用matlab绘制汽车发动机外特性中的功率与转矩曲线
基于MATLAB语言的发动机特性研究
) ?++ $"96; -D-")+)". ))?"? )E>") .+?H. .)+"F !"9@ ﹒
$AB ) C %,-
- )-? - .F- /+> - ?)+ ) ++D ) -?/ ) .F> ) D?? ) E?>
)>)H> ).+HD ))/H. )).HF ))+H/ ))+HE ))+HF ))DHF ).+H-
* 本文利用()*+),强大的数据处理和三
维曲线绘图功能 % 提出了一种绘制发动机特性的新
"% #
!
发动机特性数学模型
对发动机特性及其与车辆动力传动系匹配进行
式中 %) 和 , 分别表示任意 一 条 特 性 曲 线 的 纵 坐 标 与 横 坐 标 /* 为多项式的阶次 /’+为多项式各 项拟合系数 % 一般采用最小 二 乘法确定 *
根据以上原理 ! 用 !"#$%& 语言编制相应的程 序解出回归方程的系数向量 ! 即可得到试验数据的 回归方程 "
&+ & # $ &( ’ !"’ ! !$ ’ ( !#"!$"!#")!#"$"!$" *!#!$" % " * ’ $ &’,- ( %
- >++ $"96; !"9@ ﹒
$AB ) C%
()*+), 中 的 曲 线 拟 合 等 相 应 的 工 具 箱 或 ./01234%./01560 %./014//0%./017/82 等 函 数 可 以 非 常 好
基于MATLAB语言的发动机万有特性曲线的绘制
Plotting of Engine Univer sal Char acter istics Cur ve Based on MATLAB
HUANG Meimei, ZHAO Zhiwei,JIN Hualei, JIA Yantao,SUN Haipeng
低 。其 实 质 是 以 二 维 的 图 形 方 式 表 达 三 维 的 信 息 ,不 直 观
并且难以保证对数据进行深刻分析。
随着 MATLAB 语言的广泛应用,因为其强大的数据处
理和三维曲线绘图功 能 ,可 进 行 工 程 计 算 、建 模 仿 真 和 数
据分析处理等。本文则利用 MATLAB 强大的功能,提出了
[3] 易 雪 梅 ,吴 伶 . 用 MATLAB 语 言 绘 制 发 动 机 万 有 特 性 的 两 种 方法 [J]. 北京汽车, 2005, 5: 33- 35
[4] 李 金 辉 ,徐 立 友 . 基 于 MATLAB 语 言 的 发 动 机 特 性 研 究 [J]. 汽车科技, 2005, 3: 40- 42
参考文献
[1] 杨 丽 娟 ,赵 丹 平 . 基 于 MATLAB 基 础 上 的 发 动 机 万 有 特 性 曲 线的建立 [J]. 汽车节能, 2010, 1: 32- 33
[2] 薛 定 宇 ,陈 阳 泉 . 基 于 MATLAB/Simulink 的 系 统 仿 真 与 应 用 [M]. 北京: 清华大学出版社 .2002
Key words: straight welded pipe, burr, broach, hydraulic system
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
MATLAB和Origin绘制发动机万有特性曲线程序及方法
MATLAB及Origin绘制发动机万有特性曲线实例1.MATLAB绘制发动机万有特性实例(含程序代码)2.Origin绘制发动机万有特性曲线方法(操作步骤)一、MATLAB方法MTALB绘制发动机万有特性曲线需要建立M文件,并在M文件中将程序写入,运行即可,当然也可以通过调用excel数据来绘制万有特性曲线,下面是MATLAB绘制实例,可借鉴修改然后运行。
MATLAB程序如下:clcclear all%不同转速下的燃油消耗率与扭矩的曲线拟合be1=[222.8,220.4,232.4,228.5,227.8,232.6,248.5,245.9,272.4,329.7];Ttq1=[399.8,354.1,318.5,278.1,236.2,203.6,185.3,157.2,117.2,80.8];T1=80:320/9:400;%转换矩阵格式Be1=interp1(Ttq1,be1,T1,'spline');%n=1400r/min时燃油消耗率与扭矩的曲线拟合be2=[222.0,221.7,235.4,226.5,230.5,236.8,249.1,276.1,407.9,487.0];Ttq2=[409.1,365.7,328.3,284.1,243.7,203.2,164.3,123.9,83.5,39.7];T2=39:371/9:410;Be2=interp1(Ttq2,be2,T2,'spline');be3=[226.0,225.3,226.4,233.9,242.1,283.3,253.9,271.4,323.5,468.6];Ttq3=[408.3,368.3,328.3,289.0,244.4,208.8,167.7,132.1,89.5,46.1];T3=46:363/9:409;Be3=interp1(Ttq3,be3,T3,'spline');be4=[206.5,231.1,231.1,233.0,242.0,244.9,265.0,299.8,398.0,596.8];Ttq4=[425.6,380.3,332.7,290.9,244.4,205.1,160.2,114.5,68.8,30.7];T4=30:396/9:426;Be4=interp1(Ttq4,be4,T4,'spline');be5=[234.7,259.8,235.5,237.6,242.8,292.3,277.9,308.7,396.2,605.9];Ttq5=[420.7,379.6,334.6,291.6,244.4,202.8,157.5,116.0,74.1,37.8];T5=37:384/9:421;Be5=interp1(Ttq5,be5,T5,'spline');be6=[174.2,242.2,252.1,287.4,253.6,263.6,290.6,316.8,378.0,518.8];Ttq6=[404.6,360.5,322.7,283.0,243.3,205.5,162.1,124.7,86.8,52.4];T6=52:353/9:405;Be6=interp1(Ttq6,be6,T6,'spline');be7=[256.9,253.7,253.5,260.0,303.8,280.7,300.6,346.6,435.6,812.9];Ttq7=[378.0,344.7,310.3,264.3,226.1,186.8,154.2,115.3,76.3,34.1];T7=34:344/9:378;Be7=interp1(Ttq7,be7,T7,'spline');be8=[257.9,295.3,282.4,288.7,301.9,329.7,357.0,475.4,580.3,1080.1];Ttq8=[315.6,275.5,242.5,210.3,178.5,145.6,118.6,72.6,52.8,22.4];T8=22:294/9:316;Be8=interp1(Ttq8,be8,T8,'spline');B=[Be1';Be2';Be3';Be4';Be5';Be6';Be7';Be8'];N=[1400*ones(10,1);1600*ones(10,1);1800*ones(10,1);2000*ones(10,1);2200*ones(10,1);2400*ones (10,1);2600*ones(10,1);2800*ones(10,1)];Ttqn=[T1';T2';T3';T4';T5';T6';T7';T8'];G=[ones(80,1),N,Ttqn,N.^2,N.*Ttqn,Ttqn.^2];A=G\B;%A为6*1矩阵[n,Ttq]=meshgrid(1400:2800,100:600);%生成n-Ttq平面上的自变量“格点”矩阵be=A(1)+n.*A(2)++Ttq*A(3)+n.^2*A(4)+n.*Ttq*A(5)+Ttq.^2*A(6);Pe=Ttq.*n/9550;%外特性实验数据拟合Nw=[1403,1597,1797,1986,2102,2199,2303,2400,2507,2598,2700,2802]; Ttqw=[474,497,515,526,528.8,522.8,509.5,492.2,471.2,448.4,408.3,357.4]; n0=1400:2800;Ttqw_N=interp1(Nw,Ttqw,n0,'spline');h=repmat(Ttqw_N,501,1);ii=find(Ttq>h);%确定超出边界的“格点”下标be(ii)=NaN;%强制为非数Pe(ii)=NaN;%强制为非数%绘制等燃油消耗率曲线和等功率曲线三维拟合图subplot(1,2,1);mesh(n,Ttq,be);hold on;mesh(n,Ttq,Pe);axis([1000,3000,100,600,0,500]);hold on;xlabel('n(r/min)')ylabel('Ttq(N*m)')zlabel('Pe(KW) be(g/(KW*h))')title('等燃油消耗曲线和等功率曲线的三维拟合图')%绘制边界线(外特性曲线)subplot(1,2,2);plot(n0,Ttqw_N,'LineWidth',2);axis([1400,2800,100,550]);xlabel('n(r/min)');ylabel('Ttq(N*m)');title('万有特性曲线');hold on;%绘制等油耗率曲线的二维图B=contour(n,Ttq,be,11);%画等位线,并给出标识数据clabel(B);%把“等位值”沿等位线随机标识hold on;%绘制等功率曲线的二维图P=contour(n,Ttq,Pe,11);%画等位线,并给出标识数据clabel(P);%把“等位值”沿等位线随机标识legend('等油耗曲线','等功率曲线','外特性曲线')hold off二、Origin方法用origin软件绘制发动机万有特性曲线方法一、万有特性数据输入在excel中整理好发动机万有特性数据,主要包括发动机转速、扭矩、燃油消耗率及功率数据。
Matlab程序模拟汽车理论中的数据特性图1
车辆理论作业第三组第一大题确定一辆轻型货车的动力性能 1、绘制发动机的使用外特性曲线 n=600:1:4000 N=n/1000T=-19.313+295.27*n/1000-165.44*N.*N+40.874*N.*N.*N-3.8445*N.*N.*N .*NPe=T.*n/9550 %发动机的净功率 figure(1) plot(n,T) xlabel('转速n') ylabel('转矩T') figure(2) plot(n,Pe) xlabel('转速n') ylabel('功率Pe')5001000150020002500300035004000100110120130140150160170180转速n转矩T5001000150020002500300035004000010203040506070转速n功率P e2、绘制驱动力---行驶阻力平衡图 i0=6.17; %减速器的传动比 ig(1)=6.09 % 一档的传动比 ig(2)=3.09 ig(3)=1.71 ig(4)=1.00 nT=0.85 r=0.367 f=0.013 m1=3880 m2=9590 CdA=2.77 Ff1=m1*9.8*f Ff2=m2*9.8*fft1=T*ig(1)*i0*nT/r %一档所产生的驱动力 ft2=T*ig(2)*i0*nT/r ft3=T*ig(3)*i0*nT/r ft4=T*ig(4)*i0*nT/r Ft=[ft1;ft2;ft3;ft4]';ua1=0.377*r*n/(ig(1)*i0) %一档的速度 ua2=0.377*r*n/(ig(2)*i0) ua3=0.377*r*n/(ig(3)*i0) ua4=0.377*r*n/(ig(4)*i0) ua=[ua1;ua2;ua3;ua4]';fw1=CdA*ua1.^2/21.15+Ff1 %一档的行驶阻力 fw2=CdA*ua2.^2/21.15+Ff1 fw3=CdA*ua3.^2/21.15+Ff1 fw4=CdA*ua4.^2/21.15+Ff1Fz1=[fw1;fw2;fw3;fw4]'; figure(3)plot(ua,Ft) %绘制各档的驱动力曲线hold onplot(ua,Fz1) %绘制行驶阻力曲线 hold onplot(ua4,Ff2) %绘制滚动阻力曲线 xlabel('ua/(km.h)')ylabel('F/N')title('汽车驱动力-行驶阻力平衡图')text(20,12000,'Ft1'); text(30,6000,'Ft2'); text(40,4000,'Ft3'); text(80,3000,'Ft4');text(90,2200,'(空载)Ff+fw'); text(105,1450,'满载Ff')102030405060708090200040006000800010000120001400016000ua/(km.h)F /N汽车驱动力-行驶阻力平衡图Ft1Ft2Ft3Ft4(空载)Ff+Fw满载Ff一档的驱动力很大,可用于爬坡且坡度较大;二档用于直接原地起步加速 3、绘制动力特性图D=(Ft-Fw)/(m1*9.8) %求动力因数f1=0.0076+0.000056*ua %一定车速条件下的滚动阻力 figure(4) plot(ua,D) hold onplot(ua,f1) text(20,0.3,'I') text(20,0.154,'II') text(40,0.1,'III') text(80,0.05,'IV') text(110,0.025,'f') title('汽车动力特性图') xlabel('ua/(km.h)') ylabel('D')1020304050607080900.050.10.150.20.250.30.350.40.45IIIIIIIVf汽车动力特性图ua/(km.h)DIf=0.218Iw1=1.798 Iw2=3.598die1=1+(Iw1+Iw2)/(m1*r^2)+(If*i0^2*nT*ig(1).^2)/(m1*r^2);%一档的旋转质量换算系数die2=1+(Iw1+Iw2)/(m1*r^2)+(If*i0^2*nT*ig(2).^2)/(m1*r^2); die3=1+(Iw1+Iw2)/(m1*r^2)+(If*i0^2*nT*ig(3).^2)/(m1*r^2); die4=1+(Iw1+Iw2)/(m1*r^2)+(If*i0^2*nT*ig(4).^2)/(m1*r^2); die=[die1;die2;die3;die4]';a1=9.8*D(:,1)/die1-9.8*f/die1; %求一档的加速度 a2=9.8*D(:,2)/die2-9.8*f/die2; a3=9.8*D(:,3)/die3-9.8*f/die3; a4=9.8*D(:,4)/die4-9.8*f/die4; aI=1./a1 %求一档的加速度倒数 aII=1./a2 aIII=1./a3 aIV=1./a4aa=[aI,aII,aIII,aIV]';figure(5) %绘制各档的加速度倒数曲线 plot(ua1,aI) hold on plot(ua2,aII) hold onplot(ua3,aIII) hold onplot(ua4,aIV)axis([5 99 0.01 10])10203040506070809012345678910aI aII aIIIaIV加速度倒数曲线ua/(km.h)1/a由图可知,加速度倒数没有交点,则可以在每档达到最大车速时换挡 nT=0.85;r=0.367;f=0.013;CDA=2.77;i0=6.17;If=0.218; Iw1=1.798;Iw2=3.598;L=3.950;a=2.000;hg=0.9;m=3880;g=9.8; G=m*g; ig=[6.09 3.09 1.71 1.00 ]; nmin=600;nmax=4000; u1=0.377*r*nmin./ig/i0; u2=0.377*r*nmax./ig/i0;deta=0*ig; for i=1:4deta(i)=1+(Iw1+Iw2)/(m*r^2)+(If*(ig(i))^2*i0^2*nT)/(m*r^2); endua=[0:0.01:99];N=length(ua);n=0;Tq=0;Ft=0;inv_a=0*ua;delta=0*ua; Ff=G*f;Fw=CDA*ua.^2/21.15; for i=1:N k=i;if ua(i)<=u2(2)n=ua(i)*(ig(2)*i0/r)/0.377;Tq=-19.313+295.27*(n/1000)-165.44*(n/1000).^2+40.874*(n/1000).^3-3.8445*(n/1000)^.4;Ft=Tq*ig(2)*i0*nT/r;inv_a(i)=(deta(2)*m)/(Ft-Ff-Fw(i)); delta(i)=0.01*inv_a(i)/3.6; elseif ua(i)<=u2(3)n=ua(i)*(ig(3)*i0/r)/0.377;Tq=-19.313+295.27*(n/1000)-165.44*(n/1000).^2+40.874*(n/1000).^3-3.8445*(n/1000).^4;Ft=Tq*ig(3)*i0*nT/r;inv_a(i)=(deta(3)*m)/(Ft-Ff-Fw(i)); delta(i)=0.01*inv_a(i)/3.6;else ua(i)<=u2(4)n=ua(i)*(ig(4)*i0/r)/0.377;Tq=-19.313+295.27*(n/1000)-165.44*(n/1000).^2+40.874*(n/1000).^3-3.8445*(n/1000).^4; Ft=Tq*ig(4)*i0*nT/r;inv_a(i)=(deta(4)*m)/(Ft-Ff-Fw(i)); delta(i)=0.01*inv_a(i)/3.6; enda=delta(1:k); t(i)=sum(a); endplot(t,ua,'b','LineWidth',2);axis([0 100 0 100]);title('四档汽车二档原地起步换挡加速时间曲线'); xlabel('时间t (s )');ylabel('速度ua (km/h )');1020304050607080901000102030405060708090100四档汽车二档原地起步换挡加速时间曲线时间t (s )速度u a (k m /h )第二大题n=600:1:4000 N=n/1000T=-19.313+295.27*n/1000-165.44*N.*N+40.874*N.*N.*N-3.8445*N.*N.*N .*NPe=T.*n/9550 figure(1) plot(n,T)text(1000,120,'转矩T') hold on plot(n,Pe)text(2000,20,'发动机净功率Pe')5001000150020002500300035004000020406080100120140160180转矩T发动机净功率Pei0=6.17; ig(1)=6.09 ig(2)=3.09 ig(3)=1.71 ig(4)=1.00 nT=0.85 r=0.367 f=0.013 m1=3880 m2=9590 CdA=2.77ua1=0.377*r*n/(ig(1)*i0) ua2=0.377*r*n/(ig(2)*i0) ua3=0.377*r*n/(ig(3)*i0) ua4=0.377*r*n/(ig(4)*i0); ua=10:1:100Pf=m1*9.8*f.*ua/(3600) Pw=CdA*ua.^3/(76140) figure(2) plot(ua1,Pe) hold on plot(ua2,Pe) hold on plot(ua3,Pe) hold onplot(ua4,Pe) hold onplot(ua,(Pf+Pw)/nT)010203040506070809010010203040506070评价:一二三档的后备功率都比较大,可在一定坡度的道路上直接启动加速; 在最高档达到最高车速时,n0=[815 1207 1614 2012 2603 3006 3403 3884]B00=[1326.8 1354.7 1284.4 1122.9 1141.0 1051.2 1233.9 1129.7] B10=[-416.46 -303.98 -189.75 -121.59 -98.893 -73.714 -84.478 -45.291] B20=[72.379 36.657 14.524 7.0035 4.4763 2.8593 2.9788 0.71113]B30=[-5.8629 -2.0533 -0.51184 -0.18517 -0.091077 -0.05138 -0.047449 -0.00075215]B40=[0.17768 0.043072 0.0068164 0.0018555 0.00068906 0.00035032 0.00028230 -0.000038568] B0=spline(n0,B00,n) B1=spline(n0,B10,n) B2=spline(n0,B20,n) B3=spline(n0,B30,n) B4=spline(n0,B40,n)Pf3=m1*9.8*f.*ua3/(3600) Pw3=CdA*ua3.^3/(76140) Pf4=m1*9.8*f.*ua4/(3600) Pw4=CdA*ua4.^3/(76140) Ff1=m1*9.8*ffz3=CdA*ua3.^2/21.15+Ff1 fz4=CdA*ua4.^2/21.15+Ff1 %Pe3=fz3.*ua3./(3600*nT); %Pe4=fz4.*ua4./(3600*nT); Pe3=(Pf3+Pw3)/nTPe4=(Pf4+Pw4)/nTb3=B0+B1.*Pe3+B2.*Pe3.^2+B3.*Pe3.^3+B4.*Pe3.^4 b4=B0+B1.*Pe4+B2.*Pe4.^2+B3.*Pe4.^3+B4.*Pe4.^4Qs4=Pe4.*b4./(1.02*ua4*7.10*9.8) Qs3=Pe3.*b3./(1.02*ua3*7.10*9.8) figure(3)plot(ua4,Qs4) hold on plot(ua3,Qs3)01020304050607080901.41.61.822.22.42.62.8n=600:1:4000 N=n/1000T=-19.313+295.27*n/1000-165.44*N.*N+40.874*N.*N.*N-3.8445*N.*N.*N .*NPe=T.*n/9550 i0=6.17; ig(1)=6.09 ig(2)=3.09 ig(3)=1.71 ig(4)=1.00 nT=0.85 r=0.367 f=0.013 m1=3880 m2=9590 CdA=2.77ua1=0.377*r*n/(ig(1)*i0) ua2=0.377*r*n/(ig(2)*i0) ua3=0.377*r*n/(ig(3)*i0) ua4=0.377*r*n/(ig(4)*i0);n0=[815 1207 1614 2012 2603 3006 3403 3884]B00=[1326.8 1354.7 1284.4 1122.9 1141.0 1051.2 1233.9 1129.7] B10=[-416.46 -303.98 -189.75 -121.59 -98.893 -73.714 -84.478 -45.291]B20=[72.379 36.657 14.524 7.0035 4.4763 2.8593 2.9788 0.71113]B30=[-5.8629 -2.0533 -0.51184 -0.18517 -0.091077 -0.05138 -0.047449 -0.00075215]B40=[0.17768 0.043072 0.0068164 0.0018555 0.00068906 0.00035032 0.00028230 -0.000038568]B0=spline(n0,B00,n)B1=spline(n0,B10,n)B2=spline(n0,B20,n)B3=spline(n0,B30,n)B4=spline(n0,B40,n)Pf3=m1*9.8*f.*ua3/(3600) %三档的滚动阻力功率Pw3=CdA*ua3.^3/(76140) %三档的的空气阻力功率Pf4=m1*9.8*f.*ua4/(3600)Pw4=CdA*ua4.^3/(76140)Ff1=m1*9.8*fPe3=(Pf3+Pw3)/nT %三档的发动机净功率Pe4=(Pf4+Pw4)/nT %四档的发动机净功率b3=B0+B1.*Pe3+B2.*Pe3.^2+B3.*Pe3.^3+B4.*Pe3.^4b4=B0+B1.*Pe4+B2.*Pe4.^2+B3.*Pe4.^3+B4.*Pe4.^4Qs4=Pe4.*b4./(1.02*ua4*7.10) %四档的百公里油耗Qs3=Pe3.*b3./(1.02*ua3*7.10) %三档的百公里油耗ua=[25 40 50]ss=[50 250 250]fz=CdA*ua.^2/21.15+Ff1 %匀速条件下的阻力Pee=fz.*ua/(3600*nT);b=spline(b4,Pe4,Pee) %匀速条件下的燃油消耗率Qsy=Pee.*b./(1.02*ua*7.10)a=[0.2 0.2 -0.36]dt1=1/(3.6*0.2)dt2=1/(3.6*0.2)dt3=1/(3.6*(0.36))ua11=25:1:40ua22=40:1:50ua33=50:-1:25b11=spline(ua4,b4,ua11) %在加速条件下的各个速度节点的燃油消耗率b22=spline(ua4,b4,ua22)b33=spline(ua4,b4,ua33)If=0.218Iw1=1.798Iw2=3.598die4=1+(Iw1+Iw2)/(m1*r^2)+(If*i0^2*nT*ig(4).^2)/(m1*r^2);Pej1=(m1*9.8*f.*ua11/(3600)+CdA.*ua11.^3/(76140)+(die4*m1.*ua11/3600)*0.2)/nT %在三个加速条件下的各个速度节点Pej2=(m1*9.8*f.*ua22/(3600)+CdA.*ua22.^3/(76140)+(die4*m1.*ua22/3 600)*0.2)/nT %的发动机净功率Pej3=(m1*9.8*f.*ua33/(3600)+CdA.*ua33.^3/(76140)+(die4*m1.*ua33/3 600)*0.2)/nT %Qstj1=Pej1.*b11/(367.1*7.10) %在三中加速条件下的,各自的单位时间的燃油消耗量Qstj2=Pej2.*b22/(367.1*7.10)Qstj3=Pej3.*b33/(367.1*7.10)i11=size(Qstj1)i22=size(Qstj2)i33=size(Qstj3)i1=i11(2)i2=i22(2)i3=i33(2)Qt1=Qstj1(2:i1-1)Qt2=Qstj2(2:i2-1)Qt3=Qstj3(2:i3-1)q1=((Qstj1(1)+Qstj1(i1))*dt1./2+sum(Qt1)*dt1)/10q2=((Qstj2(1)+Qstj2(i2))*dt2./2+sum(Qt2)*dt2)/10q3=((Qstj3(1)+Qstj3(i3))*dt3./2+sum(Qt3)*dt3)/10Qall=(q1+q2+q3+Qsy(:,1)+Qsy(:,2)+Qsy(:,3))*100/1075q1 =5.8526q2 =4.9810 q3 =6.0186 Qall =2.7916第三大题(1)m0=4880; %空载质量m/kghg0=0.845; %空载质心高L0=3.95; %空载轴距a0=2.100; %空载质心至前轴距离m=9290; %满载质量m/kghg=1.170; %满载质心高L=3.95; %满载轴距a=2.950; %满载质心至前轴距离BB=0.38; %B为制动力分配系数g=9.8;G=m*g;b=L-a;G0=m0*g;b0=L0-a0;Fu1 =0:1000:100000;Fu2=1/2*(G/hg*(b^2+4*hg*L/G*Fu1).^0.5-(G*b/hg+2*Fu1));Fu02=1/2*(G0/hg0*(b0^2+4*hg0*L0/G0*Fu1).^0.5-(G0*b0/hg0+2*Fu1));F2=(1-B)*Fu1/B;plot(Fu1,Fu2) %绘制满载时的I曲线hold onplot(Fu1,Fu02) %绘制空载时的I曲线hold onplot(Fu1,F2); %%绘制beta曲线title('beta线和I曲线')text(30000,50000,'beta曲线')text(25000,10000,'空载时I曲线')text(25000,30000,'满载时I曲线')xlabel('Fu1')ylabel('Fu2')figure(2)fe=[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9];for i=1:10Fxb1fk=0:100:120000;Fxb1rk=0:100:120000;Fxb2fk=(L0-fe(i)*hg0)/(fe(i)*hg0).*Fxb1fk-G0*b0/hg0;Fxb2rk=(-1*fe(i)*hg0)/(L0+fe(i)*hg0).*Fxb1rk+fe(i)*G0*a0/(L0+fe(i )*hg0);plot(Fxb1fk,Fxb2fk)hold onplot(Fxb1rk,Fxb2rk,'r')hold onendxlabel('Fxb1')ylabel('Fxb2')axis([0 120000 0 40000])title('空载时的f、r线组图')figure(3)for i=1:10Fxb1fk=0:100:220000;Fxb1rk=0:100:220000;Fxb2fk=(L-fe(i)*hg)/(fe(i)*hg).*Fxb1fk-G*b/hg;Fxb2rk=(-1*fe(i)*hg)/(L+fe(i)*hg).*Fxb1rk+fe(i)*G*a/(L+fe(i)*hg); plot(Fxb1fk,Fxb2fk)hold onplot(Fxb1rk,Fxb2rk,'r')hold onendxlabel('Fxb1')ylabel('Fxb2')axis([0 220000 0 80000])title('满载时的f、r线组图')012345678910x 104-2024681012141618x 104beta 线和I 曲线beta 曲线空载时I 曲线满载时I 曲线Fu1F u 2024681012x 10400.511.522.533.54x 104Fxb1F x b 2空载时的f 、r 线组图00.20.40.60.81 1.21.4 1.6 1.822.2x 105012345678x 104Fxb1F x b 2满载时的f 、r 线组图(2)-(3)m0=4880; %空载质量m/kghg0=0.845; %空载质心高L0=3.95; %空载轴距a0=2.100; %空载质心至前轴距离m=9290; %满载质量m/kghg=1.170; %满载质心高L=3.95; %满载轴距a=2.950; %满载质心至前轴距离BB=0.38; %B 为制动力分配系数g=9.8;G=m*g;b=L-a;G0=m0*g;b0=L0-a0;z=0:0.1:1; %制动强度fef=B*z*L./(b+z*hg);fef0=B*z*L0./(b0+z*hg0);fer=(1-B)*z*L./(a-z*hg);fer0=(1-B)*z*L0./(a0-z*hg0);figure(1)plot(z,fef,z,fef0,z,fer,z,fer0,z,z)text(0.8,1.5,'空车后轮')text(0.8,1.2,'满载后轮')text(0.7,0.6,'满载前轮')text(0.8,0.4,'空车前轮')figure(2)Ef=z./fef*100Ef0=z./fef0*100Er=z./fer*100Er0=z./fer0*100plot(fef,Ef,fer,Er)hold onplot(fef0,Ef0,fer0,Er0)axis([0 1 0 100])text(0.3,90,'Ef')text(0.8,90,'Er 满载')text(0.3,70,'Er 空载')00.10.20.30.40.50.60.70.80.9100.20.40.60.811.21.41.61.82空车后轮满载后轮满载前轮空车前轮00.10.20.30.40.50.60.70.80.910102030405060708090100Ef Er 满载Er 空载m0=4880;hg=0.845;l=3.950;a=2.100;b=1.850;beita=0.38;g=9.8;G0=m0*g ;m=9290;Hg=1.170;L=3.950;A=2.950;B=1.050;beita=0.38;g=9.8;G=m*g;t1=0.02;t2=0.02;ua0=30;fai=0.80;z=0:0.01:1.0;faifk=beita*z*l./(b+z*hg);faifm=beita*z*L./(B+z*Hg);fairk=(1-beita)*z*l./(a-z*hg);fairm=(1-beita)*z*L./(A-z*Hg);Efk=z./faifk*100;Efm=z./faifm*100;Erk=z./fairk*100;Erm=z./fairm*100;ak1=Erk(81)*g*fai/100;am1=Erm(81)*g*fai/100;Sk1=(t1+t2/2)*ua0/3.6+ua0^2/(25.92*ak1);Sm1=(t1+t2/2)*ua0/3.6+ua0^2/(25.92*am1);disp('空载时,汽车制动距离Sk1=');disp(Sk1);disp('满载时,汽车制动距离Sm1=');disp(Sm1);ak2=fai*g*a/(l+fai*hg);am2=fai*g*A/(L+fai*Hg);ak3=fai*g*b/(l-fai*hg);am3=fai*g*B/(L-fai*Hg);Sk2=(t1+t2/2)*ua0/3.6+ua0^2/(25.92*ak2);Sm2=(t1+t2/2)*ua0/3.6+ua0^2/(25.92*am2);Sk3=(t1+t2/2)*ua0/3.6+ua0^2/(25.92*ak3);Sm3=(t1+t2/2)*ua0/3.6+ua0^2/(25.92*am3);disp('空载时,前制动器损坏,汽车制动距离Sk2=');disp(Sk2);disp('满载时,前制动器损坏,汽车制动距离Sm2=');disp(Sm2);disp('空载时,后制动器损坏,汽车制动距离Sk3=');disp(Sk3);disp('满载时,后制动器损坏,汽车制动距离Sm3=');disp(Sm3);空载时,汽车制动距离Sk1=7.8668满载时,汽车制动距离Sm1=5.6354空载时,前制动器损坏,汽车制动距离Sk2=10.0061满载时,前制动器损坏,汽车制动距离Sm2=7.5854空载时,后制动器损坏,汽车制动距离Sk3=8.0879满载时,后制动器损坏,汽车制动距离Sm3=12.9629。
基于MATLAB基础上的发动机万有特性曲线的建立
基于MATLAB基础上的发动机万有特性曲线的建立杨丽娟;赵丹平【摘要】发动机性能的好坏直接影响着整车运行的平顺性、安全性、稳定性等,要全面评价发动机性能,万有特性曲线则是一个很好的工具.万有特性曲线是以发动机转速为横坐标,以扭矩或平均有效压力为纵坐标,在坐标系内画出等燃油消耗率曲线和等功率曲线[1].绘制万有特性曲线的方法有很多种,MATLAB语言是其中之一.本文利用强大的MATLAB绘图工具,绘制了发动机的万有特性曲线,经分析,该方法是一个有效的精确度较高的方法.【期刊名称】《交通节能与环保》【年(卷),期】2010(000)001【总页数】3页(P32-33,48)【关键词】MATLAB;发动机;万有特性【作者】杨丽娟;赵丹平【作者单位】内蒙古工业大学,内蒙古,赤峰,010051;内蒙古工业大学,内蒙古,赤峰,010051【正文语种】中文0 引言发动机是汽车的动力源,发动机性能的好坏直接影响着整车的动力性与经济性。
汽车的运行工况是个随机的过程,受到很多因素的影响,如道路条件、交通流量、气候条件以及汽车自身技术性能的变化等等。
在所有的运行工况下,发动机都应能够与传动系实现最佳匹配,以使整车动力性、经济性、排放性和噪声污染等方面均处于最佳状态。
然而,对发动机性能的分析与研究是保证整车性能达到最佳的重要前提。
MATLAB语言是一个功能强大的仿真软件,可以完成复杂的数学运算,实现对动态系统的建模仿真等,在工程计算中应用非常广泛。
本文利用MATLAB的强大的绘图功能,建立了发动机的输出转矩模型、油耗模型及万有特性曲线。
通过输出转矩模型,由当前发动机节气门开度及转速既可得到与之相对应的发动机的转出转矩,从而为分析发动机性能奠定基础;发动机油耗模型反应了其有效燃油消耗率与转速和转矩之间的关系,发动机在不同工况下运行时,由此模型既可得到不同工况下发动机的比油耗,从而为分析整车燃油经济性提供数据支持;万有特性曲线是在由发动机转速和转矩构成的坐标系内,绘制出等油耗曲线、等功率曲线、外特性曲线等,通过万有特性曲线既可较全面地了解发动机在不同工况下的性能指标。
MATLAB的发动机万有特性曲线绘制方法程序
%不同转速下的燃油消耗率与扭矩的曲线拟合clear allbe仁[222.8,220.4,232.4,228.5,227.8,232.6,248.5,245.9,272.4,329.7];Ttq仁[399.8,354.1,318.5,278.1,236.2,203.6,185.3,157.2,117.2,80.8];T1=80:320/9:400;%转换矩阵格式Be仁in terp1(Ttq1,be1,T1,'spli ne');% n=1400r/mi n 时燃油消耗率与扭矩的曲线拟合be2=[222.0,221.7,235.4,226.5,230.5,236.8,249.1,276.1,407.9,487.0];Ttq2=[409.1,365.7,328.3,284.1,243.7,203.2,164.3,123.9,83.5,39.7];T2=39:371/9:410;Be2=i nterp1(Ttq2,be2,T2,'spl in e');be3=[226.0,225.3,226.4,233.9,242.1,283.3,253.9,271.4,323.5,468.6];Ttq3=[408.3,368.3,328.3,289.0,244.4,208.8,167.7,132.1,89.5,46.1];T3=46:363/9:409;Be3=i nterp1(Ttq3,be3,T3,'spl in e');be4=[206.5,231.1,231.1,233.0,242.0,244.9,265.0,299.8,398.0,596.8];Ttq4=[425.6,380.3,332.7,290.9,244.4,205.1,160.2,114.5,68.8,30.7];T4=30:396/9:426;Be4=i nterp1(Ttq4,be4,T4,'spl in e');be5=[234.7,259.8,235.5,237.6,242.8,292.3,277.9,308.7,396.2,605.9];Ttq5=[420.7,379.6,334.6,291.6,244.4,202.8,157.5,116.0,74.1,37.8];T5=37:384/9:421;Be5=i nterp1(Ttq5,be5,T5,'spl in e');be6=[174.2,242.2,252.1,287.4,253.6,263.6,290.6,316.8,378.0,518.8];Ttq6=[404.6,360.5,322.7,283.0,243.3,205.5,162.1,124.7,86.8,52.4];T6=52:353/9:405;Be6=i nterp1(Ttq6,be6,T6,'spl in e');be7=[256.9,253.7,253.5,260.0,303.8,280.7,300.6,346.6,435.6,812.9];Ttq7=[378.0,344.7,310.3,264.3,226.1,186.8,154.2,115.3,76334.1];T7=34:344/9:378;Be7=i nterp1(Ttq7,be7,T7,'spl in e');be8=[257.9,295.3,282.4,288.7,301.9,329.7,357.0,475.4,580.3,1080.1];Ttq8=[315.6,275.5,242.5,210.3,178.5,145.6,118.6,72.6,52.8,22.4];T8=22:294/9:316;Be8=i nterp1(Ttq8,be8,T8,'spl in e');B=[Be1';Be2';Be3';Be4';Be5';Be6';Be7';Be8'];N=[1400*o nes(10,1);1600*o nes(10,1);1800*o nes(10,1);2000*o nes(10,1);2200* on es(10,1);2400*o nes(10,1);2600*o nes(10,1);2800*o nes(10,1)];Ttq n=[T1';T2';T3';T4';T5';T6';T7';T8'];G=[o nes(80,1),N,Ttq n,N.A2,N.*Tt qn ,Ttq n. A2];A=G\B;%A 为6*1 矩阵[n,Ttq]=meshgrid(1400:2800,100:600);% 生成n-Ttq 平面上的自变量“格点”矩阵be=A(1)+n. *A (2)++Ttq*A(3)+n.A2*A(4)+n.*Ttq*A(5)+Ttq.A2*A(6);Pe=Ttq.* n/9550;%外特性实验数据拟合Nw=[1403,1597,1797,1986,2102,2199,2303,2400,2507,2598,2700,2802];Ttqw=[474,497,515,526,528.8,522.8,509.5,492.2,471.2,448.4,408.3,357.4]; n0=1400:2800; Ttqw_N=i nterp1(Nw,Ttqw ,n 0,'spli ne');h=repmat(Ttqw_N,501,1);ii=find(Ttq>h);%确定超出边界的“格点”下标be(ii)=NaN;%强制为非数Pe(ii)=NaN;%强制为非数%绘制等燃油消耗率曲线和等功率曲线三维拟合图subplot(1,2,1);mesh( n, Ttq,be);hold on;mesh( n,Ttq,Pe);axis([1000,3000,100,600,0,500]);hold on;xlabel(' n(r/mi n)')ylabel('Ttq(N*m)')zlabel('Pe(KW) be(g/(KW*h))')title('等燃油消耗曲线和等功率曲线的三维拟合图')%绘制边界线(外特性曲线)subplot(1,2,2);plot( nO,Ttqw_N,'Li neWidth',2);axis([1400,2800,100,550]);xlabel(' n(r/mi n)');ylabel('Ttq(N*m)');title('万有特性曲线');hold on;%绘制等油耗率曲线的二维图B=contour(n,Ttq,be,11);%画等位线,并给出标识数据clabel(B);%把“等位值”沿等位线随机标识hold on;%绘制等功率曲线的二维图P=contour(n,Ttq,Pe,11);%画等位线,并给出标识数据clabel(P);%把“等位值”沿等位线随机标识lege nd('等油耗曲线','等功率曲线','外特性曲线')hold off。
基于Matlab的发动机特性研究
a
=
arcsin(
Fi ma g
)
,从
图
1
可
知,
YC6J190-33 发动机时汽车最大车速是 87km/h,I 档最大爬
坡度 ilmax=57.9%,最大爬坡角 almax=30.08。;由图 2 可知,康
明斯 ISBE4+225 发动机时汽车最大车速是 90km/h,I 档最大
Polyval、Polytool、Polyconf 等函数均可对上述曲线拟合。 转 矩(332.156N•m)初 选 玉 柴 YC6J190-33 发 动 机、康 明 斯
ISBE4+225 发动机与德国曼 D0836LFL 发动机,通过其模拟曲
51
理论与算法
2019.08
线图,分别对发动机的转矩特性以及比油特性进行计算,借 助 Matlab 对多项式进行拟合,得出三种发动机的转矩和比油 特性拟合曲线。 2.1 动力性能计算
Research on Engine Characteristics Based on Matlab
Yuan Jian (BYD automobile industry co., LTD.,Shenzhen Guangdong,518118)
Abstract: In this paper, the engine’s external characteristic curve is drawn by using matlab, and the engine’s different torque characteristics and specific fuel consumption characteristics are obtained, and the quadratic polynomial fitting is carried out. The results show that the selected engine has better matching performance. Key words:matlab;engine;characteristics;comparative analysis
基于MATLAB的发动机万有特性曲线绘制方法_2_图文(精)
【设计研究】基于 M AT LAB 的发动机万有特性曲线绘制方法周广猛 1, 郝志刚 2, 刘瑞林 1, 陈东 3, 管金发 1, 张春海4(1. 军事交通学院汽车工程系 , 天津 300161;2. 军事交通学院训练部 , 天津300161; 3. 军事交通学院基础部 , 天津 300161;4. 兰州军区军械汽车技工训练大队 , 陕西 710111摘要 :利用 MAT LAB 数学运算能力 , , , 有曲线直观明了 , 把等燃油消耗率曲线、 , 拟合程度较高。
关键词 ; :A文章编号 :1673-6397(2009 02-0034-03U niversal Characteristics Curve Plotting Method based on MAT LABZ H O U G uang -m eng 1,H A O Z hi -gang 2, L I U Rui -lin 1,CHE N D ong 3,G U A N Jin -fa 1,Z H A NG Chun -hai 4(1. Autom obile Engineering Department , Academy of Military T ransportation , T ianjin 300161,China ;2. T raining Department ,Academy of Military T ransportation , T ianjin 300161,China ;3. G eneral C ourse Department , Academy of Military T ransportation , T ianjin 300161,China ;4. Ordnance Mechanic T raining Brigade , Lan Zhou Theater , X i ’ an 710111,China Abstract :Taking advantage of MAT LAB mathematic operation , data from engine characteristic test was processed , the method is sim ple and credible , The universal characteristics curve plotted is intuitionistic and perspicuous ,and was in g ood fit with data g ot in test.K ey Words :MATLAB ;Universal Characteristics Curve ;Plot作者简介 :周广猛 (1984- , 男 , 山东邹城人 , 在读硕士研究生 , 主要研究方向为动力机械特殊环境适应性。
基于Matlab的发动机特性研究
基于Matlab的发动机特性研究袁坚【摘要】本文使用Matlab绘制出发动机的外特征曲线,获取发动机不同转矩特性与比油耗特性,并进行四次多项式拟合,结果表明所选取的发动机整车匹配性能较好.【期刊名称】《电子测试》【年(卷),期】2019(000)008【总页数】2页(P51-52)【关键词】Matlab;发动机;特性研究;对比分析【作者】袁坚【作者单位】比亚迪汽车工业有限公司,广东深圳,518118【正文语种】中文0 引言利用MATLAB 能够对汽车发动机的实验数据进行整理与分析,获取相应的拟合曲线,实现动态系统的建模与仿真,因此MATLAB被广泛应用于汽车工程计算中[1]。
1 发动机特性的数学模型目前,使用实验数据对发动机性能进行描述的方法主要有两种:表格法与数学模型描述法。
其中,表格法的特点为计算简单、精度较高,但该法需要的实验数据测试量较大且测量精度要求较高;数学模型描述法是通过构建发动机转速、转矩以及油耗等参数间的数学模型对发动机的性能特性进行描述,该方法的特点在于其模拟精度高低取决于建模的方法,因此该方法的应用范围更广[2]。
1.1 发动机外特性的数学模型关于发动机的外特性可以借助曲线拟合的方法来构建相关性能参数之间的关系,拟合形式多使用多项式,其中拟合通式如下:式中:y——任意一条特征曲线的纵坐标;x——任意一条特征曲线的横坐标;P——多项式的阶次;Ai——多项式拟合系数,一般通过最下二乘法确定。
Matlab中曲线拟合等相应的工具箱或Polyfit、Polyval、Polytool、Polyconf等函数均可对上述曲线拟合。
1.2 万有特性的数学模型发动机的万有特性常使用多元回归方程拟合,将发动机的有效燃油消耗率ge看成转速ne与有效转矩Me的函数,回归模型如下:式中:{a0...ak-1}——模型中待定系数;{e1...aN-1}——随机误差;N——实验数据点数;K——多项式项数(k=(l+1)(l+2)/2,l 为多项式最高幂次)。
基于MATLAB的发动机万有特性曲线绘制方法_2
插值方法绘制边界线 ,最终得到图 2 所示的万有特 性曲线 。
表 3 负荷特性试验数据
nΠr·min - 1
1400
TtqΠN·m
beΠ g·(kW·h) - 1
399. 8
222. 8
1600
TtpΠN·m
beΠ g·(kW·h) - 1
409. 1
222. 0
1800
TtqΠN·m
beΠ g·(kW·h) - 1
2) Π2 , (1 ,2 …, N ) ,为不同的试验点 , A = ( a0 , a1 …,
ak - 1 ) 为模型中的待定系数 , E = ( e0 , e1 …,型的建立
MATLAB 中一维插值函数 interp1 ( ) ,提供了三
·36 ·
内燃机与动力装置
2009 年 4 月
函数可能出现病态 ,文章折衷选取了二次函数进行 图 1 所示 ,利用 contour 命令绘制等油耗率曲线和等
最小 二 乘 拟 合 , 此 时 拟 合 效 果 较 好 , 得 到 be = 功率曲线的二维图 ,并利用外特性数据采用样条型
f ( Ttq , n) 的函数 ,而由公式 Pe = Ttq ·nΠ9550 得到 Pe = f ( Ttq , n) ,绘制燃油消耗率和功率的三维模型如
采用 (建立) 的模型 be = f ( Ttq ,n) Ttq = f ( n) Ttq = f ( n)
拟合方式
MATLAB 命令 (参数)
最小二乘法原理 ,多 meshgrid mesh
元线性回归
contour NaN
样条插值拟合
interp1 plot
样条插值拟合
interp1 NaN
汽车理论习题Matlab程序
1.3 确定一轻型货车的动力性能(货车可装用4挡或5挡变速器,任选 其中的一种进行整车性能计算):1)绘制汽车驱动力与行驶阻力平衡图。
2)求汽车最高车速,最大爬坡度及克服该坡度时相应的附着率。
3)绘制汽车行驶加速度倒数曲线,用图解积分法求汽车用2档起步加速行驶至70km/h 的车速-时间曲线,或者用计算机求汽车用2档起步加速行驶至70km/h 的加速时间。
轻型货车的有关数据:汽油发动机使用外特性的Tq-n 曲线的拟合公式为23419.313295.27()165.44()40.874() 3.8445()1000100010001000q n n n n T =-+-+-式中,Tq 为发动机转矩(N•m );n 为发动机转速(r/min )。
发动机的最低转速n min =600r/min,最高转速n max =4000r/min 。
装载质量 2000kg 整车整备质量 1800kg 总质量 3880kg 车轮半径 0.367m 传动系机械效率 ηt =0.85 滚动阻力系数 f =0.013 空气阻力系数×迎风面积 C D A =2.77m 2 主减速器传动比 i 0=5.83飞轮转动惯量 I f =0.218kg•m 2 二前轮转动惯量 I w1=1.798kg•m 2 四后轮转动惯量 I w2=3.598kg•m 2质心至前轴距离(满载) a=1.974m 质心高(满载) hg=0.9m解:Matlab 程序:(1) 求汽车驱动力与行驶阻力平衡图和汽车最高车速程序: n=[600:10:4000];Tq=-19.313+295.27*(n/1000)-165.44*(n/1000).^2+40.874*(n/1000).^3-3.8445*(n/1000).^4;m=3880;g=9.8;nmin=600;nmax=4000; G=m*g;ig=[5.56 2.769 1.644 1.00 0.793];nT=0.85;r=0.367;f=0.013;CDA=2.77;i0=5.83; L=3.2;a=1.947;hg=0.9;If=0.218;Iw1=1.798;Iw2=3.598; Ft1=Tq*ig(1)*i0*nT/r;Ft2=Tq*ig(2)*i0*nT/r;Ft3=Tq*ig(3)*i0*nT/r;Ft4=Tq*ig(4)*i0*nT/r;Ft5=Tq*ig(5)*i0*nT/r;ua1=0.377*r*n/ig(1)/i0;ua2=0.377*r*n/ig(2)/i0;ua3=0.377*r*n/ig(3)/i0;ua4=0.377*r*n/ig(4)/i0;ua5=0.377*r*n/ig(5)/i0;ua=[0:5:120];Ff=G*f;Fw=CDA*ua.^2/21.15;Fz=Ff+Fw;plot(ua1,Ft1,ua2,Ft2,ua3,Ft3,ua4,Ft4,ua5,Ft5,ua,Fz);title('驱动力-行驶阻力平衡图');xlabel('ua(km/s)');ylabel('Ft(N)');gtext('Ft1'),gtext('Ft2'),gtext('Ft3'),gtext('Ft4'),gtext('Ft5'),gtext('Ff+Fw'); zoom on;[x,y]=ginput(1);zoom off;disp('汽车最高车速=');disp(x);disp('km/h');汽车最高车速=99.3006km/h(2)求汽车最大爬坡度程序:n=[600:10:4000];Tq=-19.313+295.27*(n/1000)-165.44*(n/1000).^2+40.874*(n/1000).^3-3.8445*(n/10 00).^4;m=3880;g=9.8;nmin=600;nmax=4000;G=m*g;ig=[5.56 2.769 1.644 1.00 0.793];nT=0.85;r=0.367;f=0.013;CDA=2.77;i0=5.83;L=3.2;a=1.947;hg=0.9;If=0.218;Iw1=1.798;Iw2=3.598;Ft1=Tq*ig(1)*i0*nT/r;ua1=0.377*r*n/ig(1)/i0;Ff=G*f;Fw1=CDA*ua1.^2/21.15;Fz1=Ff+Fw1;Fi1=Ft1-Fz1;Zoom on;imax=100*tan(asin(max(Fi1/G)));disp('汽车最大爬坡度=');disp(imax);disp('%');汽车最大爬坡度=35.2197%(3)求最大爬坡度相应的附着率和求汽车行驶加速度倒数曲线程序:clearn=[600:10:4000];Tq=-19.313+295.27*(n/1000)-165.44*(n/1000).^2+40.874*(n/1000).^3-3.8445*(n/10 00).^4;m=3880;g=9.8;nmin=600;nmax=4000;G=m*g;ig=[5.56 2.769 1.644 1.00 0.793];nT=0.85;r=0.367;f=0.013;CDA=2.77;i0=5.83;L=3.2;a=1.947;hg=0.9;If=0.218;Iw1=1.798;Iw2=3.598;Ft1=Tq*ig(1)*i0*nT/r;Ft2=Tq*ig(2)*i0*nT/r;Ft3=Tq*ig(3)*i0*nT/r;Ft4=Tq*ig(4)*i0*nT/r;Ft5=Tq*ig(5)*i0*nT/r;ua1=0.377*r*n/ig(1)/i0;ua2=0.377*r*n/ig(2)/i0;ua3=0.377*r*n/ig(3)/i0;ua4=0.377*r*n/ig(4)/i0;ua5=0.377*r*n/ig(5)/i0;Fw1=CDA*ua1.^2/21.15;Fw2=CDA*ua2.^2/21.15;Fw3=CDA*ua3.^2/21.15;Fw4=CDA*ua4.^2/21.15;Fw5=CDA*ua5.^2/21.15;Ff=G*f;deta1=1+(Iw1+Iw2)/(m*r^2)+(If*ig(1)^2*i0^2*nT)/(m*r^2); deta2=1+(Iw1+Iw2)/(m*r^2)+(If*ig(2)^2*i0^2*nT)/(m*r^2); deta3=1+(Iw1+Iw2)/(m*r^2)+(If*ig(3)^2*i0^2*nT)/(m*r^2); deta4=1+(Iw1+Iw2)/(m*r^2)+(If*ig(4)^2*i0^2*nT)/(m*r^2); deta5=1+(Iw1+Iw2)/(m*r^2)+(If*ig(5)^2*i0^2*nT)/(m*r^2); a1=(Ft1-Ff-Fw1)/(deta1*m);ad1=1./a1;a2=(Ft2-Ff-Fw2)/(deta2*m);ad2=1./a2;a3=(Ft3-Ff-Fw3)/(deta3*m);ad3=1./a3;a4=(Ft4-Ff-Fw4)/(deta4*m);ad4=1./a4;a5=(Ft5-Ff-Fw5)/(deta5*m);ad5=1./a5;plot(ua1,ad1,ua2,ad2,ua3,ad3,ua4,ad4,ua5,ad5);axis([0 99 0 10]);title('汽车的加速度倒数曲线');xlabel('ua(km/h)');ylabel('1/a');gtext('1/a1');gtext('1/a2');gtext('1/a3');gtext('1/a4');gtext('1/a5'); a=max(a1);af=asin(max(Ft1-Ff-Fw1)/G);C=tan(af)/(a/L+hg*tan(af)/L);disp('假设后轮驱动,最大爬坡度相应的附着率=');disp(C);假设后轮驱动,最大爬坡度相应的附着率=0.4219(4) >>clearnT=0.85;r=0.367;f=0.013;CDA=2.77;i0=5.83;If=0.218;Iw1=1.798;Iw2=3.598;L=3.2;a=1.947;hg=0.9;m=3880;g=9.8;G=m*g; ig=[5.56 2.769 1.644 1.00 0.793];nmin=600;nmax=4000;u1=0.377*r*nmin./ig/i0;u2=0.377*r*nmax./ig/i0;deta=0*ig;for i=1:5deta(i)=1+(Iw1+Iw2)/(m*r^2)+(If*(ig(i))^2*i0^2*nT)/(m*r^2);endua=[6:0.01:99];N=length(ua);n=0;Tq=0;Ft=0;inv_a=0*ua;delta=0*ua;Ff=G*f;Fw=CDA*ua.^2/21.15;for i=1:Nk=i;if ua(i)<=u2(2)n=ua(i)*(ig(2)*i0/r)/0.377;Tq=-19.313+295.27*(n/1000)-165.44*(n/1000)^2+40.874*(n/1000)^3-3.8445*(n/100 0)^4;Ft=Tq*ig(2)*i0*nT/r;inv_a(i)=(deta(2)*m)/(Ft-Ff-Fw(i));delta(i)=0.01*inv_a(i)/3.6;elseif ua(i)<=u2(3)n=ua(i)*(ig(3)*i0/r)/0.377;Tq=-19.313+295.27*(n/1000)-165.44*(n/1000)^2+40.874*(n/1000)^3-3.8445*(n/100 0)^4;Ft=Tq*ig(3)*i0*nT/r;inv_a(i)=(deta(3)*m)/(Ft-Ff-Fw(i));delta(i)=0.01*inv_a(i)/3.6;elseif ua(i)<=u2(4)n=ua(i)*(ig(4)*i0/r)/0.377;Tq=-19.313+295.27*(n/1000)-165.44*(n/1000)^2+40.874*(n/1000)^3-3.8445*(n/100 0)^4;Ft=Tq*ig(4)*i0*nT/r;inv_a(i)=(deta(4)*m)/(Ft-Ff-Fw(i));delta(i)=0.01*inv_a(i)/3.6;elsen=ua(i)*(ig(5)*i0/r)/0.377;Tq=-19.313+295.27*(n/1000)-165.44*(n/1000)^2+40.874*(n/1000)^3-3.8445*(n/100 0)^4;Ft=Tq*ig(5)*i0*nT/r;inv_a(i)=(deta(5)*m)/(Ft-Ff-Fw(i));delta(i)=0.01*inv_a(i)/3.6;enda=delta(1:k);t(i)=sum(a);endplot(t,ua);axis([0 80 0 100]);title('汽车2档原地起步换挡加速时间曲线');xlabel('时间t(s)');ylabel('速度ua(km/h)');>> ginputans =25.8223 70.073725.7467 70.0737所以汽车2档原地起步换挡加速行驶至70km/h的加速时间约为25.8s2.7已知货车装用汽油发动机的负荷特性与万有特性。
汽车经济性分析matlab程序
Qs_4=(p_4.*b_4)/1.02./ua_4/0.742/g %%%%%%%%%%%%%%%%%%%%%%%%% 汽油密度 0.742g/mL
plot(ua_4,Qs_4,'r') % 画曲线
set(v45,'linewidth',3) % 加粗
axis([20 90 0 1000]) % 限制坐标轴范围
legend('四档','五档') % 曲线说明
xlabel('\itu_{\rma} /(km·h^{-1})') % x轴标注
% 功能描述 : 最高挡和次高档等速在水平路面上行驶时发动机的燃油消耗率
% 备注: 纵坐标貌似有点问题
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure(4);
hold on;
end
axis([0 120 0 1]) % 限制坐标轴范围
xlabel('\itu_{\rma} /(km·h^{-1})') % x轴标注
ylabel('\itH ') % y轴标注
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ylabel('\it{P_{\rme}/kw T/(Nm)} ') % y轴标注
text(1700,161,'P_{\rme}') % 曲线标注 用gtext() get() 获取坐标
汽车动力性计算matlab程序
%% 汽车动力性计算(自己编的动力性计算程序,供大家计算动力性时参考,具体参数大家根据所给程序对应输入,并对坐标轴数值按需要进行修改)clc; clear;close all;%%根据所给发动机数据拟合外特性曲线(发动机数据按照你所得到的数据进行输入)n_test=[500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200];T_test=[975 1108 1298 1496 1546 1620 1670 1785 1974 1974 1970 1889 1829 1748 1669 1700 1524 1105];figure(1)plot(n_test,T_test,'g');hold ongrid on%p=polyfit(n_test,T_test,7);p=polyfit(n_test,T_test,2);n=[450:1:2200];Ttq=polyval(p,n);plot(n,Ttq,'k');xlabel('发动机转速n(r/min)');ylabel('发动机转矩Ttq(N*m)');title('发动机转矩曲线');legend('测试曲线','拟合曲线');%%所给车型动力总成相关参数ig=[3.07 2.16 1.48 1.0 0.82];i0=4.0; eta=0.78; r=0.57; M=25000; g=9.8; c=1.5; f0=0.01; f1=0.0002; f4=0.0005; CD=1; A=8;Iw=3.6;If=0.04;%% 发动机外特性曲线图figure(2)hold ongrid onfor i=length(n);Pe=Ttq.*n/9550;end[AX,H1,H2]=plotyy(n,Ttq,n,Pe);xlabel('发动机转速n(r/min)');ylabel('发动机转矩Ttq(N*m)');ylabel(AX(2),'发动机功率Pe(Kw)');title('发动机外特性曲线');%% 各挡位速度曲线%计算各挡位车速for i=1:length(ig);ua(i,:)=0.377*r*n/ig(i)/i0;end%计算各档位最高车速uamax=ua(:,length(ua(1,:)));figure(3)hold onfor i=1:length(ig);plot(n,ua(i,:),'k');endhold ongrid onxlabel('转速n(r/min)');ylabel('各挡位车速(km/h)');title('各挡位车速-转速表');legend('1挡车速','2挡车速','3挡车速','4挡车速','5挡车速'); %% 驱动力和行驶阻力平衡图%计算滚动阻力系数for i=1:length(ig);f(i,:)=f0+f1*(ua(i,:)/100)+f4*(ua(i,:)/100).^4;end%计算滚动阻力for i=1:length(ig);Ff(i,:)=c*M*g*f(i,:);end%计算空气阻力for i=1:length(ig);Fw(i,:)=CD*A*(ua(i,:).^2)/21.15; end%计算行驶阻力for i=1:length(ig);F(i,:)=Ff(i,:)+Fw(i,:);end%计算汽车驱动力for i=1:length(ig);Ft(i,:)=Ttq*ig(i)*i0*eta/r;endfigure(4)hold onfor i=1:length(ig);plot(ua(i,:), Ft(i,:),'k');plot(ua(i,:), F(i,:),'r');plot(ua(i,:), Ff(i,:),'b');endhold ongrid onxlabel('车速(km/h)');ylabel('驱动力、行驶阻力(N)');legend('驱动力Ft','行驶阻力Ff+Fw','滚动阻力Ff'); title('驱动力-行驶阻力平衡图');%% 汽车功率平衡图%计算各档位功率for i=1:length(ig);P(i,:)=Ft(i,:).*ua(i,:)/(3600*eta);end%计算风阻阻力功率for i=1:length(ig);Pw(i,:)=CD*A*ua(i,:).^3/(76140*eta);end%计算滚动阻力功率for i=1:length(ig);Pf(i,:)=M*g*f(i,:).*ua(i,:)/(3600*eta);end%计算总阻力功率for i=1:length(ig);Pz(i,:)=Pw(i,:)+Pf(i,:);endfigure(5)hold onfor i=1:length(ig);plot(ua(i,:), P(i,:),'k');plot(ua(i,:), Pz(i,:),'r');endhold ongrid onxlabel('车速(km/h)');ylabel('发动机功率、阻力功率(kW)');legend('发动机功率P','阻力功率Pz','Location','NorthWest'); title('功率平衡图');%% 动力特性图(动力因数图)for i=1:length(ig);D(i,:)= (Ft(i,:)- Fw(i,:))/M/g;endfigure(6)hold onfor i=1:length(ig);plot(ua(i,:), D(i,:),'k');plot(ua(i,:), f(i,:),'r');endhold ongrid onxlabel('车速(km/h)');ylabel('动力因数D');legend('动力因数D','滚动阻力系数f');title('动力特性图');%% 爬坡度曲线图for i=1:length(ig);I(i,:)= (tan(asin((Ft(i,:)-(Ff(i,:)+Fw(i,:)))/(M*g))))*100; endfigure(7)hold onfor i=1:length(ig);if i==1plot(ua(i,:),I(i,:),'r');elseplot(ua(i,:),I(i,:),'k');endendhold ongrid onxlabel('车速(km/h)');ylabel('最大爬坡度(%)');legend('Ⅰ挡','高速档');title('爬坡度曲线图');%% 加速度曲线图deta=1+1/M*4*Iw/r^2+1/M*If*ig.^2*i0^2*eta/r^2; for i=1:length(ig);a(i,:)=(Ft(i,:)-Ff(i,:)-Fw(i,:))./deta(i)/M;if i==5for j=1:length(n)if a(i,j)<0a(i,j)=0;elseendendendendfigure(8)hold onfor i=1:length(ig);if i==1plot(ua(i,:),a(i,:),'r'); elseplot(ua(i,:),a(i,:),'k');endendhold ongrid onxlabel('车速(km/h)');ylabel('加速度a(m/s^2)');legend('Ⅰ档','高速档');title('加速度曲线图');axis([0 120 0 1.5])%% 加速度倒数曲线for i=1:length(ig);for j=1:length(n)b(i,j)=1./a(i,j);endendfigure(9)hold onfor i=1:length(ig)plot(ua(i,:),b(i,:),'k');endhold ongrid onxlabel('车速(km/h)');ylabel('各档加速度倒数1/a');legend('各档加速度倒数1/a曲线','Location','NorthWest'); title('各档加速度倒数曲线图');axis([0 120 0 10])ad1=b(1,:);ad2=ua(1,:);for i=1:(length(ig)-1);for j=1:length(n)if ua(i+1,j)>=ua(i,length(n)) flag(i)=j;break;endendad1=[ad1 b(i+1,j:length(n))]; ad2=[ad2 ua(i+1,j:length(n))];endfigure(10)hold onplot(ad2,ad1,'k');hold ongrid onxlabel('车速(km/h)');ylabel('加速度倒数1/a');legend('加速度倒数1/a曲线','Location','NorthWest');title('加速度倒数曲线图');axis([0 120 0 10])%% 加速时间曲线k=length(n);for i=1:length(ig);t(i,1)=0;for j=2:kt(i,j)=abs(ua(i,j)-ua(i,j-1))*(b(i,j)+b(i,j-1))/2;endendfor i=1:length(ig);for j=1:kat(i,j)=sum(t(i,1:j))/3.6;endendtotalat=at(1,:);for i=1:(length(ig)-1);for j=flag(i):ktotalat=[totalat totalat(length(totalat))+t(i+1,j)/3.6];endendfigure(11)hold onplot(totalat,ad2,'k');hold ongrid onxlabel('时间(s)');ylabel('车速(km/h)');legend('加速时间','Location','NorthWest'); title('加速时间曲线图');axis([0 100 0 120])Welcome To Download !!!欢迎您的下载,资料仅供参考!。
基于MATLAB编程绘制动力特性图分析汽车动力性
10.16638/ki.1671-7988.2017.13.020基于MATLAB编程绘制动力特性图分析汽车动力性尹佣博(武汉理工大学汽车工程学院,湖北武汉430070 )摘要:汽车动力性主要由最高车速、加速时间、最大爬坡度三个指标来评价。
汽车动力性试验主要包括最高车速、起步连续换挡加速与超车加速和汽车最大爬坡度三大内容。
上述试验项目需要特定的试验路段,且耗时较长。
基于MA TLAB编程可以绘出发动机外特性曲线图和动力特性图,从动力特性图的角度研究汽车的动力性,不仅可以准确获得最高车速、加速时间和最大爬坡度等指标,还可以通过图像观察相关变化趋势,为进一步研究汽车的动力性提供了参考。
关键词:汽车动力性;MATLAB编程;动力特性图中图分类号:U461.2 文献标识码:A 文章编号:1671-7988 (2017)13-65-04Drawing dynamic characteristic diagram based on MATLAB programming toanalyze automobile powerYin Yongbo( Wuhan University of Technology. School of Automotive Engineering, Hubei Wuhan 430070 )Abstract:Vehicle dynamics mainly by the highest speed, acceleration time, the maximum climbing three indicators to evaluate. Vehicle power test includes the maximum speed, starting continuous shift acceleration and overtaking acceleration and the maximum car climbing three content. The pilot project requires a specific test section, and take a long time. Based on the MA TLAB programming, we can plot the engine characteristic curve and the dynamic characteristic diagram. From the view of the dynamic characteristic diagram, we can study the dynamic performance of the vehicle, not only can get the maximum vehicle speed, acceleration time and maximum climbing index, but also observe the correlation And provides a reference for further research on the dynamics of the vehicle.Keywords: Vehicle dynamics; MATLAB programming; Dynamic characteristics mapCLC NO.: U461.2 Document Code: A Article ID: 1671-7988 (2017)13-65-04前言汽车是高效率的交通工具,在汽车的众多性能中,动力性是汽车最重要的性能。
基于MATLAB的汽车动力性及燃油经济性的计算机仿真
SCIENCE &TECHNOLOGY VISION 科技视界0引言动力性和燃油经济性是汽车性能的重要指标,石油价格的飞速上涨,对汽车性能有了更高的要求。
动力性和燃油经济性的计算机仿真能准确、快速、有效的预测性能指标。
节省实车试验中不必要的巨额浪费及实车道路试验中驾驶员、道路环境、气候等因素对汽车使用性能测定的影响,在新车设计中迅速且经济地选择最佳方案。
1发动机数学模型发动机数学模型是整车动力性和燃油经济性仿真计算的重要依据,包括外特性数学模型和万有特性数学模型。
本文以发动机台架实验数据为依据,采用插值法描述发动机万有特性;采用最小二乘法曲线拟合描述发动机外特性。
1.1发动机的外特性在进行动力性估算时,一般仍沿用稳态工况时发动机台架试验所得到的使用外特性中的功率与转矩曲线。
稳定工况时发动机转矩曲线基本呈抛物线形状,并且为转速的一元函数,所以采用最小二乘法曲线拟合法描述。
T tq =a 0+a 1n+a 2n 2+…+a k nk式中n 为发动机转速(r/min);T tq 为稳定工况下发动机转矩(N ·m);系数a 0,a 1,a 2,…,a k 可由最小二乘法来确定;拟合阶数k 随特性曲线而异,一般在2、3、4、5中选取。
1.2发动机万有特性发动机的万有特性是个二元函数,燃油消耗率b 是发动机转速n 和功率p 的函数,国内外多采用试验数据的矩阵描述方法,需要时插值提取;国内也有采用曲面拟合法的,但要小心其系数矩阵可能出现病态。
本文采用插值法比较迅速,精度的高低取决于数据点的疏密程度,可真实的反映万有特性的局部特点。
二元插值公式:b=b (n ,p )=i+2m =i∑i+2k =jb (n j ,p i )[]j =m{其中n k ,p m ,b(n k ,p m )为给定的万有特性上的节点。
发动机转矩、油门开度与转速之间的关系复杂,通过试验测试只能得到部分点值。
为了得到任意工况下的燃油消耗率值,必须仿真出燃油消耗率值与发动机转速和转矩之间的函数关系,建立发动机燃油消耗率模型。