及结果)

雨水流量公式详解(含计算过程及结果)

雨水流量公式详解(含计算过程及结果)雨水流量是研究城市排水系统设计和防洪工程中的重要参数。

目前常用的雨水流量计算方法是基于雨水流量公式进行。

本文将详细介绍雨水流量公式的计算过程与结果。

一、理论背景雨水流量公式是通过对降雨特点的分析,以及流域面积、地形、土壤类型等因素的考虑,推导出的一种计算雨水流量的方法。

雨水流量公式的应用可以帮助工程师有效地评估和设计城市排水系统,确保其具有良好的抗洪能力和排水效果。

二、常见的雨水流量公式1. 曼宁公式曼宁公式是计算河流或渠道中雨水流量的一种经验公式,常用于城市排水系统的设计与规划。

该公式的基本形式为:Q = C × A × R^2/3 ×S^1/2,其中Q代表雨水流量,C为曼宁系数,A为截面面积,R为湿周(即水流与湿周长的比值),S为水流的比降。

2. 多项式公式多项式公式是通过对实测雨水流量数据进行分析和拟合得到的一种较为精确的计算方法。

多项式公式的形式为:Q = a × A^b × C^c × R^d × S^e,其中a、b、c、d、e是经验系数,A、C、R、S分别为截面面积、湿周、湿周与截面面积的比值、水流的比降。

3. 水动力学模型水动力学模型是基于流体动力学原理建立的一种计算雨水流量的方法。

通过对流速、水位、涌浪等水力要素的观测,运用数值解法求解流体动力学方程,得到雨水流量的准确计算结果。

三、计算过程以曼宁公式为例,现将具体的计算过程进行说明。

步骤一:确定曼宁系数根据河流或渠道的特征,选择合适的曼宁系数。

曼宁系数的选择需考虑流域的地貌、土壤类型、河床或渠道的形状等因素。

步骤二:测量截面面积和湿周在河流或渠道选取一截面进行测量,测量得到截面的面积A和湿周R。

步骤三:查阅水流比降表根据所在地区的地形特征,查询水流比降表,得到水流的比降S。

步骤四:代入公式进行计算将步骤一至步骤三所得数据代入曼宁公式,即可计算出雨水流量Q 的数值。

雨水管渠设计流量计算公式

雨水管渠设计流量计算公式

提高降雨强度和重现期选取的合理性
降雨强度
应基于当地的气候条件、地形地貌和降雨观 测数据,采用更为合理的降雨强度公式或模 型,以更准确地反映实际降雨情况。
重现期
在选择重现期时,应综合考虑当地的经济社 会发展水平、防洪排涝要求和工程投资等因
素,以确定合理的重现期标准。
提高设计降雨历时和暴雨历时确定的准确性
设计降雨量
表示某一降雨强度和降雨历时的 降雨量,是计算雨水管渠设计流 量的基础数据。
设计暴雨量
表示某一暴雨强度和暴雨历时的 暴雨量,是计算雨水管渠设计流 量的基础数据。
设计流量计算公式推导
• 设计流量计算公式推导基于水文 学、水力学和概率统计等学科的 理论基础,通过分析降雨强度、 重现期、设计降雨历时、设计暴 雨历时、设计降雨量和设计暴雨 量等参数之间的关系,推导出计 算雨水管渠设计流量的公式。
高计算精度和可靠性。
THANKS FOR WATCHING
感谢您的观看
03 雨水管渠设计流量计算实 例
某城市雨水管渠设计流量计算
总结词
城市雨水管渠设计流量计算需要考虑多种因素,包括降雨强度、汇水面积、径流系数等,通过计算确定管渠的排 水能力,保障城市排水安全。
详细描述
在某城市中,根据气象资料和地形数据,采用适当的降雨强度和汇水面积计算公式,结合径流系数和管道损失等 参数,计算出雨水管渠的设计流量。同时,根据管渠的排水能力和实际情况,对管渠进行合理布局和优化设计, 确保城市排水系统的安全和可靠性。
某工业区雨水管渠设计流量计算
要点一
总结词
要点二
详细描述
工业区雨水管渠设计流量计算需要考虑工业区的生产特点 、污染物排放等因素,采用适当的计算方法和参数,确保 管渠的排水能力满足实际需求,同时减少对环境的负面影 响。

雨水管道排量计算公式

雨水管道排量计算公式

雨水管道排量计算公式在城市建设中,雨水排放是一个重要的问题。

为了有效地排放雨水,我们需要计算雨水管道的排量。

通过计算排量,我们可以合理地设计管道,确保雨水能够顺利地排放,避免水患等问题的发生。

在本文中,我们将介绍雨水管道排量的计算公式,并探讨一些相关的问题。

首先,我们需要了解雨水管道的基本参数。

雨水管道的排量计算公式如下:Q = A × V。

其中,Q表示排水量,单位为m³/s;A表示管道的横截面积,单位为m²;V 表示雨水的流速,单位为m/s。

在实际应用中,我们需要根据具体情况来确定雨水管道的横截面积和雨水的流速。

下面我们将分别介绍这两个参数的计算方法。

首先是管道的横截面积A的计算。

管道的横截面积可以通过以下公式来计算:A = π× r²。

其中,r表示管道的半径,π表示圆周率,取3.14。

在实际应用中,我们需要测量管道的直径,然后通过以下公式来计算半径:r = d / 2。

其中,d表示管道的直径。

接下来是雨水的流速V的计算。

雨水的流速可以通过以下公式来计算:V = Q / A。

其中,Q表示排水量,A表示管道的横截面积。

在实际应用中,我们需要根据雨水的实际情况来确定排水量和管道的横截面积,然后通过以上公式来计算雨水的流速。

通过以上计算,我们可以得到雨水管道的排量。

在实际应用中,我们还需要考虑一些其他因素,比如雨水的流量、管道的材质和坡度等。

这些因素都会影响排水量的计算,因此在实际应用中需要综合考虑这些因素。

总之,雨水管道排量的计算公式为Q = A × V,通过计算排量,我们可以合理地设计管道,确保雨水能够顺利地排放。

在实际应用中,我们需要根据具体情况来确定管道的横截面积和雨水的流速,然后通过以上公式来计算排量。

同时,我们还需要考虑一些其他因素,比如雨水的流量、管道的材质和坡度等。

通过合理地计算排量,我们可以有效地解决城市雨水排放的问题,确保城市的正常运行。

雨水管渠设计流量的确定(23页)

雨水管渠设计流量的确定(23页)

3
4
5
雨水管渠设计流量计算公式
流量叠加法
t=15min 1
t=16min 2
t=17min 3
4
5
t=15min 1
t=16min 2
t=17min 3
4
5
径流系数的确定
1 降雨在整个汇水面积上是均匀分布的;
2 降雨强度在选定的降雨时段内不变;
假定条件
3 4
雨水从计算管段的起端汇入管段; 径流系数为确定值,为讨论方便假定其值等于1;
影响地面集水时间的主要因素有地面坡度、地面覆盖、降雨强度和地面集水距离
对还是错?
集水时间的确定
L——各管段的长度,m; V——各管段满流时的水流速度,m/s; 60——时间的单位换算系数。
5min
雨水管渠设计流量计算公式
极限强度理论
Q
q
F
Q=q × F
集水时间
降雨历时
极限强度理论(一句话概括):承认面积增加的影响大于雨强减小的影响,即在汇水面积最大前提 下降雨历时最短时,Q最大。即降雨历时=集流时间(最远点面积雨水刚到达设计断面时间)时, Q 最大。
雨水管渠设计流量计算公式
极限强度理论
Qs =ψqF
Q一雨水设计流量(L/s) ;
q一设计暴雨强度[L/ (s-hm2) ];
Ψ一径流系数;
F一汇水面积(hm2)。
注:当有允许排入雨水管道的生产废水排入雨水管道时,应将其水量计算在内。
雨水管渠设计流量计算公式
一、地面上产流过程
思考: 1. 地面入渗率在降雨过程中是否变化? 2. 降雨量一地面入渗流=径流量?
圆石路面
0.6
非铺砌路面

雨水排水系统的水力计算

雨水排水系统的水力计算

前进
返回本章总目录
6.3 雨水排水系统的水力计算
返回本书总目录
5.径流系数
后退
前进
返回本章总目录
6.3 雨水排水系统的水力计算
6.3.2 系统计算原理与参数
返回本书总目录
1.雨水斗泄流量
重力流状态下,雨水斗的排水状况是自由堰流,通过雨水斗
的泄流量与雨水斗进水口直径和斗前水深有关,可按环形溢
流堰公式计算:
6.3 雨水排水系统的水力计算
6.3.3 设计计算步骤
返回本书总目录
2.天沟外排水 天沟布置 即确定天沟的分水线及每条天沟的汇水面积;按照屋面的
构造一般应在伸缩缝或沉降缝作为天沟分水线,单坡的排泄长 度不宜大于 50m。天沟较长时,坡度不能太大,但最小坡度不 得小于0.003。
确定天沟断面 天沟形状:矩形、梯形、半圆形、三角形等。 天沟尺寸:根据排水量、天沟汇水面积计算,根据每一条天沟
管径 I
0.02 0.03 0.04 0.05 0.06 0.07
75mm
3.07 3.77 4.35 4.86 5.33 5.75
100mm 150mm 200mm 250mm
6.63 8.12 9.38 10.49 11.49 12.41
19.55 23.94 27.65 30.91 33.86 36.57
211(110.85lgP) q
(t8)0.70
后退
前进
返回本章总目录
返回本书总目录
6.3 雨水排水系统的水力计算
6.3.1 屋面雨水设计流量计算
屋面雨水排水管道的设计降雨历时可按5min计算, 居住小区的雨水管道设计降雨历时应按下式计算:
t t1M2t

(完整版)雨水流量公式详解(含计算过程及结果)

(完整版)雨水流量公式详解(含计算过程及结果)

雨水设计流量公式Q S=qΨF 式中Q S———雨水设计流量(L /s)q———设计暴雨强度,(L /s・ha) Ψ———径流系数F———汇水面积(ha公顷)其中一、暴雨强度公式为:q=3245.114(1+0.2561lgP) (t+17.172)0.654式中t———降雨历时(min)P———设计重现期(年)(一)设计降雨历时t=t1+mt2,式中t——设计降雨历时(min)t1——地面集水时间(min)t2——雨水在管渠内流行的时间(min)m——折减系数t1的确定:地面集水时间t1受水区面积大小、地形陡缓、屋顶及地面的排水方式、土壤的干湿程度及地表覆盖情况等因素的影响。

在实际应用中,要准确地计算t1值是比较困难的,所以通常取经验数值,t1=5~15min。

在设计工作中,按经验在地形较陡、建筑密度较大或铺装场地较多及雨水口分布较密的地区,t1=5~8min;而在地势平坦、建筑稀疏、汇水区面积较大,雨水口分布较疏的地区,t1值可取10~15min。

m的确定:暗管m=2,明渠m=1.2,在陡坡地区,暗管折减系数m=1.2~2,经济条件较好、安全性要求较高地区的排水管渠m可取1。

t2的确定:t2=∑L 60v式中t2——雨水在管渠内流行时间(min)L——各管段的长度(m)v——各管段满流时的水流强度(m/s)v的确定:v=1n∙R23∙I12式中v——流速(m/s)R——水力半径(m) I——水利坡度n——粗糙系数R确定:R=A XA——输水断面的过流面积(m2)X——接触的输水管道边长(即湿周)(m)n的确定:(二)设计重现期(P)P的确定:《室外排水设计规范》(GB50014-2006)第3.2.4 条原规定:雨水管渠设计重现期,应根据汇水地区性质、地形特点和气候特征等因素确定。

同一排水系统可采用同一重现期或不同重现期。

重现期一般采用0.5~3年,重要干道、重要地区或短期积水即能引起较严重后果的地区,一般采用3~5年,并应与道路设计协调。

雨水流量公式详解

雨水流量公式详解

雨水设计流量公式式中———雨水设计流量(L /s)q———设计暴雨强度,(L /s・ha)Ψ———径流系数F———汇水面积(ha公顷)其中一、暴雨强度公式为:式中t———降雨历时(min)P———设计重现期(年)(一)设计降雨历时,式中t——设计降雨历时(min)——地面集水时间(min)——雨水在管渠内流行的时间(min)m——折减系数的确定:地面集水时间受水区面积大小、地形陡缓、屋顶及地面的排水方式、土壤的干湿程度及地表覆盖情况等因素的影响。

在实际应用中,要准确地计算值是比较困难的,所以通常取经验数值,=5~15min。

在设计工作中,按经验在地形较陡、建筑密度较大或铺装场地较多及雨水口分布较密的地区,=5~8min;而在地势平坦、建筑稀疏、汇水区面积较大,雨水口分布较疏的地区,值可取10~15min。

m的确定:暗管m=2,明渠m=,在陡坡地区,暗管折减系数m=~2,经济条件较好、安全性要求较高地区的排水管渠m可取1。

的确定:式中——雨水在管渠内流行时间(min)L——各管段的长度(m)v——各管段满流时的水流强度(m/s)v的确定:式中v——流速(m/s)R——水力半径(m)I——水利坡度n——粗糙系数R确定:A——输水断面的过流面积(X——接触的输水管道边长(即湿周)(m)n的确定:(二)设计重现期(P)P的确定:《室外排水设计规范》(GB50014-2006)第条原规定:雨水管渠设计重现期,应根据汇水地区性质、地形特点和气候特征等因素确定。

同一排水系统可采用同一重现期或不同重现期。

重现期一般采用~3年,重要干道、重要地区或短期积水即能引起较严重后果的地区,一般采用3~5年,并应与道路设计协调。

特别重要地区和次要地区可酌情增减。

二、汇水系数的确定(Ψ)汇水面积通常是由各种性质的地面覆盖组成的,随着它们占有的面积比例变化,Ψ的值也各异。

因此整个汇水面积的径流系数应采用平均径流系数;也可采用区域的综合径流系数,一般市区的综合径流系数Ψ=郊区的综合径流系数Ψ=。

第3章雨水管渠系统的设计1-2

第3章雨水管渠系统的设计1-2
在工程上,常用单位时间内单位面积上的降雨体积 q(L/(s· ha))表示。 q与i之间的换算关系是将每分钟的 降雨深度换算成每公顷面积上每秒钟的降雨体积.即;
10000 1000 i q 167 i 1000 60
4.降雨面积和汇水面积 降雨面积是指降雨所笼罩的面积, 汇水面积是指雨水管渠汇集雨水的面积。 用F表示,以公顷或平方公里为单位(ha或 km2)。
3. 公式推导:P 70-72
3.雨水管段的设计流量计算
上图中,假设: FA=FB=FC 集水时间均为τ1(min) (1)汇水面积随降雨历时的增加而均匀的 增加; (2)降雨历时t等于或大于汇水面积最远点 的雨水流达设计断面的集水时间τ ; (3)径流系数ψ为确定值,为讨论方便假定 其值等于1。
按满流时的设计流速计算所得的雨水流 行时间小于管渠内实际的雨水流行时间。 苏林系数:大多数雨水管渠中雨水的流 行时间比按最大流量计算的流行时间大 20% ,因此用大于 1 ( 1.2 )的系数乘以用 满流的流速计算出的管内雨水流行时间。
当任一管段发生设计流量时,其他管段 都不是满流(特别是上游管段),所以可设 想利用此上游管段存在的空隙容积,使 —部分水量暂时贮存在此空间内,而起 到调蓄管段内最大流量的作用,从而可 以削减其高峰流量,减小管渠断面尺寸 ,降低工程造价。——管道调蓄利用系数 折减系数m实际是苏林系数与管道调蓄利 用系数两者的乘积。
一般情况下采用下面两式计算年频率和 次频率 年频率: 次频率:
(2)暴雨强度的重现期 某特定值暴雨强度的重现期是指等于或 大于该值的暴雨强度可能出现一次的平均 间隔时间,单位用年(a)表示。 重现期P与频率互为倒数。 即;
相应可得:
对于年频率式:
对于次频率式:

雨水流量公式详解(含计算过程及结果)

雨水流量公式详解(含计算过程及结果)

雨水流量公式详解(含计算过程及结果)-CAL-FENGHAI.-(YICAI)-Company One1雨水设计流量公式式中———雨水设计流量(L /s)q———设计暴雨强度,(L /sha)Ψ———径流系数F———汇水面积(ha公顷)其中一、暴雨强度公式为:式中t———降雨历时(min)P———设计重现期(年)(一)设计降雨历时,式中t——设计降雨历时(min)——地面集水时间(min)——雨水在管渠内流行的时间(min)m——折减系数的确定:地面集水时间受水区面积大小、地形陡缓、屋顶及地面的排水方式、土壤的干湿程度及地表覆盖情况等因素的影响。

在实际应用中,要准确地计算值是比较困难的,所以通常取经验数值,=5~15min。

在设计工作中,按经验在地形较陡、建筑密度较大或铺装场地较多及雨水口分布较密的地区,=5~8min;而在地势平坦、建筑稀疏、汇水区面积较大,雨水口分布较疏的地区,值可取10~15min。

m的确定:暗管m=2,明渠m=,在陡坡地区,暗管折减系数m=~2,经济条件较好、安全性要求较高地区的排水管渠m可取1。

的确定:式中——雨水在管渠内流行时间(min)L——各管段的长度(m)v——各管段满流时的水流强度(m/s)v的确定:式中v——流速(m/s)R——水力半径(m)I——水利坡度n——粗糙系数R确定:A——输水断面的过流面积(X——接触的输水管道边长(即湿周)(m)n的确定:(二)设计重现期(P)P的确定:《室外排水设计规范》(GB50014-2006)第条原规定:雨水管渠设计重现期,应根据汇水地区性质、地形特点和气候特征等因素确定。

同一排水系统可采用同一重现期或不同重现期。

重现期一般采用~3年,重要干道、重要地区或短期积水即能引起较严重后果的地区,一般采用3~5年,并应与道路设计协调。

特别重要地区和次要地区可酌情增减。

二、汇水系数的确定(Ψ)汇水面积通常是由各种性质的地面覆盖组成的,随着它们占有的面积比例变化,Ψ的值也各异。

成都市室外雨水设计流量计算公式

成都市室外雨水设计流量计算公式

地面集水时间 (min) t1
10
折减系数 m
管渠内雨水流行时 间(min)
t2
1 2
暗管折减系
视距离长短、地 形坡度和地面铺
盖情况而 定,一般采用5~
15 min;
数m=2,明渠 折减系数
m=1.2,在陡 坡地
区,暗管折 减系数m=1.2
~2;
0
0
雨水计算流量 (L/s)
Q=F*q*ψ
汇水面积(公顷) F
综合径流系数 ψ
57.46253368
1
0.2
室外排水设计规范 GB50014-2006
面积为公顷
可按本规范表 3.2.2-1 的规定 取值,汇水面积
的平均径流 系数按地面种类 加权平均计算; 综合径流系数, 可按本规范表 3.2.2-2 的规定
取值。
q暴雨强度公;0.803lgP)/(t+12.8*)^0.768
重现期(y) P
降雨历时 (min)
t=t1+mt2
287.3126684
5
12
雨水管渠设计重现期, 应根据汇水地区性质、 地形特点和气候特征 等因素确定。同一排水 系统可采用同一重现期 或不同重现期。重现期 一般采用0.5~3a,重要 干道、重要地区或短期 积水即能引起较严重后 果的地区,一般采用3~ 5a,并应与道路设计协 调。特别重要地区和次

水污染控制工程 第四章 城镇雨水沟道的设计

水污染控制工程 第四章 城镇雨水沟道的设计

t = t1 + mt 2
(4-4)
式中: t— 设计降雨历时,min; t1— 地面集水时间,min; t2—管渠内流行时间,min; m— 延缓系数(也称折减系数), 暗管m=2,明渠m=1.2。
(1) 地面集水时间的确定
地面集水时间:是管渠起点断面在设计重现期、设计历时 地面集水时间 降雨的条件下达到设计流量的时间, 确定这个时间,要考虑地面集水距离、汇水面积、地面 覆盖、地面坡度和降雨强度等因素。在地面坡度皆属平缓 、地面覆盖互相接近、降雨强度都差不多的情况下(我国多 数平原大中城市即属这种情况),地面集水距离成为主要因 素。从汇水量上考察,平坦地形的地面集水距离的合理范 围是50~150米,比较适中的是80~120米。 以图4-2为例。
图4-2 地面集水时间计算示意图 1一房屋,2一屋面分水线,3一道路边沟 , 4一雨水管 , 5一道路
图中箭头表示水流方向。雨水从汇水面积上最远点的房屋 屋面分水线A点流到雨水口的地面集水时间通常是由下列流行 路程的时间所组成: a. 从屋面A点沿屋面坡度经屋檐下落到地面散水坡的时间 ,通常为0.3~O.5min。 b. 从散水坡沿地面坡度流入附近道路边沟的时间. c. 沿道路边沟到雨水口a的时间。 地面集水时间受地形坡度、地面铺砌、地面种植情况、水流 路程、道路横坡和宽度等因素的影响,这些因素直接决定着水 流沿地面或边沟的速度。此外,也与暴雨强度有关,因为暴雨 强度大,水流时间就短。但在上述各因素中,地面集水时间主 要取决于水流距离的长短和地面坡度。
3345(1 + 0.78 lg P ) q= (t + 12) 0.83
( 4-3)
图4-1
安徽省部分地区的暴雨强度公式
三.基本参数的确定

l-雨水管渠设计流量计算公式

l-雨水管渠设计流量计算公式
管段衔接:一般用管顶平接,当条件不利时也可 用管底平接。 最小覆土厚度:一般不小于0.7m。
7
四、雨水管渠水力计算的方法
由于h/D=1,故只需确定Q、D、v、I值。Q值可经过 计算求得,然后选定D值,即可查表求得v、I值 例:已知n=0.013,设计流量Q=200L/s,地面坡 度i=0.004,试计算该管段的管径D,管底坡度I及 流速v。
5
二 雨水管段设计流量的计算


雨水管道设计的极限强度理论包括两部分内容: 1.当汇水面积最大,最远点的雨水流到设计断面时,雨水管道 的设计流量最大。 2.当降雨历时等于集水时间,雨水管道需要排除的水量是最 大的。最远点的雨水流到设计断面的集水时间等于降雨历 时,这种计算雨水管道设计流量的方法,称为极限强度法。
4
折减系数m
雨水在管道内的实际流行时间与计算得出的 流行时间不符,需要采用一个系数进行修正, 此系数叫折减系数.
引入折减系数的原因有二:一是雨水管道内
不总是满流,按满流计算的流行时间小于雨水实际的 流行时间;二是雨水管道的最大流量不大可能在同一 时间发生,上游管道存在调蓄容积.
m变化范围1.8~2.2,我国《室外排水设计规 范》建议:暗管m=2,明渠m=1.2。
1?折减系数m雨水在管道内的实际流行时间与计算得出的流行时间不符需要采用一个系数进行修正此系数叫折减系数
第三节 雨水管网设计流量计算
雨水管渠设计流量计算公式
Q qA 167Ai
式中:Q—— 雨水设计流量,L/s; Ψ—— 径流系数,其数值小于1; A —— 汇水面积,公顷; q —— 设计暴雨强度,L/s.公顷。
解:采用n=0.013的水力计算图。
横坐标找到Q=200L/s,纵坐标找到i=0.004,两线交于A点,得到 v=1.17m/s,符合规定;而D界于400~500mm之间。

建筑小区雨水排水管道水力计算

建筑小区雨水排水管道水力计算
算。 t2=L/60υ (min) (1-3-9)
L——设计管段上游各管段管长,m
υ——设计管段上游各管段的设计流速,m/s 当建筑小区的各种地面参数资料不不足时,径流系数可根据小区内建筑密度
按小区综合径流系数选取。小区综合径流系数见表1-3-4。

模块一 建筑小区生活污水排水系统设计
5)汇水面积F的求定
ψa=∑fi·ψi/∑fi
(1-3-6)
ψa——小区平均地面径流系数 fi——小区内各种地面面积,hm2
ψi——各种地面径流系数
各种地面径流系数见表1-3-3。
模块一 建筑小区生活污水排水系统设计
4)降雨历时t
降雨历时是很重要的设计参数,选择不当会使设计流量过大或过小。
t=t1+mt2 (1-3-7)
流速控制下的最小坡度要求。详见表1-3-5。 2)雨水管段的设计流量如果小于表1-3-5规定的最小管径在最小设计坡度时
的通过流量,则该管段称为非计算管段。非计算管段应采用最小管径并按最
小坡度进行设计。小区雨水管道最小管径、最小设计坡度见表1-3-6。 3)雨水管道水力计算的其他规定可参照污水管道的规定执行
4)雨水管道应按满流设计
模块一 建筑小区生活污水排水系统设计
模块一 建筑小区生活污水排水系统设计
模块一 建筑小区生活污水排水系统设计
模块一 建筑小区生活污水排水系统设计
模块一 建筑小区生活污水排水系统设计
模块一 建筑小区生活污水排水系统设计
R——水力半径,m,满流R=D/4
(3)计算方法
水力计算时,雨水管渠一般采用满流重力流设计计算,与污水管道计算方法 相同,采用流量和流速公式直接求解困难,需要试算和迭代。计算时一般采
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档