聚合物基复合材料制备方法

合集下载

聚合物基复合材料的设计制备

聚合物基复合材料的设计制备

聚合物基复合材料的设计制备聚合物基复合材料是一种由聚合物基质和添加剂、填充物等组成的多相材料,其在过去几十年中得到了广泛的应用。

这种材料可以通过调整其配方及制备工艺来获得不同的性能,因此被广泛应用于领域包括汽车、航空航天、建筑等。

聚合物基复合材料的设计制备包括原材料选择、预处理方法及工艺控制等过程。

其中,原材料选择是制备过程的关键,主要有两个方面考虑:一是根据要求的性能选择不同类型的聚合物基质和添加剂;二是根据需要的材料结构和形态选择合适的填充物。

在原材料选择方面,不同的聚合物基材料具有不同的性质,在实际应用中可以选用树脂、热塑性弹性体等材料。

同时,由于复合材料体系中添加剂/填充物的种类和分散度等因素会对材料综合性能产生影响,应根据应用环境、功能和性能要求选择符合要求的添加剂/填充物。

预处理方法方面,它是制备复合材料的重要工艺环节。

针对不同的填充物形态及表面性质的不同,需要采取一系列处理措施使其与聚合物相互结合。

例如,对于填充物比较粗大且表面粗糙或表面有氧化处理的的玻璃纤维等,可以采用多层镀浆或表面处理的方法使其表面变得光滑均匀;对于比较细小的填充物,可以采用表面改性的方法增强其与聚合物的相互作用力。

工艺控制方面,它是制备复合材料的关键步骤之一。

在工艺流程中,需要对各个阶段进行合理地控制。

例如,在混合阶段中,需要控制混合时间和加热温度等参数,以保证各种原材料充分混合,并且获得合适的表面质量;在成型阶段中,需要控制成型温度、成型压力及工艺时间等参数,以获得合适的硬度、强度、韧性值和表面质量等等。

总之,通过优化材料配置方案、预处理方法及工艺控制等环节,可以获得结构完整、性能优良的聚合物基复合材料。

而且,这种材料可以根据不同的应用环境和需求进行调整,因此具有良好的可塑性和适应性。

在实际应用中,聚合物基复合材料的应用前景非常广阔,预计未来会有更多的领域会应用这种材料。

第四章聚合物基纳米复合材料

第四章聚合物基纳米复合材料

第四章聚合物基纳米复合材料聚合物基纳米复合材料指的是由纳米颗粒嵌入到聚合物基质中形成的一种复合材料。

由于纳米颗粒具有特殊的性质和高比表面积,与基质的相互作用使得聚合物基纳米复合材料具有许多优异的性能,包括力学性能、热学性能、电学性能和光学性能等。

这些特性使得聚合物基纳米复合材料在各个领域具有广泛的应用潜力。

聚合物基纳米复合材料的制备通常分为两个步骤:纳米颗粒的合成和复合材料的制备。

首先,纳米颗粒可以通过溶液法、溶胶-凝胶法、气相法和机械法等不同的方法进行合成。

合成的纳米颗粒可以是金属、氧化物、粉末和纳米碳管等。

然后,将合成得到的纳米颗粒与聚合物基质进行混合,通过溶液浸渍法、熔融共混法、热交联法等不同的方法进行复合材料的制备。

聚合物基纳米复合材料具有许多优秀的性能。

首先,由于纳米颗粒的加入,复合材料的力学性能得到了显著的改善。

纳米颗粒可以增加材料的强度、刚度和耐磨性等。

同时,纳米颗粒的高比表面积也有利于聚合物与纳米颗粒之间的相互作用,从而提高材料的耐热性和耐候性。

其次,聚合物基纳米复合材料还具有良好的导电性和光学性能。

纳米颗粒的导电性和光学性质可以直接作用于复合材料,在电子器件、传感器和光学器件等领域具有广泛的应用前景。

另外,纳米颗粒的尺寸和形状也可以对材料的导电性和光学性质进行调控,进一步扩展了材料的应用范围。

此外,聚合物基纳米复合材料还具有良好的阻隔性能和增强效应。

纳米颗粒的加入可以显著提高复合材料对气体、水汽、有机物和防火等有害物质的阻隔能力。

同时,纳米颗粒与聚合物基质之间的相互作用也可以增强复合材料的韧性和断裂韧性,提高材料的耐久性和可靠性。

综上所述,聚合物基纳米复合材料具有多种优异性能,可以应用于材料科学、电子器件、传感器、光学器件、耐热性材料、阻隔材料和增强材料等领域。

随着纳米技术的发展和成熟,聚合物基纳米复合材料将在更多的领域得到广泛应用。

8-聚合物基复合材料制备方法

8-聚合物基复合材料制备方法

喷射成型工艺
3. 工艺流程
喷射成型工艺
4. 工艺控制 1)树脂凝胶时间 2)树脂/玻纤=(2.5~3.5)/1(质量比) 3)胶衣树脂凝胶 第N层
(2mm)
第一层
(1mm)
辊压
第二层
(2mm)
辊压……
最后一层(先喷树脂,后铺表面毡)
4)喷射速率:2~10Kg/min 5)树脂粘度:0.3~0.8Pa.S,含胶量约60% 6)玻纤为无捻粗纱,短切长度25~50mm
手糊成型工艺
三、手糊工艺过程
1. 原材料准备 1)胶液配制
胶液工艺性:胶液粘度、凝胶时间 手糊工艺进行前,必须进行胶液凝胶时间试验。要使凝胶时 间大于或等于所配胶液施工时间,否则手糊不能顺利进行。
不饱和树脂配方(质量份) 树脂:100份;过氧化甲乙酮:2份(引发剂); 萘酸钴苯乙烯溶液:1~4份(促进剂,加入量与环境温度有关)
加热
预浸料熔融
粘流态
固化
高弹态
玻璃态
加压作用:压实预浸料,制备结构均匀、致密复合材料 加压时机:粘流态与高弹态区间 加压太早:树脂流失过多 加压太迟:树脂已进入高弹态,树脂结构不致密
袋压成型
3. 真空封装材料铺叠顺序 专家系统:控制热压罐成型工艺过程
固化模型
流动模型:树脂流动特性 热化学模型:树脂体系吸热、放热过程 空隙模型:成型缺陷 内应力模型:收缩应力、热应力
手糊成型工艺 3. 固化(凝胶-----定型-----熟化)
固化方式
常温固化:温度>15℃ (25~30℃);湿度 ≤80% (15~30℃,8~24h) 加热固化:烘箱、固化炉、模具加热、红外 线加热 (60~80℃,1~2h)
丙酮萃取法 硬度法(巴氏硬度) >15

聚合物基纳米复合材料的制备及应用

聚合物基纳米复合材料的制备及应用

聚合物基纳米复合材料的制备及应用聚合物基纳米复合材料是近年来材料科学研究的一个热点领域。

与传统材料相比,聚合物基纳米复合材料具有更出色的性能和更广泛的应用范围。

本文将从制备工艺以及应用方面对聚合物基纳米复合材料进行讨论。

一、制备工艺1.选择合适的纳米材料聚合物基纳米复合材料的制备过程中,选择合适的纳米材料是关键。

目前常用的纳米材料有纳米碳管、纳米粒子、纳米纤维等。

不同类型的纳米材料具有不同的特性,需根据实际需要选用。

2.表面改性与纳米材料的表面性质有关的表面改性是制备聚合物基纳米复合材料的一项重要步骤。

表面改性可以提高纳米材料的亲和性,从而提高材料的机械性能和化学稳定性。

3.聚合物基质合成选择适当的聚合物基质是制备聚合物基纳米复合材料的另一重要步骤。

聚合物基质的选择应该与纳米材料的性质相适应,更好地发挥复合材料的性能。

4.纳米填充物的分散在制备聚合物基纳米复合材料中,纳米填充物的分散是影响复合材料性能的另一重要因素。

良好的分散可以提高复合材料的性能,避免出现质量不均匀的情况。

5.复合材料的制备与性能测试在制备完成后,需要对复合材料进行性能测试。

这些测试可以帮助了解复合材料的结构和力学特性,从而优化制备工艺和材料性能。

二、应用方面1.复合材料在机械领域的应用聚合物基纳米复合材料在机械领域有着广泛的应用。

例如,在飞机制造中,使用聚合物基纳米复合材料可以减轻重量,提高机体强度;在汽车制造中,使用聚合物基纳米复合材料可以提高车身强度和稳定性;在建筑领域中,使用聚合物基纳米复合材料可以提高抗震性能、防火性能等。

2.复合材料在能源领域的应用聚合物基纳米复合材料在能源领域也有着广泛的应用。

例如,在太阳能领域中,使用聚合物基纳米复合材料可以提高光电转换效率;在燃料电池领域,使用聚合物基纳米复合材料可以提高电池效率和稳定性。

3.复合材料在生物领域的应用聚合物基纳米复合材料在生物领域中也有着广泛的应用。

例如,在药物传输方面,可以使用聚合物基纳米复合材料来传递药物、改善药物质量和稳定性;在组织工程方面,可以使用聚合物基纳米复合材料来模拟和重建人体组织;在人工器官方面,可以使用聚合物基纳米复合材料来制造人工关节和人工牙齿等。

聚合物基复合材料

聚合物基复合材料

聚合物基复合材料
聚合物基复合材料是一种由聚合物基体(如聚合物树脂)和强化材料(如纤维、颗粒等)组成的复合材料。

这种复合材料结合了聚合物的可塑性和强度,以及强化材料的刚度和强度,具有优异的力学性能和工程性能。

聚合物基复合材料的制备通常包括以下几个步骤:
1. 选择合适的聚合物基体,常用的包括聚丙烯、聚酯、环氧树脂等。

2. 选择适当的强化材料,常用的有玻璃纤维、碳纤维、纳米颗粒等。

3. 基体和强化材料进行混合,可以通过热压、挤出、注塑等方法将它们混合在一起。

4. 根据需要进行后续的加工和成型,如冷却、切割、修整等。

聚合物基复合材料具有许多优点,包括:
1. 轻质高强度:与金属相比,聚合物基复合材料具有较低的密度和较高的强度,可以实现轻量化设计。

2. 耐腐蚀性:聚合物基复合材料对化学品和湿气的腐蚀性能较好,不容易受到腐蚀和氧化。

3. 良好的耐热性:聚合物基复合材料通常具有较高的耐热性和耐高温性能。

4. 良好的绝缘性能:聚合物基复合材料具有良好的绝缘性能,适用于电气和电子领域。

5. 自润滑性:聚合物基复合材料中的聚合物基体可以提供良好的自润滑性能,减少了摩擦和磨损。

由于聚合物基复合材料具有以上优点,因此广泛应用于航空航天、汽车、建筑、电子、医疗等领域,成为现代工程材料中的重要一类。

聚合物基复合材料制备

聚合物基复合材料制备

聚合物基复合材料制备制备聚合物基复合材料的关键步骤包括材料选择、增强材料表面处理、复合材料制备和后处理。

首先,选择合适的聚合物基体和增强材料非常重要。

聚合物基体的选择应基于所需的力学性能、热稳定性和化学稳定性等要求。

常见的聚合物基体包括聚丙烯(PP)、聚乙烯(PE)、聚酰亚胺(PI)等。

增强材料可以是颗粒状的纳米材料,如纳米氧化硅、纳米氧化铝等;也可以是纤维状的玻璃纤维、碳纤维、天然纤维等;还可以是片状的石墨烯、石墨等。

其次,增强材料表面处理是增强材料与聚合物基体之间相容性的关键。

表面处理可以通过引入活性基团或进行氧化、酯化等化学修饰来改变增强材料的表面性质。

这样能够增加增强材料与聚合物基体之间的黏附力和相容性,从而提高复合材料的力学性能。

接下来,复合材料的制备是将增强材料均匀地分散在聚合物基体中的过程。

常见的制备方法包括熔融法、溶液法和乳液法。

熔融法是将聚合物基体和增强材料一同加热熔融,然后通过挤出或注塑等工艺形成复合材料;溶液法是将增强材料分散在聚合物溶液中,然后通过旋涂、浸渍等方法制备复合材料;乳液法是将增强材料分散在聚合物乳液中,然后通过自由基聚合或电化学聚合形成复合材料。

最后,制备完成的复合材料还需要进行后处理。

后处理包括热固化、冷却、修饰等工艺。

热固化是将复合材料加热至聚合物基体的玻璃转化温度以上,使聚合物基体发生交联反应,以提高复合材料的力学性能;冷却是通过将复合材料快速冷却到室温来获得所需的结构和性能;修饰是为了改善复合材料的表面性质,如增加润湿性、耐磨性等。

总之,聚合物基复合材料的制备是一个多步骤的过程,需要选取合适的材料、进行表面处理、制备复合材料和进行后处理。

通过精细控制这些步骤,可以得到具有优异力学性能、热稳定性和化学稳定性的聚合物基复合材料。

聚合物基纳米复合材料的制备方法及其性能评述

聚合物基纳米复合材料的制备方法及其性能评述

最后浇铸成膜或在模具中浇铸 ,除去溶剂或使之聚 合获得样 品。例如 :在制备 P A2 s 1 复合材料时, / 0
先把 P 溶 于 苯 乙烯 中 ,然 后 加 入 A1)搅 拌 混 合 s 3 ( 均 匀 ,把 溶液 浇铸到模 具 中 ,在适 当条 件下把苯 乙 烯本 体 聚合 成 聚苯 乙烯 ,制得 样 品 。邓 建 国等采 用 溶 液共混 法 制 得 的 P TS0 纳 米 复合 材料 ,复 合 E /i2 材料 的分 散 性 均 匀 ,且 其 熔 点 低 于 P T树 脂 ,此 E 项研究 拓宽 了 P T树脂 的应用 范 围 。 E 12 插层 复合法 .
R v w o P e aai to n efn m o o me-ae aoo  ̄ t t i ( eog agIsteo ei r rt nMe da dP r n  ̄ f l rb s N nemp e WuJ H injn tu f e f p o h o P y d s e l i ni t Si c d Tcnl y a i 50 7 ;Y n a ( h aMeo g ntu , H nzo 108 ; Wu D q g ( e c ne n eho g ,H r n102 ) agNn C i t l y I i t e a o b n ro ste aghu30 1 ) ai n Hi - l gag ntu c neadTcnl y a i 102 ) o i steo Si c eh o g ,H r n 5 07 ni Ii t f e n n o b
第2 5卷 第 6 期
20 年 l 月 09 1




V 12 N . 0.5 o6 N v ,2 O o . O9

聚合物基复合材料2

聚合物基复合材料2
手糊的高2~4倍;产品整体性好,无接缝,层间剪切强度 高;产品耐渗漏性好;可减少飞边、裁布边角料及剩余胶 液的消耗;产品尺寸和形状不受限制。 缺点: 树脂含量高,制品强度低;产品只能做到单面光滑;飞散 的喷射气流污染环境,有害操作者健康。
19
四、袋压成型工艺 袋压成型是最早及最广泛应用于预浸料成型的工艺之一。 将纤维预制件铺放在模具中,盖上柔软的隔离膜,在热压 下固化,经过所需的固化周期后,材料形成具有一定结构 的构件。 袋压成型可分为三种:真空袋压成型、压力袋压成型和热 压罐成型
▼当沉积到一定厚度时,用辊轮压实,帮助纤维进一步浸 透树脂,排除气泡,
▼再进行加热或常温固化, ▼固化后脱模即获得制品。
17
喷射成型的工艺参数
☆喷射成型工艺参数主要有:
树脂含量:制品中树脂含量应控制在60%左右; 喷雾压力:当树脂黏度为0.2Pa·s,树脂罐压力为
0.05~0.15MPa时,雾化压力为0.3~0.35MPa;
(1)轮鼓缠绕法
适用于实验室的研究性工作或小批量生产
5
(2)陈列铺排法 湿法:许多平行排列的纤维束或织物同时进入胶槽,浸渍 树脂后由剂胶器除去多余胶液,经烘干除去溶剂后,加隔 离纸并经辊压整平,最后收卷。 干法:熔融态树脂从漏槽流到隔离纸上,通过刮刀后在隔 离纸上形成一层厚度均匀的薄膜,经导向辊与平行排列的 纤维或织物叠合,通过热鼓时树脂熔融并浸渍纤维,再经 过辊压使树脂充分浸渍纤维,冷去后收卷。
2.2 纤维增强复合材料的制备方法
2.2.1 聚合物基复合材料的工艺特点
聚合物基复合材料在性能方面有许多独到之处,其成型工
艺与其它材料加工工艺相比也有其特点: (1)材料的成型与制品的成型是同时完成的,复合材料的

5.聚合物基复合材料的制备工艺汇总

5.聚合物基复合材料的制备工艺汇总
工艺流程: 原料准备 原料准备
包括过滤、吸磁、干燥、研磨、称量、预热等
初混合
塑炼
造粒
粒料
初混合
在聚合物熔融温度以下、较缓和的剪切力作用,用捏合机、高 速混合机等设备将物料按顺序加入、混合均匀。
塑炼
在高于树脂熔融温度和较大的剪切力作用下 ,在双滚筒炼胶 机、密炼机、单螺杆挤出机等设备使物料热熔、剪切混合达到适当 的柔软度和可塑性,同时除去挥发物。
5.2 复合材料制品成型工艺
5.2.1 手糊工艺
5.2.2 模压成型工艺
5.2.3 RTM成型工艺 5.2.4 喷射成型工艺 5.2.5 连续缠绕成型工艺 5.2.6 拉挤成型工艺
5.2.7 挤出成型工艺
5.2.8 RRIM成型工艺
手糊成型工艺—流程
模具 准备
涂脱膜剂 手糊成型
连续纤维预浸料的制造
5.1 复合材料半成品制造工艺
5.1.1 热塑性塑料粒料
5.1.2 热固性模塑料 5.1.3 连续纤维预浸料
模塑粉 短纤维增强热固性模塑料 片状模塑料(SMC)
5.1.4 增强热塑性塑料片材
增强热塑性塑料片材(RTPS)
与热固性复合材料相比,热塑性复合材料以其良好韧性、 快速成型和可回收利用的优势倍受重视。将增强材料和热塑 性树脂预先制成半成品板材,再将它剪裁成坯料,模压或冲 压成各种制品。这种半成品称为增强热塑性塑料片材
4
树脂糊
6
9
顶部PE薄膜
割刀
中空钢鼓轮
7
粗纱切割器 5
割刀
3
粗纱
10
树脂糊 2
1
低部PE薄膜
8
11
压紧辊

聚合物基复合材料的制备及其性能优化

聚合物基复合材料的制备及其性能优化

聚合物基复合材料的制备及其性能优化1. 引言聚合物基复合材料是由两种或两种以上的材料通过化学或物理方法结合在一起而形成的一种新材料。

聚合物基复合材料具有优异的力学性能、导电性、耐热性、耐腐蚀性等特性,因此被广泛应用于汽车、航空航天、电子、建筑等领域。

本文将介绍聚合物基复合材料的制备方法及其性能优化。

2. 聚合物基复合材料制备方法2.1 碳纤维增强聚合物基复合材料碳纤维增强聚合物基复合材料是目前最为常见的一种聚合物基复合材料。

其制备方法主要包括手工层叠、自动层叠、静电纺丝等。

手工层叠法是最为传统的碳纤维增强聚合物基复合材料制备方法。

该方法需要手工将碳纤维与树脂一层层叠放在一起,形成一定厚度的复合材料,再经过压力、温度作用下进行热固化。

自动层叠法是现代化的碳纤维增强聚合物基复合材料制备方法。

该方法主要利用机器自动将碳纤维及树脂层层叠放,并进行热固作用,从而获得一定厚度的复合材料。

静电纺丝是一种新型的碳纤维增强聚合物基复合材料制备方法。

该方法主要是将碳纤维通过静电纺丝技术与树脂相结合,获得一定的厚度,并进行热固化作用即可。

2.2 石墨烯增强聚合物基复合材料石墨烯是一种单层的碳原子的二维晶体结构,拥有优异的热导率、电导率和机械性能。

因此,将其应用于聚合物基复合材料中可以大大提高复合材料的力学性能和导电性。

石墨烯增强聚合物基复合材料的制备方法主要包括溶液浸渍法、机械剥离法、化学还原法等。

溶液浸渍法是将聚合物基复合材料浸泡在石墨烯的溶液中,经过热固化作用,使其与石墨烯相结合。

机械剥离法主要是利用机械方法在聚合物基复合材料表面剥离出石墨烯层,再进行热固化作用。

化学还原法是一种将还原剂加入石墨烯氧化物液浆中,通过还原剂还原氧化物,并将其与聚合物基复合材料相结合。

3. 聚合物基复合材料性能控制与优化聚合物基复合材料的性能控制与优化是达到材料性能高级别的关键。

其主要方法包括控制复合材料组成、结构及制备方法等。

3.1 控制复合材料组成复合材料的单个组成成分及其比例要符合设计要求,从而使复材料性能趋于稳定。

pmc材料

pmc材料

pmc材料PMCs(聚合物基复合材料)是指由高性能聚合物基质(Polymer Matrix)和强化材料(Reinforcement)按照一定比例混合而成的材料。

与传统聚合物材料相比,PMCs具有更高的力学性能、较低的密度以及较好的耐腐蚀性能,广泛应用于航空航天、汽车、舰船、建筑等领域。

PMCs的基质通常使用环氧树脂、聚酰亚胺等高性能聚合物材料。

这些聚合物不仅具有良好的化学稳定性,还具有较高的抗拉强度和韧性,能够满足工程上对材料性能的要求。

而PMCs的强化材料则常常采用纤维增强材料,如碳纤维、玻璃纤维等。

纤维增强材料具有极高的比强度和模量,可以提供材料的刚度和强度。

同时,纤维增强材料还能够分散和传递应力,提高材料的疲劳寿命和抗冲击性能。

PMCs的制备通常分为预浸法和浸渍法两种。

预浸法是将纤维材料事先浸渍在聚合物树脂中,形成预浸料。

预浸料经过热压或热固化等工艺,使聚合物树脂固化,最终形成具有一定形状和尺寸的复合材料构件。

而浸渍法则是将纤维材料放置在聚合物树脂中,通过浸渍和压实等工艺,使聚合物树脂充分渗透到纤维间,最终形成复合材料。

相比于金属材料,PMCs具有更低的密度和更高的比强度,具有良好的耐腐蚀性能。

这使得它在航空航天领域得到广泛应用。

例如,飞机机翼、机身等重要部件一般采用纤维增强聚合物复合材料,以降低重量并提高飞机的燃油效率。

此外,在汽车领域,PMCs也广泛应用于车身和结构件的制造中,以提高车辆的强度和安全性能。

然而,PMCs也存在一些缺点。

由于聚合物树脂的热稳定性较差,PMCs的应用温度一般较低。

此外,PMCs的成本较高,制备工艺复杂,也限制了它在大规模工业化生产中的应用。

综上所述,PMCs是一种具有优异力学性能和良好耐腐蚀性能的复合材料。

它的应用范围广泛,具有重要的经济和社会价值。

虽然目前PMCs的制备工艺和应用还存在一些问题,但随着技术的进步,相信在未来PMCs将会进一步发展和应用。

复合材料制备工艺

复合材料制备工艺

用作基体材料的树脂以热固性树脂为 主,要求树脂的粘度低和适用期长等。
大量使用的基体材料有不饱和聚酯树 脂和环氧树脂等。
在拉挤成型工艺中,目前常用的方法如热 熔涂覆法和混编法。
热熔涂覆法是使增强材料通过熔融树脂, 浸渍树脂后在成型模中冷却定型;
混编法中,首先按一定比例将热塑性聚合物 纤维与增强材料混编织成带状、空芯状等几何形 状的织物;
由于模压制品质量可靠,在兵器、飞机、导 弹、卫星上也都得到应用。
3. 层压成型工艺
层压成型工艺,是把一定层数的浸胶布(纸) 叠在一起,送入多层液压机,在一定的温度和压 力下压制成板材的工艺。
层压成型工艺属于干法压力成型范畴,是复 合材料的一种主要成型工艺。
层压成型工艺生产的制品包括各种 绝缘材料板、人造木板、塑料贴面板、 覆铜箔层压板等。
最常用的树脂是在室温或稍高温度下即可 固化的不饱和聚酯等。
喷射法使用的模具与手糊法类似, 而生产效率可提高数倍,劳动强度降低, 能够制作大尺寸制品。
用喷射成型方法虽然可以制成复杂 形状的制品,但其厚度和纤维含量都较 难精确控制,树脂含量一般在60%以上, 孔隙率较高,制品强度较低,施工现场 污染和浪费较大。
然后,在一定压力作用下加热固化成 型(热压成型)或者利用树脂体系固化时 放出的热量固化成型(冷压成型),最后 脱模得到复合材料制品。其工艺流程如下 图所示:
模具 准备
树脂胶 液配制
增强材 料准备
涂脱模剂
手糊成型
固化
脱模
手糊成型工艺流程图
制品 检验 后处理
为了得到良好的脱模效果和理想 的制品,同时使用几种脱模剂,可以 发挥多种脱模剂的综合性能。
在加工过程中,由于熔体混合物的流动 会使纤维在树脂基体中的分布有一定的各向 异性。

第四章聚合物基体复合材料

第四章聚合物基体复合材料

0.4 0.8
0.6 0.8 0.2 0.4 0.14 0.20 0.4 0.10 0.4 0.1 0.1 0.6
63 155
50 127 80 96 140 149 85 240 70 250 83 100
1.3~1.6 0.2~0.8
1.5~2.5 0.3~1.0 0.3~0.6 0.1~0.3 0.5~0.7 0.1~0.3 0.8~2.0 0.3~0.6 0.7~1.4 0.4~0.8 0.4~0.6 0.1~0.3
可以通过手糊、模压、缠绕、拉挤等各种工艺制备复合 材料。可根据制品性能要求和成型工艺方法来选择不同 牌号的树脂。 固化时收缩率较大,预浸料贮存期限短,含苯乙烯,有刺 激性气体,长期接触对身体健康不利。树脂的耐热性差。 但价格便宜、制备工艺性好。 广泛应用于电器、建筑、防腐、交通等诸多领域。
环氧树脂(EP)
聚酯
尼龙66
ABS树脂
高强度高模量纤维增强塑料
各种高强、高模纤维增强复合材料性能
常用的热固性树脂其它物理性能
热固性高聚物一直在连续纤维增强树脂基复合材
料中占统治地位。不饱合聚酯树脂、酚醛树脂主
要用于玻璃增强塑料,其中聚酯树脂用量最大,
约占总量的80%,而环氧树脂则一般用作耐腐蚀
性或先进复合材料基体。
传统的聚合物基体,固化前热固性树脂粘度很 低,宜于在常温常压下浸渍纤维,并在较低的 温度和压力下固化成型;固化后具有良好的耐 药品性和抗蠕变性。缺点是热固性树脂所用的 预浸料需要低温冷藏,且贮存期较短;成型周 期长,材料的韧性差。
35 85
21 90 70 110 95 200 130 200 110 260 67 130
45 60
20 35 100 130 88 150 130 150 34 170 80 100

聚合物基复合材料的工艺

聚合物基复合材料的工艺

3.聚合物基复合材料的工艺(重要)(1)预浸料的制备工艺1.热固性预浸料的制备1)溶液浸渍法。

将树脂基体个组分按规定的比例溶解于低沸点的溶剂中,使之成为一定浓度的溶液,然后将纤维束或织物以规定的速度通过基体溶液,使其浸渍上定量的基体溶液,并通过加热除去溶剂,使树脂得到合适的黏性。

2)热熔法。

分为直接熔融法和胶膜压延法。

2.热塑性预浸料制备。

可分为预浸渍技术与后浸渍技术两类。

(2)手糊成型工艺。

先在磨具上涂刷一层脱膜剂,后加入含固化剂树脂混合物,再在其上铺贴一层按要求剪裁好的纤维织物,用刷子、压辊或刮刀压挤织物,使其均匀浸胶并排除气泡,再涂刷树脂混合物和铺贴第二层纤维织物,反复上述过程直至达到所需厚度为止。

然后再固化、脱膜、修边,得到复合材料制品。

(3)模压成型工艺。

是将一定量的预混料或预浸料加入金属对模内,经加热、加压固化成型的方法。

是广泛使用的对热固性树脂和热塑性树脂都适用的纤维复合材料成型方法。

(4)喷射成型工艺。

将分别混有促进剂和引发剂的不饱和聚酯树脂从喷枪两侧测(或在喷枪内混合)喷出,同时将玻璃纤维无捻粗纱用切割机切断并由喷枪中心喷出,与树脂一起均匀沉积到模具上。

持沉积到一定厚度,用手辊滚压,使纤维浸透树脂、压实并除去气泡,最后固化成制品。

(5)连续缠绕工艺。

一种将浸渍了树脂的纱或丝束缠绕在回转芯模上。

常压下在室温或较高温度下固化成型的一种复合材料制造工艺。

是一种生产各种尺寸回转体的简单有效的方法。

(6)注射成型。

将颗粒状树脂、短纤维送入注射腔内,加热熔化、混合均匀,并以一定的挤出压力,注射到温度较低的密闭模具中,经过冷却定型后,开模便得到复合材料制品。

6.陶瓷基复合材料的制备工艺(成型工艺)(1)等静压成型。

一般等静压指的是湿袋式等静压(也叫湿法等静压),就是将粉料装入橡胶或塑料等可变形的容器中,密封后放入液压油或水等流体介质中,加压获得所需的坯体。

(2)热压铸成型。

热压铸成型是将粉料和蜡(或其他有机高分子黏结剂)混合后,加热使蜡(或其他有机高分子黏结剂)熔化,使混合料具有一定流动性,然后将混合料加压注入模具,冷却后即可得到致密的较硬实的坯体。

高性能聚合物基复合材料的制备与性能调控

高性能聚合物基复合材料的制备与性能调控

高性能聚合物基复合材料的制备与性能调控聚合物基复合材料是由聚合物基体和填料相互作用形成的新型材料。

它具有重量轻、强度高、耐腐蚀、热稳定性好等优点,被广泛应用于航空航天、汽车制造、建筑材料等领域。

本文将讨论高性能聚合物基复合材料的制备方法以及如何通过性能调控来提高材料的综合性能。

一、制备方法1.浸涂法:该方法常用于纤维增强复合材料的制备。

首先,将预先处理的纤维浸入聚合物基体中,待基体固化后,形成复合材料。

这种方法制备的材料具有良好的界面结合性能和强度。

2.热塑性复合法:该方法适用于高分子材料的制备。

首先,将填料与聚合物基体混合均匀,然后通过热塑性加工方法,如挤出、注塑等,使复合材料成型。

相比于其他方法,热塑性复合法制备的材料可以实现大规模、高效率的生产。

3.原位聚合法:该方法通过在填料表面进行原位聚合反应来实现聚合物基复合材料的制备。

首先,在填料表面引发聚合反应,形成聚合物基体,然后通过加热或其他处理方式,使基体与填料形成强烈的物理结合。

这种方法制备的材料具有良好的亲和力和增强效果。

二、性能调控1.界面改性:填料与聚合物基体的界面性能直接影响复合材料的综合性能。

通过表面处理、增加界面黏合剂等方式,可以增强界面粘结力,提高复合材料的强度和耐热性能。

2.填料选择:不同填料对复合材料的性能有着不同的影响。

例如,炭纤维填料可以增强材料的强度和刚度,而纳米颗粒填料可以提高材料的硬度和耐磨性能。

因此,在制备复合材料时,根据所需性能选择合适的填料对于提高材料性能至关重要。

3.添加剂调控:通过添加适量的增韧剂、抗氧化剂、阻燃剂等,可以改善聚合物基复合材料的力学性能、耐热性能和阻燃性能。

这种方法在航空航天等领域得到了广泛应用。

4.多组分共混:将两种或多种不同的聚合物基体以及不同的填料进行共混,可以得到具有优秀综合性能的复合材料。

多组分共混方法可以改善材料的力学性能、耐热性能、耐腐蚀性能等,提高材料的适用范围。

综上所述,高性能聚合物基复合材料的制备与性能调控是一个复杂而关键的过程。

聚合物基复合材料(PMC)

聚合物基复合材料(PMC)

成型固化工艺(续)
模压成型工艺优缺点
优点:较高的生产效率,制品尺寸准确,表面光洁,
多数结构复杂的制品可一次成型,无需有损制品性能 的二次加工,制品外观及尺寸的重复性好,容易实现 机械化和自动化等。
缺点:模具设计制造复杂,压机及模具投资高。制
品尺寸受设备限制,一般只适合制造批量大的中、小 型制品。
预浸渍技术包括溶液预浸和熔融预浸两种,其特 点是,预浸料中树脂完全浸渍纤维。 后预浸技术包括膜层叠、粉末浸渍、纤维混杂、 纤维混编等,其特点是,预浸料中树脂是以粉末、 纤维、或包层等形式存在,对纤维的完全浸渍要 在复合材料成型过程中完成。
预浸料及预混料制造工艺(续)
对于制造的预浸料,评价和选择要考虑的参数主要是, 纤维与基体类型、预浸料规格(厚度、宽度、单位面 积重量等)、性能指标(如树脂含量、粘性、凝胶时间 等)。 纤维与基体类型是复合材料性能的决定因素,要根据 制件的使用要求(如强度、刚度、耐热性、耐腐蚀性 等)选择不同类型预浸料。 同一类型预浸料,通常有不同规格以满足用户需要。 预浸料厚度一般在0.08一0.25mm,标准厚度为0.13mm; 宽度在25—1500mm。 评价其性能指标包括树脂含量、粘性、凝胶时间、贮 存期、挥发份含量等,是确定复合材料生产工艺、控 制制品质量的重要参数。
预浸料及预混料制造工艺(续)
SMC的生产一般是在专用SMC机组上进行。生产 上,一般先把除增强纤维以外的其它组分配成树脂糊, 再在SMC机组上与增强纤维复合成SMC。
成型固化工艺
复合材料及其制件的成型方法,是根据产品 的外形、结构与使用要求并结合材料的工艺 性来确定的。 已在生产中采用的成型方法有:1)接触成型 类:手糊成型、湿法铺层成型、注射成型;2) 压力成型类:真空袋压法成型、压力袋成型、 热压罐成型、模压成型、层压或卷制成型;3) 其他成型:纤维缠绕成型、拉挤成型、连续 板材成型、热塑性片状模塑料热冲压成型、 树脂注射和树脂传递成型、喷射成型、真空 辅助树脂注射成型、夹层结构成型、挤出成 型、离心浇铸成型等。

冷冻干燥法制备聚合物基复合材料

冷冻干燥法制备聚合物基复合材料

冷冻干燥法制备聚合物基复合材料下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!冷冻干燥法制备聚合物基复合材料1. 引言随着复合材料在各种工业应用中的广泛使用,冷冻干燥法作为一种制备聚合物基复合材料的方法越来越受到关注。

聚合物基复合材料制备方法

聚合物基复合材料制备方法

聚合物基复合材料制备方法摘自课本《聚合物基复合材料》,针对的是聚合物基纳米复合材料的制备方法。

1、溶胶-凝胶法溶胶-凝胶法是最早用来制备纳米复合材料的方法之一。

所谓的溶胶-凝胶工艺过程是将前驱物在一定的有机溶剂中形成均质溶液,均质溶液中的溶质水解形成纳米级粒子并成为溶胶,然后经溶剂挥发或加热等处理使溶胶转化为凝胶。

溶胶-凝胶中通常用酸、碱和中性盐来催化前驱物水解和缩合,因其水解和缩合条件温和,因此在制备上显得特别方便。

根据聚合物与无机组分的相互作用情况,可将其分为以下几类:(1)直接将可溶性聚合物嵌入到无机网络中把前驱物溶解在形行成的聚合物溶液中,在酸、碱或中性盐的催化作用下,让前驱化合物水解,形成半互穿网络。

(2)嵌入的聚合物与无机网络有共价键作用在聚合物侧基或主链末端引入能与无机组分形成共价键的基团,就可赋予其具有可与无机组分进行共价交联的优点,可明显增加产品的弹性模量和极限强度。

在良好溶解的情况下,极性聚合物也可与无机物形成较强的物理作用,如氢键。

(3)有机-无机互穿网络在溶胶-凝胶体系中加入交联单体,使交联聚合和前驱物的水解与缩合同步进行,就可形成有机-无机同步互穿网络。

用此方法,聚合物具有交联结构,可减少凝胶的收缩,具有较大的均匀性和较小的微区尺寸,一些完全不溶的聚合物可以原位生成均匀地嵌入到无机网络中。

溶胶-凝胶法的特点是可在温和条件下进行,可使两相分散均匀,通过控制前驱物的水解-缩合来调节溶胶-凝胶化过程,从而在反应早期就能控制材料的表面与界面性能,产生结构极其精细的第二相。

存在的问题是在凝胶干燥过程中,由于溶剂、小分子、水的挥发可能导致材料内部产生收缩应力,从而会影响材料的力学和机械性能。

另外,该法所选聚合物必须是溶解于所用溶剂中的,因而这种方法受到一定限制。

2、层间插入法层间插入法是利用层状无机物(如粘土、云母等层状金属盐类)的膨胀性、吸附性和离子交换功能,使之作为无机主体,将聚合物(或单体)作为客体插入于无机相的层间,制得聚合物基有机-无机纳米复合材料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘自课本《聚合物基复合材料》,针对的是聚合物基纳米复合材料的制备方法。

1、溶胶-凝胶法
溶胶-凝胶法是最早用来制备纳米复合材料的方法之一。

所谓的溶胶-凝胶工艺过程是将前驱物在一定的有机溶剂中形成均质溶液,均质溶液中的溶质水解形成纳米级粒子并成为溶胶,然后经溶剂挥发或加热等处理使溶胶转化为凝胶。

溶胶-凝胶中通常用酸、碱和中性盐来催化前驱物水解和缩合,因其水解和缩合条件温和,因此在制备上显得特别方便。

根据聚合物与无机组分的相互作用情况,可将其分为以下几类:
(1)直接将可溶性聚合物嵌入到无机网络中把前驱物溶解在形行成的聚合物溶液中,在酸、碱或中性盐的催化作用下,让前驱化合物水解,形成半互穿网络。

(2)嵌入的聚合物与无机网络有共价键作用在聚合物侧基或主链末端引入能与无机组分形成共价键的基团,就可赋予其具有可与无机组分进行共价交联的优点,可明显增加产品的弹性模量和极限强度。

在良好溶解的情况下,极性聚合物也可与无机物形成较强的物理作用,如氢键。

(3)有机-无机互穿网络在溶胶-凝胶体系中加入交联单体,使交联聚合和前驱物的水解与缩合同步进行,就可形成有机-无机同步互穿网络。

用此方法,聚合物具有交联结构,可减少凝胶的收缩,具有较大的均匀性和较小的微区尺寸,一些完全不溶的聚合物可以原位生成均匀地嵌入到无机网络中。

溶胶-凝胶法的特点是可在温和条件下进行,可使两相分散均匀,通过控制前驱物的水解-缩合来调节溶胶-凝胶化过程,从而在反应早期就能控制材料的表面与界面性能,产生结构极其精细的第二相。

存在的问题是在凝胶干燥过程中,由于溶剂、小分子、水的挥发可能导致材料内部产生收缩应力,从而会影响材料的力学和机械性能。

另外,该法所选聚合物必须是溶解于所用溶剂中的,因而这种方法受到一定限制。

2、层间插入法
层间插入法是利用层状无机物(如粘土、云母等层状金属盐类)的膨胀性、吸附性和离子交换功能,使之作为无机主体,将聚合物(或单体)作为客体插入于无机相的层间,制得聚合物基有机-无机纳米复合材料。

层状无机物是一维方向上的纳米材料,其粒子不易团聚且易分散,其层间距离及每层厚度都在纳米尺度范
围1~100 nm内。

层状矿物原料来源极其丰富,而且价廉。

插入法大致可分为以下几种:
(1)熔融插层聚合先将聚合物单体分散并插入到层状硅酸盐片层中,然后进行原位聚合。

利用原位聚合时所放出的大量热量,克服硅酸盐片层间的库仑力而使其发生剥离,从而使硅酸盐片层与聚合物基体以纳米尺度复合。

(2)溶液插层聚合将聚合物单体和层状无机物分别溶解(分散)到某一溶剂中,充分分散后,混合到一起,搅拌一定时间,使单体进入无机物层间,然后在合适的条件下使聚合物单体聚合。

(3)聚合物熔融插层先将层状无机物与聚合物混合,再将混合物加热到熔融状态,在静态或有剪切力的作用下,使聚合物插入层状无机物的层间。

该方法不需要溶剂,可直接加工,易于工业化生产,且适用面较广。

(4)聚合物溶液插层将聚合物大分子和层状无机物一起加入到某一溶剂中,搅拌使聚合物分散在溶剂中,并插入到无机物片层间。

溶液法的关键是寻找合适的单体和相容的聚合物黏土共溶剂体系。

由于大量的溶剂不易回收,因此溶液法对环境不利。

3、共混法
共混法类似于聚合物的共混改性,是聚合物与无机纳米粒子的共混,该法是制备纳米复合材料最简单的方法,适合于各种形态的纳米粒子。

根据共混方式,共混法大致可分为以下四种。

(1)溶液共混将基体树脂溶于良溶剂中,加入纳米粒子,充分搅拌使之均匀分散,成膜或浇铸到模具中,除去溶剂制得样品。

(2)乳液共混聚合物乳液与纳米粒子均匀混合,最后除去溶剂而成型。

乳液共混中有外乳化型与自乳化型两种复合体系。

外乳化法由于乳化剂的存在,一方面可使纳米粒子更加稳定,分散更加均匀,另一方面它也会影响纳米复合材料的一些物化性能,特别是对电性能影响较大。

自乳化型复合体系既能使纳米粒子更加稳定,分散更加均匀,又能克服外加乳化剂对纳米复合材料的电学及光学性能的影,比外乳化型复合体系更可取。

(3)熔融共混将聚合物熔体与纳米粒子共混制成复合体系,其中所选聚合物的分解温度应高于其熔点。

熔融共混法较其它方法耗能少,且球状粒子在加热时碰
撞机会增加,更易团聚,因而表面改性更为重要。

(4)机械共混通过各种机械方法如搅拌、研磨等来制备纳米复合材料。

该法容易控制粒子的形态和尺寸分布,其难点在于粒子的分散。

为防止无机纳米粒子的团聚,共混前要对纳米粒子进行表面处理。

除采用分散剂、偶联剂和(或)表面功能改性剂等综合处理外,还可用超声波辅助分散。

4、原位聚合法
原位聚合法是将无机纳米粒子与单体均匀混合后在一定温度条件下由引发剂作用引发(或不加)的直接聚合,是制备具有良好分散效果的纳米复合材料的重要方法。

该法可一次聚合成型,适用于各类单体及聚合方法,并保持纳米复合材料良好的性能。

原位聚合法可在水相,也可在油相中发生,单体可进行自由基聚合,在油相中还可进行缩聚反应,适用于大多数有机-无机纳米复合材料的制备。

由于聚合物单体分子小,粘度低,表面有效改性后无机纳米粒子容易均匀分散,保证了体系的均匀性和各项物理性能。

原位聚合法反应条件温和,制备的复合材料中纳米粒子均匀分布,粒子的纳米特性完好无损,同时在聚合中,只经一次聚合成型,不需热加工,避免了由此产生降解,从而保持了基本性能的稳定。

但其使用有较大的局限性,以为该方法仅适用于含有金属、硫化物或氢氧化物胶体粒子的溶液中使单体分子进行原位聚合制备纳米复合材料。

相关文档
最新文档