化工原理蒸馏ppt
化工原理课件第五章 蒸馏
Q FcP (T tF )
FcP (T te ) (1 q)Fr
T
te
(1
q)
r cp
tF-原料液的温度℃ T-通过加热器后原料液的温度℃
te-分离器中的平均温度℃ F-原料液流量Kmol/h
cp-原料液平均比热KJ/(Kmol. ℃) r-平均汽化潜热
三、气液平衡关系
理想溶液:
x
A
A
p
1.2.2 非理想物系的气液平衡
1.具有正偏差的溶液 一般正偏差:pA>pA理, pB>pB理。
乙醇-水溶液相图 正偏差溶液:x=0.894,最低恒沸点,78.15℃
2. 具有负偏差的溶液 一般负偏差 pA<pA理, pB<pB理。
硝酸-水溶液相图 负偏差溶液:x=0.383,最高恒沸点,121.9℃
组分: A、B 一、相律分 析: 变量 : t、p、xA、 yA
相数: 气相、液相
自由度:f c 2 2
C:独立组分数
Ø:相数
一定压力下:液相(气相)组成xA(yA)与温度t存在一 一对应关系气液组成之间xA~yA存在一一对应关系
二、两组分理想物系气液平衡函数关系 1. 拉乌尔定律( Raoult’s Law)
xF,y,x--分别为原料液、气相与液相产 品的组成,摩尔分率。
y
FxF Wx D
F
F W
xF
W F W
x
q W 液化分率 F
=1 1 q
xF
q 1 q
x
qx q 1
q
1
1
xF
平率衡为蒸馏中气液相平衡组q 成的关系。通过(xF, xF )斜
化工原理蒸馏.ppt
p
0 A
=116.9kPa,
pB0=45.8 kPa。求得
xA
P pB0
p
0 A
pB0
0.78 0.8
重设t=84.5 ℃,重复上述计算,可得 pA0=115.2 kPa,
p
0 B
=45
kPa,求得
xABiblioteka P pB0p0 A
pB0
0.802 0.8
说明所设温度正确,且 p=A0 115.2kPa,故 y 0.9
液体的蒸 馏
——沸点不同的液体混合物的分离
混合物的分类: 非均相物系(气固相混合物) 均相物系(液体混合物、气体混合物等)
均相物系分离的条件: 依据物系中不同组分之间的某些性质差异。
传质分离过程的概念: 将物质在相间的转移过程称为传质(分离)
过程。 常见的传质分离过程有精馏、吸收、萃取等。
蒸馏分离的对象:液体混合物的分离 利用被分离液体之间挥发度的差异, 采用加热的方式 在一定范围遵循拉乌尔定律
xA
P
p
0 B
p
0 A
p
0 B
0.26
yA
p
0 A
P
xA
0.46
已知双组分混合液中,苯(A)占80%,甲苯占20%(摩尔百
分率)。试求常压下与该液相相平衡的汽相组成及温度。苯、
甲苯的饱和蒸汽压可按上例中的Antoine公式计算。
解:由已知x=0.8,P=101.3 kPa,汽相平衡组成可利用
蒸馏过程的特点:
10 蒸馏过程 将液体溶液加热至沸腾,液体便汽化,由于溶液
中各组分的挥发性不同,即蒸汽压不同,产生的所 相与液相组成便不同,易挥发的组成较多地进入气 相,而难挥发组分则较多的留在液相,于是,由原 来单一的液体溶液分成接触的浓度不同的汽液两 相,——这样便实现了组份的初步分离——这种分 馏原理叫蒸馏原理,根据蒸馏原理而设计的各种分 离操作都属于蒸馏过程,常见的的蒸馏过程有闪蒸, 简单蒸馏、连续精馏和间隙精馏等。
第六章 蒸馏(自化工原理)
汽液相平衡,是指溶液与其上方蒸汽达到平衡 汽液相平衡,是指溶液与其上方蒸汽达到平衡时 平衡时 气液两相间各组分组成的关系。 气液两相间各组分组成的关系。 理想溶液的汽液相平衡服从拉乌尔 拉乌尔(Raoult)定律 定律。 理想溶液的汽液相平衡服从拉乌尔(Raoult)定律。 因此对含有A 组分的理想溶液可以得出: 因此对含有A、B组分的理想溶液可以得出: PA=PAoxA 1a) (6-1a) PB=PBoxB= PBo(1-xA) 1b) (6-1b)
6.2 双组分溶液的气液相平衡
☺ ☺ ☺ ☺ ☺ ☺
6.2.1 理想溶液的气液相平衡 6.2.2 温度组成图(t-y-x图) 温度组成图(t6 . 2 . 3 y -x 图 6.2.4 挥发度与相对挥发度 6.2.5 非理想溶液的汽液相平衡 本节小结
6.2.1 理想溶液的气液相平衡(1)
☺
☺ ☺ ☺ ☺
t → x( y ) x− y
本节小结(2)
☺
☺ห้องสมุดไป่ตู้
☺
☺
2)在一定外压下,纯组分的饱和蒸汽压与外压 在一定外压下, 相等时,液体开始沸腾,其对应的温度称为沸点, 相等时,液体开始沸腾,其对应的温度称为沸点, 可见,外压一定时,纯组分的沸点为一定值。 可见,外压一定时,纯组分的沸点为一定值。 在一定外压下,液体混合物的沸腾温度称为泡点, 在一定外压下,液体混合物的沸腾温度称为泡点, 泡点与混合物的组成有关。 泡点与混合物的组成有关。 (t- y)图上可见 图上可见, 在(t-x-y)图上可见,表示不同组成液体混合物的 泡点温度( x=0到x=1.0)为泡点曲线。 泡点温度(从x=0到x=1.0)为泡点曲线。 在该曲线上,对应x=0(即 =0, =1.0)的温度为 在该曲线上,对应x=0(即xA=0,xB=1.0)的温度为 B组分的沸点;对应x=1.0(即xA=1.0,xB=0) 的温 组分的沸点;对应x=1.0(即 =1.0, 度曲线为A组分的沸点。 度曲线为A组分的沸点。
《化工原理蒸馏》课件
蒸馏的原理与流程
蒸馏原理
基于不同组分在汽化、冷凝过程中的物理性质差异,通过控制温度和压力,使 不同组分得以分离。
蒸馏流程
包括加热、汽化、冷凝、收集等步骤,通过优化流程参数,提高分离效果和效 率。
蒸馏在化工中的应用
01
02
03
石油化工
蒸馏是石油化工中常用的 分离方法,用于生产汽油 、柴油、煤油等。
02
数学模型通过建立数学方程来描述蒸馏塔内各相之间的传递和
反应过程,以便对蒸馏过程进行模拟和优化。
常见的蒸馏过程数学模型包括质量传递、动量传递和热量传递
03
模型,以及涉及化学反应的模型。
蒸馏过程的模拟软件介绍
01
蒸馏过程的模拟软件是用于模 拟和优化蒸馏过程的计算机程 序。
02
这些软件基于数学模型,通过 数值方法求解描述蒸馏过程的 偏微分方程,以预测蒸馏塔的 操作性能和优化设计。
蒸馏压力也影响蒸馏效率和产品质量。在 高压下,液体沸点升高,可分离沸点更接 近的组分。
蒸馏速率
回流比
蒸馏速率决定了蒸馏过程的效率。过快的 蒸馏速率可能导致产品质量下降,而慢速 蒸馏则可以提高产品质量和分离效果。
回流比是影响蒸馏效率和产品纯度的关键 参数。增大回流比可以提高产品纯度,但 也会增加能耗和操作成本。
新型塔板和填料的应用
采用新型塔板和填料可以提高蒸馏效率和分离效果,降低能耗和 操作成本。
强化传热传质技术
采用强化传热传质技术可以提高蒸馏效率,减小设备体积和操作成 本。
过程集成与优化
通过过程集成与优化,实现蒸馏过程的节能减排和资源高效利用。
04
蒸馏过程的模拟与计算
蒸馏过程的数学模型
01
化工原理-6章蒸馏
y x 1 ( 1)x
——相平衡方程
当 α为已知时,可用相对挥发度表示了气液相平衡关系。
当 1 当 1
y=x, 即相平衡时气相的组成与液相的组成相同, 不能用蒸馏方法分离。
则y>x,α愈大,y比x大的愈多,组分A和B愈易分离。
三、双组分理想溶液的气液平衡相图
双组分理想溶液的汽液平衡关系用相图表示比较直观、 清晰,而且影响蒸馏的因素可在相图上直接反映出来。蒸馏 中常用的相图为恒压下的温度-组成( t-x-y )图和气相-液 相组成( x-y )图。
当生产任务要求将一定数量和组成的原料分离成指定组成 的产品时,精馏塔计算的内容有:出液和塔釜残液的流量、塔 板数、进料口位置、塔高、塔径等。
6.4.1 全塔物料衡算
1.全塔物料衡算
单位时间为基准
总物料衡算: qn,F=qn,D+qn,W 易挥发组分物料衡算:
qn,FxF=qn,DxD+qn,WxW qn,F、qn,D、qn,W——流量,kmol/h
二、蒸馏的分类
1、按蒸馏方法:简单蒸馏、平衡蒸馏(闪蒸)、精馏、特殊精馏。 2、按操作压力:常压;减压;加压。 3、按原料液组分数:双组分蒸馏和多组分蒸馏 4、按操作方式:间歇蒸馏和连续蒸馏。
三、蒸馏操作的特点
优点:* 适用面广,液体混合物和气体混合物均可 * 操作流程较简单,无需其他外加介质
缺点:* 能耗大
一、利用饱和蒸气压计算气液平衡关系
法国物理学家拉乌尔在1887年研究含有非挥发性溶质的 稀溶液的行为时发现的,可表述为:“在某一温度下,稀溶 液的蒸气压等于纯溶剂的蒸气压乘以溶剂的摩尔分数”。
PA PA0 xA ——拉乌尔定律
pA0——纯组分A在溶液温度下的饱和蒸气压,Pa; xA——溶液中组分A的摩尔分数;
化工原理蒸馏PPT课件
1
16
1. 利用饱和蒸气压计算气液平衡关系
在 一 定 的 压 力 下t fx
t gy
? 理想物系
在 一 定 的 温 度 下pAf x 理想物系 pBgx
p
A
pB
ห้องสมุดไป่ตู้
p
0 A
x
A
p
0 B
x
B
拉乌尔定律
理 想 物 系 的 t - x ( y ) 相 平 衡 关 系 :
对 理 想 物 系 , 汽 相 满 足 : P p A p B p0 AxpB 0(1x)
vA
pA xA
vB
pB xB
显 然 对 理 想 溶 液 , 根 据 拉 乌 尔 定 律 有 :
Ap0 A,BpB 0
什 么 是 相 对 挥 发 度 ?
相对挥发度
vA vB
pA pB
xA xB
yA yB
xA xB
显然对理想溶液,有:
p
0 A
p
0 B
y x 1( 1)x
8
液体混合物的蒸气压
10
§6.2 双组分溶液的气液相平衡
二元物系汽液相平衡时,所涉及的变量有:
温度t、压力P、汽相组成y、液相组成x等4个。
t, P, y
A
B
f C 2 2 2 2 2 t, x
溶 液 ( A+B)
加热
11
§6.2 二元物系的汽液相平衡
P 一定
B
露点线 汽相区
t-y
t 泡点线 两相区
露点线一定在泡点线上方。 杠杆原理: 力力臂 = 常数
t-x
L1
液相区
0
x 或y
化工原理精馏-PPT
Rmin
理想溶液 x D yq
Rmin 1
xD xq
吸收
c
xW xq xF
xD
非理想溶液
Rmin
xD yq yq xq
37
6、3 双组分连续精馏塔得计 算 NT,min
当操作线远离平衡线 NT减少,与对角线重合 时达到 NT,min,一般由图解法求取。若体系为双组 分理想溶液,则可通过解析法计算 (Fenske方程):
–
0 +
6、3 双组分连续精馏塔得计
算 不同q值对操
作线得影响
f
0 < q <1
q值不同改变得
是提馏段得操作线
q=0
方程。当进料组成、q < 0 回流比及分离要求
一定时,q值得减少使
提馏段操作线越来
越靠近平衡线。
xW
吸收
28
q=1
q>1
eHale Waihona Puke xFxD29
6、3 双组分连续精馏塔得计 算6、3、5 NT及加料板位置得确定
一次部分气化和部分冷
凝
t
y1>xF>x1
y1——加热原料液时产 生得第一个 气泡得组成。
x1——经过一次气化后 原料剩下得液体得组成。
11
P=定值
D C B
A
xw x1 xF y1 yF
吸收
大家学习辛苦了,还是要坚持
继续保持安静
6、2 精馏原理
多次得部分气化和部分冷凝
t
y3
冷凝器
y1
xF
分离 器
需 NT及进料板位置均不同。
3)随着进料得 q值逐渐减小,精馏塔所需得 NT 是逐渐增加得。
化工原理PPT蒸馏和吸收塔设备
缺陷:张角固定,在气量较小时,经舌孔喷射旳气速低,塔
板漏液严重,操作弹性小。
液体在同一方向上加速,有可能使液体在板上旳停留时
间太短、液层太薄,板效率降低。
15
为使舌形塔板适应低负荷生产,提升操作弹性, 研制出了可变气道截面(类似于浮阀塔板)旳浮舌 塔板。
特点为操作弹性大、压强降小、构造简朴、效 率高。
降液管
液
相
流动。
气相
错流塔板应用很广,按塔板详细构造形式可分 为:泡罩塔板、筛孔塔板、浮阀塔板、舌形塔板等。
6
逆流塔板(穿流塔板):
塔板上不设降液管,气、液两相同步由塔板
上旳孔道或缝隙逆向穿流而过,板上液层高度靠 气体速度维持。
优点:塔板构造简朴,板上无液面差,板面充分
利用,生产能力较大;
缺陷:操作弹性及板效率不及错
材质:陶瓷、金属、塑料
乱堆填料 装填措施
整砌(规整)填料
35
拉西环 阶梯环
鲍尔环
环
36
鞍形环
波纹板
波纹网
37
1)散装填料
(1)拉西环 最早使用旳一种填料,为
高径比相等旳陶瓷和金属等制
成旳空格低廉,且对它旳研究较为充
分,所以在过去较长旳时间内得到了广泛旳应用。
缺陷:高径比大,堆积时填料间易形成线接触,故
①根据设计任务和工艺条件,拟定设计方案; ②根据设计任务和工艺条件,选择塔板类型; ③拟定塔径、塔高等工艺尺寸; ④进行塔板旳构造设计; ⑤进行流体力学验算; ⑥绘制塔板旳负荷性能图; ⑦根据负荷性能图,对设计进行分析,若设计不够
理想,可对某些参数进行调整,反复上述设计过 程,一直到满意为止。
29
3.3 填料塔
化工原理蒸馏培训课件
第五章蒸馏化工生产中所处理的原料、中间产物、粗产品等几乎都是由若干组分所组成的混合物,而且其中大部分是均相物系。
生产中常需要将这些混合物分离成为较纯净或几乎纯态的物质(组分)。
对于均相物系,必须要造成一个两相物系,才能将均相混合物分离,并且是根据物系中不同组分间的某种物性的差异,使其中某个组分或某些组分从一相向另一相转移以达到分离的目的。
通常将物质在相间的转移过程称为传质过程或分离操作。
化学工业中常见的传质过程有蒸馏、吸收、萃取及干燥等单元操作。
蒸馏就是藉液体混合物中各组分挥发性的差异而进行分离的一种操作。
蒸馏这种操作是将液体混合物部分气化,利用其中各组分挥发度不同的特性来实现分离的目的。
这种分离操作是通过液相和气相间的质量传递来实现的。
通常,将沸点低的组分称为易挥发组分,沸点高的组分称为难挥发组分。
蒸馏过程可以按不同方法分类:按操作流程可分为间歇和连续蒸馏;按蒸馏方式可分为简单蒸馏、平衡蒸馏(闪蒸)、精馏和特殊精馏等;按操作压强可分为常压、加压和减压精馏;按待分离混合物中组分的数目可分为两(双)组分和多组分精馏。
第一节双组分理想溶液的气液平衡蒸馏是气液两相间的传质过程,因此常用组分在两相中的浓度(组成)偏离平衡的程度来衡量传质推动力的大小。
传质过程是以两相达到相平衡为极限的。
由此可见,气液相平衡关系是分析蒸馏原理和进行设备计算的理论基础。
5—1—1 拉乌尔定律和相律一、拉乌尔定律根据溶液中同分子间与异分子间的作用力的差异,可将溶液分为理想溶液和非理想溶液两种。
实验表明,理想溶液的气液平衡关系遵循拉乌尔定律,即:(5—1)(5—1a)式中p ——溶液上方组分的平衡分压,Pa;p0——同温度下纯组分的饱和蒸汽压,Pa,x——溶液中组分的摩尔分率。
(下标A表示易挥发组分、B表示难挥发组分)为简单起见,常略去上式中的下标,习惯上以:x表示液相中易挥发组分的摩尔分率,以(1-x)表示难挥发组分的摩尔分率;y表示气相中易挥发组分的摩尔分率,以(1-y)表示难挥发组分的摩尔分率。
蒸馏操作技术—蒸馏基础知识(化工原理课件)
流对于温度分布不均匀的设备,如 何表征物系的相对挥发度?
化工原理
蒸馏
简单蒸馏是普通蒸馏的典型代表, 属于间歇蒸馏,具有一定的操作 周期,广泛应用于间歇生产或生 产规模不大的情况。
简 单 蒸 馏 工 艺 简 图
简单蒸馏基本操作步骤
01
03
进料至一定液位
蒸汽冷凝得到馏出液
加热产生蒸汽
02
釜液排放
04
简单 蒸馏
间歇 操作
操作具有周期性
一级 在一个操作周期内,只实现了液体的一次汽化和 分离 蒸汽的一次冷凝,所以简单蒸馏属于一级分离。
缺点
一级分离的分离程度不高,产品纯度较低,只 适用于初级分离的场合
优点 设备简答、操作方便
简 单 蒸 馏
简单蒸馏属于连续操作?还是间歇操作?
化工原理
操作 方便
化工原理
液体的挥发度
挥发度表征液体在一定温度下 的挥发能力,它是反映液体挥 发性能难易程度的物理量
绝对挥 发度
将某液体在一定温度下的饱和蒸汽压,定义 为该液体在该温度下的绝对挥发度,用希腊字母ν 表示,单位Pa。
挥 发 度
相对挥 发度
相对挥发度是两种液体挥发能力的比较,是 指相同温度下,两种液体绝对挥发度的比值。通常 绝对挥发度大的做分子,小的做分母。
易挥发组分
相对容易挥发 的液体称为易挥发 组分,也称轻组分。
相对挥发度
难挥发组分
相对难挥发的 液体称为难挥发组 分,也称重组分。
不同的液体具有不同的挥发 性能,这是分离均相混合液 的主要的原理之一,也是蒸 馏操作的理论基础。
挥发度
绝对挥发 度
与温度有关
相对挥发度
与液体本身的性质有关 蒸馏操作的理论基础
化工原理-蒸馏
第六章蒸馏蒸馏定义:蒸馏分类:易挥发组分难挥发组分有回流蒸馏(精馏)无回流蒸馏:简单蒸馏(间歇操作)平衡蒸馏(连续操作)特殊蒸馏:萃取蒸馏、恒沸蒸馏按操作压力可分为加压、常压和减压蒸馏两组分精馏和多组分精馏第一节双组分溶液的气液相平衡一、溶液的蒸汽压与拉乌尔定律纯组分的蒸汽压与温度的关系:拉乌尔定律:在一定温度下,理想溶液上方气相中任意组分的分压等于纯组分在该温度下的饱和蒸气压与它在溶液中的摩尔分数的乘积。
pA=p A0x A(6-2)pB=p B0x B=p B0(1-xA) (6-3)式中p A、p B——溶液上方A,B组分的平衡分压,Pa;p0——在溶液温度下纯组成的饱和蒸汽压,随温度而变,其值可用安托尼(Antoine)公式计算或由相关手册查得,Pa;xA、x B——溶液中A,B组分的摩尔分数。
二、理想溶液气液平衡(一)t-y-x图1.沸点-组成图(t- x- y图)(1)结构以常压下苯-甲苯混合液t- x- y图为例,纵坐标为温度t,横坐标为液相组成x A和汽相组成y A(x,y均指易挥发组分的摩尔分数)。
下曲线表示平衡时液相组成与温度的关系,称为液相线,上曲线表示平衡时汽相组成与温度的关系,称为汽相线。
两条曲线将整个t- x- y图分成三个区域,液相线以下称为液相区。
汽相线以上代表过热蒸汽区。
被两曲线包围的部分为汽液共存区。
t- x- y图数据通常由实验测得。
对于理想溶液,可用露点、泡点方程计算。
(2)应用在恒定总压下,组成为x,温度为t1(图中的点A)的混合液升温至t2(点J)时,溶液开始沸腾,产生第一个汽泡,相应的温度t2称为泡点,产生的第一个气泡组成为y1(点C)。
同样,组成为y、温度为t4(点B)的过热蒸汽冷却至温度t3(点H)时,混合气体开始冷凝产生第一滴液滴,相应的温度t3称为露点,凝结出第一个液滴的组成为x 1(点Q)。
F 、E 两点为纯苯和纯甲苯的沸点。
图 苯-甲苯物系的t - x - y 图 图 苯-甲苯物系的y - x 图应用t - x - y 图,可以求取任一沸点的气液相平衡组成。
化工原理 PPT 蒸馏
与t(泡点)~ x间的计算类似, t(露点)~ y间的计算也有两 种类型,算法也类似。其中已知总压p及气相组成y、求露点t 的计算也要用试差(或迭代)法。
(3)气液两相平衡组成y ~ x间的关系式 把拉乌尔定律代入道尔顿分压定律可得:
0 pA pA x y p p
0 pA K p
y Kx
蒸馏的分离对象:均相的液体混合物 蒸馏分离的介质:实现部分汽化与部分冷凝所需的热量及冷量 蒸馏分离的依据:混合液体中各组分挥发度不同 将液体混合物加热沸腾使之部分气化必有yA> xA或yB < xB; 将蒸汽混合物冷却使之部分冷凝必有xB > yB 。上述两种情况所 得到的气、液相组成均满足
气相中A组分 的摩尔分数 液相中A组分 的摩尔分数
④ 液体的正常沸点(蒸汽压等于101.3kPa时的温度)较
低,表明在同一温度下其蒸汽压较高,故理想溶液两组分挥 发的难易也可以用其沸点的高低来表示,沸点差越大,则相 对挥发度也越大。
6.2.5 非理想溶液
(1)正偏差溶液
aAB<aAA,aAB<aBB,即
异 分子间的排斥倾向起了主 导作用,使溶液的两个组 分的平衡蒸汽压都比拉乌
6.2.2 两组分理想物系的气液平衡
(1)液相组成x与液相温度t (泡点)关系式
理想物系包括两个含义: ①液相为理想溶液,服从拉乌尔定律:
液相上方A组分 的蒸汽压 液相中A组分的摩尔分数
0 p p x A A A
(6-1)
在溶液温度t 下纯 组分A饱和蒸汽压 液相上方B组分 的蒸汽压 液相中B组分的摩尔分数
注意:式中p0的单位为kPa,温度t 的单位为℃。
泡点t与液相组成x之间的计算类型及算法有哪些呢?
化工原理蒸馏PPT
测数据或用安托因(Antoine )方程 进行推算:
p P
0 A
0 P pB 0 p0 p A B
B ln p A t C
0
2 用相对挥发度表示的气液平衡关系
对于混合液中的某一组分 i,挥发度i 定义为:
pA vA xA
vB pB xB
显然对理想溶液,根据拉乌尔定律有:
t f x
理想物系
?
理想物系的 t-x(y)相平衡关系:
0 对理想物系,汽相满足: P p A pB p 0 x p A B (1 x )
0 P pB x 0 0 p A pB pA p0 Ax y P P
0 p0 A 、 p B 仅与温度 t 有关,可采用实
纯组分的饱和蒸气压仅与温度 t 有关,可采用实测数据或用安托因 (Antoine)方程进行推算:
B ln p A t C
0
液体的饱和蒸气压是表示液体挥发能力的一种属性。 液体的挥发能力越大,其蒸气压就越大。
什么是挥发度?
对于纯液体,可以用蒸汽压 p0 大小表示其挥发度
对于混合液中的某一组分 i,挥发度i 定义为:
α的大小反映了混合液分离的难易程度。
表1
t, 0C
苯-甲苯物系的相对挥发度随温度的变化关系
80.1 760 292 2.60 84 856 334 2.56 88 963 381 2.53 92 1081 434 2.49 96 1210 492 2.46 100 1350 556 2.43 104 1502 627 2.40 108 1668 705 2.37 110.6 1783 760 2.35
液体混合物的蒸气压
1、对于二组分混合液,由于B组分的存在,使得A组 分在汽相中的蒸气分压比其在纯态下的饱和蒸气压 要小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14/121
2.用相对挥发度表示的汽液平衡关系
①挥发度v
挥发度: 是该物质挥发难易程度的标志。
纯 液 体 :v A pA;vB pB
溶 液 : A
pA x
,
B
pB 1 x
理 想 溶 液 : A
pA x
pA x x
p
A
B
pB 1 x
pB (1 x) 1 x
pB
2021年2月26日
第三章 蒸馏
第三章 蒸馏Distillation
3.0 概述 3.1 两组分溶液的汽液平衡 3.2 平衡蒸馏与简单蒸馏 3.3 精馏原理和流程 3.4 两组分连续精馏的计算 3.5 间歇精馏 3.6 特殊精馏 本章总结-联系图 工程案例
2021年2月26日
第三章 蒸馏
1/121
3.0 概述
蒸馏是分离液体混合物的典型 单元操作。
✓ 减压蒸馏。(真空蒸馏)适用于常压下沸点较高 或热敏性物质,可降低其沸点。
2021年2月26日
第三章 蒸馏
6/121
按待分离混合物的组分数分为: ✓ 两组分精馏。计算简单。常以此精馏原理为计算
基础,然后引申到多组分精馏计算中。 ✓ 多组分精馏。工业上常见。 本章重点讨论常压两组分连续精馏过程的原理和计
y
p
0 A
P
x
p0A P
p pB0 p0A pB0
——露点方程
〖说明〗
✓上式表明当P一定时,温度t与汽相组成y及液相组
成x之间的关系,t~x~y。
✓露点:混合汽开始冷凝时的温度。
✓P。=f(t)关系确定:
❖实验测定,查手册;
❖安托尼经验公式计算:
lg p A B tC
2021年2月26日
第三章 蒸馏
x
P pB0 p0A pB0
——泡点方程
2021年2月26日
第三章 蒸馏
12/121
x
P pB0 p0A pB0
〖说明〗
✓因p。=f(t),所以,上式表明当P一定时,温度t与
液相组成x之间的关系,t~x。
✓泡点:混合液开始沸腾时的温度。
2021年2月26日
第三章 蒸馏
13/121
pA Py pA x
15/121
②相对挥发度α Relative volatility
相对挥发度:易挥发组分的挥发度与难挥发组分
的挥发度之比。
pA
A x pA(1 x)
B
pB
pB x
1 x
理想物系: Py(1 x) y(1 x)
P(1 y)x (1 y)x
y x
——汽液平衡方程
1 ( 1)x
2021年2月26日
第三章 蒸馏
16/121
y x 1 ( 1)x
〖说明〗
✓温度对相对挥发度的影响:t↑,α↓
算。
2021年2月26日
第三章 蒸馏
7/121
3.蒸馏分离的特点
✓直接获取几乎纯态的产品。而吸收、萃取等操作 的产品为混合物。 ✓应用范围广。可分离液体混合物,气体混合物、 固体混合物。 ✓能耗高。气化、冷凝需消耗大量的能量。加压、 减压,将消耗额外的能量。
2021年2月26日
第三章 蒸馏
8/121
2021年2月26日
第三章 蒸馏
9/121
3.1.1.1 相律
F=C-φ+n 组分数C=2(A,B) 相数=2(汽,液) 影响因素n=2(温度,压力) ∴ Therefore, for binary mixture, freedom of distillation process is 2.
2021年2月26日
2021年2月26日
第三章 蒸馏
11/121
3.1.1.2 汽液平衡的函数关系
1.利用饱和蒸汽压计算汽液平衡关系
理想溶液的汽液平衡关系符合拉乌尔定律
Raoult’s law :
pA
p
0 A
x
pB pB0 (1 x)
理想气体混和时遵循道尔顿分压定律Dolton’s
law : P pA pB p0A x pB0 (1 x)
✓精馏。适合于待分离的混合物中各组分挥发度相 差不大且对分离要求较高的场合,应用最广泛;
✓特殊蒸馏。适合于待分离混合物中各组分的挥发 度相差很小甚至形成共沸物,普通蒸馏无法达到分 离要求的场合。主要有萃取精馏、恒沸精馏、盐熔 精馏、反应精馏及水蒸气蒸馏。
2021年2月26日
第三章 蒸液平衡
3.1.1 两组分理想物系的汽液关系 理想物系是指符合以下条件的物系:
✓液相为理想溶液,遵循拉乌尔定律; ✓汽相为理想气体,遵循道尔顿分压定律,当总压 不太高(<104kPa)时汽相可视为理想气体。
理想溶液的特点:
✓fAA=fBB=fAB:相同与相异分子间的作用力相等。 ✓ΔV混和=0, ΔH混和=0 :混和前后体积和焓不变, 即所形成的溶液无容积效应和热效应。
第三章 蒸馏
10/121
F=2 〖说明〗 ✓对两组分汽液平衡物系而言,温度t、压力P、汽 相组成y、液相组成x四个参数中,任意确定其中2个 变量,其余的2个变量随之确定,两组分汽液平衡物 系的状态便确定了。
✓一定压力下:液相(汽相)组成x (y)与温度t存在一 一对应关系;
✓气液组成之间x~y存在一一对应关系
✓间歇蒸馏。又称分批蒸馏,属于非稳态操作,主 要适用于小规模及某些有特殊要求的场合;
✓连续蒸馏。属于稳态操作,是工业生产中最常用 的蒸馏方式,用于大规模生产的场合。
2021年2月26日
第三章 蒸馏
5/121
按操作压力分为:
✓ 加压蒸馏。适用于常压下为气态(如空气)或常 压下沸点接近室温的混合物;
✓ 常压蒸馏。适用于常压下沸点在1500C左右的混 合物;
1.蒸馏分离的依据 将液体混合物部分气化,利用
大量A+少量B
其中各组分挥发度不同的特性
而达到分离目的的单元操作。
A+B
这种分离操作是通过液相和气
相间的质量传递来实现的。例 如:加热甲醇(沸点64.7℃)和乙
少量A+大量B
醇(沸点78.3℃)混合液的过程。
2021年2月26日
第三章 蒸馏
2/121
将沸点低的组分称为易挥 发组分或轻组分light component ,用A表示。
将沸点高的组分称为难挥 发组分或重组分heavy component ,用B表示。
则混合液:A+B
大量A+少量B
A+B 少量A+大量B
2021年2月26日
第三章 蒸馏
3/121
2、蒸馏过程的分类
按蒸馏方式分为:
✓ 平衡蒸馏和简单蒸馏。多用于待分离混合物中各 组分挥发度相差较大而对分离要求不高的场合,是 最简单的蒸馏;