浙教八年级上册数学特殊三角形经典习题(含答案)
浙教版八年级上册数学第二章《特殊三角形》测试卷含答案
浙教版八年级上册数学第二章《特殊三角形》测试卷含答案(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--浙教版八年级上册数学第二章《特殊三角形》测试卷考试时间:120分钟满分:120分一、选择题(本大题有12小题,每小题3分,共36分)下面每小题给出的四个选项中,只有一个是正确的.1.下列图形中是轴对称图形的是()A. B. C. D.2.已知等腰三角形的一边长为3,另一边长为6,则这个等腰三角形的周长为()A. 12B. 12或15 C. 15 D. 93.在中,,,则BC边上的高为()A. 12B. 10C. 9D. 84.若等腰三角形一个外角等于100 ,则它的顶角度数为()A. 20°B. 80°C. 20°或80° D. 50°或80°5.如图△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D 交AC于点E,那么下列结论中正确的是()①△BDF和△CEF都是等腰三角形②DE=BD+CE③△ADE的周长等于AB和AC的和④BF=CFA. ①②③④B. ①②③C. ①②D. ①6.如图,将绕点A按逆时针方向旋转100°,得到,若点在线段BC 的延长线上,则的大小为()A. 70°B. 80°C. 84°D. 86°(第5题)(第6题)(第7题)(第9题)7.如图,正方形A,B,C的边长分别为直角三角形的三边长,若正方形A,B的边长分别为3和5,则正方形C的面积为( )A. 4B. 15C. 16D. 188.以下列长度的线段不能围成直角三角形的是()A. 5,12, 13B.C. ,3,4 D. 2,3,49.如图由于台风的影响,一棵树在离地面处折断,折断后树干上部分与地面成30度的夹角,折断前长度是()A. B. C.D. .10.如图,AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,AE=7,BD=2,则DE 的长是()A. 7B. 5C. 3D. 2(第10题)(第11题)11.“三等分角”大约是在公元前五世纪由古希腊人提出来的。
浙教版八年级数学上《第2章特殊三角形》单元测试含答案
第2章特殊三角形一、选择题1.若等腰三角形的顶角为40°,则它的底角度数为()A.40° B.50° C.60° D.70°2.如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为()A.35° B.45° C.55° D.60°3.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()A.35° B.40° C.45° D.50°4.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15° B.17.5°C.20° D.22.5°5.若一个等腰三角形的两边长分别是2和5,则它的周长为()A.12 B.9 C.12或9 D.9或76.若等腰三角形中有两边长分别为2和5,则这个三角形的周长为()A.9 B.12 C.7或9 D.9或127.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10 B.8 C.10 D.6或128.如图,C,D分别是线段AB,AC的中点,分别以点C,D为圆心,BC长为半径画弧,两弧交于点M,测量∠AMB的度数,结果为()A.80° B.90° C.100°D.105°9.如图,△ABC、△ADE中,C、D两点分别在AE、AB上,BC与DE相交于F点.若BD=CD=CE,∠ADC+∠ACD=114°,则∠DFC的度数为何?()A.114 B.123 C.132 D.14710.已知等腰△ABC的两边长分别为2和3,则等腰△ABC的周长为()A.7 B.8 C.6或8 D.7或811.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或1712.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30° B.40° C.45° D.60°13.已知等腰三角形△ABC中,腰AB=8,底BC=5,则这个三角形的周长为()A.21 B.20 C.19 D.1814.如图,在△ABC中,AB=AC,∠A=30°,以B为圆心,BC的长为半径圆弧,交AC于点D,连接BD,则∠ABD=()A.30° B.45° C.60° D.90°15.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A.40° B.45° C.60° D.70°16.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()A.11 B.16 C.17 D.16或1717.如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD=()A.36° B.54° C.18° D.64°18.如图,等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为()A.36° B.60° C.72° D.108°19.如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠DCB=()A.150°B.160°C.130°D.60°20.在△ABC中,∠BAC=90°,AB=3,AC=4,AD平分∠BAC交BC于D,则BD的长为()A .B .C .D .二、填空题21.等腰三角形的一个外角是60°,则它的顶角的度数是______.22.如图,△ABC 中,D 是BC 上一点,AC=AD=DB ,∠BAC=102°,则∠ADC=______度.23.如图,a ∥b ,∠ABC=50°,若△ABC 是等腰三角形,则∠α=______°(填一个即可)24.一个等腰三角形的两边长分别是2cm 、5cm ,则它的周长为______cm .25.若等腰三角形的两条边长分别为7cm 和14cm ,则它的周长为______cm .26.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是______.27.如图,∠BOC=9°,点A 在OB 上,且OA=1,按下列要求画图:以A 为圆心,1为半径向右画弧交OC 于点A 1,得第1条线段AA 1;再以A 1为圆心,1为半径向右画弧交OB 于点A 2,得第2条线段A 1A 2;再以A 2为圆心,1为半径向右画弧交OC 于点A 3,得第3条线段A 2A 3;…这样画下去,直到得第n 条线段,之后就不能再画出符合要求的线段了,则n=______.第2章特殊三角形参考答案一、选择题1.D;2.C;3.A;4.A;5.A;6.B;7.C;8.B;9.B;10.D;11.A;12.B;13.A;14.B;15.A;16.D;17.B;18.C;19.A;20.A;二、填空题21.120°;22.52;23.130;24.12;25.35;26.110°或70°;27.9;。
浙教版八年级上册数学第2章 特殊三角形含答案(全国通用)
浙教版八年级上册数学第2章特殊三角形含答案一、单选题(共15题,共计45分)1、下列能断定△ABC为等腰三角形的是()A.∠A=30°,∠B=60°B.AB=AC=2,BC=4C.∠A=50°,∠B=80° D.AB=3、BC=7,周长为132、如图,以为直径分别向外作半圆,若,则( )A.2B.6C.D.3、⊿ABC中,AB=AC,D是BC中点,下列结论中不一定正确的是( )A.∠B=∠CB.AD⊥BCC.AD平分∠BACD.AB=2BD4、下列各组数据中,能构成直角三角形三边长的是()A. ,2,B.1,,C.6,7,8D.2,3,45、如图,AC,BD是菱形ABCD的对角线,BH垂直AD于点H,若AC=4,BD=3,则BH的长为()A.2.4B.2.5C.4.8D.56、如图,以O为圆心的两个同心圆中,大圆的弦AB切小圆于点C,若∠AOB=120°,则大圆半径R与小圆半径r之间的关系满足( )A.R=2rB.R=3rC.R= rD.R= r7、如图,正方形ABCD的边长为4,点E在对角线BD上,且,EF⊥AB,垂足为F,则EF的长为()A.1B.C.D.8、如图,AB为⊙O的直径,C为⊙O上一点,其中AB=4,∠AOC=120°,P为⊙O上的动点,连AP,取AP中点Q,连CQ,则线段CQ的最大值为( )A.3B.1+C.1+3D.1+9、如图,AB,BC是⊙O的弦,∠B=60°,点O在∠B内,点D为上的动点,点M,N,P分别是AD,DC,CB的中点.若⊙O的半径为2,则PN+MN的长度的最大值是()A. B. C. D.10、如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为()A.80°B.70°C.40°D.30°11、如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC,AB于D,E两点,并连接BD,DE.若∠A=30°,AB=AC,则∠BDE的度数为何()A.45B.52.5C.67.5D.7512、如果一直角三角形两边的长分别为6、8,则第三边长是()A.10B.4 或2C.10或2D.以上都不对13、如图,正三角形的内切圆半径为1,那么这个正三角形的边长为( )A.2B.3C.D.14、下列各组数是三角形的三边,能组成直角三角形的一组数是()A.2,3,4B.3,4,5C.6,8,12D.15、在△ABC中,∠C=90°,∠B=60°,下列说法中,不一定正确的是()A.BC 2+AC 2=AB 2B.2BC=ABC.若△DEF的边长分别为1,2,,则△DEF和△ABC全等 D.若AB中点为M,连接CM,则△BCM为等边三角形二、填空题(共10题,共计30分)16、已知△ABC中,AC=BC,∠A=80°,则∠B=________°.17、如图,在△ABC中,AB=AC=5,BC=6,点M是BC上一点,且BM=4,点P是边AB上一动点,连接PM,将△BPM沿PM翻折得到△DPM,点D与点B对应,连接AD,则AD的最小值为________.18、在一棵树的10米高的B处有两只猴子为抢吃池塘边水果,一只猴子爬下树跑到A处(离树20米)的池塘边.另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高________米.19、如图,等腰△ABC中,AB=AC,∠BAC=50°,AB的垂直平分线MN交AC于点D,则∠DBC的度数是________.20、如图P是正方形内的一点,将绕点C逆时针方向旋转后与重合,若,则=________.21、如图,Rt△ABC中,∠C=90°,点P为AC边上的一点,延长BP至点D,使得AD=AP,当AD⊥AB时,过D作DE⊥AC于E,AB-BC=4,AC=8,则△ABP面积为________.22、如图,已知∠AOB=60°,点P是OA边上,OP=8cm,点M、N在边OB上,PM=PN,若MN=2cm,则ON=________cm.23、如图,在△ABC中,AC=BC=2,∠C=900, AD是△ABC的角平分线,DE⊥AB,垂足为E,AD的垂直平分线交AB于点F,则DF的长为 ________24、如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为________.25、如图,在△ABC中,∠ACB=90°,CD是AB边上的中线,CE⊥AB于E,AC=8,BC=6,则DE=________.三、解答题(共5题,共计25分)26、如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”.如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.27、已知如图,在四边形ABCD中,AD//BC,∠ABD=30°,AB=AD,DC⊥BC于点C,若BD=4,求CD的长.28、如图,⊙O的直径AB垂直于弦CD,垂足P是OB的中点,CD=6cm,求直径AB的长.29、在平面直角坐标系xOy中,直线为一、三象限角平分线.点P关于y轴的对称点称为P的一次反射点,记作;关于直线的对称点称为点P的二次反射点,记作.若点A在轴左侧,点,分别是点A的一次、二次反射点,△ 是等腰直角三角形,请直接写出点A在平面直角坐标系xOy中的位置.30、如图,点A′在Rt△ABC的边AB上,∠ABC=30°,AC=2,∠ACB=90°,△ACB绕顶点C按逆时针方向旋转与△A′CB′重合,A'B'与BC交于点D,连接BB′,求线段BB′的长度.参考答案一、单选题(共15题,共计45分)1、C2、A3、D5、A6、A7、C8、D9、D10、D11、C12、C13、D14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、28、。
第2章 特殊三角形 浙教版八年级上册数学测试卷(含答案)
浙教版八年级上册数学第二章特殊三角形一、选择题1.下列关于体育运动的图标是轴对称图形的为( )A.B.C.D.2.已知△ABC中,a、b、c分别是∠A,∠B,∠C的对边,下列条件不能判断△ABC是直角三角形的是( )A.∠A=∠C-∠B B.a2=b2-c2C.a:b:c=2:3:4D.a=34,b=54,c=13.等腰三角形的顶角是50°,则这个三角形的底角的大小是( )A.50°B.65°或50°C.65°D.80°4.在锐角△ABC中,AB=15,AC=13,高AD=12,则BC的长度为( )A.16B.15C.14D.135.下列命题的逆命题是真命题的是( )A.直角都相等B.全等三角形的对应角相等C.在Rt△ABC中,30°角所对的边是斜边的一半D.在△ABC中,a、b、c为三角形三边的长,若a2=(b+c)(b―c),则△ABC是直角三角形6.如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于( )A.5B.4C.3D.27.如图,在△ABC中,∠C=90°,AC=4cm,BC=3cm,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则CD的长为( )A .1cmB .43cmC .53cmD .2cm8.《九章算术》中记录了这样一则“折竹抵地”问题:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)如果我们假设折断后的竹子高度为x 尺,根据题意,可列方程为( )A .x 2+42=102B .(10―x)2+42=102C .(10―x)2+42=x 2D .x 2+42=(10―x)29.如图,在△ABC 中,∠C=90°,∠B=30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于 12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是①AD 是∠BAC 的平分线;②∠ADC=60°;③点D 在AB 的中垂线上;④S △DAC :S △ABC =1:3.A .1B .2C .3D .410.如图,在△ABC 中,AB =2,∠B =60°,∠A =45°,点D 为BC 上一点,点P 、Q 分别是点D 关于AB 、AC 的对称点,则PQ 的最小值是( )A.6B.8C.4D.2二、填空题11.在三角形ABC中,∠C=90°,AB=7,BC=5,则AC的长为 .12.命题“两直线平行,同位角相等.”的逆命题是 .13.小明同学将几种三角形的关系整理如图,请帮他在括号内填上一个适当的条件是 .14.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D,则∠DBC= °.15.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M,P是直线MN上一动点,点H 为BC中点.若BC=5,△ABC的面积是30,则PB+PH的最小值为 .16.如图,等边△ABC中,BF是AC边上中线,点D为BF上一动点,连接AD,在AD的右侧作等边△ADE,连接EF,当△AEF周长最小时,则∠CFE的大小是 .三、解答题17.如图,AB⊥BC于点B,AD⊥DC于点D,BC=DC.求证:∠1=∠2.18.如图,在△ABC中,AD⊥BC于D,AC=5,BC=9,AD=4,求AB的长.19.如图,△ABC中,CA=CB,D是AB的中点,∠B=42°,求∠ACD的度数.20.如图所示,若MP和NQ 分别垂直平分AB和AC.(1)若△APQ的周长为12,求BC的长;(2)∠BAC=105°,求∠PAQ 的度数.21.如图,在△ABC中,AB=AC=5,BC=6,点D在AC边上,BD=AB.(1)求△ABC的面积;(2)求AD的长.22.(1)如图1,点D、E分别是等边△ABC边AC、AB上的点,连接BD、CE,若AE=CD,求证:BD=CE (2)如图2,在(1)问的条件下,点H在BA的延长线上,连接CH交BD延长线于点F,.若BF=BC,求证:EH=EC.23.如图,已知在Rt△ABC中,∠ACB=90°,AC=8,BC=16,D是AC上的一点,CD=3,点P从B点出发沿射线BC方向以每秒2个单位的速度向右运动,设点P的运动时间为t,连接AP.(1)当t=3秒时,求AP的长度;(2)当△ABP为等腰三角形时,求t的值;(3)过点D作DE⊥AP于点E,连接PD,在点P的运动过程中,当PD平分∠APC时,直接写出t的值.答案解析部分1.【答案】A2.【答案】C3.【答案】C4.【答案】C5.【答案】C6.【答案】B7.【答案】B8.【答案】D9.【答案】D10.【答案】A11.【答案】2612.【答案】同位角相等,两直线平行13.【答案】∠A=60°(答案不唯一)14.【答案】3015.【答案】1216.【答案】90°17.【答案】证明:∵AB⊥BC,AD⊥DC∴∠B=∠D=90°又∵在Rt△ABC和Rt△ADC中AC=AC BC=DC,∴Rt△ABC≌Rt△ADC(HL).∴∠1=∠2.18.【答案】21319.【答案】48°20.【答案】(1)12;(2)30°.21.【答案】(1)解:过点A作AM⊥BC于点M,如图所示:∵AB =AC ,AM ⊥BC ,∴M 是BC 的中点,∵AB =5,BC =6,∴BM =CM =3,∴AM =AB 2―BM 2=52―32=4,∴△ABC 的面积=12BC•AM =12×6×4=12;(2)解:过点B 作BN ⊥AC 于点N ,如图所示:∵BD =AB ,∴AN =DN =12AD ,∵△ABC 的面积=12AC•BN =12×5•BN =12;∴BN =245,AN =AB 2―BN 2=75∴AD =2AN =145.22.【答案】(1)证明:∵△ABC 是等边三角形,∴AB=BC=AC ,∠A=∠ABC=∠BCA.∴在△AEC 和△CDB 中AE =CD ∠EAC =∠DCB AC =CB∴△AEC ≌△CDB (SAS )∴BD=CE.(2)证明:如图:由(1)△AEC≌△CDB,∴∠ACE=∠CBD.∴60°-∠ACE=60°-∠CBD,即∠ABD=∠ECB.∵BC=CF,∴∠BCF=∠BFC,又∵∠BCF=∠ECB+∠ECH,∠BFC=∠ABD+∠H,∴∠ECH=∠H,∴EH=EC.23.【答案】(1)241(2)当△ABP为等腰三角形时,t的值为45、16、5;(3)当t的值为5或11时,PD平分∠APC.。
(汇总)浙教版八年级上册数学第2章 特殊三角形含答案
浙教版八年级上册数学第2章特殊三角形含答案一、单选题(共15题,共计45分)1、给出下列命题:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④△ABC中,若 a:b:c=1:2:,则这个三角形是直角三角形.其中,正确命题的个数为( )A.1个B.2个C.3个D.4个2、下列三个长度的线段能组成直角三角形的是()A.3 2, 4 2, 5 2B.0.3,0.4,0.5C. ,,D.,,3、如图,下列图形中,轴对称图形的个数是()A.1B.2C.3D.44、如图,在R△ABC中,∠ACB=90°,AC=6,BC=8,E为AC上一点,且AE =,AD平分∠BAC交BC于D.若P是AD上的动点,则PC+PE的最小值等于()A. B. C.4 D.5、下列图形中,既是中心对称图形又是轴对称图形的是( )A. B. C. D.6、等腰三角形的底角为15,腰长a为,则此等腰三角形的底长为()A. B. C. D. a7、如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为()A.4B.8C.2D.48、一艘轮船位于灯塔中P的南偏东方向的M处它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东的N处,则N处与灯塔P的距离为()A.40海里B.60海里C.70海里D.80海里9、如图,在△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC的度数为()A.72°B.100°C.108°D.120°10、如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入的球袋是()A.1 号袋B.2 号袋C.3 号袋D.4 号袋11、如图,抛物线与轴交于,两点,是以点为圆心,为半径的圆上的动点,是线段的中点,连结、则线段的最大值是()A. B.3 C. D.12、如图,在△ABC中,AC=4,BC=2,点D是边AB上一点,CD将△ABC分成△ACD和△BCD,若△ACD是以AC为底的等腰三角形,且△BCD与△BAC相似,则CD的长为()A. B.2 C.4 ﹣4 D.13、如图所示,CD是线段AB的对称轴,与线段AB交于D,则下列结论中正确的有()①AD=BD;②AC=BC;③∠A=∠B;④∠ACD=∠BCD;⑤∠ADC=∠BDC=90°.A.2个B.3个C.4个D.5个14、满足下列条件的△ABC中,不是直角三角形的是( )A.b²=c²-a²B.a:b:c=3:4:5C.∠C=∠A-∠BD.∠A:∠B:∠C=3:4:515、已知等腰三角形的一个底角为40°,则这个等腰三角形的顶角为()A.40°B.100°C.40°或100°D.50°或70°二、填空题(共10题,共计30分)16、半径为5的圆中有两条弦长分别为6,8的平行弦,这两条弦之间的距离是________.17、如图,已知圆柱底面周长是4dm,圆柱的高为3dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为________ dm.18、如图,正方形的四个顶点分别在扇形的半径,和上,且点是线段的中点,若的长为,则长为________.19、在中,平分交边于平分交边于若则边的长为________.20、为了丰富居民的业余生活,某社区要在如图所示AB所在的直线上建一图书室,本社区有两所学校,所在的位置在点C和点D处,CA⊥AB于点A,DB⊥AB 于点B,已知AB=25 km,CA=15 km,DB=10 km,则图书室E应该建在距点A________km处,才能使它到两所学校的距离相等。
浙教版八年级上册数学第2章 特殊三角形含答案
浙教版八年级上册数学第2章特殊三角形含答案一、单选题(共15题,共计45分)1、如图,在△ABC中,AB=AC,∠B=30°,则∠C的大小为()A.15°B.25°C.30°D.60°2、如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,将△ABC扩充为等腰三角形ABD,且扩充部分是以4为直角边的直角三角形,则CD的长为()A. , 2或3B.3或C.2或D.2或33、某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cmB.12cmC.15cmD.12cm或15cm4、下列说法正确的是()①经过三个点一定可以作圆;②若等腰三角形的两边长分别为3和7,则第三边长是3或7;③一个正六边形的内角和是其外角和的2倍;④随意翻到一本书的某页,页码是偶数是随机事件;⑤关于x的一元二次方程x2-(k+3)x+k=0有两个不相等的实数根.A.①②③B.①④⑤C.②③④D.③④⑤5、如图,与是一对全等的等边三角形,且,下列四个结论:①;②;③;④四边形是轴对称图形.其中正确的是()A.①②③B.①②④C.①③④D.②③④6、等腰三角形腰长10cm,底边16cm,则面积()A.96cm 2B.48cm 2C.24cm 2D.32cm 27、如图,在Rt△ABC中,∠C=90°,点B在CD上,且BD=BA=2AC,则tan∠DAC的值为()A.2+B.2C.3+D.38、在中,,,则BC边上的高为()A.12B.10C.9D.89、如图,坐标平面内一点A(2,-1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为()A.2B.3C.4D.510、下列命题中,不正确的是()A.对角线相等且垂直的四边形是正方形B.有一个角是直角的菱形是正方形C.顺次连接菱形各边中点所得的四边形是矩形D.有一个角是的等腰三角形是等边三角形11、等腰三角形的一边长为6,另一边长为4,则其周长为()A. B. C. 或 D.以上都不是12、若一个等腰三角形的两边长分别为 4,5,则这个等腰三角形的周长为()A.13B.14C.13 或 14D.8或 1013、如图,在△ABC中,AB=AC=13,BC=10,点D为BC的中点,DE⊥AB,垂足为点E,则DE等于()A. B. C. D.14、如图,已知点D为等腰直角△ABC内一点,∠ACB=90°,AD=BD,∠BAD=30°,E为AD延长线上的一点,且CE=CA,若点M在DE上,且DC=DM.则下列结论中:①∠ADB=120°;②△ADC≌△BDC;③线段DC所在的直线垂直平分线AB;④ME=BD;正确的有()A.1个B.2个C.3个D.4个15、在平面直角坐标系中,点A,B的坐标分别为(-6,0),(0,8). 以点A为圆心,以AB长为半径画弧交x轴于点C,则点C的坐标为().A.(6,0)B.(4,0)C.(6,0)或(-16,0)D.(4,0)或(-16,0)二、填空题(共10题,共计30分)16、如图,射线OP过Rt△ABC的边AC、AB的中点M、N,AC=4cm,BC=4cm,OM=3cm.射线OP上有一动点Q从点O出发,沿射线OP以每秒1cm的速度向右移动,以Q为圆心,QM为半径的圆,经过t秒与BC、AB中的一边所在的直线相切,请写出t的所有可能值________(单位:秒)17、已知,如图,在△ABC中,AB=BC,∠B=70°,则∠A=________°.18、如图,在平面直角坐标系中,有一个等腰直角三角形,,直角边在轴上,且将绕原点O顺时针旋转得到等腰直角三角形,且,再将绕原点O顺时针旋转得到等腰直角三角形,且……依此规律,得到等腰直角三角形,则点的坐标为________.19、如图,有一个与地面成30°角的斜坡,现要在斜坡上竖一电线杆,当电线杆与地面垂直时,它与斜坡所成的角α=________20、如图.在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC的周长,则DE的长是________.21、观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41,…请你写出有以上规律的第⑤组勾股数:________22、如图,在△ABC中,AB=AC,∠A=120°,AB的垂直平分线交AB于E,交BC 于F.BC=6,则BF=________.23、如图,正方形网格中的△ABC,若小方格边长都为1,则△ABC是:________三角形.24、若一个直角三角形的一条直角边长是7cm,另一条直角边长比斜边长短1cm,则该直角三角形的斜边长为 ________.25、如图,在四边形ABCD中,对角线AC垂直平分BD,∠BAD=120°,AB=4,点E是AB的中点,点F是AC上一动点,则EF+BF的最小值是________.三、解答题(共5题,共计25分)26、如图,在Rt△ABC中,∠C=90°,BC=8,tanB= ,点D在BC上,且BD=AD,求AC的长和cos∠ADC的值.27、已知:如图,在△ABC中,∠1=∠2,DE∥AC,求证:△ADE是等腰三角形.28、有一块直角三角形的绿地,量得两直角边BC、AC分别为6m,8m,现在要将绿地扩充成等腰三角形,且扩充部分是以AC边为直角边的直角三角形,求扩充后等腰三角形绿地的面积.(图2,图3备用)29、如图,△ABC中,AB=AC,∠BAC=120°,D为BC的中点,DE⊥AC于E,AE=2,求CE的长.30、如图,将长方形ABCD边AD沿折痕AE折叠,使点D落在BC上的点F处,已知AB=6,△ABF的面积是24,求DE的长.参考答案一、单选题(共15题,共计45分)1、C2、A3、C4、D5、D7、A8、A9、C10、A11、C12、C13、C14、D15、D二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、27、。
浙教版八年级数学上册《第2章特殊三角形》单元测试题含答案
浙教版八年级数学上册第2章特殊三角形单元测试题第Ⅰ卷(选择题共30分)一、选择题(本题共10小题,每小题3分,共30分)1.下列图案是轴对称图形的是( )2.若等腰三角形的顶角为70°,则它的底角度数为( )A.45°B.55°C.65°D.70°3.如图所示,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,则图中与CD相等的线段有( )A.AD与BD B.BD与BCC.AD与BC D.AD,BD与BC4.把一个边长为1的正方形如图所示放在数轴上,以正方形的对角线为半径画弧交数轴于点A,则点A对应的数是( )A.1 B. 2 C. 3 D.25.若等腰三角形中两条边的长度分别为3和1,则此等腰三角形的周长为( ) A.5 B.7 C.5或7 D.66.如图所示,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )A.CB=CDB.∠BAC=∠DACC.∠BCA=∠DCAD.∠B=∠D=90°7.如图所示,OD⊥AB于点D,OP⊥AC于点P,且OD=OP,则△AOD与△AOP全等的理由是( )A.SSS B.ASA C.SSA D.HL8.如图所示,在△ABC中,∠ACB=90°,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )A.44°B.60°C.67°D.77°9.如图所示,在△ABC中,∠C=90°,AC=3,∠B=45°,P是BC边上的动点,则AP 的长不可能是( )A.3.5 B.3.7 C.4 D.4.510.如图所示,已知O是△ABC中∠ABC,∠ACB的平分线的交点,OD∥AB交BC于点D,OE∥AC交BC于点E.若BC=10 cm,则△ODE的周长为( )A.10 cm B.8 cmC.12 cm D.20 cm请将选择题答案填入下表:题号 1 2 3 4 5 6 7 8 9 10 总分答案第Ⅱ卷(非选择题共90分)二、填空题(本题共6小题,每小题4分,共24分)11.命题“内错角相等,两直线平行”的逆命题是____________________.12.如图所示,在△ABC中,AB=AC,∠A=40°,BD⊥AC于点D,则∠DBC=________°.13.如图,在△ABC中,AB=AC,AD⊥BC于点D,判定△ABD≌△ACD最简单的方法是________.14.直角三角形的两条边长分别为3,4,则它另一边的长为________.15.如图所示,有两个长度相等的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯的水平方向的长度DF相等,已知左边滑梯与地面的夹角∠ABC=27°,则右边滑梯与地面的夹角∠DFE=________°.16.如图所示,△ABC是等边三角形,D是BC边上任意一点,DE⊥AB于点E,DF⊥AC 于点F.若BC=2,则DE+DF=________.三、解答题(本题共8小题,共66分)17.(6分)如图所示,已知AB=AC,D是AB上的一点,DE⊥BC于点E,ED的延长线交CA的延长线于点F.试说明:△ADF是等腰三角形.18.(6分)如图,在△ABC中,AB=AC,D是BC的中点,E,F分别是AB,AC上的点,且AE=AF.求证:DE=DF.19.(6分)如图所示,在四边形ABCD中,∠A为直角,AB=16,BC=25,CD=15,AD =12,求四边形ABCD的面积.20.(8分)如图所示,延长△ABC的各边,使得BF=AC,AE=CD=AB,连结DE,EF,FD,得到△DEF为等边三角形.求证:(1)△AEF≌△CDE;(2)△ABC为等边三角形.21.(8分)如图所示,请将下列两个三角形分别分成两个等腰三角形.(要求标出每个等腰三角形的内角度数)22.(10分)在直角三角形中,两条直角边的长度分别为a和b,斜边长度为c,则a2+b2=c2,即两条直角边的平方和等于斜边的平方,此结论称为勾股定理.在一张纸上画两个同样大小的直角三角形ABC和A′B′C′,并把它们拼成如图所示的形状 (点C和A′重合,且两直角三角形的斜边互相垂直).请利用拼得的图形证明勾股定理.23.(10分)如图所示,在△ABC中,∠C=2∠B,D是BC边上的一点,且AD⊥AB,E是BD的中点,连结AE.求证:(1)∠AEC=∠C;(2)BD=2AC.24.(12分)如图所示,O是直线l上一点,在点O的正上方有一点A,满足OA=3,点A,B位于直线l的同侧,且点B到直线l的距离为5,线段AB=40,一动点C在直线l 上移动.(1)当点C位于点O左侧时,且OC=4,直线l上是否存在一点P,使得△ACP为等腰三角形?若存在,请求出OP的长;若不存在,请说明理由.(2)连结BC,在点C移动的过程中,是否存在一点C,使得AC+BC的值最小?若存在,请求出这个最小值;若不存在,请说明理由.答案1.A 2.B 3.A 4.B 5.B 6.C 7.D 8.C 9.D 10.A11.两直线平行,内错角相等 12.20 13.HL 14.5或7 15.6316. 317.解:∵AB =AC ,∴∠B =∠C (等边对等角). ∵DE ⊥BC 于点E ,∴∠DEB =∠FEC =90°, ∴∠B +∠EDB =∠C +∠F =90°, ∴∠EDB =∠F (等角的余角相等). 又∵∠EDB =∠ADF (对顶角相等), ∴∠F =∠ADF ,∴AD =AF , ∴△ADF 是等腰三角形. 18.证明:如图,连结AD .∵AB =AC ,D 是BC 的中点, ∴∠EAD =∠FAD .在△AED 和△AFD 中,∵⎩⎪⎨⎪⎧AE =AF ,∠EAD =∠FAD ,AD =AD ,∴△AED ≌△AFD (SAS ),∴DE =DF .19.解:∵∠A 为直角,∴在Rt △ABD 中,由勾股定理,得BD 2=AD 2+AB 2. ∵AD =12,AB =16,∴BD =20.∵BD 2+CD 2=202+152=252,且BC 2=252,∴BD 2+CD 2=BC 2, ∴∠CDB 为直角,∴△ABD 的面积为12×16×12=96,△BDC 的面积为12×20×15=150,∴四边形ABCD 的面积为96+150=246. 20.证明:(1)∵BF =AC ,AB =AE , ∴BF +AB =AC +AE ,即FA =EC . ∵△DEF 是等边三角形,∴EF =DE . 又∵AE =CD ,∴△AEF ≌△CDE .(2)由△AEF ≌△CDE ,得∠FEA =∠EDC . ∵△DEF 是等边三角形,∴∠DEF =60°.∵∠BCA =∠EDC +∠DEC =∠FEA +∠DEC =∠DEF , ∴∠BCA =60°.同理可得∠BAC =60°, ∴∠ABC =60°,∴△ABC 为等边三角形. 21.解:如图所示.22.证明:如图所示,在Rt △ABC 中,∵∠1+∠2=90°,∠1=∠3,∴∠2+∠3=90°. 又∵∠ACC ′=90°,∴∠2+∠3+∠ACC ′=180°, ∴B ,C (A ′),B ′在同一条直线上. 又∵∠B =90°,∠B ′=90°,∴∠B +∠B ′=180°,∴AB ∥C ′B ′.由面积相等得12(a +b )(a +b )=12ab +12ab +12c 2,即a 2+b 2=c 2.23.证明:(1)∵AD ⊥AB , ∴△ABD 为直角三角形. ∵E 是BD 的中点,∴AE =BE =DE ,∴∠B =∠BAE .∵∠AEC =∠B +∠BAE ,∴∠AEC =2∠B . 又∵∠C =2∠B ,∴∠AEC =∠C . (2)由(1)的结论可得AE =AC . ∵AE =12BD ,∴AC =12BD ,即BD =2AC .24.解:(1)存在.由勾股定理可求得AC =5.当点P 使得△ACP 为等腰三角形时,如图①所示,OP 1=4,OP 2=5-4=1,OP 3=CP 3+OC =AC +OC =5+4=9.在Rt △AP 4O 中,AP 42=OP 42+OA 2,设OP 4=x ,则(4-x )2=x 2+32,解得x =78,∴OP 4=78.综上所述,OP 的长为4或1或9或78.(2)存在.如图②所示,作点A 关于直线l 的对称点A ′,连结A ′B 与直线l 相交于点C ,则A ′B 为AC +BC 的最小值.过点A ′作A ′E ∥l ,过点B 作BE ⊥A ′E 于点E ,过点A 作AD ⊥BE 于点D .在Rt △ABD 中,AB =40,BD =5-3=2,∴AD =AB 2-BD 2=6.在Rt △A ′BE 中,A ′E =AD =6,BE =5+3=8, ∴A ′B =BE 2+A ′E 2=82+62=10, ∴AC +BC 的最小值为10.。
(全优)浙教版八年级上册数学第2章 特殊三角形含答案
浙教版八年级上册数学第2章特殊三角形含答案一、单选题(共15题,共计45分)1、如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A.7B.9C.10D.112、如图,在⊙O中C为的中点,BC= ,O到AB的距离为1,则半径的长()A.2B.3C.4D.53、如图所示,该图案是经过( )A.平移得到的B.旋转或轴对称得到的C.轴对称得到的D.旋转得到的4、如图,已知是的角平分线,是的垂直平分线,,,则的长为()A.6B.5C.4D.5、如图,不是轴对称图形的是( )A. B. C. D.6、如图,等腰△ABC中,AB=AC,P为其底角平分线的交点,将△BCP沿CP折叠,使B点恰好落在AC边上的点D处,若DA=DP,则∠A的度数为()A.20°B.30°C.32°D.36°7、已知等腰三角形中一个角等于100°,则这个等腰三角形的底角等于()A.100°B.40°C.50°D.100°或40°8、下列命题中①等腰三角形底边的中点到两腰的距离相等②如果两个三角形全等,则它们必是关于直线成轴对称的图形③如果两个三角形关于某直线成轴对称,那么它们是全等三角形④等腰三角形是关于底边中线成轴对称的图形⑤一条线段是关于经过该线段中点的直线成轴对称的图形符合题意命题的个数是()A. 个B. 个C. 个D. 个9、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是()A.20°B.25°C.30°D.大于30°10、在△ABC中,已知∠C=90°,BC=3,AC=4,则它的内切圆半径是 ( )A. B.1 C.2 D.11、在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为()A.11+B.11﹣C.11+ 或11﹣D.11+ 或1+12、下列图形是轴对称图形的是()A. B. C. D.13、下列学习用具中,假如不考虑刻度文字,不是轴对称图形的为()A. B. C. D.14、如图,在中,为的中点,有下列四个结论:①;② ;③ ;④ .其中正确的结论有()A.1个B.2个C.3个D.4个15、如图,在△ABC中,∠ACB=90°,∠B=30°,D在AB上,E在CB上,A,C关于DE的对称点分别是G,F,若F在AB上,DG⊥AB,DG=2,则DE的长是()A.3 ﹣3B.3 ﹣C.4D.2二、填空题(共10题,共计30分)16、如图,已知扇形OAB的半径为9,点C在OA上,将△OBC沿BC折叠,点O 恰好落在上的点D处,且=2∶3,若扇形 O4B恰好是一个圆锥的侧面展开图,则该圆锥的底面直径为________.17、如图,四边形ABCD中,AB=BC=2,CD=1,DA=3,AC为一条对角线,若∠ABC=90°,则四边形ABCD的面积为________.18、如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为________.19、工人师傅在正中间立着一根圆形排水管的正方形地面(如图①)铺瓷砖,先裁出四块全等直角三角形ABC的瓷砖如图②,再在AB边上各切割一个弓形(阴影部分),然后围着排水管拼接而成(不重叠,无缝隙)如图③所示.已知∠BAC=90°,切割点分别为A1, A2, A3, A4, A5, A6, A7, A8,依次连接这8个点恰好组成正八边形,AB﹣AC=(4+2 )cm,则AA1=________cm;如果π取3,那么切去的每块弓形面积为________cm2.20、如图,是圆的弦,,垂足为点,将劣弧沿弦折叠交于的中点,若,则圆的半径为________.21、在中,,,,把绕着点C按照顺时针的方向旋转,将A、B的对应点分别记为点、,如果恰好经过点A,那么点A与点的距离为________22、“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).小亮随机地向大正方形内部区域投飞镖.若直角三角形两条直角边的长分别是4和2,则飞镖投到小正方形(阴影)区域的概率是________.23、如图,两个大小不同的三角板放在同一平面内,直角顶点重合于C点,点D在上,,与交于点,连接,若,,则________.24、如图,在一次测绘活动中,某同学站在点A的位置观测停放于B、C两处的小船,测得船B在点A北偏东75°方向900米处,船C在点A南偏东15°方向1200米处,则船B与船C之间的距离为________米.25、如图,点A是∠MON=45°内部一点,且OA=4cm,分别在边OM,ON上各取一点B,C,分别连接A,B,C三点组成三角形,则ΔABC最小周长为 ________ 。
浙教版八年级上册数学第2章 特殊三角形含答案
浙教版八年级上册数学第2章特殊三角形含答案一、单选题(共15题,共计45分)1、如图,△ABC中,AB=AC,点P为△ABC内一点,∠APB=∠BAC=120°.若AP+BP=4,则PC的最小值为()A.2B.C.D.32、将一根的筷子,置于底面直径为,高的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度,则的取值范围是()A. B. C. D.3、如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF,在此运动变化的过程中,有下列结论:①∠DEF是等腰直角三角形;②四边形CEDF不可能为正方形;③四边形CEDF的面积随点E位置的改变而发生改变;④点C到线段EF的最大距离为.其中正确结论的个数是()A.1B.2C.3D.44、如图所示,把一张长方形纸片对折,折痕为AB,再以AB的中点O为顶点,把平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O 为顶点的直角三角形,那么剪出的直角三角形全部展开铺平后得到的平面图形一定是()A.正三角形B.正方形C.正五边形D.正六边形5、如图,△ABC中,AB=AC,AD⊥BC,下列结论中错误的是()A.D是BC中点B.AD平分∠BACC.AB=2BDD.∠B=∠C6、下列图形中是轴对称图形的是()A. B. C.D.7、如图,△ABC为等边三角形,点D,E分别在AC,BC上,且AD=CE,AE与BD相交于点P,BF⊥AE于点F.若PF=3,则BP=( )A.6B.5C.4D.38、如图,一个含有角的直角三角板,在水平桌面上绕点按顺时针方向旋转到的位置,若的长为,那么的长为()A. B. C. D.9、等腰三角形有两条边长分别为5和10,则这个等腰三角形的周长为()A.15B.20C.25或20D.2510、等腰三角形一腰上的高与另一腰的夹角为,则顶角的度数为()A. B. 或 C. 或 D. 或11、下列图标中是轴对称图形的是( )A. B. C. D.12、一块直角三角形木板,它的一条直角边AC长为1cm,面积为1cm2,甲、乙两人分别按图①、②把它加工成一个正方形桌面,则①、②中正方形的面积较大的是()A.①B.②C.一样大D.无法判断13、如图,正方形网格中的每个小正方形边长都是1.已知A、B是两格点,若=1.5,则满足条件的格点C有()△ABC为等腰三角形,且S△ABCA.1个B.2个C.3个D.4个14、若方程的两个实数根恰好是的两边的长,则的周长等于()A.12B.C.12或D. 或15、已知一个等腰三角形两内角的度数之比为,则这个等腰三角形顶角的度数为()A. B. C. 或 D.二、填空题(共10题,共计30分)16、若等腰三角形的两边的边长分别为3cm和7cm,则第三边的长是________cm.17、如图,△ 与△ 是以点为位似中心的位似图形,相似比为,,,若,则点的坐标为________.18、二次函数y=ax2+bx+c(a<0)图象与x轴的交点A、B的横坐标分别为﹣3,1,与y轴交于点C,下面四个结论:①16a﹣4b+c<0;②若P(﹣5,y1),Q(,y2)是函数图象上的两点,则y 1>y2;③a=﹣c;④若△ABC是等腰三角形,则b=﹣.其中正确的有________(请将结论正确的序号全部填上)19、如图,已知等边内接于,,点为上一点,,于点,则的周长是________.20、如图,在直角梯形中,∥ ,,,,,点、分别在边、上,联结.如果△ 沿直线翻折,点与点恰好重合,那么的值是________.21、如图,是中点,,若,,则、、三点所在圆的半径为________.22、如图是一个圆环形黄花梨木摆件的残片,为求其外圆半径,小林在外圆上任取一点A,然后过点A作AB与残片的内圆相切于点D,作CD⊥AB交外圆于点C,测得CD=15cm,AB=60cm,则这个摆件的外圆半径是________cm.23、如图,∠ABC,∠ACB的平分线相交于点F,过点F作DE∥BC,交AB于D,交AC于E,那么下列结论:①△BDF,△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长为AB+AC;④BD=CE.其中正确的是________.24、如图,是⊙O的一条弦,点是⊙O上一动点,且,点分别是的中点,直线与⊙O交于两点,若⊙O的半径为8,则的最大值为________.25、如图,△ABC中,、的平分线交于O点,过O点作EF∥BC交AB、AC于E、F. EF=6, BE=2,则CF=________.三、解答题(共5题,共计25分)26、如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.求AB的长.27、如图,在△ABC中,CD=CA,CE⊥AD于点E,BF⊥AD于点F.求证:∠ACE=∠DBF.28、已知:如图,∠C=∠D=90°,AD=BC.求证:∠ABC=∠BAD.29、如图A、B是上的两点,,C是弧的中点,求证四边形是菱形.30、如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是上的一个动点,连接AP,求AP的最小值.参考答案一、单选题(共15题,共计45分)1、B2、D3、B4、A5、C6、D7、A8、C9、D10、B11、D12、A13、B14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
精编浙教版八年级上册数学第2章 特殊三角形含答案
浙教版八年级上册数学第2章特殊三角形含答案一、单选题(共15题,共计45分)1、如图,在中,,,是的两条中线,是上个动点,则下列线段的长度等于最小值的是()A.BCB.CEC.ADD.AC2、如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC 交圆O于点F,则∠BAF等于()A.12.5°B.15°C.20°D.22.5°3、已知一个直角三角形的两边长分别为3和4,则第三边长是()A.5B.25C.D.5或4、如图,把一张矩形纸片ABCD沿对角线BD折叠,BC交AD于O.给出下列结论:①BC平分∠ABD;②△ABO≌△CDO;③∠AOC=120°;④△BOD是等腰三角形.其中正确的结论有()A.①③B.②④C.①②D.③④5、如图,长方形OABC中,OA=12,AB=5,OA边在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.12B.13C.15D.176、下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个7、如图所示,已知∠1=∠2,AD=BD=4,CE⊥AD,2CE=AC,那么CD的长是()A.2B.3C.1D.1.58、下列说法正确的是()A.命题:“等腰三角形两腰上的中线相等”是真命题B.假命题没有逆命题C.定理都有逆定理D.不正确的判断不是命题9、下列各组数中,是勾股数的一组为A.3,4,25B.6,8,10C.5,12,17D.8,7,610、在矩形ABCD中,点P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP翻折得到△AD′P,PD′的延长线交边AB于点M,过点B作BN∥MP交DC于点N,连接AC,分别交PM,PB于点E, F.现有以下结论:①连接DD′,则AP垂直平分DD′;②四边形PMBN是菱形;③AD2=DP⋅PC;④若AD =2DP,则.其中正确的结论的个数是()A.1B.2C.3D.411、下列图形中,既是中心对称图形,又是轴对称图形的是()A.矩形B.三角形C.平行四边形D.等腰梯形12、如图,是一段楼梯,高BC是1.5m,斜边AC是2.5m,如果在楼梯上铺地毯,那么至少需要地毯()A.2.5mB.3mC.3.5mD.4m13、下列一组数是勾股数的是()A.6,7,8B.5,12,13C.0.3,0.4,0.5D.10,15,1814、下列说法中,正确的是( )A.直角三角形中,已知两边长为 3 和 4,则第三边长为 5B.若一个三角形是直角三角形,其三边长为 a,b,c,则满足a 2-b 2=c 2C.以三个连续自然数为三边长不可能构成直角三角形D.△ABC 中,若∠A∶∠B∶∠C=1∶5∶6,则△ABC 是直角三角形15、如图,在中,,,.点P是边AC上一动点,过点P作交BC于点Q,D为线段PQ的中点,当BD平分时,AP的长度为()A. B. C. D.二、填空题(共10题,共计30分)16、如果等腰三角形的一个角比另一个角大30° ,那么它的顶角是________度17、如图,矩形ABCD中,AB=12,点E是AD上的一点,AE=6,BE的垂直平分线交BC的延长线于点F,连接EF交CD于点G.若G是CD的中点,则BC的长是________.18、平面直角坐标系中,已知直线与x轴、y轴分别交于A、B两点,点C(0,a)是y轴上一点,把坐标平面沿直线AC折叠,使点B刚好落在x轴负半轴上,则点C的坐标是________19、在半径为5的中,若弦为,则弦所对的圆周角的度数为________.20、在△ABC中,AB=AC,∠A=40°,则∠B的度数为________°.21、若等腰三角形的两边的边长分别为10cm和5cm,则第三边的长是________ cm.22、如图,在△ABC中,AB=AC,∠B=30°,AB的垂直平分线EF交AB于点E,交BC于点F,EF=2,则BC的长为________.23、如图,一架5米长的梯子AB,斜靠在一堵竖直的墙AO上,这时梯顶A距地面4米,若梯子沿墙下滑1米,则梯足B外滑________ 米.24、等腰三角形的一个内角为40°,则顶角的度数为________.25、右图中的正五角星有________条对称轴,图中与∠A的2倍互补的角有________个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙教数学八年级上册特殊三角形历年中考典型习题一、等腰三角形1.如图,△ABC中,AB=AC,AM是BC边上的中线,点N在AM上,求证:NB=NC.2.如图,∠AOB的内部有一点P,在射线OA,OB边上各取一点P1,P2 ,使得△PP1P2的周长最小,作出点P1,P2 ,叙述作图过程(作法),保留作图痕迹.3.已知:如图,在△ABC中,∠1=∠2,DE∥AC,求证:△ADE是等腰三角形.4.如图,△ABC中,AD⊥BC,点E在AC的垂直平分线上,且BD=DE.(1)如果∠BAE=40°,那么∠B=,∠C=°;(2)如果△ABC的周长为13 cm,AC=6 cm,那么△ABE的周长=cm;(3)你发现线段AB与BD的和等于图中哪条线段的长?并证明你的结论.5.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.6.如图,∠AOB=30̊,OC平分∠AOB,P为OC上一点,PD∥OA交OB于D,PE垂直OA于E,若OD=4cm,求PE的长.7.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:EF=CF.8.如图,在四边形ABCD中,AD=4,BC=1,∠A=30°,∠B=90°,∠ADC=120°,求CD的长.9.如图,△ABC 为等边三角形,BD 平分∠ABC 交AC 于点D ,DE ∥BC 交AB 于点E . (1)求证:△ADE 是等边三角形.(2)求证:AE =21AB .10.如图所示,D 、E 分别是 △ABC 的边 BC 、AC 上的点,且 AB =AC ,AD =AE . (1)若 ∠BAD =20̊,则∠EDC = ; (2)若 ∠EDC =20̊,则∠BAD = ;(3)设∠BAD =ɑ ,∠EDC =β,你能由(1)(2)中的结果找到 ɑ、β 所满足的关系吗?请说明理由.11.如图,CN是等边△ABC的外角∠ACM内部的一条射线,点A关于CN的对称点为D,连接AD,BD,CD,其中AD,BD分别交射线CN于点E,P.(1)依题意补全图形;(2)若∠ACN=α,求∠BDC的大小(用含的式子表示);(3)用等式表示线段PB,PC与PE之间的数量关系,并证明.12.如图,点A、B、C在同一直线上,△ABD,△BCE都是等边三角形。
(1)求证:AE=CD;(2)若M,N分别是AE,CD的中点,试判断△BMN的形状,并证明你的结论。
13.如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F.(1)求证:AD=CE;(2)求∠DFC的度数.14.如图,点O是等边三角形ABC内一点,∠AOB=110°,∠BOC=α,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形?二、直角三角形1.如图,在△ABC 中,CD 是AB 边上的高,AC =4,BC =3,DB =59,求 (1)AD 的长;(2)求证:△ABC 是直角三角形.2.军在B 处放马,晚上回营,需要将马赶到河CD 去饮水一次,再回到营地A ,已知A 到河岸的距离AE =2公里,B 到河岸的距离BF =3公里,EF =12公里,求将军最短需要走多远.3.小王剪了两张直角三角形纸片,进行了如下的操作:操作一:如图1,将Rt △ABC 沿某条直线折叠,使斜边的两个端点A 与B 重合, 折痕为DE .(1)如果AC =6cm ,BC =8cm ,可求得△ACD 的周长为 ; (2)如果∠CAD :∠BAD =4:7,可求得∠B 的度数为 ;操作二:如图2,小王拿出另一张Rt △ABC 纸片,将直角边AC 沿直线AD 折叠, 使它落在斜边AB 上,且与AE 重合,若AC =9cm ,BC =12cm ,请求出CD 的长.4.如图,在△ABC 中,AB =AC ,AD ⊥于点D ,AM 是△ABC 的外角∠CAE 的平分线. (1)求证:AM ∥BC ;(2)若DN平分∠ADC交AM于点N,判断△ADN的形状并说明理由.5.如图1,在△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长.小萍同学灵活运用轴对称知识,将图形进行翻折变换如图1.她分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,得到四边形AEGF是正方形.设AD=x,利用勾股定理,建立关于x的方程模型,即可求出x的值.参考小萍的思路,探究并解答新问题:如图2,在△ABC中,∠BAC=30°,AD⊥BC于D,AD=4.请你按照小萍的方法画图,得到四边形AEGF,求△BGC的周长.(画图所用字母与图1中的字母对应)6.已知,如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=18cm.动点P从点A出发,沿AB向点B 运动,动点Q从点B出发,沿BC向点C运动,如果动点P以2cm/s,Q以1cm/s的速度同时出发,设运动时间为t(s),解答下列问题:(1)t为时,△PBQ是等边三角形?(2)P,Q在运动过程中,△PBQ的形状不断发生变化,当t为何值时,△PBQ是直角三角形?说明理由.7.两个大小不同的等腰直角三角板如图1所示放置,图2是由它抽象出的几何图形,图中AB=AC,AD=AE,∠BAC=∠EAD=900,B,C,E在同一条直线上,连结DC.(1)图2中的全等三角形是_______________ ,并给予证明(说明:结论中不得含有未标识的字母);(2)指出线段DC和线段BE的关系,并说明理由.8.已知:如图T5-6,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)求证:2CD2=AD2+DB2.9.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DAE交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.10.如图,折叠长方形纸片ABCD,使点D落在边BC上的点F处,折痕为AE.已知该纸片宽AB=3cm,长BC=5cm.求EC的长.11.已知,如图,∠ABC=∠ADC=90°,点E、F分别是AC、BD的中点,AC=10,BD=6.(1)求证:EF⊥BD;(2)求EF的长.12.学完勾股定理之后,同学们想利用升旗的绳子、卷尺,测算出学校旗杆的高度.爱动脑筋的小明这样设计了一个方案:将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端5米处,发现此时绳子底端距离打结处约1米.请你设法帮小明算出旗杆的高度.13.如图, Rt△ABC中,∠C=90°,AD平分∠CAB,DE┴AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.14.如图,一架梯子AB长13米,斜靠在一面墙上,梯子底端离墙5米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了5米,那么梯子的底端在水平方向滑动了多少米?15.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.16.如图,在△ABC 中,∠C =90°,点P 在AC 上运动,点D 在AB 上,PD 始终保持与PA 相等,BD 的垂直平分线交BC 于点E ,交BD 于点F ,连接DE . (1)判断DE 与DP 的位置关系,并说明理由; (2)若AC =6,BC =8,PA =2,求线段DE 的长.17.如图, C 为线段BD 上一动点,分别过点B 、D 作AB BD ,ED BD ,连结AC 、EC ,已知线段AB =5,DE =1,BD =8,设CD =x (1)用含x 的代数式表示AC +CE 的长;(2)请问点C 满足什么条件时,AC +CE 最小?最小为多少?(3)根据(2)中的规律和结论,请构图求代数式9)12(422+-++x x 的最小值.18.(1)问题发现:如图1,△ACB和△DCE均为等边三角形,当△DCE旋转至点A,D,E在同一直线上,连接BE,易证△BCE≌△ACD.则①∠BEC=______°;②线段AD、BE之间的数量关系是______.(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A、D、E在同一直线上,若AE=15,DE=7,求AB的长度.(3)探究发现:如图3,P为等边△ABC内一点,且∠APC=150°,且∠APD=30°,AP=5,CP=4,DP=8,求BD 的长.答案一、等腰三角形1.证明:∵AB=AC,AM是BC边上的中线,∴AM⊥BC.∴AM垂直平分BC.∵点N在AM上,∴NB=NC.2.解:如图,作点P关于直线OA的对称点E,点P关于直线OB的对称点F,连接EF交OA于P1 ,交OB于P2,连接PP1,PP2,△PP1P2即为所求.理由:∵P1P=P1E,P2P=P2F,∴△PP1P2的周长=PP1+P1P2+PP2=EP1+P1P2+P2F=EF,根据两点之间线段最短,可知此时△PP1P2的周长最短.3.证明:∵DE∥AC,∴∠ADE=∠2,∵∠1=∠2,∴∠ADE=∠1,∴EA=ED,即△ADE是等腰三角形.4.(1)70°;35̊(2)7(3)AB +BD =DC .证明:∵AD ⊥BC ,BD =DE ,∴AB =AE ,∵点E 在AC 的垂直平分线上,∴AE =CE ,∴AB +BD =AE +DE =CE +DE =DC . 5.解:(1)∵AB =AC , ∴∠C =∠ABC =70°, ∴∠A =40°,∵AB 的垂直平分线交AB 于点N , ∴∠A N M =90°, ∴∠NMA =50°, 故答案为:50;(2)①∵M N 是AB 的垂直平分线, ∴AM =BM ,∴△MBC 的周长=BM +CM +BC =AM +CM +BC =AC +BC , ∵AB =8,△MBC 的周长是14, ∴BC =14﹣8=6;②当点P 与M 重合时,△PBC 周长的值最小, 理由:∵PB +PB =PA +PC ,PA +PC ≥AC ,∴P 与M 重合时,PA +PC =AC ,此时PB +PC 最小, ∴△PBC 周长的最小值=AC +BC =8+6=14.6.过点P 作PH ⊥BO 于点H ,则PE =PH =21PD =2 7.证明:(1)∵AB =AC ,D 是B C 的中点, ∴∠BAE =∠EAC ,∴△ABE ≌△ACE (S A S ), ∴BE =CE ;(2)∵∠BAC=45°,BF⊥AF,∴△ABF为等腰直角三角形,∴AF=BF,∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠EAF+∠C=90°,∵BF⊥AC,∴∠CBF+∠C=90°,∴∠EAF=∠CBF,∴△AEF≌△BCF(A S A).∴EF=CF8.延长AD、BC,两条延长线交于点E∵∠B=90°,∠A=30°∴∠E=60°∵∠ADC=120°∴∠CDE=60°∴△CDE是等边三角形则CD=CE=DE设CD=x,则CE=DE=x,AE=x+4,BE=x+1 ∵在Rt△ABE中,∠A=30°∴x+4=2(x+1)解得:x=2∴CD=29.(1)∵△ABC为等边三角形∴∠A=∠ABC=∠C=60°∵DE∥BC∴∠AED=∠ABC=60º,∠ADE=∠C=60º∴∠AED=∠ADE=∠A=60º∴△ADE是等边三角形(2)∵△ABC 为等边三角形 ∴AB =BC =AC∵AB =BC ,BD 平分∠ABC∴AD =21AC ∵△ADE 是等边三角形 ∴AE =AD∴AE =21AB 10.(1) 10° (2)40°(3) α=2β.理由如下:(4)因为 AB =AC ,AD =AE , 所以 ∠B =∠C ,∠ADE =∠AED . 又∠ADC =∠B +∠BAD , 得∠AED +∠EDC =∠B +∠BAD . 所以∠EDC +∠C +∠EDC =∠B +∠BAD , 所以2∠EDC =∠BAD , 即α=2β . 11.(1)(2)解:∵点A 与点D 关于CN 对称, ∴CN 是AD 的垂直平分线,∴CA =CD . ∵∠AC N=α, ∴∠ACD =2α. ∵等边△ABC ,∴CA =CB =CD ,∠ACB =60°. ∴∠BCD =∠ACB +∠ACD =60°+2α. ∴∠BDC =∠DBC =21(180°∠BCD )=60°-α. (3)结论:PB =PC +2PE . 本题证法不唯一,如:证明:在PB 上截取PF 使PF =PC ,连接CF . ∵CA =CD ,∠ACD =2α ∴∠CDA =∠CAD =90°-α. ∵∠BDC =60°-α,∴∠PDE =∠CDA ∠BDC =30°. ∴PD =2PE .∵∠CPF =∠DPE =90°∠PDE =60°. ∴△CPF 是等边三角形. ∴∠CPF =∠CFP =60°. ∴∠BFC =∠DPC =120°. ∴△BFC ≌△DPC . ∴BF =PD =2PE .∴PB = PF +BF =PC +2PE .12.因为,△ABD ,△BCE 都是等边三角形 AB =BD BE =BC∠ABD+∠DBE=∠EBC+∠DBE所以∠ABE=∠DBC所以△ABE全等△DBC所以AE=CD(2)等边三角形13.证明:∵△ABC是等边三角形,∴∠BAC=∠B=60°,AB=AC又∵AE=BD,∴△AEC≌△BDA∴AD=CE(2)解由(1)△AEC≌△BDA,得∠ACE=∠BAD∴∠DFC=∠FAC+∠ACE=60°14.(1)证明:∵CO=CD,∠OCD=60°,∴△COD是等边三角形;(2)解:当α=150°时,△AOD是直角三角形.(5分)理由如下:由题意可得△BOC≌△ADC,∴∠ADC=∠BOC=150°.又∵△COD为等边三角形,∴∠ODC=60°,∴∠ADO=90°.即△AOD 是直角三角形;(3)解:①要使AO=AD,需∠AOD=∠ADO.∵∠AOD=190°-α,∠ADO=α-60°,∴190°-α=α-60°,∴α=125°.②要使OA=OD,需∠OAD=∠ADO.∵∠OAD=180°-(∠AOD+∠ADO)=180°-(190°-α+α-60°)=50°,∴α-60°=50°.∴α=110°;③要使OD=AD,需∠OAD=∠AOD,∴190°-α=50°,∴α=140°.综上所述,当α的度数为125°或110°或140°时,△AOD是等腰三角形.二、直角三角形根据勾股定理得:AD =516; (2)△ABC 为直角三角形,理由为: ∵AB =BD +AD =5, ∴AC 2+BC 2=AB 2, ∴△ABC 为直角三角形.2.作A 点关于河岸的对称点A ′,连接BA ′交河岸与P ,连接A ′B ′,则BB ′=2+3=5,则PB +PA =PB +PA ′=BA ′最短,故将军应将马赶到河边的P 地点. 作FB ′=EA ′,且FB ′⊥CD , ∵FB ′=EA ′,FB ′⊥CD ,BB ′∥A ′A , ∴四边形A ′B ′BA 是矩形, ∴B 'A '=EF , 在Rt △BB ′A ′中, BA ′=13,答:将军最短需要走13公里3.(1) 14cm (2) 35°由折叠知:AE =AC =9,DE ⊥AB ,设CD =DE =X , 则BD =12-X ,∵AB 2=81+144=225, ∴AB =15∴BE =15-9=6,∴36)12(22+=-x x x =4.5,即CD =4.5cm4.证明:(1)∵AB =AC ,AD ⊥BC ,∴∠BAD =∠CAD =.∵AM 平分∠EAC ,∴∠EAM =∠MAC =EAC 21. ∴∠MAD =∠MAC +∠DAC =90°. ∵AD ⊥BC ∴∠ADC =90°∴∠MAD +∠ADC =180° ∴AM ∥BC .(2)△AD N 是等腰直角三角形, 理由是:∵AM ∥AD , ∴∠A N D =∠NDC , ∵D N 平分∠ADC , ∴∠AD N=∠NDC =∠A N D . ∴AD =A N ,∴△AD N 是等腰直角三角形.5.参考小萍的做法得到四边形AEGF ,∠EA F =60°, ∠EGF =120°,∠AEG =∠AFG = 90°,AE =AF =AD =4. 连结EF ,可得 △AEF 为等边三角形. ∴ EF =4.∴ ∠FEG =∠EFG = 30°.∴ EG =FG .在△EFG 中,可求,EG =334.∴△EFG 的周长=BG +CG +BC =BG +CG +EB +FC =2EG =338.6.(1)要使,△PBQ 是等边三角形,即可得:PB =BQ , ∵在Rt △ABC 中,∠C =90°,∠A =30°,BC =18cm . ∴AB =36cm ,可得:PB =36﹣2t ,BQ =t , 即36﹣2t=t , 解得:t=12 故答案为;12(2)当t 为9或572时,△PBQ 是直角三角形, 理由如下:∵∠C =90°,∠A =30°,BC =18cm ∴AB =2BC =18×2=36(cm )∵动点P 以2cm/s ,Q 以1cm/s 的速度出发 ∴BP =AB ﹣AP =36﹣2t ,BQ =t ∵△PBQ 是直角三角形 ∴BP =2BQ 或BQ =2BP 当BP =2BQ 时, 36﹣2t=2t 解得t=9 当BQ =2BP 时,∴∠B=∠BAC=45°.∵△ACE≌△BCD,∴∠B=∠CAE=45°.∴∠DAE=∠CAE+∠BAC=45°+45°=90°,∴AD2+AE2=DE2.由(1)知AE=DB,∴AD2+DB2=DE2,又DE2=2CD2,∴2CD2=AD2+DB2.9.(1)证明:∵AE⊥AD,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,∴△DAF≌△EAF∴DF =EF ∴BD 2+FC 2=DF 2.(3)解:过点A 作AG ⊥BC 于G , 由(2)知DF 2=BD 2+FC 2=32+42=25 ∴DF =5,∴BC =BD +DF +FC =3+5+4=12, ∵AB =AC ,AG ⊥BC ,∴BG =AG =21BC =6, ∴DG =BG ﹣BD =6﹣3=3,∴在Rt △ADG 中,AD =53.10.由折叠可知AD=AF=5cm ,DE=EF∵∠B =90°∴ AB 2+BF 2= AF 2, ∵AB=3cm ,AF=5cm∴BF=4cm ,∵BC=5cm ,∴FC=1cm ∵∠C =90°,∴ EC 2+FC 2= EF 2 设EC =x ,则DE=EF=3-x ∴(3-x )2=12+x 2 ∴ x =3411.证明:(1)连接BE ,DE∵∠ABC =∠ADC =90°,点E 是AC 的中点,∴BE =21AC ,DE =21AC ∴BE =DE∵点F 是BD 的中点,BE =DE ∴EF ⊥BD(2)∵BE =21AC ∴BE =5∵点F 是BD 的中点 ∴BF =DF =3在Rt △BEF 中,EF ==412.解:设旗杆的高为x 米,则绳子长为x +1米, 由勾股定理得,(x +1)2=x 2+52,解得,x =12米. 答:旗杆的高度是12米.13.(1)∵AD 平分∠CAB ,DE ⊥AB ,∠C =90°, ∴CD =DE . ∵CD =3,∴DE =3.(2)在Rt △ABC 中,∠C =90°,AC =6,B C =8,由勾股定理,得AB ==10.∴△ADB 的面积为S=21AB •DE =21×10×3=15. 14.解:(1)根据勾股定理:所以梯子距离地面的高度为:AO =12(米); 答:这个梯子的顶端距地面有12米高;(2)梯子下滑了1米即梯子距离地面的高度为OA ′=12﹣5=7(米),根据勾股定理:OB ′=302(米),∴BB ′=OB ′﹣OB =(302﹣5)米答:当梯子的顶端下滑1米时,梯子的底端水平后移了(302﹣5)米. 15.作AD ⊥BC 于D ,如图所示:设BD = x ,则CD =x -14. ∴2222)14(1315x x --=-, 解之得:9=x . ∴.∴84=S16.(1)DE ⊥DP , 理由如下:连接OD ,∵PD =PA ,∴∠A =∠PDA ,∵EF 是BD 的垂直平分线,∴EB =ED ,∴∠B =∠EDB ,∵∠C =90°,∴∠A +∠B =90°,∴∠PDA +∠EDB =90°,∴∠ODE =180°﹣90°=90°,∴DE ⊥DP (2)连接PE ,设DE =x ,则EB =ED =x ,CE =8﹣x ,∵∠C =∠PDE =90°,∴PC 2+CE 2=PE 2=PD 2+DE 2,∴42+(8﹣x )2=22+x 2,解得:x =4.75,则DE =4.75. (10分) 17.(1)125)8(22+++-x x(2)解:当点C 为AE 和BD 的交点时,根据两点之间线段最短,所以AC +CE 的值最小(3)解:如图(1),C 为线段BD 上一动点,分别过点B ,D 作AB BD ,ED BD ,连接AC ,ED 。