圆的基本性质练习含答案详解

合集下载

圆的基本性质(解析版)2018年数学全国中考真题-2

圆的基本性质(解析版)2018年数学全国中考真题-2

2018年数学全国中考真题圆的基本性质(试题二)解析版一、选择题1. (2018广西省柳州市,8,3分)如图,A ,B ,C ,D 是⊙O 上的四个点,⊙A =60°,⊙B =24°,则⊙C 的度数为( )第8题图 A .84° B.60°C .36°D .24°【答案】D【解析】∵AD 所对的圆周角是∠B 和∠C ,∴∠C =∠B =24°.【知识点】圆周角定理2. (2018广西贵港,9,3分)如图,点A ,B ,C 均在⊙O 上,若∠A =66°,则∠OCB 的度数是 A .24° B .28° C .33° D .48°【答案】A【解析】∵∠A =66°,∴∠BOC =2∠A =132°,又OC =OB ,∴∠OCB =12(180°-∠BOC )=24°,故选A .3. (2018贵州铜仁,5,4)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=( ) A.55° B.110° C.120° D.125°【答案】D ,【解析】设点E 是优弧AB 上的一点,连接EA 、EB ,根据同弧所对的圆周角是圆心角的一半可得∠E 的度数,再根据圆内接四边形的对角互补即可得到∠ACB 的度数.【解答过程】设点E 是优弧AB 上的一点,连接EA 、EB ,如图, ∵∠AOB=110°,∴∠AEB=12∠AOB=55°,∴∠ACB=180°-∠E=125°.4. (2018江苏苏州,7,3分)如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是AC 上的点.若∠BOC=40°,则∠D 的度数为 A .100° B .110°C .120°D .130°【答案】B【解析】 本题解答时要利用等腰三角形的性质和圆的内接四边形的对角互补的性质进行计算.∵OC =OB ,∠BOC =40゜,∴∠B =70゜,∴∠D =180゜-70゜=110゜,故选B .5. (2018内蒙古通辽,7,3分)已知⊙O 的半径为10,圆心O 到弦AB 的距离为5,则弦AB 所对圆周角的度数是 A .30° B .60° C .30°或150° D .60°或120° 【答案】D【解析】如答图,连接OA 、OB ,∵OC ⊥AB ,∴OC =5,OA =OB =10,又OC =12OA ,∴cos ∠AOC =12,∴∠AOC =60°∴∠AOB =120°,∴弦AB 所对的圆周角的度数是60°或120°. 故选D .6.(湖北省咸宁市,7,3)如图,已知⊙O 的半径为5,弦AB ,CD 所对的圆心角分别为∠AOB ,∠COD ,若∠AOB 与∠COD 互补,弦CD =6,则弦AB 的长为( )A .6B .8 C. D.【答案】【解析】解:作OF ⊥AB 于F ,作直径BE ,连接AE ,如图, ∵∠AOB+∠COD=180°, 而∠AOE+∠AOB=180°, ∴∠AOE=∠COD , ∴AE DC ,∴AE=DC=6,∵OF ⊥AB , ∴BF=AF , 而OB=OE ,∴OF 为△ABE 的中位线, 由勾股定理可得AF=4,∴AB=8,故选择B .【知识点】圆周角定理;垂径定理;三角形中位线性质7. (2018湖北黄石,8,3分)如图,AB 是⊙O 的直径,点D 为⊙O 上一点,且∠ABD =30°,BO =4,则BD 的长为( )第8题图A .23πB .43πC .2πD .83π FE【答案】D 【解析】连接OD ,则∠AOD =2∠B =60°,∴∠BOD =120°.∴l BD =120180π×4=83π.8. (2018湖南邵阳,6,3分)如图(二)所示,四边形ABCD 为⊙O 的内接四边形,∠BCD =120°,则∠BOD 的大小是( )A .80°B .120°C .100°D .90°图(二)【答案】B ,【解析】根据“圆内接四边形的对角互补”可得∠BCD +∠A =180°,因为∠BCD =120°所以∠A =60°.又根据“在同圆中,同弧所对的圆心角等于圆周角的2倍”,所以∠BOD =2∠A =120°.故选B .9.(2018四川眉山,6,3分)如图所示,AB 是⊙O 的直径,P A 切⊙O 于点A ,线段PO 交⊙O 于点C ,连结BC ,若∠P =36°,则∠B 等于( )A .27°B .32°C .36°D .54°【答案】A ,【解析】由P A 是⊙O 的切线,可得⊙OAP =90°,∴∠AOP =54°,根据同弧所对的圆周角等于圆心角的一半,可得∠B =27°10. (2018辽宁锦州,7,3分)如图:在△ABC 中,∠ACB=90°,过B 、C 两点的⊙O 交AC 于点D ,交AB 于点E ,连接EO 并延长交⊙O 于点F ,连接BF 、CF ,若∠EDC=135°,CF=22,则AE 2+BE 2的值为A 、8B 、12C 、16D 、20D【答案】C,【解析】:如图,∠EDC=1350,∠ACB=90°,得△ACB是等腰直角三角形,ECF是等腰直角三角形,得△AEC与△BFC是全等三角形,AE=BF,△EBF是直角三角形,AE2+BE2=FE2=2FC2.二、填空题100,则弧AB所对的圆周角是°.1.(2018广东省,11,3)同圆中,已知弧AB所对的圆心角是【答案】50°【解析】同弧所对的圆周角是圆心角的一半,圆心角为100°,所以圆周角为50°.【知识点】圆周角、圆心角关系2. (2018海南省,18,4分)如图,在平面直角坐标系中,点A 的坐标是(20,0),点B 的坐标是(16,0),点C , D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,则点C 的坐标为________.【答案】(2,6)【思路分析】过点M 作MN ⊥CD ,垂足为点N ,连接CM ,过点C 作CE ⊥OA ,垂足为点E ,由题意可知OB 及圆的半径长,OB =CD ,由垂径定理可求得MN 的长,CN =EM ,从而求出OE 的长,进而得到点C 的坐标.【解题过程】过点M 作MN ⊥CD ,垂足为点N ,连接CM ,过点C 作CE ⊥OA ,垂足为点E ,点A 的坐标是(20,0),所以CM =OM =10,点B 的坐标是(16,0),所以CD =OB =16,由垂径定理可知,821==CD CN ,在Rt⊙CMN 中,CM =10,CN =8,由勾股定理可知MN =6,所以CE =MN =6,OE =OM ﹣EM =10﹣8=2,所以点C 的坐标为(2,6).【知识点】垂径定理,勾股定理,平行四边形的性质3. (2018黑龙江省龙东地区,6,3分)如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =6,EB ==1,则⊙O 的半径为________.【答案】5【解析】连接OC ,∵AB 是⊙O 的直径,CD ⊥AB ,∴CE =12CD ,∵CD =6,∴CE =3.设⊙O 的半径为r ,则OC =r ,∵EB =1,∴OE =4,在Rt △OCE 中,由勾股定理得OE 2+CE 2=OC 2,∴(r -1)2+32=r 2,解得r =5,∴⊙O 的半径为5.D【知识点】垂径定理;勾股定理4.(2018黑龙江绥化,16,3分)如图,△ABC是半径为2的圆内接正三角形,则图中阴影部分的面积是.(结果用含π的式子表示)【答案】4π-.【解析】解:连接OA,OB,OC,过O点作OD⊥BC于点D.∵△ABC为等边三角形,∴∠OBD=30°.∵⊙O的半径为2,∴OB=2,∴OD=1,∴∴S△ABC=3S△OBC=3×12BC·OD=D∴S阴影=4π-故答案为:4π-【知识点】含30°角的直角三角形的性质,垂径定理,三角形面积计算,圆的面积计算5.(2018黑龙江绥化,20,3分)如图,一下水管道横截面为圆形,直径为100cm,下雨前水面宽为60cm,一场大雨过后,水面宽为80cm,则水位上升 cm【答案】10或70.【解析】解:作半径OD⊥AB于C,连接OB,由垂径定理得:BC=12AB=30,在Rt△OBC中,当水位上升到圆心以下时水面宽80 cm则OC′,水面上升的高度为:40-30=10cm;当水位上升到圆心以上时,水面上升的高度为:40+30=70cm,综上可得,水面上升的高度为10cm或70cm.故答案为10或70.【知识点】垂径定理,勾股定理6.7.(2018浙江嘉兴,14,4)如图,量角器的O度刻度线为AB.将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A、D,量得AD=10cm,点D在量角器上的读数为60°.则该直尺的宽度为cm.【解析】根据题意,抽象出数学图形根据题意可知:AD =10,∠AOD =120°,由OA =OD ,∴∠DAO =30°,设OE =x ,则OA =2x ,∵OE ⊥AD ,∴AE =DE =5,在Rt △AOE 中,x 2+52=(2x )2,解得:xCE =OE8. (2018贵州省毕节市,19,3分)如图,AB 是⊙O 的直径,C 、D 为半圆的三等分点,CE ⊥AB 于点E , ∠ACE 的度数为______.【答案】30°.【解题过程】∵AB 是⊙O 的直径,C 、D 为半圆的三等分点,∴∠A =∠BOD =13×180°=60°,又∵CE ⊥AB ,∴∠ACE =90°-60°=30°.【知识点】圆的性质;直角三角形的性质9.(2018吉林省,13, 2分)如图,A ,B ,C ,D 是⊙O 上的四个点,=⌒BC ,,若∠AOB=58°,则∠BDC=___ 度.BO【答案】29【解析】连接CO,根据同圆中,等弧所对圆心角相等,则∠COB=∠AOB=58°,∴∠BDC=29°【知识点】圆周角定理,圆心角、弧、弦之间的关系10.(2018江苏扬州,15,3)如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,则AB= .2【答案】2【思路分析】根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的2倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.【解题过程】连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴2,故答案为2.【知识点】三角形的外接圆和外心,圆内接四边形对边互补,圆周角的性质11.(2018青海,9,2分)如图5,A、B、C是⊙O上的三点,若∠AOC=110°,则∠ABC= . 【答案】125°.【解析】如图所示:优弧AC上任取一点D,连接AD、CD,∵∠AOC=110°,∴∠ADC=∠AOC=×110°=55°,∵四边形ABCD内接与⊙O,∴∠ABC=180°﹣∠ADC=180°﹣55°=125°.【知识点】圆内接四边形的性质,圆周角的性质12. (2018江苏镇江,9,2分)如图,AD 为△ABC 的外接圆⊙O 的直径,若∠BAD =50°,则∠ACD =________°.【答案】40°.【解析】如答图所示,连接B C . ∵AB 是⊙O 的直径, ∴∠ACB =90°.∵∠BCD =∠BAD =50°,∴∠ACD =∠ACB -∠BCD =90°-50°=40°.13. (2018内蒙古通辽,17,3分)如图,在平面直角坐标系中,反比例函数y =kx (k >0)的图象与半径为5的⊙O 相交于M 、N 两点,△MON 的面积为3.5,若动点P 在x 轴上,则PM +PN 的最小值是 .【答案】52【解析】设M (a ,b ),则N (b ,a ),依题意,得:a 2+b 2=52……①(第9题答图)(第9题图)a 2-ab -12(a -b )2=3.5……②①、②联立解得a =572,b =432所以M 、N 的坐标分别为(572,432),(432,572) 作M 关于x 轴的对称点M ′,则M ′的坐标为(572,-432), 则M ′N 的距离即为PM +PN 的最小值.由于M ′N 2=(572-432)2+(-432-572)2=50, 所以M ′N =52,故应填:52.14. (2018山东莱芜,16,3分)如图,正方形ABCD 的边长为2a ,E 为BC 边的中点,⌒AE 、⌒DE 的圆心分别在边AB 、CD 上,这两段圆弧在正方形内交于点F ,则E 、F 间的距离为_______.【答案】32a【思路分析】先用勾股定理求出⌒DFE 的所在圆的半径,再由垂径定理求出EF 的长.【解题过程】解:如图,设⌒DFE 的圆心为G ,作GH ⊥EF 于H ,连接EG .设⌒DFE 所在圆的半径为x ,在Rt △CEG 中,EG 2=CG 2+CE 2,则x 2=(2a -x )2+a 2,解得x =54a ;由垂径定理,得EF =2EH =2⎝ ⎛⎭⎪⎫54a 2-a 2=32a .故答案为32a .【知识点】正方形的性质;勾股定理;垂径定理;15. (2018湖北随州12,3分)如图,点A ,B ,C 在⊙O 上,∠A =40度,∠C =20度,则∠B =______度.EEA D【答案】60.【解析】如图,连接OA ,根据“同圆的半径相等”可得OA =OC =OB ,所以∠C =∠OAC ,∠OAB =∠B ,故∠B =∠OAB =∠OAC +∠BAC =∠C +∠BAC =20°+40°=60°.16.(2018湖北随州16,3分)如图,在四边形ABCD 中,AB =AD =5,BC =CD 且BC >AB ,BD =8.给出下列判断:①AC 垂直平分BD ;②四边形ABCD 的面积S =AC ·BD ;③顺次连接四边形ABCD 的四边中点得到的四边形可能是正方形;④当A 、B 、C 、D 四点在同一个圆上时,该圆的半径为256; ⑤将△ABD 沿直线BD 对折,点A 落在点E 处,连接BE 并延长交CD 于点F ,当BF ⊥CD 时,点F 到直线AB 的距离为678125.其中正确的是______________.(写出所有正确判断的序号)【答案】①③④.【解析】根据“到线段两个端点的距离相等的点在这条线段的垂直平分线上”可知,A ,C 两点都在线段BD 的垂直平分线上,又“两点确定一条直线”,所以AC 垂直平分BD ,故①正确; 如图1,取AC ,BD 的交点为点O ,则由①知OB ⊥AC ,OD ⊥AC ,所以S 四边形ABCD =S △ABC +S △ADC =12AC ·OB +12AC ·OD =12AC ·(OB +OD )= 12AC ·BD ,故②错误; 如图2,取AB ,BC ,CD ,AD 四边的中点分别为P ,Q ,M ,N ,则由三角形的中位线定理得PQ ∥AC ∥MN ,PQ =MN =12AC ,PN ∥BD ∥QM ,PN =QM =12BD ,于是知四边形PQMN 及阴影四边形都是平行四边形.又由①知AC ⊥BC ,所以可证∠AOB =∠QPN =90°,故四边形PQMN 为矩形.若AC =BD ,则有PQ =PN ,四边O ABCCBAO ABDC形PQMN 是正方形,所以顺次连接四边形ABCD 的四边中点得到的四边形可能是正方形,故③正确;当A 、B 、C 、D 四点在同一个圆上时,四边形ABCD 是这个圆的内接四边形,则∠ABC +∠ADC =180°.根据“SSS ”可证△ABC ≌△ADC ,所以∠ABC =∠ADC =90°,则AC 是这个圆的直径.由①知BO =OD =12BD =4,在Rt △AOB 中,根据勾股定理,求得AO=3.然后,证明△AOB ∽△ABC ,得到AB 2=AO ·AC ,所以AC =253,该圆的半径为256,故④正确; 如图1,过点F 作FG ⊥AB 于点G ,过点E 作EH ⊥AB 于点H ,由折叠知,AE =2AO =6,BE =BA =5.由于BF ⊥CD ,AE ⊥BD ,可证得△BOE ∽△BFD ,所以BO BF =BE BD ,即4BF =58,BF =325.因为S △ABE =12AB ·EH=12AE ·BO ,所以EH =645⨯=245.又可证△BEH ∽△BFG ,所以EH FG =BE BF ,即245FG =5325,FG =768125,故⑤错误.17. (2018云南曲靖,10,3分)如图,四边形ABCD 内接于⊙O ,E 为BC 延长线上一点,若∠A =n °,则∠DCE =_________【答案】n °【解析】圆内接四边形的对角互补,所以∠BCD =180°-∠A ,而三点BCD 在一条直线上,则∠DCE =180°-∠BCD ,所以∠DCE =∠A =n °.18. (2018年浙江省义乌市,13,5)如图,公园内有一个半径为20米的圆形草坪,A ,B 是圆上的点,O 为圆心,∠AOB =120°,从A 到B 只有路AB ,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB .通过计算可知,这些市民其实仅仅少B 走了_________步(假设1步为0.5米,结果保留整数).(参考数据:图1GFEH OABDC 图21.732,π取3.142)【答案】15【解析】作OC⊥AB于C,如图,则AC=BC,∵OA=OB,∴∠A=∠B=12(180°﹣∠AOB)=12(180°﹣120°)=30°,在Rt△AOC中,OC=12OA=10,,∴69(步);而AB的长=12020180π⨯≈84(步),AB的长与AB的长多15步.所以这些市民其实仅仅少B走了15步.故答案为15.【知识点】垂径定理;勾股定理19.(2018浙江舟山,14,4)如图,量角器的O度刻度线为AB.将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A、D,量得AD=10cm,点D在量角器上的读数为60°.则该直尺的宽度为cm.BC【解析】根据题意,抽象出数学图形根据题意可知:AD =10,∠AOD =120°,由OA =OD ,∴∠DAO =30°,设OE =x ,则OA =2x ,∵OE ⊥AD ,∴AE =DE =5,在Rt △AOE 中,x 2+52=(2x )2,解得:x ,∴CE =OE.三、解答题1. (2018年江苏省南京市,26,8分)如图,在正方形ABCD 中,E 是AB 上一点,连接DE .过点A 作AF DE ⊥,垂足为F .⊙O 经过点C 、D 、F ,与AD 相交于点G .(1)求证AFG DFC ∽△△;(2)若正方形ABCD 的边长为4,1AE =,求O 的半径.【思路分析】(1)欲证明△AFG ∽△DFC ,只要证明∠FAG=∠FDC ,∠AGF=∠FCD ; (2)首先证明CG 是直径,求出CG 即可解决问题;【解题过程】(1)证明:在正方形ABCD 中,90ADC ∠=. ∴90CDF ADF ∠+∠=. ∵AF DE ⊥. ∴90AFD ∠=.∴90DAF ADF ∠+∠=. ∴DAF CDF ∠=∠.∵四边形GFCD 是⊙O 的内接四边形, ∴180FCD DGF ∠+∠=. 又180FGA DGF ∠+∠=,O∴FGA FCD ∠=∠. ∴AFG DFC ∽△△. (2)解:如图,连接CG .∵90EAD AFD ∠=∠=,EDA ADF ∠=∠, ∴EDA ADF ∽△△. ∴EA DA AF DF =,即EA AFDA DF=. ∵AFG DFC ∽△△, ∴AG AFDC DF =. ∴AG EADC DA=. 在正方形ABCD 中,DA DC =,∴1AG EA ==,413DG DA AG =-=-=.∴5CG ===.∵90CDG ∠=, ∴CG 是⊙O 的直径. ∴⊙O 的半径为52.【知识点】相似三角形的判定和性质 正方形的性质 圆周角定理及推论2. (2018江苏徐州,28,10分) 如图,将等腰直角三角形ABC 对折,折痕为CD .展平后,再将点B 折叠再边AC 上,(不与A 、C 重合)折痕为EF ,点B 在AC 上的对应点为M ,设C D 与EM 交于点P ,连接PF .已知BC =4.(1)若点M 为AC 的中点,求CF 的长;(2)随着点M 在边AC 上取不同的位置.①△PFM 的形状是否发生变化?请说明理由; ②求△PFM 的周长的取值范围.第28题图【解答过程】 解:(1)根据题意,设BF =FM =x ,则CF =4-x ,∵M 为AC 中点,AC =BC =4,∴ CM =12AC =2,∵∠ACB =90°,∴CF 2+CM 2=FM 2,∴(4-x )2+22=x 2,解得x =52,∴CF =4-52=32; (2)①△PFM 的形状不变,始终是以PM 、PF 为腰的等腰直角三角形,理由如下:∵等腰直角三角形ABC 中,CD ⊥AB ,∴AD =DB ,CD =12AB =DB ,∴∠B =∠DCB =45°,由折叠可得∠PMF =∠B =45°,∴∠PMF =∠DCB ,∴P 、M 、F 、C 四点共圆,∴∠FPM +∠FCM =180°,∴∠FPM =180°-∠FCM =90°,∠PFM =90°-∠PMF =45°=∠PMF ,∴△PFM 的形状不变,始终是以PM 、PF 为腰的等腰直角三角形; ②当M 与C 重合时,F 为BC 中点,CF =12BC =2,PM =PF =cos 45CF=︒此时△PFM 的周长为2+当M 与A 重合时,F 于C 重合,E 与D 重合,FM =AC =4,PM =PF =ACcos45°=,此时△PFM 的周长为4+B 不与A 、C 重合,所以△PFM 的周长的取值范围是大于2+且小于4+.3. (2018辽宁葫芦岛,25,12分)在△ABC 中,AB =BC ,点O 是AC 的中点,点P 是AC 上的一个动点(点P 不与点A ,O ,C 重合).过点A ,点C 作直线BP 的垂线,垂足分别为点E 和点F ,连接OE ,OF . (1)如图1,请直接写出线段OE 与OF 的数量关系;(2)如图2,当∠ABC =90°时,请判断线段OE 与OF 之间的数量关系和位置关系,并说明理由; (3)若|CF -AE |=2,EF =POF 为等腰三角形时,请直接写出线段OP 的长.【思路分析】(1)连接OB ,则OB ⊥AC ,进而得A 、E 、O 、B 四点共圆,B 、F 、O 、C 四点共圆.由同弧所对的圆周角相等得∠OEB =∠OAB ,∠OFC =∠OBC .又因为∠OFE =90°-∠OFC ,∠ACB =90°-∠OBC ,所以∠OFE =∠OCB ,又因为∠OAB =∠OCB ,所以∠OE B =∠OFE ,所以OE =OF ;(2)类比(1)可得OE =OF ;由∠ABC =90°,AB =BC ,可得∠OAB =∠OCB =∠OEB =∠OFE =45°,所以OE ⊥OF .(3)取EF的中点为M,则EM=FMAM并延长交CF于D,连接OM.由△AME≌△DMF,|CF-AE|=2,得OM=1.进而得OF=2.由sin∠OFM=12,得∠OFM=30°.因为点P在EF上,所以OP<OE=OF;因为AE⊥EF,∠APE、∠OPF均为锐角,故PF≠PO.当PF=OF=2时,PM=2理得OP=【解答过程】(1)OE=OF;(2)OE=OF,OE⊥OF.理由:连接OB,则OB⊥AC.∵∠AEB=∠AOB=90°,∴进而得A、E、O、B四点共圆,∴∠OEB=∠OAB.∵∠BFC=∠BOC=90°,∴B、F、O、C四点共圆.∴∠OFC=∠OBC.又∵∠OFE=90°-∠OFC,∠ACB=90°-∠OBC,∴∠OFE=∠OCB,又∵∠ABC=90°,AB=BC,∴∠OAB=∠OCB=45°.∴∠OE B=∠OFE=45°.∴OE=OF,OE⊥OF.(3)OP=223.4.(2018上海,25,14分)已知圆O的直径AB=2,弦AC与弦BD,交于点E,且OD⊥AC,垂足为点F.(1)图11,如果AC=BD,求弦AC的长;(2)如图12,如果E为BD的中点,求∠ABD的余切值(3)联结BC、CD、DA,如果BC是圆O的内接正n边形的一边,CD是的内接正(n+4)边形的一边,求△ACD的面积.【思路分析】(1)连结CB.可以证明弧AD、弧DC、弧CB相等,从而得到∠ABC=60°.在△ABC中求出AC长.(2)运用中位线及全等转化求出CB长,再把直角三角形OBE中的两个直角边求出,即可∠ABD的余切值.(3)根据“BC是圆O的内接正n边形的一边,CD是的内接正(n+4)边形的一边”求出n值,从而求出∠AOD=45°,可得各线段长,再求△ACD的面积.【解答过程】(1)连结CB.∵AC=BD,∴弧AC=弧BD,∵OD⊥AC,∴弧AD=弧DC=12弧AC,∴弧AD=弧DC=弧CB,∴∠ABC=60°在Rt△ABC中, ∠ABC=60°,AB=2,∴AC=3(2)∵OD⊥AC,∴∠AFO=90°,AF=FC∵AO=OB,∴FO∥CB,FO=12 CB∵E为BD的中点,∴DE=EB∵FO∥CB,∴△DEF≌△BEC,∴DF=CB=2FO∴FO=13,CB=23在Rt △ABC 中,AB =2,CB =23,∴AC ,∴EC ∴EB ,∵E 为BD 的中点,OD =OB ,∴∠OEB =90°,∴EO cot ∠ABD =EB EO . (3)∵BC 是圆O 的内接正n 边形的一边,∴∠COB =360n° ∵CD 是的内接正(n +4)边形的一边,∴∠COD =3604n +° ∵弧AD =弧DC ,∴∠AOD =3604n +° ∵∠COB +∠COD +∠AOD =180°,∴360n +3604n ++3604n +=180,解得n =4 ∴∠AOD =∠COD =3604n +°=45°∵OD =OA =OC =1,∴AC ,OF ,DF =1,∴S △ACD =12×AC ×DF =2-12.5. (2018黑龙江哈尔滨,26,10)已知:⊙O 是正方形ABCD 的外接圆,点E 在弧AB 上,连接BE 、DE ,点F 在弧AD 上,连接BF 、DF 、BF 与DE 、DA 分别交于点G 、点H ,且DA 平分∠EDF .(1)如图1,求证:∠CBE =∠DHG ;(2)如图2,在线段AH 上取一点N (点N 不与点A 、点H 重合),连接BN 交DE 于点L ,过点H 作HK //BN 交DE 于点K ,过点E 作EP ⊥BN ,垂足为点P ,当BP =HF 时,求证:BE =HK ;(3)如图3,在(2)的条件下,当3HF =2DF 时,延长EP 交⊙O 于点R ,连接BR ,若△BER 的面积与△DHK 的面积的差为47,求线段BR 的长.图1 图2 图3【思路分析】(1)问利用同弧和等弧所对圆周角等与三角形外角性质易证的结论.(2)过H 作HM ⊥KD ,易证得HM =BP ,加上直角条件,可导出第三个全等条件,得到△BEP ≌△HKM ,所以BE =HK .(3)连接BD 后根据条件3HF =2DF 可得到tan ∠ABH =tan ∠ADE =ABAH =32,过点H 作HS ⊥BD 后再设边计算就能求出tan ∠BDE =tan ∠DBF =BSHS =51,在ER 上截取ET =DK ,连接BT 易证得△BET ≌△HKD ,这时21BP ·ER 21-HM ·DK =21BP (ER -DK )=21BP (ER -ET )=47,易求得BP =1,PR =5,BR =22RP BP +=2251+=26【解答过程】(1)证明:∵四边形ABCD 是正方形∴∠A =∠ABC =90°∵∠F =∠A =90°∴∠F =∠ABC∵DA 平分∠EDF ∴∠ADE =∠ADF ∵∠ABE =∠ADE ∴∠ABE =∠ADF又∵∠CBE =∠ABC +∠ABE ,∠DHG =∠F +∠ADF ∴∠CBE =∠DHG(2)证明:过H 作HM ⊥KD 垂足为点M ∵∠F =90°∴HF ⊥FD 又∵DA 平分∠EDF ∴HM =FH∵FH =BP ∴HM =BP ∵KH ∥BN ∴∠DKH =∠DLN ∵∠ELP =∠DLN ∴∠DKH =∠ELP∵∠BED =∠A =90°∴∠BEP +∠LEP =90°∵EP ⊥BN ∴∠BPE =∠EPL =90°∴∠LEP +∠ELP =90°∴∠BEP =∠ELP =∠DKH ∵HM ⊥KD ∴∠KMH =∠BPE =90°∴△BEP ≌△HKM ∴BE =HK(3)解:连接BD ∵3HF =2DF ,BP =FH ∴设HF =2a ,DF =3a ∴BP =FH =2a由(2)得HM =BP ,∠HMD =90°∵∠F =∠A =90°∴tan ∠HDM =tan ∠FDH ∴DM HM =DF FH =32 ∴DM =3a ∴四边形ABCD 是正方形∴AB =AD ∴∠ABD =∠ADB =45°∵∠ABF =∠ADF =∠ADE ,∠DBF =45°-∠ABF ,∠BDE =45°-∠ADE ∴∠DBF =∠BDE ∵∠BED =∠F ,BD =BD ∴△BED ≌△DFB ∴BE =FD =3a 过点H 作HS ⊥BD 垂足为点S ∵tan ∠ABH =tan ∠ADE =ABAH =32 ∴设AB =32m ,AH =22m ∴BD =2AB =6m DH =AD -AH =2m sin ∠ADB =DHHS =22 ∴HS =m ∴ DS =22HS DH -=m ∴BS =BD -DS =5m ∴tan ∠BDE =tan ∠DBF =BS HS =51 ∵∠BDE =∠BRE ∵tan ∠BRE =PR BP =51∵BP =FH =2a ∴RP =10a 在ER 上截取ET =DK ,连接BT 由(2)得∠BEP =∠HKD ∴△BET ≌△HKD ∴∠BTE =∠KDH ∴tan ∠BTE =tan ∠KDH ∴PT BP =32 ∴PT =3a ∴TR =RP -PT =7a ∵S △BER -S △KDH =47∴21BP ·ER 21-HM ·DK =47 ∴21BP (ER -DK )=21BP (ER -ET )=47∴21×2a ×7a =47 ∴a 2=41,a 1=21,a 2=21-(舍去)∴BP =1,PR =5 ∴BR =22RP BP +=2251+=26。

浙教版数学九年级上册 第3章 圆的基本性质(含答案)

浙教版数学九年级上册  第3章 圆的基本性质(含答案)

第3章 圆的基本性质班级 学号 得分 姓名一、选择题(本大题有10小题,每小题3分,共30分)1. 下列三个命题:①圆既是轴对称图形又是中心对称图形;②垂直于弦的直径平分弦;③相等的圆心角所对的弧相等.其中真命题是( )A. ①②B. ②③C. ①③D. ①②③2. 如图,AB 是⊙O 的直径,C,D 是⊙O 上位于AB 异侧的两点,下列四个角中一定与∠ACD 互余的是 ( )A. ∠ADCB. ∠ABDC. ∠BACD. ∠BAD3.如图,点A,B,C,D,E 均在⊙O 上,∠BAC=15°,∠CED=30°,则∠BOD 的度数为( )A. 45°B. 60°C. 75°D. 90°4.如图,AB 是圆O 的弦,OC⊥AB,交圆O 于点C,连结OA,OB,BC,若∠ABC=20°,则∠AOB 的度数是( )A. 40°B. 50°C. 70°D. 80°5. 如图,点A ,B ,S 在圆上,若弦AB 的长度等于圆半径 2₂倍,则∠ASB 的度数是( )A. 22.5°B. 30°C. 45°D. 60°6.(2020·中考)如图,在等腰△ABC 中, AB =AC =25,BC =8,,按下列步骤作图:①以点 A 为圆心,适当的长度为半径作弧,分别交 AB ,AC 于点E ,F ,再分别以点 E ,F 为圆心,大 12₂EF 的长为半径作弧相交于点H ,作射线AH ;②分别以点 A ,B为圆心,大 12₂AB 的长为半径作弧相交于点M ,N ,作直线MN ,交射线AH 于点O ;③以点O 为圆心线段OA 的长为半径作圆,则⊙O 的半径为( )A.25B. 10C. 4D. 57. 如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于点 D,连结BE,若 AB =27,CD =1,则BE 的长是( )A. 5B. 6C. 7D. 88.已知⊙O 中,弦AB 的长等于半径,P 为弦AB 所对的弧上一动点,则∠APB 的度数为( )A. 30°B. 150°C. 30°或150°D. 60°或120°9. 已知⊙O 的直径CD=10cm,AB 是⊙O 的弦,AB⊥CD,垂足为M,且AB=8cm,则AC 的长为…… ( ) A.25cm B.45cmC.25cm 或 45cmD.23cm 或 43cm10. 如图,AB为⊙O的直径,AC交⊙O于点E,BC交⊙O于点D,CD=BD,∠C=70°,现给出以下三个结论:①∠A=45°;②AC=AB;③AE=BE.其中正确的有( )A. 1个B. 2 个C. 3个D. 0个二、填空题(本大题有6小题,每小题4分,共24分)11. 如图,一次函数y= kx+b的图象与x轴,y轴分别相交于A,B两点,⊙O经过A,B两点,已知AB=2,则 kb的值为 .12. 如图,AB是⊙O的直径,点C,D在圆上,∠D=65°,则∠BAC等于度.13. 如图,已知矩形ABCD的边AB=3,AD=4.(1)以点 A为圆心,4为半径作圆A,则点B,C,D与圆A 的位置关系分别是;(2)若以A点为圆心作圆A,使B,C,D三点中至少有一个点在圆内,且至少有一个点在圆外,则圆A的半径r的取值范围是 .14. 如图,BC是半圆O 的直径,D,E是BC上两点,连结BD,CE 并延长交于点A,连结OD,OE.如果∠A=70°,那么∠DOE的度数为 .15. 如图所示,AB是⊙O的直径,弦CD⊥AB于点H,∠A=30∘,CD=23,则⊙O的半径是 .16. 如图所示,⊙O的直径AB=16cm,P是OB 中点,∠ABP=45°,则CD= cm.三、解答题(本大题有8小题,共66分)17.(6分)如图,点A,B,C都在⊙O上,OC⊥OB,点A 在劣弧BC上,且OA=AB,求∠ABC的度数.18. (6分)如图,在同一平面内,有一组平行线l₁,l₂,l₃,,相邻两条平行线之间的距离均为4,点O在直线l₁上,⊙O与直线l₃的交点为A,B,AB=12,求⊙O的半径.19.(6分)如图,在△ABC的外接圆上AB,BC,CA三弧的度数比为12:13:11.在劣弧BC上取一点D,过点D分别作直线AC,直线AB的平行线,分别交 BC于E,F两点,求∠EDF的度数.20. (8分)如图,△ABC内接于⊙O,AB=AC,,D在弧AB 上,连结CD交AB 于点E,B 是弧CD 的中点,求证:∠B=∠BEC.21.(8分)已知:如图,点M是/AB的中点,过点M的弦MN交AB 于点C,设⊙O的半径为4cm,. MN=43cm.(1)求圆心 O到弦MN的距离;(2)求∠ACM的度数.22.(10分)如图,已知方格纸中每个小正方形的边长为1个单位,Rt△ABC的三个顶点A(-2,2),B(0,5),C(0,2).(1)将△ABC以C 为旋转中心旋转180°,得到△A₁B₁C,请画出△A₁B₁C;(2)平移△ABC,使点 A的对应点.A₂的坐标为(−2,−6),请画出平移后对应的图形△A₂B₂C₂;(3)若将△A₁B₁C绕某一点旋转可得到△A₂B₂C₂.请直接写出旋转中心的坐标.23.(10分)如图,已知AB是⊙O的直径,C是圆周上的动点,P 是ABC的中点.(1)求证:OP//BC;(2)如图,连结PA,PC交直径AB于点D,当(OC=DC时,求∠A的度数.24.(12分)我们学习了“弧、弦、圆心角的关系”,实际上我们还可以得到“圆心角、弧、弦,弦心距之间的关系”如下:圆心角、弧、弦、弦心距之间的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦或两条弦的弦心距中有一组量相等,那么它们对应的其余各组量也相等弦心距指从圆心到弦的距离如图(1)中的 OC,OC′,弦心距也可以说成圆心到弦的垂线段的长度 l请直接运用圆心角、弧、弦、弦心距之间的关系解答下列问题.如图(2),点O是∠EPF的平分线上一点,以点O为圆心的圆与角的两边分别交于点A,B,C,D.(1)求证:AB=CD.(2)若角的顶点 P 在圆上或圆内,上述结论还成立吗? 若不成立,请说明理由;若成立,请加以证明.第3章 圆的基本性质1. A2. D3. D4. D5. C6. D7. B8. C9. C 10. A 11. 1212. 25 13. (1)B 在圆内、C 在圆外、D 在圆上(2)3<r<5 14. 40° 15. 2 16. 1417. 解:∵OA=OB,OA=AB,∴OA=OB=AB,即△OAB 是等边三角形,∴∠AOB=60°,∵OC⊥OB,∴∠COB= 90°,∴∠COA = 90°- 60°= 30°,∴∠ABC=15°.18. 解:如图,连结 OA,过点O 作OD⊥AB 于点 D.∵ AB =12,∴AD =12AB =12×12=6.相邻两条平行线之间的距离均为4,∴OD=8.在 Rt△AOD 中,∵AD =6,OD =8,∴OA =AD 2+OD = 62+82=10.∴⊙O 的半径为 10.19. 解: ∵AB ,BC ,CA 三弧的度数比为12:13:11,∴ ABm.1212+13+11×360∘=120∘,AC−m m 1112+13+11×360∘=110∘,∴∠ACB =12×120∘= 0∘,∠ABC =12×110∘=55∘,∵ACED,AB DF,∴∠FED=∠ACB=60°,∠EFD=∠ABC= 55°,∴∠EDF =180°−60°−55°=65°20. 证明:∵B 是弧 CD 的中点, ∴BC =BD ,∴∠BCE = =∠BAC.:∠BEC =180°−∠BCE,∠ACE ,=180°-∠BAC--∠B,∴∠BEC=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠B=∠BEC.21. 解:(1)连结 OM.∵点 M 是. AB 的中点,∴OM⊥AB.过点 O 作OD⊥MN 于点 D,由垂径定理,得 MD =12MN =23cm,在Rt△ODM 中,OM=4cm, MD =23cm,∴OD =OM 2−MD 2=2(cm ).故圆心 O 到弦MN 的距离为 2cm. (2)∵OD=2cm,OM=4cm,∴∠M=30°,∴∠ACM=60°.22. 解:(1)(2)图略.(3)旋转中心的坐标为(0,-2).23. (1)证明:连结AC,延长 PO 交AC 于点 H,如图,∵P 是 ABC 的中点,∴PH⊥AC,∵A B 是⊙O 的直径,∴∠ACB=90°,∴BC⊥AC,∴OP∥BC. (2)解:∵P 是 ABC 的中点, P C,∴∠PAC=∠PCA,:OA=OC, ∴ ∠OA C= ∠OCA,∴∠PAO=∠C O=CD 时,设∠DCO=x,则∠OPC=x,∠PAO=x,∴∠POD =2x,∴∠ODC=∠POD+∠OP C=3x,∵CD=CO,∴∠DOC=∠ODC=3x.在△POC 中,x+x+5x=180°,解得 x =180∘7,即 ∠PAO =180∘7.24. (1)证明:过点 O 作OM⊥AB 于点M,ON⊥CD 于点 N,连结OB,OD,则∠OMB=∠OND=90°,∵PO 平分∠EPF,∴O M=ON,∵OM⊥AB,ON⊥CD,∴AB=CD.(2)成立.当点 P 在圆上时如图;作OM⊥PB,ON⊥PD,垂足分别为M,N,∵PC平分∠EPF,∴OM=ON,∵OM⊥AB,ON⊥CD,∴PB=PD;当点P 在圆内时:过点 O作OM⊥AB,ON⊥CD,∵PO平分∠BPF,∴OM=ON.∵OM⊥AB,ON⊥CD,∴AB=CD.。

圆的基本性质(解答题)

圆的基本性质(解答题)

21.圆的基本性质(解答题)三、解答题85.(2009柳州)如图,AB是⊙O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE 于点F.(1)求证:CF=BF;(2)若AD=2,⊙O的半径为3,求BC的长.【关键词】圆证明:(1)连结AC,如图。

∵C是弧BD的中点∴∠BDC=∠DBC又∠BDC=∠BAC在三角形ABC中,∠ACB=90°,CE⊥AB∴ ∠BCE=∠BAC∠BCE=∠DBC∴ CF=BF因此,CF=BF.(2)证法一:作CG⊥AD于点G,∵C 是弧BD 的中点∴ ∠CAG=∠BAC , 即AC 是∠BAD 的角平分线.∴ CE=CG ,AE =AG在Rt△BCE 与Rt△DCG 中,CE =CG , CB =CD∴Rt△BCE≌Rt△DCG∴BE=DG∴AE=AB-BE =AG =AD+DG即 6-BE =2+DG∴2BE=4,即 BE =2又 △BCE∽△BAC∴ 212BC BE AB ==·32±=BC (舍去负值) ∴32=BC(2)证法二:∵AB 是⊙O 的直径,CE⊥AB∴∠BEF=︒=∠90ADB ,在Rt ADB △与Rt FEB △中,∵FBE ABD ∠=∠∴ADB △∽FEB △,则BF AB EF AD = 即BFEF 62=, ∴EF BF 3= 又∵CF BF =, ∴EF CF 3=利用勾股定理得:EF EF BF BE 2222=-=又∵△EBC∽△ECA则CE BE AE CE =,即则BE AE CE ⋅=2 ∴BE BE EF CF ⋅-=+)6()(2即EF EF EF EF 22)226()3(2⋅-=+∴22=EF ∴3222=+=CE BE BC .86.(2009年四川省内江市)如图,四边形ABCD 内接于圆,对角线AC 与BD 相交于点E 、F 在AC 上,AB =AD ,∠BFC =∠BAD =2∠DFC.求证:(1)CD ⊥DF ;(2)BC =2CD【关键词】三角形全等的判定.【答案】证:(1)设∠DFC =θ,则∠BAD =2θ在△ABD 中,∵AB =AD , ∴∠ABD =∠ADB∠ABD =12(180°-∠BAD )=90°-θ又∠FCD =∠ABD =90°-θ∴∠FCD+∠DFC =90°∴CD ⊥DF(2)过F 作FG ⊥BC 于G在△FGC 和△FDC 中 ,∠FCG =∠ADB =∠ABD =∠FCD∠FGC =∠FDC =90°,FC =FC∴△FGC ≌△FDC∴GC =CD 且∠GFC =∠DFC又∠BFC =2∠DFC∴∠GFB =∠GFC∴BC =2GC , ∴BC =2CD.87.(2009年甘肃庆阳)(10分)如图,在边长为2的圆内接正方形ABCD 中,AC 是对角线,P 为边CD 的中点,延长AP 交圆于点E .(1)∠E = 度; (2)写出图中现有的一对不全等的相似三角形,并说明理由; (3)求弦DE 的长.【关键词】圆周角和圆心角;相似三角形【答案】本小题满分10分解:(1)45.(2)△ACP∽△DEP.理由:∵∠AED=∠ACD,∠APC=∠DPE,∴ △ACP∽△DEP.(3)方法一: ∵ △ACP∽△DEP, ∴ .AP AC DP DE = 又 AP =522=+DP AD ,AC =2222=+DC AD ,∴ DE=5102.方法二:如图2,过点D 作DF AE ⊥于点F .在Rt ADP △中, AP 225,AD DP +又1122ADP S AD DP AP DF ==△, ∴ DF=552.∴ 51022==DF DE .88.(2009年衢州)如图,AD 是⊙O 的直径.(1) 如图①,垂直于AD 的两条弦B 1C 1,B 2C 2把圆周4等分,则∠B 1的度数是 ,∠B 2的度数是 ;(2) 如图②,垂直于AD 的三条弦B 1C 1,B 2C 2,B 3C 3把圆周6等分,分别求∠B 1,∠B 2, ∠B 3的度数;(3) 如图③,垂直于AD 的n 条弦B 1C 1,B 2C 2,B 3 C 3,…,B n C n 把圆周2n 等分,请你用含n 的代数式表示∠B n 的度数(只需直接写出答案).【关键词】开放性试题【答案】解:(1) 22.5°,67.5°(2) ∵ 圆周被6等分,∴ 11B C =12C C =23C C =360°÷6=60°.∵ 直径AD ⊥B 1C 1,∴ 1AC =1211B C =30°,∴ ∠B 1m =121AC =15°. ∠B 2m =122AC =12×(30°+60°)=45°, ∠B 3m =123AC =12×(30°+60°+60°)=75°. (3) 11360360[(1)]2222n B n n n ︒︒∠=⨯+-⨯(9045)n n-︒=. (或3604590908n B n n︒︒∠=︒-=︒-)89. (2009年广州市)如图,在⊙O 中,∠ACB =∠BDC=60°,AC =cm 32,(1)求∠BAC 的度数; (2)求⊙O 的周长【关键词】圆【答案】90.(2009年广西钦州)(2)已知:如图2,⊙O 1与坐标轴交于A (1,0)、B (5,0)两点,点O 15.求⊙O 1的半径.B A O图2 x y A BO 1O【关键词】垂径定理、勾股定理、坐标系【答案】(2)解:过点O 1作O 1C ⊥AB ,垂足为C ,则有AC =BC . B A O图2 x yA BO 1O C由A (1,0)、B (5,0),得AB =4,∴AC =2.在1Rt AO C △中,∵O 15,∴O 1C 5.∴⊙O 1的半径O 1A 22221(5)2O C AC ++3.91.(2009年南充)如图8,半圆的直径10AB =,点C 在半圆上,6BC =.(1)求弦AC 的长;(2)若P 为AB 的中点,PE AB ⊥交AC 于点E ,求PE 的长.P BCE A【关键词】圆的性质,三角形相似的性质【答案】解:AB 是半圆的直径,点C 在半圆上,90ACB ∴∠=°.在Rt ABC △中,22221068AC AB BC =-=-= (2)PE AB ⊥,90APE ∴∠=°.90ACB ∠=°,APE ACB ∴∠=∠.又PAE CAB ∠=∠,AEP ABC ∴△∽△,PE AP BC AC∴= 110268PE ⨯∴= 301584PE ∴==.92.(2009年哈尔滨)如图,在⊙O 中,D 、E 分别为半径OA 、OB 上的点,且AD =BE . 点C 为弧AB 上一点,连接CD 、CE 、CO ,∠AOC=∠BOC.求证:CD =CE .【关键词】圆的半径,圆心角【答案】此题证明△OCD 与△OCE 全等即可,给出了一对角相等,再利用半径相等的性质即可得证OA OB AD BE ==,,OA AD OB BE ∴-=-,即OD OE =.93.(2009年中山)(1)如图1,圆心接ABC △中,AB BC CA ==,OD 、OE 为O ⊙的半径,OD BC ⊥于点F ,OE AC ⊥于点G ,求证:阴影部分四边形OFCG 的面积是ABC △的面积的13. (2)如图2,若DOE ∠保持120°角度不变,求证:当DOE ∠绕着O 点旋转时,由两条半径和ABC △的两条边围成的图形(图中阴影部分)面积始终是ABC △的面积的13.【关键词】圆的内接三角形【答案】(1)如图1,连结OA OC ,,因为点O 是等边三角形ABC 的外心,所以Rt Rt Rt OFC OGC OGA △≌△≌△.2OFCG OFC OAC S S S ==△△,因为13OAC ABC S S =△△, 所以13OFCG ABC S S =△. (2)解法一:连结OA OB ,和OC ,则AOC COB BOA △≌△≌△,12∠=∠,不妨设OD 交BC 于点F ,OE 交AC 于点G ,3412054120AOC DOE ∠=∠+∠=∠=∠+∠=°,°,35∴∠=∠.在OAG △和OCF △中,1235OA OC ∠=∠⎧⎪=⎨⎪∠=∠⎩,,, OAG OCF ∴△≌△,13OFCG AOC ABC S S S ∴==△△.解法二:不妨设OD 交BC 于点F ,OE 交AC 于点G ,作OH BC OK AC ⊥⊥,,垂足分别为H K 、,在四边形HOKC 中,9060OHC OKC C ∠=∠=∠=°,°,360909060120HOK ∴∠=-︒-︒=︒°-?,即12120∠+∠=°.又23120GOF ∠=∠+∠=°,13∴∠=∠.AC BC =, OH OK ∴=,OGK OFH ∴△≌△,13OFCG OHCK ABC S S S ∴==△.在ODC △ 和OEC △中,OD OE DOC EOC OC OC =⎧⎪∠=∠⎨⎪=⎩ODC OEC ∴△≌△.CD CE ∴=.94.(2009年广州市)如图,在⊙O 中,∠ACB =∠BDC=60°,AC =cm 32,(1)求∠BAC 的度数; (2)求⊙O 的周长【关键词】圆【答案】95. (2009年株洲市)(本题满分10分)如图,点A 、B 、C 是O 上的三点,//AB OC .(1)求证:AC 平分OAB ∠.(2)过点O 作OE AB ⊥于点E ,交AC 于点P . 若2AB =,30AOE ∠=︒,求PE 的长.【关键词】与圆有关的综合题【答案】(1)∵//AB OC , ∴C BAC ∠=∠;∵OA OC =,∴C OAC ∠=∠ ∴BAC OAC ∠=∠ 即AC 平分OAB ∠.(2)∵OE AB ⊥ ∴112AE BE AB === 又30AOE ∠=︒,90PEA ∠=︒∴60OAE ∠=︒∴1302EAP OAE ∠=∠=︒, ∴12PE PA =,设PE x =,则2PA x =,根据勾股定理得2221(2)x x +=,解得3x =tan PE EAP AE ∠=) 即PE 397.(2009年潍坊)如图所示,圆O 是ABC △的外接圆,BAC ∠与ABC ∠的平分线相交于点I ,延长AI 交圆O 于点D ,连结BD DC 、.(1)求证:BD DC DI ==;(2)若圆O 的半径为10cm ,120BAC ∠=°,求BDC △的面积.(1)证明:AI 平分BAC ∠BAD DAC BD DC ∴∠=∠∴=,BI 平分ABC ABI CBI ∠∴∠=∠,BAD DAC DBC DAC ∠=∠∠=∠,BAD DBC ∴∠=∠,又DBI DBC CBI DIB ABI BAD ∠=∠+∠∠=∠+∠, DBI DIB BDI ∴∠=∠∴,△为等腰三角形 BD ID BD DC DI ∴=∴==,(2)解:当120BAC ∠=°时,ABC △为钝角三角形,∴圆心O 在ABC △外,连结OB OD OC 、、,2120DOC BOD BAD ∴∠=∠=∠=°, 60DBC DCB ∴∠=∠=°,∴BDC △为正三角形.又知10cm OB =,32sin 60210103cm BD OB ∴==⨯⨯=° 223(103)753cm BDC S ∴=⨯=△.答:BDC △的面积为7532.98.(09湖北宜昌)已知:如图,⊙O 的直径AD =2,BC CD DE ==,∠BAE =90°.(1)求△CAD的面积;(2)如果在这个圆形区域中,随机确定一个点P,那么点P落在四边形ABCD区域的概率是多少?【关键词】圆的基本性质、圆周角和圆心角【答案】解:(1)∵AD为⊙O的直径,∴∠ACD=∠BAE=90°.∵ BC CD DE==,∴ ∠BAC=∠CAD=∠DAE.∴∠BAC=∠CAD=∠DAE =30°.∵在Rt△ACD中,AD=2,CD=2sin30°=1, AC=2cos30°=3.∴S△ACD=1 2AC×CD =32.(2) 连BD,∵∠A BD=90°,∠BAD==60°,∴∠BDA=∠BCA=30°,∴BA=BC.作BF⊥AC,垂足为F,(5分)∴AF=12AC=32,∴BF=AFtan30°=12,∴S△ABC=12AC×BF =34,∴S ABCD=334.∵S⊙O=π ,∴P点落在四边形ABCD区域的概率=334π=334π.(2)解法2:作CM⊥AD,垂足为M.∵∠BCA=∠CAD(证明过程见解法),∴BC∥AD.∴四边形ABCD为等腰梯形.∵CM=ACsin30°=32,∴S ABCD=12(BC+AD)CM=334.∵S⊙O=π,∴P点落在四边形ABCD区域的概率=334π=334π.99.(2009年黄冈市)如图,已知AB是⊙O的直径,点C是⊙O上一点,连结BC,AC,过点C 作直线CD⊥AB于点D,点E是AB上一点,直线CE交⊙O于点F,连结BF,与直线CD交于点G.求证:BFBGBC⋅=2.【关键词】圆周角性质【答案】∵AB是⊙O的直径,∴∠ACB=90°又∵CD⊥AB于点D,∴∠BCD=90°-∠ABC=∠A=∠F∵∠BCD==∠F,∠FBC=∠CBG∴△FBC∽△CBG∴CBFBBGBC=∴BFBGBC⋅=2100. (2009襄樊市)如图12,已知:在O中,直径4AB=,点E是OA上任意一点,过E作弦CD AB⊥,点F是BC上一点,连接AF交CE于H,连接AC、CF、BD、OD.(1)求证:ACH AFC△∽△;(2)猜想:AH AF与AE AB的数量关系,并说明你的猜想;(3)探究:当点E 位于何处时,14?AEC BOD S S =△△::并加以说明.证明:(1)∵直径AB CD ⊥ ∴AC AD = ∴F ACH ∠=∠ 又CAF FAC ∠=∠ ∴ACH AFC △∽△(2)答:AH AF AE AB =,连接FB ∵AB 是直径,∴90AFB AEH ==︒∠∠ 又EAH FAB =∠∠ ∴Rt Rt AEH AFB △∽△∴AE AHAF AB =∴AH AF AE AB =(3)当32OE =(或12AE =)时,14AEC BOD S S =△△.::∵直径AB CD ⊥ ∴CE ED =∵1122AEC BOD S AE EC S OB ED ==△△,∴14AEC BOD S AE S OB ==△△∵O 的半径为2∴2124OE -= ∴32OE =101.(2009湖北省荆门市)如图,半径为25的⊙O内有互相垂直的两条弦AB、CD相交于P点.(1)求证:PA·PB=PC·PD;(2)设BC中点为F,连接FP并延长交AD于E,求证:EF⊥AD;(3)若AB=8,CD=6,求OP的长.解:(1)∵∠A、∠C所对的圆弧相同,∴∠A=∠C.∴Rt△APD∽Rt△CPB,∴AP PDCP PB=,∴PA·PB=PC·PD;(2)∵F为BC中点,△BPC为Rt△,∴FP=FC,∴∠C=∠CPF.又∠C=∠A,∠DPE=∠CPF,∴∠A=∠DPE.∵∠A+∠D=90°,∴∠DPE+∠D=90°.∴EF⊥AD.(3)作OM⊥AB于M,ON⊥CD于N,由垂径定理:∴OM2=(52-42=4,ON2=(52-32=11又易证四边形MONP是矩形,2215OM ON+=.102. 44.(2009年泸州)如图,在△ABC中,AB=BC,以AB为直径的⊙O与AC交于点D,过D作DF⊥BC,交AB的延长线于E,垂足为F.(1)求证:直线DE是⊙O的切线;(2)当AB=5,AC=8时,求cosE的值.【关键词】三角函数及切线的判定. 【答案】(1)如图,连结OD 、BD. ∵AB 是⊙O 的直径, ∴∠ADB =90°,∴BD ⊥AC. ∵AB =BC,∴AD =DC. ∵OA =OB,∴OD ∥BC, ∵DE ⊥BC,OD ⊥DE, ∴直线DE 是⊙O 的切线.(2)作DH ⊥AB,垂足为H,则∠EDH+∠E =90°, 又∵DE ⊥OD,∴∠ODH+∠EDH =90°,∴∠E =∠ODH, ∵AD =DC,AC =8,∴AD =4. 在Rt △ADB 中,3452222=-=-=AD AB BD ,由三角形面积公式得:AB ·DH =DB ·DA,即5DH =4×3,解得512=DH , 在Rt △ODH 中,cos ∠ODH =5.2512=2524,∴cosE =2524.103. (2009年常德市)如图,△ABC 内接于⊙O,AD 是△ABC 的边BC 上的高,AE 是⊙O 的直径,连接BE ,△ABE 与△ADC 相似吗?请证明你的结论.【关键词】圆 【答案】△ABE 与△ADC 相似.理由如下: 在△ABE 与△ADC 中∵AE 是⊙O 的直径, ∴∠ABE=90o, ∵AD 是△ABC 的边BC 上的高, ∴∠ADC=90o, ∴∠ABE=∠ADC.又∵同弧所对的圆周角相等, ∴∠BEA=∠DCA. ∴△ABE ~△ADC.104.如图,A 、P 、B 、C 是⊙O 上的四点,∠APC =∠BPC = 60︒,AB 与PC 交于Q 点. (1)判断△ABC 的形状,并证明你的结论; (2)求证:QBAQPB AP =; (3)若∠ABP = 15︒,△ABC 的面积为43,求PC 的长.解:(1) 证明:∵ ∠ABC =∠APC = 60︒,∠BAC =∠BPC = 60︒,∴ ∠ACB = 180︒-∠ABC -∠BAC = 60︒, ∴ △ABC 是等边三角形.(2)如图,过B 作BD ∥PA 交PC 于D ,则 ∠BDP =∠APC = 60︒.又 ∵ ∠AQP =∠BQD , ∴ △AQP ∽△BQD ,BDAPQB AQ =. ∵ ∠BPD =∠BDP = 60︒, ∴ PB = BD . ∴PBAPQB AQ =. (3)设正△ABC 的高为h ,则 h = BC · sin 60︒.∵21BC · h = 43, 即21BC · BC · sin 60︒ = 43,解得BC = 4.连接OB ,OC ,OP ,作OE ⊥BC 于E .由△ABC 是正三角形知∠BOC = 120︒,从而得∠OCE = 30︒, ∴ 3430cos =︒=CE OC .由∠ABP = 15︒ 得 ∠PBC =∠ABC +∠ABP = 75︒,于是 ∠POC = 2∠PBC = 150︒. ∴ ∠PCO =(180︒-150︒)÷2 = 15︒.如图,作等腰直角△RMN ,在直角边RM 上取点G ,使∠GNM = 15︒,则∠RNG = 30︒,作GH ⊥RN ,垂足为H .设GH = 1,则 cos ∠GNM = cos15︒ = MN . ∵ 在Rt △GHN 中,NH = GN · cos30︒,GH = GN · sin30︒. 于是 RH = GH ,MN = RN · sin45︒,∴ cos15︒ =462+. 在图中,作OF ⊥PC 于E ,∴ PC = 2FD = 2 OC ·cos15︒ =36222+.105.(2009年福建省泉州市)已知:直线y =kx(k ≠0)经过点(3,-4).(1)求k 的值;(2)将该直线向上平移m (m >0)个单位,若平移后得到的直线与半径为6的⊙O 相离(点O 为坐标原点),试求m 的取值范围.【关键词】直线与⊙O 相离【答案】解:(1)依题意得:-4=3k ,∴k =34-(2)由(1)及题意知,平移后得到的直线l 所对应的函数关系式为y =34-x+m(m >0) 设直线l 与x 轴、y 轴分别交于点A 、B ,(如图所示)当x =0时,y =m;当y =0时,x =43m. ∴A(43m,0),B(0,m),即OA =43m ,OB =m 在Rt △OAB 中,AB =22OB OA + 2=m m m 4516922=+ 过点O 作OD ⊥AB 于D ,∵S △ABO =21OD ·AB =21OA ·OB ∴21OD ·m 45=21·43m ·m ∵m >0,解得OD =53m依题意得:53m >6,解得m >10即m 的取值范围为m >10.。

八年级数学圆的性质练习题及答案

八年级数学圆的性质练习题及答案

八年级数学圆的性质练习题及答案1. 单选题1) 设O为平面内一个圆的圆心,AB为圆上一条弧,点C是弧AB 的中点,则在一个平面内以下哪些命题是真的?a) 点C在弧AB的弦上。

b) ∠CAB = 90°。

c) ∠CAB = ∠CBO。

d) ∠C = ∠CAB/2。

答案:a) 和 c)2) 平面上有一个不经过圆心的直线与一个圆相交,交点有0个,1个以及2个,那么圆的位置是什么关系?a) 圆心在直线上。

b) 圆心在直线的一侧。

c) 圆的圆心在直线的对面。

d) 圆的圆心在直线所在直线的垂直平分线上。

答案:c)2. 填空题1) 设AB为直径的圆,点C为圆上一点,则直线AC的度数为_________。

答案:90°2) 在平面上给出一条弧,求出它平分的角的度数,圆心的角度数为_________。

答案:360°3. 解答题1) 已知O为圆心,AB为圆上一条弧,点P为圆弧上一点,连接OP并延长交圆于点C。

如果∠ACB=70°,求∠APB的度数。

解答:由于OP与圆弧AB相交于点P,而OP与圆相交于点C,所以∠BAC=∠BPC。

又∠ACB=70°,则∠BAC=70°,所以∠APC=140°。

因为角度补角原理,得到∠APB=360°-140°=220°。

2) 圆内接于四边形ABCD,如果∠ABC=85°,∠BCD=120°,求证:∠BAD+∠ADC=180°。

解答:由于圆内接于四边形ABCD,所以∠ABC=∠ADC,∠BCD=∠BAD。

又已知∠ABC=85°,∠BCD=120°,所以∠BAD+∠ADC=85°+120°=205°。

根据角度和为180°的原理可知,∠BAD+∠ADC不等于180°。

所以命题不成立。

3) 平面内有一个圆心为O,半径为r的圆,点P为圆上一点,直线l经过点P且与圆相交于A、B两点。

初中数学《圆的基本性质》中考集锦(含答案)

初中数学《圆的基本性质》中考集锦(含答案)

初中数学《圆的基本性质》好题集锦一、圆的有关线段和角1.如图所示,已知△ABC 内接于⊙O ,AB =AC ,∠BOC =120°,延长BO 交⊙O 于D 点.(1)试求∠BAD 的度数; (2)求证:△ABC 为等边三角形.2.如图,在⊙O 中,直径CD ⊥弦AB 于点E ,AM ⊥BC 于点M ,交CD 于点N ,连接AD . (1)求证:AD =AN ;(2)若AB =24,ON =1,求⊙O 的半径.3.已知,在⊙O 中,AB 是⊙O 的直径,点C .、P 在AB 的两侧,AC =21AB ,连接CP ,BP . (Ⅰ)如图①,若CP 经过圆心,求∠P 的大小;(Ⅱ)如图②,点D 是PB 上一点,CD ⊥PB ,若CP ⊥AB ,求∠BCD 的大小.4.如图,⊙P 的圆心的坐标为(2,0),⊙P 经过点)25,4(B .(1)求⊙P 的半径r ;(2)⊙P 与坐标轴的交点A ,E ,C ,F 的坐标;(3)点B 关于x 轴的对称点D 是否在⊙P 上,请说明理由.5.如图,AB 是⊙O 的直径,C 是BD 的中点,CE ⊥AB 于 E ,BD 交CE 于点F . (1)求证:CF =BF ;(2)若CD =6,AC =8,求CE 的长.6.已知:如图,△ABC 内接于⊙O ,AB 为直径,∠CBA 的平分线交AC 于点F ,交⊙O 于点D ,DE ⊥AB 于点E ,且交AC 于点P ,连结AD . (1)求证:∠DAC =∠DBA ; (2)求证:P 是线段AF 的中点;(3)连接CD ,若CD =3,BD =4,求⊙O 的半径和DE 的长.7.如图,四边形ABCD为圆内接四边形,对角线AC、BD交于点E,延长DA、CB交于点F,且∠CAD =60°,DC=DE.求证:(1)AB=AF;(2)A为△BEF的外心(即△BEF外接圆的圆心).二、圆与四边形8.如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C作CE∥AD交△ABC 的外接圆O于点E,连结A E.(1)求证:四边形AECD为平行四边形;(2)连结CO,求证:CO平分∠BCE.9.如图,正方形ABCD的外接圆为⊙O,点P在劣弧上(不与C点重合).(1)求∠BPC的度数;(2)若⊙O的半径为8,求正方形ABCD的边长.10.如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.11.我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)在平行四边形、矩形、菱形、正方形中,一定是“十字形”的有________.(2)如图1,在四边形ABCD中,AB=AD,且CB=CD①证明:四边形ABCD是“十字形”;②若AB=2.∠BAD=60°,∠BCD=90°,求四边形ABCD的面积.(3)如图2.A、B、C、D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,若∠ADB﹣∠CDB=∠ABD﹣∠CBD.满足AC+BD=3,求线段OE的取值范围.三、圆的综合运用12.已知圆O的直径AB=12,点C是圆上一点,且∠ABC=30°,点P是弦BC上一动点,过点P作PD┴OP交圆O于点D.(1)如图1,当PD∥AB时,求PD的长;(2)如图2,当BP平分∠OPD时,求PC的长.13.如图,点E为⊙O的直径AB上一个动点,点C、D在下半圆AB上(不含A、B两点),且∠CED=∠OED=60°,连OC、OD(1)求证:∠C=∠D;(2)若⊙O的半径为r,请直接写出CE+ED的变化范围(用含r的代数式表示).14.如图,有两条公路OM、ON相交成 30°角,沿公路OM方向离O点 80 米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心 50 米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若已知重型运输卡车P沿道路ON方向行驶的速度为 18 千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.15.如图,以点P(﹣1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D 两点(A在D的下方),AD=2,将△ABC绕点P旋转180°,得到△MCB.(1)求B、C两点的坐标;(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.16.如图,△ABC内接于⊙O,AB=AC,CF垂直直径BD于点E,交边AB于点F.(1)求证:∠BFC=∠ABC.(2)若⊙O的半径为5,CF=6,求AF长.《圆的基本知识好题》参考答案1.解:(1)∵BD是⊙O的直径,∴∠BAD=90°(直径所对的圆周角是直角).(2)证明:∵∠BOC =120°,∴∠BAC =21∠BOC =60°.又∵AB =AC ,∴△ABC 是等边三角形. 2.(1)证明:∵∠BAD 与∠BCD 是同弧所对的圆周角, ∴∠BAD =∠BCD ,∵AE ⊥CD ,AM ⊥BC ,∴∠AEN =∠AMC =90°,∵∠ANE =∠CNM ,∴∠BAM =∠BCD , ∴∠BAM =∠BAD ,,∴△ANE ≌△ADE (A S A ),∴AN =AD ;(2)解:∵AB =42,AE ⊥CD ,∴AE =22,又∵ON =1,∴设NE =x ,则OE =x -1,NE =ED =x ,OD =OE +ED =2x -1,解图,连接AO ,则AO =OD =2x -1,第2题解图3.解:(1)∵AB 是⊙O 的直径,∴∠ACB =90°,∵AC =21AB ,∴∠ABC =30°,∴∠A =90°-∠ABC =60°, ∴∠P =∠A =60°;(Ⅱ) ∵AB 是⊙O 的直径,AC =21AB , ∴∠A =60°,∴∠BPC =∠A =60°, ∵CD ⊥PB ∴∠PCD =90°-BPC =30°,∵CP ⊥AB ,AB 是⊙O 的直径, ∴BC =BP ,∴∠P =∠BCP =60°,∴∠BCD =∠BCP -∠PCD =60°-30°=30°.4..解:(1)过点B 作x 轴的垂线,交x 轴于点G ,连接BP . 则点G 坐标为(4,0).在Rt △PBG 中,PG =4-2=2,BG =25,斜边PB =241∴⊙P 的半径r =241.(2)点E 坐标为(2-241,0),点F 坐标为(2+241,0)∵点A 坐标的y 值=25,∴点A 坐标为(0,25).点C 坐标为(0,-25). (3)∵⊙P 关于x 轴对称,又∵B 与D 关于x 轴对称,∴D 在⊙P 上.5.证明:如图.∵AB 是⊙O 的直径,∴∠ACB =90°,又∵CE ⊥AB ,∴∠CEB =90°.∴∠2=90°-∠ACE =∠A . 又∵C 是弧BD 的中点,∴∠1=∠A .∴∠1=∠2,∴ CF =BF .(2)此时,CE =5246.(1)证明:∵BD 平分∠CBA , ∴∠CBD =∠DBA ,∵∠DAC 与∠CBD 都是弧CD 所对的圆周角, ∴∠DAC =∠CBD , ∴∠DAC =∠DBA ;(2)证明:∵AB 为直径, ∴∠ADB =90°,∵DE ⊥AB 于E , ∴∠DEB =90°,∴∠1+∠3=∠5+∠3=90°,∴∠1=∠5=∠2, ∴PD =P A ,∵∠4+∠2=∠1+∠3=90°,且∠ADB =90°,∴∠3=∠4, ∴PD =PF ,∴P A =PF ,即P 是线段AF 的中点;(3)解:连接CD , ∵∠CBD =∠DBA ,∴CD =AD ,∵CD =3,∴AD =3, ∵∠ADB =90°,AB =5,⊙O 的半径为2.5,∵DE ×AB =AD ×BD ,∴5DE =3×4, ∴DE =2.4.即DE 的长为2.4.7.(1)证明:∠ABF =∠ADC =120°﹣∠ACD =120°﹣∠DEC =120°﹣(60°+∠ADE )=60°﹣∠ADE , 而∠F =60°﹣∠ACF , 因为∠ACF =∠ADE ,所以∠ABF =∠F ,所以AB =AF .(2)证明:四边形ABCD 内接于圆,所以∠ABD =∠ACD , 又DE =DC ,所以∠DCE =∠DEC =∠AEB , 所以∠ABD =∠AEB , 所以AB =AE . ∵AB =AF ,∴AB =AF =AE ,即A 是三角形BEF 的外心.8.(1)根据圆周角定理知∠E =∠B , 又∵∠B =∠D ,∴∠E =∠D .∵AD ∥CE ,∴∠D +∠DCE =180°, ∴∠E +∠DCE =180°,∴AE ∥DC ,∴四边形AECD 为平行四边形. (2)如图,连结OE ,OB ,由(1)得四边形AECD 为平行四边形, ∴AD =EC .又∵AD =BC ,∴EC =BC . ∵OC =OC ,OB =OE , ∴△OCE ≌△OCB (SSS ),∴∠ECO =∠BCO ,即OC 平分∠BCE .9.11.解:连接OB ,OC ,∵四边形ABCD 为正方形,∴∠BOC =90°,∴∠BPC =21∠BOC =45°;(2)解:过点O 作OE ⊥BC 于点E , ∵OB =OC ,∠BOC =90°,∴∠OBE =45°,∴OE =BE ,∵OE 2+BE 2=OB 2 , ∴BE = 24 ∴BC =2BE =2810.解析:(1)∵A B 是直径, ∴∠AEB =90°,∴AE ⊥BC , ∵AB =AC ,∴BE =CE ,∵AE =EF ,∴四边形ABFC 是平行四边形, ∵AC =AB ,∴四边形ABFC 是菱形.(2)设CD =x .连接BD . ∵AB 是直径,∴∠ADB =∠BDC =90°, ∴AB2﹣AD2=CB2﹣CD2, ∴(7+x )2﹣72=42﹣x 2, 解得x=1或﹣8(舍弃)∴AC=8,BD=157822=-, ∴S 菱形ABF C=158. ∴S 半圆=ππ84212=⨯11.15. (1)菱形,正方形(2)解:①如图1,连接AC ,BD∵AB =AD ,且CB =CD∴AC 是BD 的垂直平分线,∴AC ⊥BD ,∴四边形ABCD 是“十字形”②如图,设AC 与BD 交于点O∵AB =AD ,AC ⊥BD∴∠BAO =∠BAD =30°同理可证∠BCO =45°在Rt △ABO 中,OB =1AO =AB ×cos30°=3OB =OC =1∴AC =AO +CO =1+3, BD =2∴ 四边形ABCD 的面积=21×AB ×BD =21×2×(1+3)=1+3(3)解:如图2∵∠ADB +∠CBD =∠ABD +∠CDB ,∠CBD =∠CDB =∠CAB ,∴∠ADB +∠CAD =∠ABD +∠CAB ,∴180°﹣∠AED =180°﹣∠AEB ,∴∠AED =∠AEB =90°,∴AC ⊥BD ,过点O 作OM ⊥AC 于M ,ON ⊥BD 于N ,连接OA ,OD ,∴OA =OD =1,OM 2=OA 2﹣AM 2 , ON 2=OD 2﹣DN 2 , AM =21AC ,DN = 21BD ,四边形OMEN 是矩形,∴ON =ME ,OE 2=OM 2+ME 2 ,∴OE 2=OM 2+ON 2=2﹣41(AC 2+BD 2) 设AC =m ,则BD =3﹣m ,∵⊙O 的半径为1,AC +BD =3,∴1≤m≤2,∴41423≤≤OE由图可知:以 50m 为半径画圆,分别交 ON 于 B ,C 两点,AD ⊥BC ,BD =CD =21BC ,OA =80m , ∵在 Rt △AOD 中,∠AOB =30°,AD = 21OA = 21×80=40m , 在 Rt △ABD 中,AB =50,AD =40,由勾股定理得:BD =30m , 故BC =2×30=60 米,即重型运输卡车在经过 BC 时对学校产生影响.∵重型运输卡车的速度为 18 千米/小时,即300 米/分钟,∴重型运输卡车经过 BC 时需要 60÷300=0.2(分钟)=12(秒).答:卡车 P 沿道路 ON 方向行驶一次给学校 A 带来噪声影响的时间为 12 秒.15.(1)连接PA ,如图1所示.∵PO ⊥AD ,∴AO =DO .∵AD =2,∴OA =.点P 坐标为(﹣1,0),∴OP =1.∴PA ==2.∴BP =CP =2. ∴B (﹣3,0),C (1,0). (2)连接AP ,延长AP 交⊙P 于点M ,连接MB 、MC .如图2所示,线段MB 、MC 即为所求作. 四边形AC MB 是矩形.理由如下∵△MCB 由△ABC 绕点P 旋转180°所得,∴四边形ACMB 是平行四边形.∵BC 是⊙P 的直径,∴∠CAB =90°.∴平行四边形ACMB 是矩形.过点M 作MH ⊥BC ,垂足为H ,如图2所示.在△MHP 和△AOP 中,∵∠MHP =∠AOP ,∠HPM =∠OPA ,MP =AP ,∴△MHP ≌△AOP .∴MH =OA =,PH =PO =1.∴OH =2.∴点M 的坐标为(﹣2,).(3)在旋转过程中∠MQG 的大小不变.∵四边形ACMB 是矩形,BMC =90°.EG ⊥BO ,∴∠BGE =90°.∴∠BMC =∠BGE =90°.∵点Q 是BE 的中点,∴QM =QE =QB =QG .∴点E 、M 、B 、G 在以点Q 为圆心,QB 为半径的圆上,如图3所示.∴∠MQG =2∠MBG .∵∠COA =90°,OC =1,OA =,∴tan ∠OCA =.∴∠OCA =60°.∴∠MBC =∠BCA =60°.MQG =120°.∴在旋转过程中∠MQG 的大小不变,始终等于120°.16.(1)证明:连结AD ,∵BD 是⊙O 的直径,∴∠BAD =90°,∵CF ⊥BD ,∴∠BEF =90°,∵∠ABD +∠ADB =90°,∠ABD +∠BFE =90°,∴∠BFC =∠ADB ,∵AB =AC ,∴∠ABC =∠ACB ,∵∠ACB =∠ADB ,∴∠BFC =∠ABC .(2)解:连结CD ,∵BD 是⊙O 的直径,∴∠BCD =90°,∵∠BFC =∠ABC ,∴BC =CF =6,∵BD =10,∴CD =8在Rt △BCE 中,BE=518,CE =524,56 EF , ,∴AF =AB -BF =1059。

第3章 圆的基本性质 浙教版数学九年级上册测试(含答案)

第3章 圆的基本性质 浙教版数学九年级上册测试(含答案)

浙教版数学九年级上册第三章圆的基本性质一、选择题1.下列说法正确的是( )A.三个点可以确定一个圆B.半圆(或直径)所对的圆周角是直角C.相等的圆心角所对的弧相等D.长度相等的弧是等弧2.已知一个扇形的面积是24π,弧长是2π,则这个扇形的半径为( )A.24B.22C.12D.63.如图,点A、B、C在⊙O上,∠C=40∘,则∠AOB的度数是( )A.50∘B.60∘C.70∘D.80∘4.如图,AB是⊙O的直径,弦CD⊥AB于点E,若BE=5,AE=1,则弦CD的长是()A.5B.5C.25D.65.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A,B的读数分别为86°,30°,则∠ACB的度数是( )A.28°B.30°C.36°D.56°6.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则BC的长为( )A .103πB .109πC .59πD .518π7.如图, AB 是半圆O 的直径,点C ,D 在半圆O 上.若 ∠ABC =50° ,则 ∠BDC 的度数为( )A .90°B .100°C .130°D .140°8. 如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的周长等于6π,则正六边形的边长为( )A .3B .6C .3D .239.如图,正五边形ABCDE 内接于⊙O ,阅读以下作图过程:①作直径AF ;②以点F 为圆心,FO 为半径作圆弧,与⊙O 交于点M ,N ;③连接AM ,MN ,AN .结论Ⅰ:△AMN 是等边三角形;结论Ⅱ:从点A 开始,以DN 长为半径,在⊙O 上依次截取点,再依次连接这些分点,得到正十八边形.对于结论Ⅰ和结论Ⅱ,下列判断正确的是( )A .Ⅰ和Ⅱ都对B .Ⅰ和Ⅱ都不对C.Ⅰ不对Ⅱ对D.Ⅰ对Ⅱ不对10.如图,抛物线y=x2﹣8x+15与x轴交于A、B两点,对称轴与x轴交于点C,点D(0,﹣2),点E (0,﹣6),点P是平面内一动点,且满足∠DPE=90°,M是线段PB的中点,连接CM.则线段CM的最大值是( )A.3B.412C.72D.5二、填空题11.如图,在⊙O中,弦AB,CD相交于点P.若∠A=40°,∠APD=75°,则∠B= °.12.如图,AB、AC是⊙O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N.如果MN=2.5,那么BC= .13.如图,四边形ABCD内接于⊙O ,若四边形ABCD的外角∠DCE=65°,则∠BAD的度数是 .14.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=70°,则∠EAC的度数为 .15.我国魏晋时期数学家刘徽在《九章算术注》中提到了著名的割圆术:“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率π的近似值为3.1416.如图,⊙O的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计⊙O,若用圆内接正十二边形作近似估计,可得π的估计值为 .的面积,可得π的估计值为33216.如图,点M(2,0)、N(0,4),以点M为圆心5为半径作⊙M交y轴于A、B两点,点C为⊙M上一动点,连接CN,取CN中点D,连接AD、BD,则A D2+B D2的最大值为 .三、解答题17.如图,四边形ABCD为⊙O的内接四边形,AC是⊙O的直径,AD=BD,∠CAB=32°.求∠ACD的度数.18.如图,OC为⊙O的半径,弦AB⊥OC于点D,OC=10,CD=4,求AB的长.19.如图,正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求解答下列问题:(1)△A1B1C1与△ABC关于坐标原点O成中心对称,则B1的坐标为__________;(2)BC与B1C1的位置和数量关系为___________;(3)将△ABC绕某点逆时针旋转90°后,其对应点分别为A2(―1,―2),B2(1,―3),C2(0,―5),则旋转中心的坐标为___________.20.如图,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于点D,(1)求∠ACB的度数;(2)求BC的长;(3)求AD,BD的长.21.如图,AB是⊙O的直径,C是⏜BD的中点,CE⊥AB于点E,BD交CE于点F.(1)求证:CF=BF.(2)若CD=6,AC=8,求⊙O的半径及CE的长.22.如图所示,AB为☉O的直径,AC是☉O的一条弦,D为BC的中点,作DE⊥AC于点E,交AB的延长线于点F,连接DA.(1)若AB=90 cm,则圆心O到EF的距离是多少?说明你的理由.(2)若DA=DF=63,求阴影部分的面积(结果保留π).23.如图,AB是⊙O的直径,弦CD⊥AB与点E,已知AB=10,AE=8,点P为AB上任意一点,(点P不与A、B重合),连结CP并延长与⊙O交于点Q,连QD,PD,AD.(1)求CD的长.(2)若CP=PQ,直接写出AP的长.(3)①若点P在A,E之间(点P不与点E重合),求证:∠ADP=∠ADQ.②若点P在B,E之间(点P不与点E重合),求∠ADP与∠ADQ满足的关系.答案解析部分1.【答案】B2.【答案】A3.【答案】D4.【答案】C5.【答案】A6.【答案】B7.【答案】D8.【答案】C9.【答案】D10.【答案】C11.【答案】3512.【答案】513.【答案】65°14.【答案】15°15.【答案】316.【答案】49217.【答案】61°18.【答案】1619.【答案】(1)(2,2);(2)平行且相等;(3)(0,―1).20.【答案】(1)∠ACB=90°(2)BC=8cm(3)BD=AD=52cm21.【答案】(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠A=90°-∠ABC.∵CE⊥AB,∴∠ECB=90°-∠ABC,又∵C是BD的中点,∴CD=BC,∴∠DBC=∠A,∴∠ECB=∠DBC,∴CF= BF;(2)解:∵BC=CD,∴BC=CD=6.在Rt△ABC中,AB= BC2+AC2=62+82=10,∴⊙O的半径为5;∵S△ABC= 12AB×CE= 12BC×AC,∴CE= BC×ACAB =6×810=245.22.【答案】(1)解:如图所示,连接OD,∵D为BC的中点,∴∠CAD=∠BAD.∵OA=OD,∴∠BAD=∠ADO.∴∠CAD=∠ADO.∴OD∥AE.∵DE⊥AC,∴OD⊥EF.∴OD的长是圆心O到EF的距离.∵AB=90 cm,∴OD=12AB=45 cm.(2)解:如图所示,过点O作OG⊥AD交AD于点G.∵DA=DF,∴∠F=∠BAD.由(1),得∠CAD=∠BAD,∵∠F+∠BAD+∠CAD=90°,∴∠F=∠BAD=∠CAD=30°.∴∠BOD=2∠BAD=60°,OF=2OD.∵在Rt△ODF中,OF2-OD2=DF2,∴(2OD)2-OD2=(63)2,解得OD=6.在Rt△OAG中,OA=OD=6,∠OAG=30°,AG=OA2―O G2=33,AD=23,S△AOD=1×63×3=93.2+93=6π+93.∴S阴影=S扇形OBD+S△AOD=60π×6236023.【答案】(1)解:连接OD,∵直径AB=10,AE=8,∴BE=2.∴OE=5-2=3.又∵AB⊥CD,在Rt△PED中,P D2=P E2+E D2∴ED=52―32=4∴CD=2ED=8(2)解:若CP=PQ,则点P与点O重合,或点P与点E重合.所以AP=5或8(3)解:①连接AC,由图可知∠ACQ=∠ADQ,因为AB是⊙O的直径,AB⊥CD,所以CE=DE,即AB是CD的垂直平分线,所以AC=AD,PC=PD,因为AP=AP,所以∠ACP=∠ADP ,所以∠ADP=∠ADQ .②∠ADP+∠ADQ=180°.理由如下:连接AC ,因为AB 是直径,AB ⊥CD ,所以AC=AD ,CE=DE ,所以△ACP ≌△ADP (SSS ),所以∠ACP=∠ADP ,因为∠ACP=12ADQ ,∠ADQ=12ACQ ,所以∠ACP+∠ADQ=12(ADQ +ACQ )=180°.。

九年级圆知识点及习题(含答案)

九年级圆知识点及习题(含答案)

圆圆的有关概念与性质1.圆上各点到圆心的距离都等于半径。

2.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;圆又是中心对称图形,圆心是它的对称中心。

3.垂直于弦的直径平分这条弦,并且平分弦所对的弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

4.在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量相等,那么它们所对应的其余各组量都分别相等。

5.同弧或等弧所对的圆周角相等,都等于它所对的圆心角的一半。

6.直径所对的圆周角是 90°,90°所对的弦是直径。

7.三角形的三个顶点确定 1 个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫外心,是三角形三边垂直平分线的交点。

8.与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点的交点,叫做三角形的内心。

9.圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.10.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角与圆有关的位置关系1.点与圆的位置关系共有三种:①点在圆外,②点在圆上,③点在圆内;对应的点到圆心的距离d和半径r之间的数量关系分别为:①d > r,②d = r,③d < r.2.直线与圆的位置关系共有三种:①相交,②相切,③相离;对应的圆心到直线的距离d和圆的半径r之间的数量关系分别为:①d < r,②d = r,③d > r.3.圆与圆的位置关系共有五种:①内含,②相内切,③相交,④相外切,⑤外离;两圆的圆心距d和两圆的半径R、r(R≥r)之间的数量关系分别为:①d < R-r,②d = R-r,③ R-r < d < R+ r,④d = R+r,⑤d > R+r.4.圆的切线垂直于过切点的半径;经过直径的一端,并且垂直于这条直径的直线是圆的切线.5.从圆外一点可以向圆引 2 条切线, 切线长 相等,这点与圆心之间的连线 平分 这两条切线的夹角。

初三数学中考复习圆的基本性质专项练习题含解析

初三数学中考复习圆的基本性质专项练习题含解析

初三数学中考复习圆的基本性质专项练习题含解析1. 正六边形ABCDEF 内接于⊙O ,正六边形的周长是12,则⊙O 的半径是( B ) A. 3 B .2 C .2 2 D .2 32.如图是“明清影视城”的一扇圆弧形门,小红到影视城游玩,她了解到这扇门的相关数据:这扇圆弧形门所在的圆与水平地面是相切的,AB =CD =0.25米,BD =1.5米,且AB ,CD 与水平地面差不多上垂直的,依照以上数据,请你帮小红运算出这扇圆弧形门的最高点离地面的距离是( B )A .2米B .2.5米C .2.4米D .2.1米3.如图,将⊙O 沿弦AB 折叠,圆弧恰好通过圆心O ,点P 是优弧A MB 上一点,则∠APB 的度数为( D )A .45°B .30°C .75°D .60°4.如图,已知AC 是⊙O 的直径,点B 在圆周上(不与点A ,C 重合),点D 在AC 的延长线上,连结BD 交⊙O 于点E.若∠AOB =3∠ADB ,则(D )A .DE =EB B.2DE =EB C.3DE =DO D .DE =OB5.如图,在⊙O 中,AB 是直径,CD 是弦,AB ⊥CD ,垂足为E ,连结CO ,AD ,∠BAD =20°,则下列说法中正确的是( D )A .AD =2OB B .CE =EOC .∠OCE =40°D .∠BOC =2∠B AD6.如图,四边形PAOB 是扇形OMN 的内接矩形,顶点P 在MN ︵上,且不与点M ,N 重合,当点P 在MN ︵上移动时,矩形PAOB 的形状、大小随之变化,则AB 的长度( A )A .不变B .变小C .变大D .不能确定7.如图,四边形ABCD 为⊙O 内接四边形,延长AB 与DC 相交于点G ,AO ⊥CD ,垂足为E ,连结BD ,∠GBC =50°,则∠DBC 的度数为(C )A .50°B .60°C .80°D .90°8.如图,已知四边形ABCD 内接于半径为4的⊙O 中,且∠C =2∠A ,则BD =__43.9.如图,点A ,B ,C 为⊙O 上的三个点,∠BOC =2∠AOB ,∠BAC =40°,则∠ACB =__20__度.10.如图,已知AM 为⊙O 的直径,直线BC 通过点M ,且AB =AC ,∠BAM =∠CAM ,线段AB 和AC 分别交⊙O 于点D ,E ,∠BMD =40°,则∠EOM =__80°__.11.如图,△ABC 内接于⊙O ,∠ACB =90°,∠ACB 的角平分线交⊙O 于点D.若AC =6,BD =52,则BC 的长为__8__.12.在半径为1的⊙O 中,弦AB ,AC 的长分别为1和2,则∠BAC 的度数为__15°或105°__.13.如图,一条公路的转弯处是一段圆弧(AB ︵).(1)用直尺和圆规作出AB ︵所在圆的圆心O ;(要求保留作图痕迹,不写作法)(2)若AB ︵的中点C 到弦AB 的距离为20 m ,AB =80 m ,求AB ︵所在圆的半径.解:(1)作图如图所示:(2)连结AB ,OB ,OC.设OC 交AB 于点D ,∵AB =80 m ,C 为AB ︵的中点,∴OC ⊥AB.∴AD =BD =40 m ,CD =20 m .设OB =r m ,则OD =(r -20)m.在Rt △OBD 中,OB2=OD2+BD2,∴r2=(r -20)2+402,解得r=50,∴AB ︵所在圆的半径是50 m.14.如图,在△ABC 中,AB =AC ,以AB 为直径的半圆分别交AC ,BC 边于点D ,E ,连结BD.(1)求证:点E 是BD ︵的中点;(2)当BC =12,且AD ∶CD =1∶2时,求⊙O 的半径.解:(1)证明:连结AE ,DE ,∵AB 是直径,∴AE ⊥BC ,∵AB =AC ,∴BE =EC.∵∠CDB =90°,DE 是斜边BC 的中线,∴DE =EB.∴ED ︵=EB ︵,即点E 是BD ︵的中点.(2)设AD =x ,则CD =2x ,∴AB =AC =3x ,∴BD2=(3x)2-x2=8x2.在Rt △CDB 中,(2x)2+8x2=122,∴x =23,∴OA =32x =33,即⊙O 的半径是3 3.15.如图,△ABC 内接于⊙O ,AB =AC ,CO 的延长线交AB 于点D.(1)求证:AO 平分∠BAC ;证明:连结OB. 在△AOB 与△AOC 中,⎩⎪⎨⎪⎧AB =AC ,OB =OC ,AO =AO ,∴△AOB ≌△AOC(SSS), ∴∠BAO =∠CAO ,∴AO 平分∠BAC.(2)若BC =6,sin ∠BAC =35,求AC 和CD 的长.解:过点C 作CE ⊥AB 于点E ,∴sin ∠BAC =CE AC =35.设AC =5m(m >0),则CE =3m ,∴AE =AC2-CE2=(5m )2-(3m )2=4m ,BE =AB -AE =AC -AE =5m -4m =m.在Rt △CBE 中,∠BEC =90°,BC =6,BE =m ,CE =3m ,∴m2+(3m)2=62. 解得m =3105,m =-3105(舍去). ∴AC =5m =5×3105=310.16.在⊙O 中,直径AB =6,BC 是弦,∠ABC =30°,点P 在BC 上,点Q 在⊙O 上,且OP ⊥PQ.(1)如图①,当PQ ∥AB 时,求PQ 的长度;(2)如图②,当点P 在BC 上移动时,求PQ 长的最大值.解:(1)连结OQ ,如图①,∵PQ ∥AB ,OP ⊥PQ ,∴OP ⊥AB.在Rt △OBP 中,∵tan ∠B =OP OB ,∴OP =3tan30°=3,在Rt △OPQ 中,∵OP =3,OQ =3,∴PQ =OQ2-OP2= 6.(2)连结OQ ,如图②,在Rt △OPQ 中,PQ =OQ2-OP2=9-OP2,当OP 的长最小时,PQ 的长最大,现在OP ⊥BC ,则OP =12OB =32,∴PQ长的最大值为9-(32)2=332.。

人教版 圆的基本性质提高训练题(含答案)

人教版 圆的基本性质提高训练题(含答案)

人教版第二十四章 24.1圆的有关性质提高训练题(含答案)1、如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC 与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为.解析:由勾股定理得:AB2=BC2﹣AC2,∴AB==4;②当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4或4;故答案为:4或4;2、如图所示,M N为⊙O的直径,A是半圆上靠近N点的三等分点,B是的中点,P是直径M N上的一动点,圆O的半径为1,观察图形并思考,P A+P B有最小值吗?若有,求出最小值是多少.解析:作点A关于MN的对称点A′,连接A′B,交MN于点P,连接OA′,OA,OB,PA,AA′.∵点A与A′关于MN对称,点A是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,PA=PA′,∵点B是弧AN的中点,∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=1,∴A′B=.∴PA+PB=PA′+PB=A′B=.故答案为:.3、已知圆O的直径CD=10cm,AB是圆O的弦,AB⊥CD,垂足为M,且AB=8cm,求AC的长4、如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B.cm C.2.5cm D.cm【分析】根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可.【解答】解:连接OB,∵AC是⊙O的直径,弦BD⊥AO于E,BD=8cm,AE=2cm.在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=8.在Rt△EBC中,BC=.∵OF⊥BC,∴∠OFC=∠CEB=90°.∵∠C=∠C,∴△OFC∽△BEC,∴,即,解得:OF=.5、如图,坐标平面上,A、B两点分别为圆P与x轴、y轴的交点,有一直线L通过P点且与AB垂直,C点为L与y轴的交点.若A、B、C的坐标分别为(a,0),(0,4),(0,﹣5),其中a<0,则a的值为何?()A.﹣2 B.﹣2 C.﹣8 D.﹣7【分析】连接AC,根据线段垂直平分线的性质得到AC=BC,根据勾股定理求出OA,得到答案.【解答】解:连接AC,由题意得,BC=OB+OC=9,∵直线L通过P点且与AB垂直,∴直线L是线段AB的垂直平分线,∴AC=BC=9,在Rt△AOC中,AO==2,∵a<0,∴a=﹣2,故选:A.【点评】本题考查的是垂径定理、坐标与图形的性质以及勾股定理,掌握垂径定理的推论是解题的关键.7、如图,已知A,B,C,D是⊙O上的四点,延长DC,AB相交于点E,若BC=BE.求证:△ADE是等腰三角形.证明:∵∠A+∠BCD=180°,∠BCE+∠BCD=180°.∴∠A=∠BCE.∵BC=BE,∴∠E=∠BCE,∴∠A=∠E,∴AD=DE,∴△ADE是等腰三角形.8、如图,已知EF是⊙O的直径,把∠A为60°的直角三角板ABC的一条直角边BC放在直线EF上,斜边AB与⊙O交于点P,点B与点O重合;将三角形ABC沿OE方向平移,使得点B与点E重合为止.设∠POF=x°,则x的取值范围是30≤x≤60.9、如图,BC为半圆O的直径,点F是BC上一动点(点F不与B、C重合),A是BF上的中点,设∠FBC=α,∠ACB=β.(1)当α=50°时,求β的度数;(2)猜想α与β之间的关系,并给予证明.解:(1)连接OA,交BF于点M.∵A是BF上的中点,∴OA垂直平分BF.∴∠BOM=90°-∠B=90°-α=40°.∴∠C=12∠AOB=12×40°=20°, 即β=20°.(2)β=45°-12α. 证明:由(1)知∠BOM =90°-α.又∠C =β=12∠AOB, ∴β=12(90°-α)=45°-12α.10、如图,O 中,弦AB 与CD 交于点E ,75DEB ∠=︒,6AB =,1AE =,则CD 的长是( )A .B .C .D . 【答案】C【解析】解:过点O 作OF CD ⊥于点F ,OG AB ⊥于G ,连接OB 、OD ,如图所示:则DF CF =,132AG BG AB ===, 2EG AG AE ∴=-=,在Rt BOG ∆中,2OG ==,EG OG ∴=,EOG ∴∆是等腰直角三角形,45OEG ∴∠=︒,OE ==,75DEB ∠=︒,30OEF ∴∠=︒,12OF OE ∴==在Rt ODF ∆中,DF ==2CD DF ∴==故选:C .11、如图,四边形ABCD 是半圆的内接四边形,AB 是直径,DC CB =.若110C ∠=︒,则ABC ∠的度数等于( )A .55︒B .60︒C .65︒D .70︒【答案】A【解析】解:连接AC ,四边形ABCD 是半圆的内接四边形,18070DAB C ∴∠=︒-∠=︒, DC CB =,1352CAB DAB ∴∠=∠=︒, AB 是直径,90ACB ∴∠=︒,9055ABC CAB ∴∠=︒-∠=︒,故选:A .【知识点】圆周角定理;圆心角、弧、弦的关系;圆内接四边形的性质12、如图,AB 是⊙O 的弦,OC ⊥AB 交⊙O 于点C ,点D 是⊙O 上一点,∠ADC =30°,则∠BOC的度数为( )A .30°B .40°C .50°D .60°【答案】D【解析】解:如图,∵∠ADC =30°,∴∠AOC =2∠ADC =60°.∵AB 是⊙O 的弦,OC ⊥AB 交⊙O 于点C , ∴. ∴∠AOC =∠BOC =60°.故选:D .【知识点】垂径定理;圆心角、弧、弦的关系;圆周角定理13、半径为5的 O 是锐角三角形ABC 的外接圆,AB =AC,连接OB,OC,延长CO 交弦AB 于点D.若△OBD 是直角三角形,则弦BC 的长为______.【答案】【解析】∵△OBD 为直角三角形,∴分类讨论:如图,当∠BOD =90°时,∠BOC =90°,在Rt △BOC 中,BO =OC =5,∴BC =当∠ODB =90°时,∵OB =OC,设∠OBC =∠OCB =x,∴∠BOD =2x,∠BOC =180°-2x,∴∠ABO =90°-2x,∠ABC =∠ACB =90°-x,∴∠A =2x,∵∠BOC=2∠A,即180-2x =2×2x,∴x =30°,∴∠BOC =120°,∵OB =OC =5,∴BC =综上所述,BC 的长度为14、如图,AC 是⊙O 的弦,AC =5,点B 是⊙O 上的一个动点,且∠ABC =45°,若点M 、N 分别是 A C 、BC 的中点,则 M N 的最大值是____________.【答案】2【解析】∵MN 是△ABC 的中位线,∴MN=12AB .当AB 为⊙O 的直径时,AB 有最大值,则MN 有最大值.当AB 为直径时,∠ACB=90°,∵∠ABC =45°,AC =5,∴AB=MN=2. 【知识点】中位线定理;圆周角定理及其推论15、如图,AB 为O 的直径,点C 在O 上.(1)尺规作图:作BAC ∠的平分线,与O 交于点D ;连接OD ,交BC 于点E (不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);(2)探究OE 与AC 的位置及数量关系,并证明你的结论.【思路分析】(1)利用基本作图作AD 平分BAC ∠,然后连接OD 得到点E ;(2)由AD 平分BAC ∠得到12BAD BAC ∠=∠,由圆周角定理得到12BAD BOD ∠=∠,则BOD BAC ∠=∠,再证明OE 为ABC ∆的中位线,从而得到//OE AC ,12OE AC =. 【解题过程】解:(1)如图所示;(2)//OE AC ,12OE AC =. 理由如下:AD 平分BAC ∠,12BAD BAC ∴∠=∠, 12BAD BOD ∠=∠, BOD BAC ∴∠=∠,//OE AC ∴,OA OB =,OE ∴为ABC ∆的中位线,//OE AC ∴,12OE AC =. 【知识点】作图-基本作图;圆周角定理16、在平面内,给定不在同一条直线上的点A ,B ,C ,如图所示.点O 到点A ,B ,C 的距离均等于a (a 为常数),到点O 的距离等于a 的所有点组成图形G ,∠ABC 的平分线交图形G 于点D ,连接AD ,CD .(1)求证:AD=CD ;(2)过点D 作DE ⊥BA ,垂足为E ,作DF ⊥BC ,垂足为F ,延长DF 交图形G 于点M ,连接CM .若AD=CM ,求直线DE 与图形G 的公共点个数.CB A【思路分析】【解题过程】(1)∵BD 平分ABC ∠∴ABD CBD ∠=∠ AD =CD∴AD=CD(2)直线DE 与图形G 的公共点个数为1.。

初中数学:圆的基本性质测试题(含答案)

初中数学:圆的基本性质测试题(含答案)

初中数学:圆的基本性质测试题(含答案)一、选择题(每小题4分,共24分)1.如图G -3-1,在⊙O 中,AB ︵=AC ︵,∠AOB =40°,则∠ADC 的度数是( ) A .40° B .30° C .20° D .15°2.在同圆或等圆中,下列说法错误的是( ) A .相等的弦所对的弧相等 B .相等的弦所对的圆心角相等 C .相等的圆心角所对的弧相等 D .相等的圆心角所对的弦相等G -3-1G -3-23.如图G -3-2,在两个同心圆中,大圆的半径OA ,OB ,OC ,OD 分别交小圆于点E ,F ,G ,H ,∠AOB =∠GOH ,则下列结论中,错误的是( )A .EF =GH B.EF ︵=GH ︵ C .∠AOC =∠BOD D.AB ︵=GH ︵4.已知正六边形的边长为2,则它的外接圆的半径为( )A.1 B. 3 C.2 D.2 35.在如图G-3-3所示的暗礁区,两灯塔A,B之间的距离恰好等于圆的半径,为了使航船(S)不进入暗礁区,那么S对两灯塔A,B的视角∠ASB必须( ) A.大于60° B.小于60°C.大于30° D.小于30°G-3-3G-3-46.如图G-3-4,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD分别与BC,OC相交于点E,F,则下列结论:①AD⊥BD;②∠AOC=∠AEC;③BC 平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED.其中一定成立的是( ) A.②④⑤⑥ B.①③⑤⑥C.②③④⑥ D.①③④⑤二、填空题(每小题4分,共24分)7.如图G-3-5,AB是⊙O的直径,AC=BC,则∠A=________°.G-3-5G-3-68.如图G-3-6,在⊙O的内接四边形ABCD中,点E在DC的延长线上.若∠A=50°,则∠BCE=________°.9.如图G-3-7,AB是⊙O的直径,C是⊙O上的一点.若BC=6,AB=10,OD⊥BC于点D,则OD的长为________.G-3-7G-3-810.用一条宽相等的足够长的纸条,打一个结,然后轻轻拉紧、压平就可以得到如图G-3-8所示的正五边形ABCDE,其中∠BAC=________°.11.如图G-3-9,⊙O的半径为4,△ABC是⊙O的内接三角形,连结OB,OC.若∠BAC和∠BOC互补,则弦BC的长度为________.G-3-9图G-3-1012.如图G-3-10,已知正六边形ABCDEF内接于半径为4的⊙O,则B,D 两点间的距离为__________.三、解答题(共52分)13.(12分)如图G-3-11所示,⊙O的直径AB长为6,弦AC长为2,∠ACB 的平分线交⊙O于点D,求四边形ADBC的面积.图G-3-1114.(12分)如图G-3-12,∠BAC的平分线交△ABC的外接圆于点D,∠ABC 的平分线交AD于点E,连结DB.(1)求证:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC的外接圆半径.图G -3-1215.(12分)作图与证明:如图G -3-13,已知⊙O 和⊙O 上的一点A ,请完成下列任务:(1)作⊙O 的内接正六边形ABCDEF ;(2)连结BF ,CE ,判断四边形BCEF 的形状,并加以证明.图G -3-1316.(16分)如图G -3-14,正方形ABCD 内接于⊙O ,E 为CD ︵上任意一点,连结DE ,AE .(1)求∠AED的度数;(2)如图②,过点B作BF∥DE交⊙O于点F,连结AF,AF=1,AE=4,求DE 的长.图G-3-14详解详析1.C 2.A 3.D 4.C 5.D6.D [解析] ∵AB是⊙O的直径,∴∠D=90°,即AD⊥BD,∴①正确;∵OC∥BD,∴∠C=∠CBD.又∵OB=OC,∴∠C=∠OBC,∴∠OBC=∠CBD,即BC平分∠ABD,∴③正确;∵∠D=90°,OC∥BD,∴∠CFD=∠D=90°,即OC⊥AD,∴AF=DF,∴④正确;又∵AO=BO,∴OF是△ABD的中位线,∴OF=12BD,即BD=2OF,∴⑤正确.故选D.7.45 [解析] ∵AB是⊙O的直径,∴∠C=90°.∵AC=BC,∴△ABC是等腰直角三角形,∴∠A=∠B=12(180°-∠C)=45°.8.509.4 [解析] ∵AB是⊙O的直径,∴∠ACB=90°.∵BC=6,AB=10,∴AC =102-62=8.∵OD⊥BC于点D,∴DB=DC.又∵OA=OB,∴OD=12AC=4.10.3611.4 3 [解析] ∵∠BAC+∠BOC=180°,2∠BAC=∠BOC,∴∠BOC=120°,∠BAC=60°.过点O作OD⊥BC于点D,则∠BOD=12∠BOC=60°.∵OB=4,∴OD=2,∴BD=OB2-OD2=42-22=2 3,∴BC=2BD=4 3.12.4 3 [解析] 如图,连结OB,OC,OD,BD,BD交OC于点P,∴∠BOC=∠COD=60°,∴∠BOD =120°,BC ︵=CD ︵, ∴OC ⊥BD . ∵OB =OD , ∴∠OBD =30°. ∵OB =4,∴PB =OB ·cos ∠OBD =32OB =2 3, ∴BD =2PB =4 3.13.解:∵AB 是⊙O 的直径, ∴∠ACB =∠ADB =90°. 在Rt △ABC 中,AB =6,AC =2, ∴BC =AB 2-AC 2=62-22=4 2. ∵∠ACB 的平分线交⊙O 于点D , ∴∠DCA =∠BCD , ∴AD ︵=BD ︵, ∴AD =BD ,∴在Rt △ABD 中,AD =BD =3 2,∴四边形ADBC 的面积=S △ABC +S △ABD =12AC ·BC +12AD ·BD =12×2×4 2+12×32×3 2=9+4 2.故四边形ADBC的面积是9+4 2.14.解:(1)证明:连结CD,∵AD平分∠BAC,∴∠BAD=∠CAD.又∵∠CBD=∠CAD,∴∠BAD=∠CBD.∵BE平分∠ABC,∴∠CBE=∠ABE,∴∠DBE=∠CBE+∠CBD=∠ABE+∠BAD.又∵∠BED=∠ABE+∠BAD,∴∠DBE=∠BED,∴DE=DB.(2)∵∠BAC=90°,∴BC是圆的直径,∴∠BDC=90°.∵AD平分∠BAC,BD=4,∴BD=CD=4,∴BC=BD2+CD2=4 2.∴△ABC的外接圆半径为2 2.15.解:(1)如图①,首先作直径AD,然后分别以A,D为圆心,OA长为半径画弧,分别交⊙O 于点B ,F ,C ,E ,连结AB ,BC ,CD ,DE ,EF ,AF ,则正六边形ABCDEF 即为所求.(2)四边形BCEF 是矩形.证明:如图②,连结OE ,∵六边形ABCDEF 是正六边形,∴AB =AF =DE =DC =FE =BC ,∴AB ︵=AF ︵=DE ︵=DC ︵,∴BF ︵=CE ︵,∴BF =CE ,∴四边形BCEF 是平行四边形.∵六边形ABCDEF 是正六边形,∴∠DEF =∠EDC =120°.∵DE =DC ,∴∠DEC =∠DCE =30°,∴∠CEF =∠DEF -∠DEC =90°,∴平行四边形BCEF 是矩形.16.解:(1)如图①,连结OA ,OD .∵四边形ABCD是正方形,∴∠AOD=90°,∴∠AED=12∠AOD=45°.(2)如图②,连结CF,CE,CA,过点D作DH⊥AE于点H.∵BF∥DE,AB∥CD,∴∠ABF=∠CDE.∵∠CFA=∠AEC=90°,∠AED=∠BFC=45°,∴∠DEC=∠AFB=135°.又∵CD=AB,∴△CDE≌△ABF,∴AF=CE=1,∴AC=AE2+CE2=17,∴AD=22AC=342.∵∠DHE=90°,∴∠HDE=∠HED=45°,∴DH=EH,设DH=EH=x,在Rt△ADH中,∵AD2=AH2+DH2,∴344=(4-x)2+x2,解得x=32或x=52,∴DE=2DH=3 22或5 22.。

第24讲 圆的基本性 含答案

第24讲 圆的基本性 含答案

第24讲圆的基本性质1. (16,河北)如图所示的为4×4的网格图,A,B,C,D,O均在格点上,点O是( )第1题图第2题图第3题图例1题图A. △ACD的外心B. △ABC的外心C. △ACD的内心D. △ABC的内心2. (15,河北)如图,AC,BE是⊙O的直径,弦AD与BE相交于点F.下列三角形中,外心不是点O的是( )A. △ABEB. △ACFC. △ABDD. △ADE3. (12,河北)如图,CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,则下列结论正确的是( )A. AE>BEB. »AD=»BCC. ∠D=12∠AEC D. △ADE∽△CBE圆的有关概念例1 (2019,扬州邗江区一模)如图,⊙O的直径BA的延长线与弦DC的延长线相交于点E,且CE=OB.已知∠DOB =72°,则∠E的度数为( )A. 36° B. 30° C. 18° D. 24°训练1题图训练2题图训练3题图例3题图针对训练1如图所示的圆规,点A是铁尖的端点,点B是铅笔芯尖的端点,已知点A与点B的距离是2 cm.若铁尖的端点A固定,铅笔芯尖的端点B绕点A旋转一周,则作出的圆的直径是( )A. 1 cmB. 2 cmC. 4 cmD. πcm针对训练2 (2019,海口模拟)如图,AB是⊙O的直径,点C,D在⊙O上,且点C,D在AB的异侧,连接AD,OD,OC.若∠AOC=70°,且AD∥OC,则∠AOD的度数为( )A. 70° B. 60° C. 50° D. 40°确定圆的条件例2 (2019,北京)在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.例2题图针对训练3 (10,河北)如图,在5×5的正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是( )A. 点P B. 点Q C. 点R D. 点M针对训练4 (2019,绥化)半径为5的⊙O是锐角三角形ABC的外接圆,AB=AC,连接OB,OC,延长CO交弦AB 于点D.若△OBD是直角三角形,则弦BC的长为().圆的基本性质例3 (19,沈阳)如图,AB是⊙O的直径,点C和点D是⊙O上位于直径AB两侧的点,连接AC,AD,BD,CD.若⊙O的半径是13,BD=24,则sin∠ACD的值是( )A. 1213 B.125 C.512 D.513针对训练5 (2019,绵阳)如图,AB 是⊙O 的直径,C 为»BD的中点,CF 为⊙O 的弦,且CF ⊥AB ,垂足为E ,连接BD 交CF 于点G ,连接CD ,AD ,BF .(1)求证:△BFG ≌△CDG ;(2)若AD =BE =2,求BF 的长.训练5题图垂径定理及其应用 例4 (2019,梧州)如图,在半径为13的⊙O 中,弦AB 与CD 相交于点E ,∠DEB=75°,AB =6,AE =1,则CD 的长是( )A. 2 6 B. 210 C. 211 D. 4 3例4题图训练6题图针对训练6 (19,黄冈)如图,一条公路的转弯处是一段圆弧(»AB ),点O 是这段弧所在圆的圆心,AB =40 m ,C 是»AB 的中点,D 是AB 的中点,且CD =10 m ,则这段弯路所在圆的半径为( )A. 25 m B. 24 m C. 30 m D. 60 m1. (2019,广元)如图,AB ,AC 分别是⊙O 的直径和弦,OD ⊥AC于点D ,连接BD ,BC ,且AB =10,AC =8,则BD 的长为( )A. 2 5 B. 4 C. 213 D. 4.81题图2题图3题图4题图5题图2. (2019,吉林)如图,在⊙O 中,»AB 所对的圆周角∠ACB =50°.若P 为»AB 上一点,∠AOP =55°,则∠POB 的度数为( )A. 30° B. 45° C. 55° D. 60°3. (2019,白银)如图,点A ,B ,S 在圆上,若弦AB 的长度等于圆半径的2倍,则∠ASB 的度数是( )A. 22.5°B. 30°C. 45°D. 60°4. (19镇江如图,四边形ABCD 是半圆的内接四边形,AB 是直径,»»DC CB =.若∠C =110°,则∠ABC 的度数为( )A. 55°B. 60°C. 65°D. 70°5. (2019,贵港)如图,AD 是⊙O 的直径,»»AB CD =.若∠AOB =40°,则圆周角∠BPC 的度数是( ) A. 40° B. 50° C. 60° D. 70°6. (2019,聊城)如图,BC 是半圆O 的直径,D ,E 是»BC上两点,连接BD ,CE 并延长相交于点A ,连接OD ,OE .如果∠A =70°,那么∠DOE 的度数为( )A. 35° B. 38° C. 40° D. 42°7. (2019,安顺)如图,半径为3的⊙A 经过原点O 和点C (0,2),B 是y 轴左侧⊙A 优弧上一点,则tan ∠OBC 的值为( )A. 13 B. 2 2 C. 223 D. 248. (2019,天水)如图,四边形ABCD 是菱形,⊙O 经过点A ,C ,D ,与BC 相交于点E ,连接AC ,AE .若∠D =80°,则∠EAC的度数为( )A. 20° B. 25° C. 30° D. 35°第6题图第7题图第8题图第9题图9. (2019,通辽)如图,等边三角形ABC内接于⊙O.若⊙O的半径为2,则图中阴影部分的面积等于( )A. π3 B.2π3 C.4π3 D. 2π10. (19,菏泽)如图,AB是⊙O的直径,C,D是⊙O上的两点,且BC平分∠ABD,AD分别与BC,OC相交于点E,F,则下列结论不一定成立的是( ) A. OC∥BD B. AD⊥OC C. △CEF≌△BED D. AF=FD11. (2019,陕西)如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB相交于点C,连接OF.若∠AOF=40°,则∠F的度数是( )A. 20° B. 35° C. 40° D. 55°第10题图第11题图第12题图第13题图12. (2019,赤峰)如图,AB是⊙O的弦,OC⊥AB交⊙O于点C,D是⊙O上一点,∠ADC=30°,则∠BOC的度数为( )A. 30° B. 40° C. 50° D. 60°.13. (2019,宁夏)如图,AB是⊙O的弦,OC⊥AB,垂足为C,将劣弧»AB沿弦AB折叠交于OC的中点D.若AB=210,则⊙O的半径为().14. (2019,盐城)如图,点A,B,C,D,E在⊙O上,且»AB所对的圆心角为50°,则∠E+∠C=°.第14题图第15题图第16题图第17题图15. (2019,安徽)如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D.若⊙O的半径为2,则CD的长为().16. (2019,广元)如图,△ABC是⊙O的内接三角形,且AB是⊙O的直径,P为⊙O上的动点,且∠BPC=60°,⊙O的半径为6,则点P到AC距离的最大值是().17. (2019,嘉兴)如图,在⊙O中,弦AB=1,点C在AB上移动,连接OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为().18. (2019,包头)如图,在⊙O中,B是⊙O上的一点,∠ABC=120°,弦AC=23,弦BM平分∠ABC交AC于点D,连接MA,MC.(1)求⊙O的半径;(2)求证:AB+BC=BM.(1)解:如答图①,连接OA,OC,过点O作OH⊥AC于点H.第18题图19. (2019,荆门)如图,已知锐角三角形ABC的外接圆圆心为O,半径为R. (1)求证:ACsin B=2R;(2)若在△ABC 中,∠A =45°,∠B =60°,AC =3,求BC 的长及sin C 的值.第19题图1. (2019,湘潭)《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积=12(弦×矢+矢2).弧田是由圆弧和其所对的弦围成(如图中的阴影部分),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,运用垂径定理(当半径OC ⊥弦AB 时,OC 平分AB )可以求解.现已知弦AB =8 m ,半径等于5 m 的弧田,按照上述公式计算出弧田面积为 m 2.第1题图第2题图2. (2019,潍坊)如图,在平面直角坐标系xOy 中,一组同心圆的圆心为坐标原点O ,它们的半径分别为1,2,3,…,按照“加1”依次递增;一组平行线l 0,l 1,l 2,l 3,…都与x 轴垂直,相邻两直线的间距为1,其中l 0与y 轴重合.若半径为2的圆与l 1在第一象限内交于点P 1,半径为3的圆与l 2在第一象限内交于点P 2……半径为n +1的圆与l n 在第一象限内交于点P n ,则点P n 的坐标为 .(n 为正整数)3. (2019,福建)如图,四边形ABCD 内接于⊙O ,AB =AC ,BD ⊥AC ,垂足为E ,点F 在BD 的延长线上,且DF =DC ,连接AF ,CF .(1)求证:∠BAC =2∠DAC ;(2)若AF =10,BC =45,求tan ∠BAD 的值.第3题图4. (2019,温州)如图,在△ABC 中,∠BAC =90°,点E 在BC 边上,且CA =CE ,过A ,C ,E 三点的⊙O 交AB 于另一点F ,作直径AD ,连接DE 并延长交AB 于点G ,连接CD ,CF .(1)求证:四边形DCFG 是平行四边形; (2)当BE =4,CD =38AB 时,求⊙O 的直径. 第4题图第24讲圆的基本性质1. (16,河北)如图所示的为4×4的网格图,A,B,C,D,O均在格点上,点O是(B)第1题图第2题图第3题图A. △ACD的外心B. △ABC的外心C. △ACD的内心D. △ABC的内心【解析】由网格图,知点O是边AC,BC的垂直平分线的交点.根据三角形外心的定义,知点O是△ABC的外心.2. (15,河北)如图,AC,BE是⊙O的直径,弦AD与BE相交于点F.下列三角形中,外心不是点O的是(B)A. △ABEB. △ACFC. △ABDD. △ADE【解析】只有△ACF的三个顶点不都在⊙O上,故外心不是点O的是△ACF.3. (12,河北)如图,CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,则下列结论正确的是(D)A. AE>BEB. »AD=»BCC. ∠D=12∠AEC D. △ADE∽△CBE 【解析】∵CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,∴AE=BE,»».AC BC=∴选项A,B错误.∵∠AEC不是圆心角,∴∠D≠12∠AEC. ∴选项C错误.∵∠AED=∠CEB=90°,∠DAE=∠BCE,∴△ADE∽△CBE.∴选项D正确.圆的有关概念例1 (2019,扬州邗江区一模)如图,⊙O的直径BA的延长线与弦DC的延长线相交于点E,且CE=OB.已知∠DOB =72°,则∠E的度数为(D)A. 36° B. 30° C. 18° D. 24°【解析】如答图,连接CO.可知CE=OB=CO,得∠E =∠1.由∠2是△EOC的外角,得∠2=∠E+∠1=2∠E.由OC=OD,得∠D=∠2=2∠E.由∠3是△ODE的外角,得∠3=∠E+∠D=∠E+2∠E=3∠E.由∠3=72°,得3∠E=72°.解得∠E=24°.1题图1答图训练1题图训练2题图针对训练1如图所示的圆规,点A是铁尖的端点,点B是铅笔芯尖的端点,已知点A与点B的距离是2 cm.若铁尖的端点A固定,铅笔芯尖的端点B绕点A旋转一周,则作出的圆的直径是(C)A. 1 cmB. 2 cmC. 4 cmD. πcm 【解析】∵AB=2 cm,∴圆的直径是4 cm.针对训练2 (2019,海口模拟)如图,AB是⊙O的直径,点C,D在⊙O上,且点C,D在AB的异侧,连接AD,OD,OC.若∠AOC=70°,且AD∥OC,则∠AOD的度数为(D)A. 70° B. 60° C. 50° D. 40°【解析】∵AD∥OC,∴∠AOC=∠DAO=70°.又∵OD=OA,∴∠ADO=∠DAO=70°.∴∠AOD=180-70°-70°=40°.确定圆的条件例2 (2019,北京)在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.(1)证明:如答图.∵到点O的距离等于a的所有点组成图形G,∴图形G为△ABC的外接圆⊙O.∵BD平分∠ABC,∴∠ABD=∠CBD.∴»»AD CD=.∴AD=CD. (2)解:如答图,连接OD.∵AD=CM,AD=CD,∴CD=CM.∵DF⊥BC,∴BC垂直平分DM.易得BC为直径.∵OB=OD,∴∠OBD=∠ODB=∠ABD.∴OD∥AB.∵DE ⊥AB ,∴OD ⊥DE .∴DE 为⊙O 的切线.∴直线DE 与图形G 的公共点个数为1.2题图 例2答图训练3题图 训练3答图针对训练3 (10,河北)如图,在5×5的正方形网格中,一条圆弧经过A ,B ,C 三点,那么这条圆弧所在圆的圆心是(B )A. 点P B. 点Q C. 点R D. 点M【解析】 如答图,连接BC ,作AB 和BC 的垂直平分线,它们相交于点Q ,则点Q 即为圆心.针对训练4 (2019,绥化)半径为5的⊙O 是锐角三角形ABC 的外接圆,AB =AC ,连接OB ,OC ,延长CO 交弦AB 于点D .若△OBD 是直角三角形,则弦BC 的长为( 53或5 2 ). 【解析】 如答图①,当∠ODB =90°时,CD ⊥AB ,∴AD =BD.∴AC =BC.∵AB =AC ,∴△ABC 是等边三角形.∴∠DBO =30°.∵OB =5,∴BD =32OB =532.∴BC =AB =2BD =5 3.如答图②,当∠DOB =90°时,∠BOC =90°.∴△BOC 是等腰直角三角形.∴BC =2OB =5 2.综上所述,若△OBD 是直角三角形,则弦BC 的长为53或5 2.训练4答图例3图训练5图训练5答图圆的基本性质 例3 (19,沈阳)如图,AB 是⊙O 的直径,点C 和点D 是⊙O 上位于直径AB 两侧的点,连接AC ,AD ,BD ,CD .若⊙O 的半径是13,BD =24,则sin ∠ACD 的值是(D )A. 1213 B. 125 C. 512 D. 513【解析】 ∵AB 是直径,∴∠ADB =90°.∵⊙O 的半径是13,∴AB =2×13=26.在Rt △ABD 中,由勾股定理得AD =10,∴sin B =AD AB =1026=513.∵∠ACD =∠B ,∴sin ∠ACD =sin B =513. 针对训练5 (2019,绵阳)如图,AB 是⊙O 的直径,C 为»BD的中点,CF 为⊙O 的弦,且CF ⊥AB ,垂足为E ,连接BD 交CF 于点G ,连接CD ,AD ,BF .(1)求证:△BFG ≌△CDG ;(2)若AD =BE =2,求BF 的长.(1)证明:∵C 是»BD的中点,∴»»CD BC =.∵AB 是⊙O 的直径,且CF ⊥AB ,∴»»BC BF =.∴»»CD BF =.∴CD =BF . 在△BFG 和△CDG 中,⎩⎪⎨⎪⎧∠F =∠CDG ,∠FGB =∠DGC ,BF =CD ,∴△BFG ≌△CDG (AAS).(2)解:如答图,连接OC ,交BD 于点H ,连接OD ,BC .∵C 是»BD的中点,∴DC =BC .∵OD =OB ,∴OC 垂直平分BD .∴OC ⊥BD .∴DH =BH .∵OA =OB ,∴OH =12AD =1.∵OC =OB ,∠COE =∠BOH ,∠OEC =∠OHB =90°,∴△COE ≌△BOH (AAS).∴OE =OH =1.∴OB =OE +BE =1+2=3.∴OC =3.∵CF ⊥AB ,∴CE =EF .在Rt △OEC 中,CE =OC 2-OE 2=32-12=22,∴EF =2 2.在Rt △BEF 中,BF =BE 2+EF 2=22+()222=2 3.垂径定理及其应用 例4 (19梧州)如图,在半径为13的⊙O 中,弦AB 与CD 相交于点E ,∠DEB =75°,AB =6,AE =1,则CD 的长是(C )A. 2 6 B. 210 C. 211 D. 43 【解析】 如答图,过点O 作OF ⊥CD于点F ,OG ⊥AB 于点G ,连接OB ,OD ,OE ,则DF =CF ,AG =BG =12AB =3.∴EG =AG -AE =2.在Rt △BOG 中,OG =OB 2-BG 2=13-9=2,∴EG =OG .∴△EOG 是等腰直角三角形.∴∠OEG =45°,OE =2OG =2 2.∵∠DEB =75°,∴∠OEF =30°.∴OF =12OE = 2.在Rt △ODF 中,DF =OD 2-OF 2=13-2=11,∴CD =2DF =211. 例4题图例4答图训练6题图训练6答图针对训练6 (19黄冈)如图,一条公路的转弯处是一段圆弧(»AB ),点O 是这段弧所在圆的圆心,AB =40 m ,C 是»AB 的中点,D 是AB 的中点,且CD =10 m ,则这段弯路所在圆的半径为(A ) A. 25 m B. 24 m C. 30 m D. 60 m【解析】 如答图,连接OD.由题意可知点O ,D ,C 共线,且OC ⊥AB ,AD =DB =12AB =20 m .在Rt △AOD 中,OA 2=OD 2+AD 2.设这段弯路所在圆的半径为r ,得r 2=(r -10)2+202.解得r =25(m ).∴这段弯路所在圆的半径为25 m .1. (2019,广元)如图,AB ,AC 分别是⊙O 的直径和弦,OD ⊥AC 于点D ,连接BD ,BC ,且AB =10,AC =8,则BD 的长为(C )A. 2 5 B. 4 C. 213 D. 4.8【解析】 ∵AB 为直径,∴∠ACB =90°.∴BC =AB 2-AC 2=102-82=6.∵OD ⊥AC ,∴CD =AD =12AC =4.在Rt △CBD 中,BD =42+62=213. 第1题图第2题图第3题图第3题答图2. (2019,吉林)如图,在⊙O 中,»AB 所对的圆周角∠ACB =50°.若P 为»AB 上一点,∠AOP =55°,则∠POB 的度数为(B )A. 30° B. 45° C. 55° D. 60°【解析】 ∵∠ACB =50°,∴∠AOB =2∠ACB =100°.∵∠AOP =55°,∴∠POB =45°.3. (19白银)如图,点A ,B ,S 在圆上,若弦AB 的长度等于圆半径的2倍,则∠ASB 的度数是(C )A. 22.5°B. 30°C. 45°D. 60° 【解析】 如答图设圆心为O ,连接OA ,OB.∵弦AB 的长度等于圆半径的2倍,即AB =2OA ,∴OA 2+OB 2=AB 2.∴△OAB 为等腰直角三角形,即∠AOB =90°.∴∠ASB =12∠AOB =45°. 4. (19镇江如图,四边形ABCD 是半圆的内接四边形,AB 是直径,»»DCCB =.若∠C =110°,则∠ABC 的度数为(A )第4题图第4题答图第5题图A. 55°B. 60°C. 65°D. 70° 【解析】 如答图,连接AC.∵四边形ABCD 是半圆的内接四边形,∴∠DAB =180°-∠BCD =70°.∵»»DCCB =,∴∠CAB =12∠DAB =35°.∵AB 是直径,∴∠ACB =90°.∴∠ABC =90°-∠CAB =55°. 5. (2019,贵港)如图,AD 是⊙O 的直径,»»AB CD =.若∠AOB =40°,则圆周角∠BPC 的度数是(B )A. 40°B. 50°C. 60°D. 70° 【解析】 ∵»»AB CD =,∠AOB =40°,∴∠COD =∠AOB =40°.∵∠AOB +∠BOC +∠COD =180°,∴∠BOC =100°.∴∠BPC =12∠BOC =50°. 6. (2019,聊城)如图,BC 是半圆O 的直径,D ,E 是»BC上两点,连接BD ,CE 并延长相交于点A ,连接OD ,OE .如果∠A =70°,那么∠DOE 的度数为(C )A. 35° B. 38° C. 40° D. 42°【解析】 如答图,连接CD.∵BC 是半圆O 的直径,∴∠BDC =90°.∴∠ACD =90°-∠A =20°.∴∠DOE =2∠ACD =40°第6题图第6题答图第7题图第7题答图7. (2019,安顺)如图,半径为3的⊙A 经过原点O 和点C (0,2),B 是y 轴左侧⊙A 优弧上一点,则tan ∠OBC 的值为(D )A. 13 B. 2 2 C. 223 D. 24【解析】 如答图,设⊙A 与x 轴负半轴相交于点D ,连接CD.∵∠COD =90°,∴CD 是直径.在Rt △OCD 中,CD =6,OC =2,∴OD =CD 2-OC 2=4 2.∴tan ∠CDO =OC OD =24.由圆周角定理得∠OBC =∠CDO ,则tan ∠OBC =24. 8. (2019,天水)如图,四边形ABCD 是菱形,⊙O 经过点A ,C ,D ,与BC 相交于点E ,连接AC ,AE .若∠D =80°,则∠EAC 的度数为(C )A. 20° B. 25° C. 30° D. 35°第8题图第9题图第9题答图第10题图【解析】 ∵四边形ABCD 是菱形,∠D =80°,∴∠ACB =12∠DCB =12(180°-∠D)=50°.∵四边形AECD 是圆内接四边形,∴∠AEC =180°-∠D =100°.∴∠EAC =180°-∠AEC -∠ACB =180°-100°-50°=30°.9. (2019,通辽)如图,等边三角形ABC 内接于⊙O .若⊙O 的半径为2,则图中阴影部分的面积等于(C )A. π3B. 2π3C. 4π3D. 2π 【解析】 如答图,连接OC.∵△ABC 为等边三角形,∴∠AOC =120°,S △AOB =S △AOC .∴阴影部分的面积=S 扇形AOC =120·π×22360=4π3. 10. (2019,菏泽)如图,AB 是⊙O 的直径,C ,D 是⊙O 上的两点,且BC 平分∠ABD ,AD 分别与BC ,OC 相交于点E ,F ,则下列结论不一定成立的是(C )A. OC ∥BDB. AD ⊥OCC. △CEF ≌△BEDD. AF =FD【解析】 ∵AB 是⊙O 的直径,BC 平分∠ABD ,∴∠ADB =90°,∠OBC =∠DBC.∴AD ⊥BD.∵OB =OC ,∴∠OCB =∠OBC.∴∠DBC =∠OCB.∴OC ∥BD ,选项A 成立.∴AD ⊥OC ,选项B 成立.∵OA =OB ,OC ∥BD ,∴AF =FD ,选项D 成立.∵△CEF 和△BED 中,没有相等的边,∴△CEF 与△BED 不全等,选项C 不成立.11. (2019,陕西)如图,AB 是⊙O 的直径,EF ,EB 是⊙O 的弦,且EF =EB ,EF 与AB 相交于点C ,连接OF .若∠AOF =40°,则∠F 的度数是(B )A. 20° B. 35° C. 40° D. 55°第11题图第11题答图第12题图【解析】 如答图,连接FB.∵∠AOF =40°,∴∠FOB =180°-40°=140°.∴∠FEB =12∠FOB =70°.∵EF =EB ,∴∠EFB =∠EBF =55°.∵FO =BO ,∴∠OFB =∠OBF =20°.∴∠EFO =∠EFB -∠OFB =35°.12. (2019,赤峰)如图,AB 是⊙O 的弦,OC ⊥AB 交⊙O 于点C ,D 是⊙O 上一点,∠ADC =30°,则∠BOC 的度数为(D )A. 30° B. 40° C. 50° D. 60° 【解析】 ∵∠ADC =30°,∴∠AOC =2∠ADC =60°.∵AB 是⊙O 的弦,OC ⊥AB 交⊙O 于点C ,∴»»AC BC =.∴∠AOC =∠BOC =60°. 13. (2019,宁夏)如图,AB 是⊙O 的弦,OC ⊥AB ,垂足为C ,将劣弧»AB 沿弦AB 折叠交于OC 的中点D .若AB =210,则⊙O 的半径为( 3 2 ).第13题图第13题答图第14题图第14题答图【解析】 如答图,连接OA.设⊙O 的半径为x.∵将劣弧»AB 沿弦AB 折叠交于OC 的中点D ,∴OC =23x.∵OC ⊥AB ,∴AC =12AB =10.∵OA 2-OC 2=AC 2,∴x 2-⎝⎛⎭⎫23x 2=10.解得x =3 2.∴⊙O 的半径为3 2. 14. (2019,盐城)如图,点A ,B ,C ,D ,E 在⊙O 上,且»AB 所对的圆心角为50°,则∠E +∠C = 155 °. 【解析】 如答图,连接EA.∵»AB 所对的圆心角为50°,∴∠BEA =25°.∵四边形DCAE 为⊙O 的内接四边形,∴∠DEA +∠C =180°.∴∠DEB +∠C =180°-25°=155°.15. (2019,安徽)如图,△ABC 内接于⊙O ,∠CAB =30°,∠CBA =45°,CD ⊥AB 于点D .若⊙O 的半径为2,则CD 的长为( 2 ).【解析】 如答图,连接CO 并延长交⊙O 于点E ,连接BE ,则∠E =∠A =30°,∠EBC =90°.∵⊙O 的半径为2,∴CE =4.∴BC =12CE =2.∵CD ⊥AB ,∠CBA =45°,∴CD =22BC = 2. 第15题图第15题答图第16题图第16题答图16. (2019,广元)如图,△ABC 是⊙O 的内接三角形,且AB 是⊙O 的直径,P 为⊙O 上的动点,且∠BPC =60°,⊙O 的半径为6,则点P 到AC 距离的最大值是( 6+3 3 ).解析】 如答图,过点O 作OM ⊥AC 于点M ,延长MO 交⊙O 于点P ,则此时点P 到AC 的距离最大,且点P 到AC 距离的最大值=PM.∵OM ⊥AC ,∠A =∠BPC =60°,⊙O 的半径为6,∴OP =OA =6.∴OM =32OA =32×6=3 3.∴PM =OP +OM =6+3 3.∴点P 到AC 距离的最大值是6+3 3.17. (2019,嘉兴)如图,在⊙O 中,弦AB =1,点C 在AB 上移动,连接OC ,过点C 作CD ⊥OC 交⊙O 于点D ,则CD 的最大值为( 12).【解析】 如答图,连接OD.设⊙O 的半径为r.∵CD ⊥OC ,∴∠DCO =90°.∴CD =OD 2-OC 2=r 2-OC 2.∴当OC 的值最小时,CD 的值最大.∴当OC ⊥AB 时,OC 最小,此时OC =r 2-⎝⎛⎭⎫12AB 2.∴CD 的最大值为r 2-⎝⎛⎭⎫r 2-14AB 2=12AB =12×1=12.第17题图第17题答图三、 解答题 18. (2019,包头)如图,在⊙O 中,B 是⊙O 上的一点,∠ABC =120°,弦AC =23,弦BM 平分∠ABC 交AC 于点D ,连接MA ,MC .(1)求⊙O 的半径;(2)求证:AB +BC =BM . (1)解:如答图①,连接OA ,OC ,过点O 作OH ⊥AC 于点H .第18题图第18题答图∴AH =HC =12AC .∵OA =OC ,∴∠AOH =∠COH =12∠AOC .∵∠ABC =120°∴∠AMC =180°-∠ABC =60°.∴∠AOC =2∠AMC =120°.∴∠AOH =12∠AOC =60°.∵AC =23,∴AH =12AC = 3. 在Rt △AOH 中,sin ∠AOH =AH OA ,∴OA =AH sin 60°=2.∴⊙O 的半径为2. (2)证明:如答图②,在BM 上截取BE =BC ,连接CE .∵∠ABC =120°,BM 平分∠ABC ,∴∠ABM =∠CBM =12∠ABC =60°.∵BE =BC ,∴△EBC 是等边三角形.∴∠BEC =60°,BC =EC .∴∠MEC =120°.∴∠ABC =∠MEC .∵∠BAC =∠BMC ,∴△ACB ≌△MCE (AAS).∴AB =ME .∵ME +EB =BM ,∴AB +BC =BM .19. (2019,荆门)如图,已知锐角三角形ABC 的外接圆圆心为O ,半径为R . (1)求证:AC sin B=2R ; (2)若在△ABC 中,∠A =45°,∠B =60°,AC =3,求BC 的长及sin C 的值.第19题图第19题答图第1题图(1)证明:如答图①,连接AO 并延长交⊙O 于点D ,连接CD ,则∠DCA =90°,∠B =∠ADC .在Rt △ACD 中,sin ∠ADC =AC AD =AC 2R , ∴sin B =AC 2R .∴AC sin B=2R . (2)解:由(1)同理可得AC sin B =AB sin C =BC sin A =2R . ∵AC =3,∠B =60°,∴2R =3sin 60°=2.∴BC =2R ·sin A =2sin 45°= 2.如答图②,过点C 作CE ⊥AB 于点E .在Rt △BCE 中,BE =BC ·cos B =2cos 60°=22.在Rt △ACE 中,AE =AC ·cos A =3cos 45°=62.∴AB =AE +BE =6+22.∵AB sin ∠ACB=2R ,∴sin ∠ACB =AB 2R =6+24.1. (2019,湘潭)《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积=12(弦×矢+矢2).弧田是由圆弧和其所对的弦围成(如图中的阴影部分),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,运用垂径定理(当半径OC ⊥弦AB 时,OC 平分AB )可以求解.现已知弦AB=8 m ,半径等于5 m 的弧田,按照上述公式计算出弧田面积为 10 m 2. 【解析】 ∵AB =8,OC ⊥AB ,∴AD =4.∴OD =OA 2-AD 2=3.∴OC -OD =2.∴弧田面积=12×(8×2+22)=10(m 2). 2. (2019,潍坊)如图,在平面直角坐标系xOy 中,一组同心圆的圆心为坐标原点O ,它们的半径分别为1,2,3,…,按照“加1”依次递增;一组平行线l 0,l 1,l 2,l 3,…都与x 轴垂直,相邻两直线的间距为1,其中l 0与y 轴重合.若半径为2的圆与l 1在第一象限内交于点P 1,半径为3的圆与l 2在第一象限内交于点P 2……半径为n +1的圆与l n 在第一象限内交于点P n ,则点P n 的坐标为 (n ,2n +1) .(n 为正整数)【解析】 如答图,连接OP 1,OP 2,OP 3,l 1,l 2,l 3与x 轴分别交于点A 1,A 2,A 3.在Rt △OA 1P 1中,OA 1=1,OP 1=2,∴A 1P 1=OP 21-OA 21=22-12= 3.同理A 2P 2=32-22=5,A 3P 3=42-32=7.∴点P 1的坐标为(1,3),点P 2的坐标为(2,5),点P 3的坐标为(3,7).按照此规律可得点P n 的坐标是(n ,()n +12-n 2),即(n ,2n +1).3. (2019,福建)如图,四边形ABCD 内接于⊙O ,AB =AC ,BD ⊥AC ,垂足为E ,点F 在BD 的延长线上,且DF =DC ,连接AF ,CF .(1)求证:∠BAC =2∠DAC ;(2)若AF =10,BC =45,求tan ∠BAD 的值.2题图2题答图3题图3题答图(1)证明:∵AB =AC ,∴»»AB AC =,∠ABC =∠ACB .∴∠ABC =∠ADB ,∠ABC =12(180°-∠BAC )=90°-12∠BAC .∵BD ⊥AC ,∴∠ADB =90°-∠DAC .∴12∠BAC =∠DAC .∴∠BAC =2∠DAC . (2)解:∵DF =DC ,∴∠DFC =∠DCF .∴∠BDC =2∠DFC .∴∠BFC =12∠BDC =12∠BAC =∠DAC =∠FBC . ∴CB =CF =4 5.又∵BD ⊥AC ,∴AC 是线段BF 的垂直平分线.∴AB =AF =10.∴AC =10. 设AE =x ,则CE =10-x .由AB 2-AE 2=BC 2-CE 2,得100-x 2=80-(10-x )2.解得x =6.∴AE =6,CE =4.∴BE =EF =8.设DE =y ,则CD =DF =8-y .在Rt △CDE 中,CD 2=DE 2+CE 2,即(8-y )2=y 2+42.解得y =3,即DE =3.∴BD =BE +DE =8+3=11.如答图,过点D 作DH ⊥AB ,垂足为H .∵12AB ·DH =12BD ·AE ,∴DH =BD ·AE AB =11×610=335.在Rt △BDH 中,BH =BD 2-DH 2=445.∴AH =AB -BH =10-445=65.∴tan ∠BAD =DH AH =33565=112. 4. (2019,温州)如图,在△ABC 中,∠BAC =90°,点E 在BC 边上,且CA =CE ,过A ,C ,E 三点的⊙O 交AB 于另一点F ,作直径AD ,连接DE 并延长交AB 于点G ,连接CD ,CF .(1)求证:四边形DCFG 是平行四边形; (2)当BE =4,CD =38AB 时,求⊙O 的直径. 第4题图第4题答图(1)证明:如答图,连接AE .∵∠BAC =90°,∴CF 是⊙O 的直径.∵AC =EC ,∴CF ⊥AE .∵AD 是⊙O 的直径,∴∠AED =90°.∴GD ⊥AE .∴CF ∥DG .∵AD 是⊙O 的直径,∴∠ACD =90°.∴∠ACD +∠BAC =180°.∴AB ∥CD .∴四边形DCFG 是平行四边形. (2)解:由CD =38AB ,设CD =3x ,则AB =8x .由(1)知四边形DCFG 是平行四边形,∴CD =FG =3x .∵∠AOF =∠COD ,∴AF =CD =3x .∴BG =8x -3x -3x =2x .∵GE ∥CF ,∴BE EC =BG GF =23.∵BE =4,∴CE=6.∴AC=CE=6,BC=6+4=10.在Rt△ABC中,AB=102-62=8=8x.∴x=1.在Rt△ACF中,AF=3,AC=6,∴CF=32+62=3 5.∴⊙O的直径为3 5.。

浙教版九年级上册第三单元圆的基本性质阶段练习卷及答案

浙教版九年级上册第三单元圆的基本性质阶段练习卷及答案

浙教版九年级上册第三单元圆的基本性质阶段练习卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本题有10小题,每小题3分,共30分)1.已知⊙O的半径为5 cm,P为⊙O外一点,则OP的长可能是()A.5 cm B.4 cm C.3 cm D.6 cm2.如图是一个旋转对称图形,以O为旋转中心,将下列哪一个角作为旋转角旋转,能使旋转后的图形与原图形重合()A.60°B.90°C.120°D.180°第2题图第3题图OCDBA第4题图第5题图3.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB的大小为()A.15°B.28°C.29°D.34°4.如图,四边形ABCD是⊙O的内接四边形,若∠D=3∠B,则∠B等于()A.30°B.36°C.45°D.60°5.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O 到水面的距离OC是()A.4B.5C.6D.86.如图,已知AB,CD是⊙O的两条直径,∠ABC=20°,那么∠BAD=()A.45°B.60°C.30°D.20°7.在Rt△ABC中,AB=6,BC=8,那么这个三角形的外接圆直径是()A.5 B.10 C.5或4 D.10或88.如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为2,则弦BC的长为()A.1 B.3C.2 D.23第6题图第8题图第9题图第10题图9.如图,已知⊙O的半径为5,点A到圆心O的距离为3,则过点A的所有弦中,最短的弦长为()A.4 B.6 C.8 D.1010.如图,△ABC内接于⊙O,D为线段AB的中点,延长OD交⊙O于点E,连结AE、BE,则下列五个结论:①AB⊥DE;②AE=BE;③OD=DE;④∠AEO=∠C;⑤AE︵=12AEB︵.正确结论的个数是()A.2 B.3 C.4 D.5二、填空题(本题有8小题,每小题3分,共24分)11.如图,点A、B、C都在⊙O上,若∠C=35°,则∠AOB的度数是__________度.第11题图第12题图第13题图第14题图12.如图,AB是⊙O的弦,AB=8,P是⊙O上一点(不与点A,B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为__________.13.如图所示,A、B、C、D是圆上的点,∠1=68°,∠A=40°.则∠D=__________.14.如图,△ABC的顶点都在方格线的交点(格点)上,如果将△ABC绕C点按逆时针方向旋转90°,那么点B的对应点B′的坐标是__________.15.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为__________mm.第15题图第17题图第18题图16.在半径为5cm的⊙O中,如果弦CD=8cm,直径AB⊥CD,垂足为点E,则AE的长为__________cm.17.如图,⊙O是△ABC的外接圆,BC是⊙O的直径,AB=AC,∠ABC的平分线交AC于点D,交⊙O 于点E,连结CE.若CE=2,则BD的长为__________.18.如图所示,菱形ABCD的边长是13,点O是两条对角线的交点,且OB=12.约定:三角形三边上的任意一点到圆上的任意一点距离的最小值叫做三角形与圆的距离.依据这个约定,可知当⊙C的半径是__________时,△ABD与⊙C的距离为3.三、解答题(本题有6题,共46分)19.(本题6分)某地出土一个明代残破圆形瓷盘,为复制该瓷盘需确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心(不要求写作法、证明和讨论,但要保留作图痕迹).20.(本题6分)如图所示,在四边形ABCD中,∠A=90°,AB=53,BC=8,CD=6,AD=5,试判断点A,B,C,D是否在同一个圆上,并证明你的结论.21.(本题8分)如图,已知正方形ABCD的边长为3,E,F分别是AB,BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.(1)△DEF≌△DMF;(2)若AE=1,求FM的长.22.(本题8分)如图所示,点A,B,C是⊙O上的三点,AB∥OC.(1)求证:AC平分∠OAB;(2)过点O作OE⊥AB于点E,交AC于点P.若AB=2,∠AOE=30°,求PE的长.23.(本题8分)已知⊙O的直径为10,点A,B,C在⊙O上,∠CAB的平分线交⊙O于点D.(1)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(2)如图②,若∠CAB=60°,求BD的长.24.(本题10分)如图,P是等边三角形ABC外接圆弧BC上任意一点,求证:P A=PB+PC.参考答案一、选择题(本题有10小题,每小题3分,共30分)1.已知⊙O的半径为5 cm,P为⊙O外一点,则OP的长可能是()A.5 cm B.4 cm C.3 cm D.6 cm【答案】D【解析】∵点P在⊙O外,∴d>5 cm.故选D.2.如图是一个旋转对称图形,以O为旋转中心,将下列哪一个角作为旋转角旋转,能使旋转后的图形与原图形重合()A.60°B.90°C.120°D.180°【答案】C3. 将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上.点A 、B 的读数分别为86°、30°,则∠ACB 的大小为( )A .15°B .28°C .29°D .34°【答案】B【解析】∠ACB =12×(86°-30°)=28°.4. 如图,四边形ABCD 是⊙O 的内接四边形,若∠D =3∠B ,则∠B 等于( )A .30°B .36°C .45°D .60°OC D B【答案】C5. 一条排水管的截面如图所示,已知排水管的半径OB =10,水面宽AB =16,则截面圆心O到水面的距离OC 是( )A .4B .5C .6D .8【答案】C6.如图,已知AB,CD是⊙O的两条直径,∠ABC=20°,那么∠BAD=()A.45°B.60°C.30°D.20°【答案】D7.在Rt△ABC中,AB=6,BC=8,那么这个三角形的外接圆直径是()A.5 B.10 C.5或4 D.10或8【答案】D【解析】∵Rt△ABC中,没有确定斜边,∴斜边可为10或8,其外接圆直径为10或8.8.如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为2,则弦BC的长为()A.1 B.3C.2 D.23【答案】D9.如图,已知⊙O的半径为5,点A到圆心O的距离为3,则过点A的所有弦中,最短的弦长为()A.4 B.6 C.8 D.10【答案】C10.如图,△ABC内接于⊙O,D为线段AB的中点,延长OD交⊙O于点E,连结AE、BE,则下列五个结论:①AB ⊥DE ;②AE =BE ;③OD =DE ;④∠AEO =∠C ;⑤AE ︵=12AEB ︵.正确结论的个数是( )A .2B .3C .4D .5【答案】B二、填空题(本题有8小题,每小题3分,共24分)11.如图,点A 、B 、C 都在⊙O 上,若∠C =35°,则∠AOB 的度数是__________度.【答案】7012.如图,AB 是⊙O 的弦,AB =8,P 是⊙O 上一点(不与点A ,B 重合),过点O 作OC ⊥AP 于点C ,OD ⊥PB 于点D ,则CD 的长为__________.【答案】4【解析】∵OC ⊥AP ,OD ⊥PB , ∴由垂径定理,得AC =PC ,PD =BD , ∴CD 是△P AB 的中位线, ∴CD =12AB =12×8=4.13.如图所示,A 、B 、C 、D 是圆上的点,∠1=68°,∠A =40°.则∠D =__________.14.如图,△ABC的顶点都在方格线的交点(格点)上,如果将△ABC绕C点按逆时针方向旋转90°,那么点B的对应点B′的坐标是__________.【答案】(1,0)【解析】易知∠ACB=90°,延长AC到B′使CB′=CB.B′恰好落在(1,0)处.15.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为__________mm.【答案】816.在半径为5cm的⊙O中,如果弦CD=8cm,直径AB⊥CD,垂足为点E,则AE的长为__________cm.【答案】2或817.如图,⊙O是△ABC的外接圆,BC是⊙O的直径,AB=AC,∠ABC的平分线交AC于点D,交⊙O 于点E,连结CE.若CE=2,则BD的长为__________.【解析】如答图,延长BA,CE交于点M.∵BC是⊙O的直径,∴∠BAD=∠CAM=90°,∠BEC=∠BEM=90°,∵AB=AC,∠ABD=∠ACM,∴△ABD≌△ACM,∴BD=CM,∵BE平分∠ABC,∴∠EBM=∠EBC,∵BE=BE,∠BEC=∠BEM,∴△BEC≌△BEM,∴EC=EM,∴BD=CM=2CE=22.18.如图所示,菱形ABCD的边长是13,点O是两条对角线的交点,且OB=12.约定:三角形三边上的任意一点到圆上的任意一点距离的最小值叫做三角形与圆的距离.依据这个约定,可知当⊙C的半径是__________时,△ABD与⊙C的距离为3.【答案】2或16三、解答题(本题有6题,共46分)19.某地出土一个明代残破圆形瓷盘,为复制该瓷盘需确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心(不要求写作法、证明和讨论,但要保留作图痕迹).【答案】解:如答图所示.20.如图所示,在四边形ABCD 中,∠A =90°,AB =53,BC =8,CD =6,AD =5,试判断点A ,B ,C ,D 是否在同一个圆上,并证明你的结论.【答案】解:点A ,B ,C ,D 在同一个圆上. 证明:连结BD .在Rt △ABD 中,BD =AB 2+AD 2=10. 在△BCD 中,∵82+62=102,即BC 2+CD 2=BD 2, ∴△BCD 是直角三角形. 取BD 的中点O ,∴OB =OC =OA =OD =12BD .∴点A ,B ,C ,D 在以BD 为直径的圆上.21.如图,已知正方形ABCD 的边长为3,E ,F 分别是AB ,BC 边上的点,且∠EDF =45°,将△DAE 绕点D 逆时针旋转90°,得到△DCM . (1)△DEF ≌△DMF ; (2)若AE =1,求FM 的长.【答案】解:(1)∵△DAE 逆时针旋转90°得到△DCM , ∴∠FCM =∠FCD +∠DCM =180°, ∴F ,C ,M 三点共线, ∴DE =DM ,∠EDM =90°, ∴∠EDF +∠MDF =90°, ∵∠EDF =45°,∴∠MDF =∠EDF =45°, 在△DEF 和△DMF 中, ∵⎩⎪⎨⎪⎧DE =DM ,∠EDF =∠MDF ,DF =DF , ∴△DEF ≌△DMF (SAS ).(2)由(1)得EF =MF ,设EF =MF =x , ∵AE =CM =1,且BC =3, ∴BM =BC +CM =3+1=4, ∴BF =BM -MF =BM -EF =4-x , ∵EB =AB -AE =3-1=2,在Rt △EBF 中,由勾股定理得EB 2+BF 2=EF 2,即22+(4-x )2=x 2,解得x =52,∴FM =52.22.如图所示,点A ,B ,C 是⊙O 上的三点,AB ∥OC .(1)求证:AC 平分∠OAB ;(2)过点O 作OE ⊥AB 于点E ,交AC 于点P .若AB =2,∠AOE =30°,求PE 的长.【答案】解:(1)证明:∵AB ∥OC ,∴∠BAC =∠OCA . 又∵OC =OA ,∴∠OAC =∠OCA , ∴∠BAC =∠OAC ,∴AC 平分∠OAB . (2)∵OE ⊥AB ,∴AE =12AB =1.∵∠AOE =30°,∴∠OAE =60°, ∴∠EAP =12∠OAE =30°,∴PE =12AP .设PE =x ,则AP =2x ,在Rt △AEP 中, AP 2=AE 2+PE 2, 即(2x )2=12+x 2, 解得x =33,∴PE =33. 23.已知⊙O 的直径为10,点A ,B ,C 在⊙O 上,∠CAB 的平分线交⊙O 于点D .(1)如图①,若BC 为⊙O 的直径,AB =6,求AC ,BD ,CD 的长; (2)如图②,若∠CAB =60°,求BD 的长.【答案】解:(1)∵BC 是⊙O 的直径,∵在直角△CAB 中,BC =10,AB =6,∴由勾股定理得AC =BC 2-AB 2=102-62=8. ∵AD 平分∠CAB , ∴CD ︵=BD ︵, ∴CD =BD .在直角△BDC 中,BC =10,CD 2+BD 2=BC 2, ∴BD =CD =52. (2)连结OB ,OD .∵AD 平分∠CAB ,且∠CAB =60°, ∴∠DAB =12∠CAB =30°,∴∠DOB =2∠DAB =60°. 又∵OB =OD ,∴△OBD 是等边三角形, ∴BD =OB =OD .∵⊙O 的直径为10,则OB =5, ∴BD =5.24.如图,P 是等边三角形ABC 外接圆弧BC 上任意一点,求证:P A =PB +PC .【答案】证明:如答图,在P A 上截取PD =PC ,∵AB =AC =BC ,∴△PCD 为等边三角形,∴∠PCD =∠ACB =60°,CP =CD , ∴∠PCD -∠DCB =∠ACB -∠DCB , 即∠ACD =∠BCP ,在△ACD 和△BCP 中,⎩⎪⎨⎪⎧AC =BC ,∠ACD =∠BCP ,CD =CP ,∴△ACD ≌△BCP , ∴AD =PB , ∴P A =PB +PC .。

2022年人教版《圆的基本性质》 同步练习附答案

2022年人教版《圆的基本性质》 同步练习附答案

第二十四章 圆24.1 圆〔第一课时 〕知识点1、圆的定义:⑴形成性定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转形成的图形叫做圆,固定的端点叫,线段OA 叫做。

⑵描述性定义:圆是到定点的距离等于 的点的集合【特别注意】:1、在一个圆中,圆心决定圆的,半径决定圆的。

2、直径是圆中 的弦,弦不一定是直径。

2、弦与弧: 弦:连接圆上任意两点的 叫做弦。

弧:圆上任意两点间的 叫做弧,弧可分为 、 、 三类。

3、圆的对称性: ⑴轴对称性:圆是轴对称图形,有 条对称轴, 的直线都是它的对称轴。

⑵中心对称性:圆是中心对称图形,对称中心是。

一、选择题 1.以下命题正确的有 〔 〕 ①弦是圆上任意两点之间的局部 ②半径是弦③直径是最长的弦 ④弧是半圆,半圆是弧2.如下列图,MN 为⊙O 的弦,∠N =52°,那么∠MON 的度数为〔 〕A.38°B.52°C.76°D.104° 3.如图,CD 为⊙O 的直径,过点D 的弦DE 平行于半径OA ,假设∠D 的度数是50°,那么∠C 的度数是〔 〕°°°°4.一个点到圆上的最小距离是4cm ,最大距离是9cm ,那么圆的半径是〔 〕.5.如图,在⊙O 中,AB 、CD 为直径,那么AD 与BC 的关系是〔 〕.A.AD =BCB.AD ∥BCC.AD ∥BC 且AD =BCD.不能确定6.如图,AB 为⊙O 的直径,点C 在⊙O 上,∠C=15°,那么∠BOC 的度数为( )A .15°B . 30°C . 45°D .60°二、填空题1.⊙O 的半径为2cm ,那么它的弦长d cm 的取值范围是.2.⊙O 中假设弦AB 等于⊙O 的半径,那么△AOB 的形状是.3.如图,AB 是⊙O 的直径,点C 在⊙O 上,点D 是BC 的 B CDO中点,假设AC =10cm ,那么OD =cm.4.如图4,AB 是⊙O 的直径,CD 是⊙O 的弦,AB ,CD 的延长线交于E ,假设AB=2DE , ∠E=18°,∠C=______,∠AOC=________;5. P 为⊙O 内一点,OP=3cm ,⊙O 半径为5cm ,那么经过P 点的最长弦长为_______,最短弦长为________;三、解答题1.在Rt △ABC 中,∠C=90°,BC=3cm,AC=4cm,D 为AB 的中点,E 为AC 的中点,以B 为圆心,BC 为半径作⊙B ,A 、C 、D 、E 与⊙B 的位置关系如何?2、如图, M,N 为线段AB 上的两个三等分点,点A 、B 在⊙O 上,求证:∠OMN =∠ONM 。

中考数学复习圆的基本性质练习题含答案解析

中考数学复习圆的基本性质练习题含答案解析

第六单元圆第24课时圆的基本性质点对点·课时内考点巩固30分钟1. (2019柳州)如图,A,B,C,D是⊙O上的点,则图中与∠A相等的角是()A. ∠BB. ∠CC. ∠DEBD. ∠D第1题图2. (2019宜昌)如图,点A,B,C均在⊙O上,当∠OBC=40°时,∠A的度数是()A. 50°B. 55°C. 60°D. 65°第2题图3. (2019兰州)如图,四边形ABCD内接于⊙O,若∠A=40°,则∠C=()A. 110°B. 120°C. 135°D. 140°第3题图4. (2019甘肃省卷)如图,点A,B,S在圆上,若弦AB的长度等于圆半径的2倍,则∠ASB的度数是()A. 22.5°B. 30°C. 45°D. 60°第4题图5.如图,AB是⊙O的直径,点C,D在⊙O上,若∠DCB=110°,则∠AED的度数为()A. 15°B. 20°C. 25°D. 30°第5题图6.(2019西安高新一中模拟)如图,四边形ABCD内接于⊙O,AD∥BC,∠DAB=48°,则∠AOC的度数是()A. 48°B. 96°C. 114°D. 132°第6题图7. (2019陕西黑马卷)如图,在⊙O中,弦AB∥CD,连接BC,OA,OD.若∠BCD=25°,CD=OD,则∠AOD的度数是()A. 140°B. 120°C. 110°D. 100°第7题图8. (2019赤峰)如图,AB 是⊙O 的弦,OC ⊥AB 交⊙O 于点C ,点D 是⊙O 上一点,∠ADC =30°,则∠BOC 的度数为( )A. 30°B. 40°C. 50°D. 60°第8题图9. (2019贵港)如图,AD 是⊙O 的直径,AB ︵=CD ︵,若∠AOB =40°,则圆周角∠BPC 的度数是( ) A. 40° B. 50° C. 60° D .70°第9题图10. 如图,△ABC 内接于⊙O ,∠BAC =120°,AB =AC ,BD 为⊙O 的直径,AD =6,则BD 的长为( ) A. 3 B. 2 3 C. 4 3 D. 12第10题图11. 如图,AB 为⊙O 的直径,∠CAB =30°,CB =3,∠ACB 的平分线CD 交⊙O 于点D ,则弦AD 的长为( )A. 2 3B. 2 2C. 3 3D. 32第11题图12. 如图,B 、C 是⊙A 上的两点,AB 的垂直平分线与⊙A 交于E 、F 两点,与线段AC 交于点D ,连接BC 、BD 、BF 、CF .若∠BFC =20°,则∠DBC =( )A. 30°B. 29°C. 28°D. 20°第12题图13. (2019西工大附中模拟)如图,已知△ABC 内接于⊙O ,EF 为⊙O 的直径,且点F 是弧BC ︵的中点.若∠B =40°,∠C =60°,则∠AFE 的度数为( )A. 10°B. 20°C. 30°D. 40°第13题图14. (2019西安铁一中模拟)如图,在半径为3的⊙O 中,弦BC 、DE 所对的圆周角分别是∠A 、∠F ,且∠A +∠F =90°.若BC =4,则DE 的长为( )A. 13B. 4C. 5D. 25第14题图15.在圆内接四边形ABCD中,∠ACB=∠ACD=60°,对角线AC、BD交于点E.已知BC=32,CD =22,则线段CE的长为()第15题图A. 32 2B. 7 5C. 62 5D. 22 316. (2019株洲)如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB 相交于点E,满足∠AEC=65°,连接AD,则∠BAD=________度.第16题图17.(2019安徽)如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为________.第17题图18.已知半径为5的⊙O中,弦AB=52,弦AC=5,则∠BAC的度数是________.点对线·板块内考点衔接10分钟1. (2019襄阳)如图,AD是⊙O的直径,BC是弦,四边形OBCD是平行四边形,AC与OB相交于点P,下列结论错误的是()A. AP=2OPB. CD=2OPC. OB⊥ACD. AC平分OB第1题图2. (2019西工大附中模拟)如图,已知⊙O的内接五边形ABCDE,连接BE、CE,若AB=BC=CE,∠EDC =130°,则∠ABE的度数为()A. 25°B. 30°C. 35°D. 40°第2题图3.(2019天水)如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=80°,则∠EAC的度数为()A. 20°B. 25°C. 30°D. 35°第3题图4.(2019柳州)在半径为5的圆形纸片上裁出一个边长最大的正方形纸片,则这个正方形纸片的边长应为________.5.如图,在矩形ABCD中,AB=3,BC=4,O为矩形ABCD的中心,以D为圆心,1为半径作⊙D,P为⊙D上的一个动点,连接AP、OP、OA,则△AOP面积的最大值为________.第5题图点对面·跨板块考点迁移2分钟1. (2019安顺)如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC 为()第1题图A. 13 B. 22 C.223 D.24参考答案第24课时 圆的基本性质点对点·课时内考点巩固1. D 【解析】在⊙O 中,∵∠A 与∠D 都是BC ︵所对的圆周角,∴∠A =∠D .2. A 【解析】∵OB =OC ,∴∠OCB =∠OBC =40°.∴在△OBC 中,∠BOC =180°-∠OCB -∠OBC =180°-40°-40°=100°.∴∠A =12∠BOC =12×100°=50°.3. D 【解析】∵四边形ABCD 内接于⊙O ,∠A =40°,∴∠C =180°-∠A =140°.4. C 【解析】如解图,设圆心为O ,半径为r ,则AB =2r .连接OA 、OB ,则r 2+r 2=(2r )2,∴△OAB 为等腰直角三角形,∠AOB =90°.∴∠ASB =12∠AOB =45°.第4题解图5. B 【解析】如解图,连接AC ,∵AB 为直径,∴∠ACB =90°,∴∠ACD =∠DCB -∠ACB =110°-90°=20°,∴∠AED =∠ACD =20°.第5题解图6. B 【解析】∵AD ∥BC ,∴∠B =180°-∠DAB =132°,∵四边形ABCD 内接于⊙O ,∴∠D =180°-∠B =48°,由圆周角定理得,∠AOC =2∠D =96°.7. C 【解析】如解图,连接OC ,∵AB ∥CD ,∴∠B =∠BCD =25°,∴∠AOC =50°,∵CD =OD ,OD =OC ,∴OC =OD =CD ,∴△COD 为等边三角形,∴∠COD =60°,∴∠AOD =∠AOC +∠COD =110°.第7题解图8. D 【解析】∵OC ⊥AB ,∴点C 是AB ︵的中点,即AC ︵=BC ︵.∴∠BOC =∠AOC =2∠ADC =60°. 9. B 【解析】∵AB ︵=CD ︵,∴∠COD =∠AOB =40°,∴∠BOC =100°,∴∠BPC =12∠BOC =50°.10. C 【解析】∵∠BAC =120°,AB =AC ,∴∠BCA =12×(180°-120°)=30°.∴∠D =∠BCA =30°.∵BD为⊙O 的直径,∴∠BAD =90°.在Rt △BAD 中,BD =AD cos30°=632=4 3. 11. D 【解析】如解图,连接BD ,∵AB 为⊙O 的直径,∴∠ACB =∠ADB =90°,在Rt △ABC 中,∵∠CAB =30°,∴AB =2CB =6,∵CD 平分∠ACB ,∴∠BCD =45°,∵∠BAD =∠BCD =45°,∴△ABD 为等腰直角三角形,∴AD =22AB =22×6=3 2.第11题解图12. A 【解析】∵∠BFC =20°,∴∠BAC =2∠BFC =40°,∵AB =AC ,∴∠ABC =∠ACB =12(180°-40°)=70°.又∵EF 是线段AB 的垂直平分线,∴AD =BD ,∴∠ABD =∠BAC =40°,∴∠DBC =∠ABC -∠ABD =70°-40°=30°.13. A 【解析】如解图,连接OC 、CF .∵∠B =40°,∠ACB =60°,∴∠BAC =80°,∠AFC =∠ABC =40°,∵点F 是弧BC ︵的中点,∴∠BAF =∠CAF =40°,∴∠COF =2∠CAF =80°,∵OF =OC ,∴∠OFC =12(180°-80°)=50°,∴∠AFE =∠OFC -∠AFC =10°.第13题解图14. D 【解析】如解图,连接DO 并延长,交⊙O 于点G ,连接EG 、FG ,则∠DFG =∠DEG =90°,又∵∠A +∠DFE =90°,∠GFE +∠DFE =90°,∴∠A =∠GFE .则GE =BC =4.∵⊙O 的半径为3,∴DG =6.在Rt △DEG 中,DE =DG 2-GE 2=62-42=2 5.第14题解图15. C 【解析】如解图,作BM ⊥AC 于点M ,DN ⊥AC 于点N ,则BM ∥DN ,∴△BME ∽△DNE ,∴MENE =BM DN ,∵∠ACB =∠ACD =60°,∴∠CBM =∠CDN =30°,∴CM =12BC =322,CN =12CD =2,∴BM =3CM =362,DN =3CN =6,∴MN =CM -CN =122,∴ME NE =32,∴EN =25MN =25,∴CE =CN +EN =2+25=625.第15题解图16. 20 【解析】∵AB 为⊙O 的直径,点C 在⊙O 上,且OC ⊥AB ,∴∠ADC =12∠AOC =45°.∵∠AEC=65°,且∠AEC 是△ADE 的一个外角,∴∠BAD =∠AEC -∠ADC =20°.17. 2 【解析】如解图,连接OA 、OC ,∵∠CBA =45°,∴∠AOC =90°.又∵OA =OC =2,∴AC =2 2.在Rt △ACD 中,∠CDA =90°,∠CAD =30°,∴CD =AC ·sin30°= 2.第17题解图18. 105°或15° 【解析】如解图,连接OC ,OA ,OB .∵OC =OA =AC =5,∴△OAC 是等边三角形,∴∠CAO =60°,∵OA =OB =5,AB =52,∴OA 2+OB 2=AB 2,∴△OAB 是等腰直角三角形,∠OAB =45°,点C 的位置有两种情况,如解图①时,∠BAC =∠CAO +∠OAB =60°+45°=105°;如解图②时,∠BAC =∠CAO -∠OAB =60°-45°=15°.综上所述,∠BAC 的度数是105°或15°.第18题解图点对线·板块内考点衔接1. A 【解析】如解图,连接OC .∵四边形OBCD 是平行四边形,OD =OB ,∴四边形OBCD 是菱形.∴OD =OC =CD .∵AD 是⊙O 的直径,∴∠ACD =90°.∵CD ∥OB ,∴CD =2OP ,OB ⊥AC .故B 、C 选项正确.∵△CBP ≌△COP (HL),∴BP =OP .故D 选项正确.第1题解图2. B 【解析】如解图,连接OA ,OB ,OC ,OE ,∵AB =BC =CE ,∴AB ︵=BC ︵=CE ︵,∠1=∠2=∠3,在四边形BCDE 中,∵∠D =130°,∴∠CBE =50°,∠2=2∠CBE =100°,∴∠1=∠3=∠2=100°,∠AOE=360°-3×100°=60°,∴∠ABE =12∠AOE =30°.第2题解图3. C 【解析】∵∠AEB +∠AEC =∠D +∠AEC =180°,∠D =80°,∴∠AEB =∠D =80°.∵四边形ABCD是菱形,∴∠B =∠D =80°,AB =BC ,∴∠B =∠AEB .∴∠BAE =180°-2∠B =20°,∠BAC =∠ACB =12(180°-∠B )=50°.∴∠EAC =∠BAC -∠BAE =30°.4. 52 【解析】如解图,四边形ABCD 为正方形,BD 为⊙O 的直径,OA 为半径,则OA =OB =5,OA ⊥OB ,∴AB = OA 2+OB 2=52+52=5 2.第4题解图5. 174【解析】如解图,延长AO 至C 点,过点D 作DF ⊥AC 于点F ,延长FD 交⊙D 于点P ′,连接AP ′,OP ′,要使△AOP 面积最大,则只需AO 边上的高最大,此时P ′满足条件,即P ′F 为△AOP 的AO 边上最大的高.∵DF =AD ·CD AC =4×342+32=125,∴P ′F =DF +DP ′=125+1=175,AO =12AC =52,∴△AOP 的最大面积为12AO ·P ′F =12×52×175=174.第5题解图点对面·跨板块考点迁移1. D 【解析】如解图,连接AC 、AO ,得到等腰三角形AOC ,过A 点作AD ⊥OC ,垂足为点D ,∴∠CAD =12∠CAO =∠OBC ,∵点C 坐标为(0,2),∴CD =OD =1,∴在Rt △ACD 中,AD =AC 2-CD 2=32-12=22,∴tan ∠OBC =tan ∠CAD =CD AD =122=24.第1题解图。

圆的基本性质练习含答案详解

圆的基本性质练习含答案详解

圆的根本性质考点1 对称性圆既是________①_____对称图形,又是______②________对称图形。

任何一条直径所在的直线都是它的____③_________。

它的对称中心是_____④_______。

同时圆又具有旋转不变性。

温馨提示:轴对称图形的对称轴是一条直线,因此在谈及圆的对称轴时不能说圆的对称轴是直径。

考点2 垂径定理定理:垂直于弦的直径平分______⑤______并且平分弦所对的两条___⑥________。

常用推论:平分弦〔不是直径〕的直径垂直于______⑦_______,并且平分弦所对的两条_____⑧___________。

温馨提示:垂径定理是中考中的重点考察内容,每年根本上都以选择或填空的形式出现,一般分值都在3分左右,这个题目难度不大,只要在平时的练习中,多注意总结它所用的数学方法或数学思想等,以及常用的辅助线的作法。

在这里总结一下:〔1〕垂径定理和勾股定理的有机结合是计算弦长、半径等问题的有效方法,其关键是构造直角三角形;〔2〕常用的辅助线:连接半径;过顶点作垂线;〔3〕另外要注意答案不唯一的情况,假设点的位置不确定,那么要考虑优弧、劣弧的区别;〔4〕为了更好理解垂径定理,一条直线只要满足:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧;考点3 圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧______⑨______,所对的弦也_____⑩________。

常用的还有:〔1〕在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角___○11____________,所对的弦_____○12___________。

〔2〕在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角____○13___________,所对的弧______○14 __________。

方法点拨:为了便于理解和记忆,圆心角、弧、弦之间的关系定理,可以归纳为:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应地其余各组量也都相等。

初中圆的基本性质解答难题专练含详细答案

初中圆的基本性质解答难题专练含详细答案

初中圆的基本性质解答难题专练含详细答案一.解答题(共30小题)1.(2014?襄阳)如图,在正方形ABCD中,AD=2,E是AB的中点,将△BEC绕点B逆时针旋转90°后,点E落在CB的延长线上点F处,点C落在点A处.再将线段AF绕点F顺时针旋转90°得线段FG,连接EF,CG.(1)求证:EF∥CG;(2)求点C,点A在旋转过程中形成的,与线段CG所围成的阴影部分的面积.2.(2014?哈尔滨)如图,⊙O是△ABC的外接圆,弦BD交AC于点E,连接CD,且AE=DE,BC=CE.(1)求∠ACB的度数;(2)过点O作OF⊥AC于点F,延长FO交BE于点G,DE=3,EG=2,求AB的长.3.(2014?河南)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为_________ ;②线段AD,BE之间的数量关系为_________ .(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.4.(2014?大庆)如图①,已知等腰梯形ABCD的周长为48,面积为S,AB∥CD,∠ADC=60°,设AB=3x.(1)用x表示AD和CD;(2)用x表示S,并求S的最大值;(3)如图②,当S取最大值时,等腰梯形ABCD的四个顶点都在⊙O上,点E和点F分别是AB和CD的中点,求⊙O的半径R的值.5.(2013?玉溪)如图,AB是⊙O的直径,弦CD交AB于点E,OF⊥AC于点F,(1)请探索OF和BC的关系并说明理由;(2)若∠D=30°,BC=1时,求圆中阴影部分的面积.(结果保留π)6.(2013?贵阳)已知:如图,AB是⊙O的弦,⊙O的半径为10,OE、OF分别交AB于点E、F,OF的延长线交⊙O于点D,且AE=BF,∠EOF=60°.(1)求证:△OEF是等边三角形;(2)当AE=OE时,求阴影部分的面积.(结果保留根号和π)7.(2013?厦门)(1)甲市共有三个郊县,各郊县的人数及人均耕地面积如表所示:郊县人数/万人均耕地面积/公顷A 20 0.15B 5 0.20C 10 0.18求甲市郊县所有人口的人均耕地面积(精确到0.01公顷);(2)先化简下式,再求值:,其中,;(3)如图,已知A,B,C,D是⊙O上的四点,延长DC,AB相交于点E,若BC=BE.求证:△ADE是等腰三角形.8.(2013?梅州)如图,在矩形ABCD中,AB=2DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD的延长线于点F,设DA=2.(1)求线段EC的长;(2)求图中阴影部分的面积.9.(2013?佛山)如图,圆锥的侧面展开图是一个半圆,求母线AB与高AO的夹角.参考公式:圆锥的侧面积S=πrl,其中r为底面半径,l为母线长.10.(2013?龙岩)如图①,在矩形纸片ABCD中,AB=+1,AD=.(1)如图②,将矩形纸片向上方翻折,使点D恰好落在AB边上的D′处,压平折痕交CD于点E,则折痕AE的长为_________ ;(2)如图③,再将四边形BCED′沿D′E向左翻折,压平后得四边形B′C′ED′,B′C′交AE于点F,则四边形B′FED′的面积为_________ ;(3)如图④,将图②中的△AED′绕点E顺时针旋转α角,得△A′ED″,使得EA′恰好经过顶点B,求弧D′D″的长.(结果保留π)11.(2012?上海)如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB 上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=1时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域.12.(2012?台州)已知,如图1,△ABC中,BA=BC,D是平面内不与A、B、C重合的任意一点,∠ABC=∠DBE,BD=BE.(1)求证:△ABD≌△CBE;(2)如图2,当点D是△ABC的外接圆圆心时,请判断四边形BDCE的形状,并证明你的结论.13.(2012?崇左)如图,正方形ABCD的边长为1,其中弧DE、弧EF、弧FG的圆心依次为点A、B、C.(1)求点D沿三条弧运动到点G所经过的路线长;(2)判断直线GB与DF的位置关系,并说明理由.14.(2012?杭州)如图,是数轴的一部分,其单位长度为a,已知△ABC中,AB=3a,BC=4a,AC=5a.(1)用直尺和圆规作出△ABC(要求:使点A,C在数轴上,保留作图痕迹,不必写出作法);(2)记△ABC的外接圆的面积为S圆,△ABC的面积为S△,试说明>π.15.(2012?镇江)在平面直角坐标系xOy中,已知点A(0,2),直线OP位于一、三象限,∠AOP=45°(如图1),设点A关于直线OP的对称点为B.(1)写出点B的坐标;(2)过原点O的直线l从OP的位置开始,绕原点O顺时针旋转.①如图1,当直线l顺时针旋转10°到l1的位置时,点A关于直线l1的对称点为C,则∠BOC的度数是_________ ,线段OC的长为_________ ;②如图2,当直线l顺时针旋转55°到l2的位置时,点A关于直线l2的对称点为D,则∠BOD的度数是_________ ;③直线l顺时针旋转n°(0<n≤90),在这个运动过程中,点A关于直线l的对称点所经过的路径长为_________ (用含n的代数式表示).16.(2012?泰州)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC 的顶点A、B、C在小正方形的顶点上,将△ABC向下平移4个单位、再向右平移3个单位得到△A1B1C1,然后将△A1B1C1绕点A1顺时针旋转90°得到△A1B2C2.(1)在网格中画出△A1B1C1和△A1B2C2;(2)计算线段AC在变换到A1C2的过程中扫过区域的面积(重叠部分不重复计算)17.(2012?福州)(1)如图1,点E、F在AC上,AB∥CD,AB=CD,AE=CF,求证:△ABF≌△CDE(2)如图2,方格纸中的每个小方格是边长为1个单位长度的正方形.①画出将Rt△ABC向右平移5个单位长度后的Rt△A1B1C1②再将Rt△A1B1C1绕点C1顺时针旋转90°,画出旋转后的Rt△A2B2C2,并求出旋转过程中线段A1C1所扫过的面积(结果保留π)18.(2011?北京)如图,在平面直角坐标系xOy中,我们把由两条射线AE,BF 和以AB为直径的半圆所组成的图形叫作图形C(注:不含AB线段).已知A(﹣1,0),B(1,0),AE∥BF,且半圆与y轴的交点D在射线AE的反向延长线上.(1)求两条射线AE,BF所在直线的距离;(2)当一次函数y=x+b的图象与图形C恰好只有一个公共点时,写出b的取值范围;当一次函数y=x+b的图象与图形C恰好只有两个公共点时,写出b的取值范围;(3)已知?AMPQ(四个顶点A,M,P,Q按顺时针方向排列)的各顶点都在图形C 上,且不都在两条射线上,求点M的横坐标x的取值范围.19.(2011?宁波)阅读下面的情景对话,然后解答问题:(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题还是假命题?(2)在Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a:b:c;(3)如图,AB是⊙O的直径,C是⊙O上一点(不与点A、B重合),D是半圆的中点,C、D在直径AB的两侧,若在⊙O内存在点E,使AE=AD,CB=CE.①求证:△ACE是奇异三角形;②当△ACE是直角三角形时,求∠AOC的度数.20.(2011?泰州)如图,以点O为圆心的两个同心圆中,矩形ABCD的边BC为大圆的弦,边AD与小圆相切于点M,OM的延长线与BC相交于点N.(1)点N是线段BC的中点吗?为什么?(2)若圆环的宽度(两圆半径之差)为6cm,AB=5cm,BC=10cm,求小圆的半径.21.(2011?广州)如图1,⊙O中AB是直径,C是⊙O上一点,∠ABC=45°,等腰直角三角形DCE中∠DCE是直角,点D在线段AC上.(1)证明:B、C、E三点共线;(2)若M是线段BE的中点,N是线段AD的中点,证明:MN=OM;(3)将△DCE绕点C逆时针旋转α(0°<α<90°)后,记为△D1CE1(图2),若M 1是线段BE1的中点,N1是线段AD1的中点,M1N1=OM1是否成立?若是,请证明;若不是,说明理由.22.(2011?苏州)如图①,小慧同学把一个正三角形纸片(即△OAB)放在直线l1上.OA边与直线l1重合,然后将三角形纸片绕着顶点A按顺寸针方向旋转120°,此时点O运动到了点O1处,点B运动到了点B1处;小慧又将三角形纸片AO1B1,绕点B1按顺寸针方向旋转120°,此时点A运动到了点A1处,点O1运动到了点O2处(即顶点O经过上述两次旋转到达O2处).小慧还发现:三角形纸片在上述两次旋转的过程中.顶点O运动所形成的图形是两段圆弧,即和,顶点O所经过的路程是这两段圆弧的长度之和,并且这两段圆弧与直线l1围成的图形面积等于扇形A001的面积、△AO1B1的面积和扇形B1O1O2的面积之和.小慧进行类比研究:如图②,她把边长为1的正方形纸片0ABC放在直线l2上,0A边与直线l2重合,然后将正方形纸片绕着顶点A按顺时针方向旋转90°,此时点O运动到了点O1处(即点B处),点C运动到了点C1处,点B运动到了点B2处,小慧又将正方形纸片AO1C1B1绕顶点B1按顺时针方向旋转90°,….按上述方法经过若干次旋转后,她提出了如下问题:问题①:若正方形纸片0ABC按上述方法经过3次旋转,求顶点0经过的路程,并求顶点O在此运动过程中所形成的图形与直线l2围成图形的面积;若正方形纸片OABC按上述方法经过5次旋转.求顶点O经过的路程;问题②:正方形纸片OABC按上述方法经过多少次旋转,顶点0经过的路程是?23.(2010?崇左)我市为了纪念龙州起义80周年,对红八军纪念广场进行了改造,改造后安装了八个大理石球.小明想知道其中一个球的半径,于是找了两块厚10cm的砖塞在球的两侧(如图),并量得两砖之间的距离是60cm.请你在图中利用所学的几何知识,求出大理石球的半径(要写出计算过程).24.(2010?三明)正方形ABCD的四个顶点都在⊙O上,E是⊙O上的一点.(1)如图①,若点E在上,F是DE上的一点,DF=BE.求证:△ADF≌△ABE;(2)在(1)的条件下,小明还发现线段DE、BE、AE之间满足等量关系:DE﹣BE=AE.请你说明理由;(3)如图②,若点E在上.写出线段DE、BE、AE之间的等量关系.(不必证明)25.(2010?本溪)如图①,在直角坐标系中,点A的坐标为(1,0),以OA为边在第一象限内作正方形OABC,点D是x轴正半轴上一动点(OD>1),连接BD,以BD为边在第一象限内作正方形DBFE,设M为正方形DBFE的中心,直线MA交y轴于点N.如果定义:只有一组对角是直角的四边形叫做损矩形.(1)试找出图1中的一个损矩形;(2)试说明(1)中找出的损矩形的四个顶点一定在同一个圆上;(3)随着点D位置的变化,点N的位置是否会发生变化?若没有发生变化,求出点N的坐标;若发生变化,请说明理由;(4)在图②中,过点M作MG⊥y轴于点G,连接DN,若四边形DMGN为损矩形,求D点坐标.26.(2010?新疆)圆心角都是90°的扇形OAB与扇形OCD如图所示那样叠放在一起,连接AC、BD.(1)求证:△AOC≌△BOD;(2)若OA=3cm,OC=1cm,求阴影部分的面积.27.(2009?永州)问题探究:(1)如图①所示是一个半径为,高为4的圆柱体和它的侧面展开图,AB是圆柱的一条母线,一只蚂蚁从A点出发沿圆柱的侧面爬行一周到达B点,求蚂蚁爬行的最短路程.(探究思路:将圆柱的侧面沿母线AB剪开,它的侧面展开图如图①中的矩形ABB′A′,则蚂蚁爬行的最短路程即为线段AB′的长);(2)如图②所示是一个底面半径为,母线长为4的圆锥和它的侧面展开图,PA 是它的一条母线,一只蚂蚁从A点出发沿圆锥的侧面爬行一周后回到A点,求蚂蚁爬行的最短路程;(3)如图③所示,在②的条件下,一只蚂蚁从A点出发沿圆锥的侧面爬行一周到达母线PA上的一点,求蚂蚁爬行的最短路程.28.(2009?陕西)问题探究(1)在图①的半径为R的半圆O内(含弧),画出一边落在直径MN上的面积最大的正三角形,并求出这个正三角形的面积?(2)在图②的半径为R的半圆O内(含弧),画出一边落在直径MN上的面积最大的正方形,并求出这个正方形的面积?问题解决(3)如图③,现有一块半径R=6的半圆形钢板,是否可以裁出一边落在MN上的面积最大的矩形?若存在,请说明理由,并求出这个矩形的面积;若不存在,说明理由?29.(2009?衢州)如图,AD是⊙O的直径.(1)如图①,垂直于AD的两条弦B1C1,B2C2把圆周4等分,则∠B1的度数是_________ °,∠B2的度数是_________ °;(2)如图②,垂直于AD的三条弦B1C1,B2C2,B3C3把圆周6等分,分别求∠B1,∠B2,∠B3的度数;(3)如图③,垂直于AD的n条弦B1C1,B2C2,B3C3,…,B n C n把圆周2n等分,请你用含n的代数式表示∠B n的度数(只需直接写出答案).30.(2009?河北)如图1至图5,⊙O均作无滑动滚动,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O与线段AB或BC相切于端点时刻的位置,⊙O的周长为c.阅读理解:(1)如图1,⊙O从⊙O1的位置出发,沿AB滚动到⊙O2的位置,当AB=c时,⊙O 恰好自转1周;(2)如图2,∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A﹣B﹣C滚动,在点B处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕点B旋转的角∠O1BO2=n°,⊙O在点B处自转周.实践应用:(1)在阅读理解的(1)中,若AB=2c,则⊙O自转_________ 周;若AB=l,则⊙O自转_________ 周.在阅读理解的(2)中,若∠ABC=120°,则⊙O在点B处自转_________ 周;若∠ABC=60°,则⊙O在点B处自转_________ 周;(2)如图3,∠ABC=90°,AB=BC=c.⊙O从⊙O1的位置出发,在∠ABC外部沿A ﹣B﹣C滚动到⊙O4的位置,⊙O 自转_________ 周.拓展联想:(1)如图4,△ABC的周长为l,⊙O从与AB相切于点D的位置出发,在△ABC 外部,按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,⊙O自转了多少周?请说明理由;(2)如图5,多边形的周长为l,⊙O从与某边相切于点D的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D的位置,直接写出⊙O自转的周数.初中圆的基本性质解答难题专练含详细答案参考答案与试题解析一.解答题(共30小题)1.(2014?襄阳)如图,在正方形ABCD中,AD=2,E是AB的中点,将△BEC绕点B逆时针旋转90°后,点E落在CB的延长线上点F处,点C落在点A处.再将线段AF绕点F顺时针旋转90°得线段FG,连接EF,CG.(1)求证:EF∥CG;(2)求点C,点A在旋转过程中形成的,与线段CG所围成的阴影部分的面积.考点:正方形的性质;全等三角形的判定与性质;勾股定理;扇形面积的计算.专题:几何综合题.分析:(1)根据正方形的性质可得AB=BC=AD=2,∠ABC=90°,再根据旋转变化只改变图形的位置不改变图形的形状可得△ABF和△CBE全等,根据全等三角形对应角相等可得∠FAB=∠ECB,∠ABF=∠CBE=90°,全等三角形对应边相等可得AF=EC,然后求出∠AFB+∠FAB=90°,再求出∠CFG=∠FAB=∠ECB,根据内错角相等,两直线平行可得EC∥FG,再根据一组对边平行且相等的四边形是平行四边形判断出四边形EFGC是平行四边形,然后根据平行四边形的对边平行证明;(2)求出FE、BE的长,再利用勾股定理列式求出AF的长,根据平行四边形的性质可得△FEC和△CGF全等,从而得到S△FEC=S△CGF,再根据S阴影=S扇形BAC+S△ABF+S△FGC﹣S扇形FAG列式计算即可得解.解答:(1)证明:在正方形ABCD中,AB=BC=AD=2,∠ABC=90°,∵△BEC绕点B逆时针旋转90°得到△ABF,∴△ABF≌△CBE,∴∠FAB=∠ECB,∠ABF=∠CBE=90°,AF=CE,∴∠AFB+∠FAB=90°,∵线段AF绕点F顺时针旋转90°得线段FG,∴∠AFB+∠CFG=∠AFG=90°,∴∠CFG=∠FAB=∠ECB,∴EC∥FG,∵AF=CE,AF=FG,∴EC=FG,∴四边形EFGC是平行四边形,∴EF∥CG;(2)解:∵AD=2,E是AB的中点,∴BF=BE=AB=×2=1,∴AF===,由平行四边形的性质,△FEC≌△CGF,∴S△FEC=S△CGF,∴S阴影=S扇形BAC+S△ABF+S△FGC﹣S扇形FAG,=+×2×1+×(1+2)×1﹣,=﹣.点评:本题考查了正方形的性质,全等三角形的判定与性质,旋转变换的性质,勾股定理的应用,扇形的面积计算,综合题,但难度不大,熟记各性质并准确识图是解题的关键.2.(2014?哈尔滨)如图,⊙O是△ABC的外接圆,弦BD交AC于点E,连接CD,且AE=DE,BC=CE.(1)求∠ACB的度数;(2)过点O作OF⊥AC于点F,延长FO交BE于点G,DE=3,EG=2,求AB的长.考点:三角形的外接圆与外心;全等三角形的判定与性质;等边三角形的判定与性质;勾股定理.专题:几何图形问题.分析:(1)首先得出△AEB≌△DEC,进而得出△EBC为等边三角形,即可得出答案;(2)由已知得出EF,BC的长,进而得出CM,BM的长,再求出AM的长,再由勾股定理求出AB的长.解答:(1)证明:在△AEB和△DEC中,∴△AEB≌△DEC(ASA),∴EB=EC,又∵BC=CE,∴BE=CE=BC,∴△EBC为等边三角形,∴∠ACB=60°;(2)解:∵OF⊥AC,∴AF=CF,∵△EBC为等边三角形,∴∠GEF=60°,∴∠EGF=30°,∵EG=2,∴EF=1,又∵AE=ED=3,∴CF=AF=4,∴AC=8,EC=5,∴BC=5,作BM⊥AC于点M,∵∠BCM=60°,∴∠MBC=30°,∴CM=,BM==,∴AM=AC﹣CM=,∴AB==7.点评:此题主要考查了全等三角形的判定与性质以及等边三角形的性质和勾股定理以及锐角三角函数关系等知识,得出CM,BM的长是解题关键.3.(2014?河南)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为60°;②线段AD,BE之间的数量关系为AD=BE .(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.考点:圆的综合题;全等三角形的判定与性质;等腰三角形的性质;等边三角形的性质;直角三角形斜边上的中线;正方形的性质;圆周角定理.专题:综合题;探究型.分析:(1)由条件易证△ACD≌△BCE,从而得到:AD=BE,∠ADC=∠BEC.由点A,D,E在同一直线上可求出∠ADC,从而可以求出∠AEB的度数.(2)仿照(1)中的解法可求出∠AEB的度数,证出AD=BE;由△DCE为等腰直角三角形及CM为△DCE中DE边上的高可得CM=DM=ME,从而证到AE=2CH+BE.(3)由PD=1可得:点P在以点D为圆心,1为半径的圆上;由∠BPD=90°可得:点P在以BD为直径的圆上.显然,点P是这两个圆的交点,由于两圆有两个交点,接下来需对两个位置分别进行讨论.然后,添加适当的辅助线,借助于(2)中的结论即可解决问题.解答:解:(1)①如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.故答案为:60°.②∵△ACD≌△BCE,∴AD=BE.故答案为:AD=BE.(2)∠AEB=90°,AE=BE+2CM.理由:如图2,∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.(3)∵PD=1,∴点P在以点D为圆心,1为半径的圆上.∵∠BPD=90°,∴点P在以BD为直径的圆上.∴点P是这两圆的交点.①当点P在如图3①所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交BP于点E,如图3①.∵四边形ABCD是正方形,∴∠ADB=45°.AB=AD=DC=BC=,∠BAD=90°.∴BD=2.∵DP=1,∴BP=.∵A、P、D、B四点共圆,∴∠APB=∠ADB=45°.∴△PAE是等腰直角三角形.又∵△BAD是等腰直角三角形,点B、E、P共线,AH⊥BP,∴由(2)中的结论可得:BP=2AH+PD.∴=2AH+1.∴AH=.②当点P在如图3②所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交PB的延长线于点E,如图3②.同理可得:BP=2AH﹣PD.∴=2AH﹣1.∴AH=.综上所述:点A到BP 的距离为或.点评:本题考查了等边三角形的性质、正方形的性质、等腰三角形的性质、直角三角形斜边上的中线等于斜边的一半、圆周角定理、三角形全等的判定与性质等知识,考查了运用已有的知识和经验解决问题的能力,是体现新课程理念的一道好题.而通过添加适当的辅助线从而能用(2)中的结论解决问题是解决第(3)的关键.4.(2014?大庆)如图①,已知等腰梯形ABCD的周长为48,面积为S,AB∥CD,∠ADC=60°,设AB=3x.(1)用x表示AD和CD;(2)用x表示S,并求S的最大值;(3)如图②,当S取最大值时,等腰梯形ABCD的四个顶点都在⊙O上,点E和点F分别是AB和CD的中点,求⊙O的半径R的值.考点:圆的综合题;等腰三角形的性质;含30度角的直角三角形;勾股定理;垂径定理.专题:综合题.分析:(1)作AH⊥CD于H,BG⊥CD于G,如图①,易得四边形AHGB为矩形,则HG=AB=3x,再根据等腰梯形的性质得AD=BC,DH=CG,在Rt△ADH中,设DH=t,根据含30度的直角三角形三边的关系得AD=2t,AH=t,然后根据等腰梯形ABCD的周长为48得3x+2t+t+3x+t+2t=48,解得t=8﹣x,于是可得AD=18﹣2x,CD=16+x;(2)根据梯形的面积公式计算可得到S=﹣2x2+8x+64,再进行配方得S=﹣2(x﹣2)2+72,然后根据二次函数的最值问题求解;(3)连结OA、OD,如图②,由(2)得到x=2时,则AB=6,CD=18,等腰梯形的高为6,所以AE=3,DF=9,由于点E和点F分别是AB和CD的中点,根据等腰梯形的性质得直线EF为等腰梯形ABCD的对称轴,所以EF垂直平分AB和CD,EF为等腰梯形ABCD的高,即EF=6,根据垂径定理的推论得等腰梯形ABCD的外接圆的圆心O在EF上,设OE=a,则OF=6﹣a,在Rt△AOE中,利用勾股定理得a2+32=R2,在Rt△ODF中,利用勾股定理得(6﹣a)2+92=R2,然后消去R得到a的方程a2+32=(6﹣a)2+92,解得a=5,最后利用R2=(5)2+32求解.解答:解:(1)作AH⊥CD于H,BG⊥CD于G,如图①,则四边形AHGB为矩形,∴HG=AB=3x,∵四边形ABCD为等腰梯形,∴AD=BC,DH=CG,在Rt△ADH中,设DH=t,∵∠ADC=60°,∴∠DAH=30°,∴AD=2t,AH=t,∴BC=2t,CG=t,∵等腰梯形ABCD的周长为48,∴3x+2t+t+3x+t+2t=48,解得t=8﹣x,∴AD=2(8﹣x)=16﹣2x,CD=8﹣x+3x+8﹣x=16+x;(2)S=(AB+CD)?AH=(3x+16+x)?(8﹣x)=﹣2x 2+8x+64,∵S=﹣2(x﹣2)2+72,∴当x=2时,S有最大值72;(3)连结OA、OD,如图②,当x=2时,AB=6,CD=16+2=18,等腰梯形的高为×(8﹣2)=6,则AE=3,DF=9,∵点E和点F分别是AB和CD的中点,∴直线EF为等腰梯形ABCD的对称轴,∴EF垂直平分AB和CD,EF为等腰梯形ABCD的高,即EF=6,∴等腰梯形ABCD的外接圆的圆心O在EF上,设OE=a,则OF=6﹣a,在Rt△AOE中,∵OE2+AE2=OA2,∴a2+32=R2,在Rt△ODF中,∵OF2+DF2=OD2,∴(6﹣a)2+92=R2,∴a2+32=(6﹣a)2+92,解得a=5,∴R2=(5)2+32=84,∴R=2.点评:本题考查了圆的综合题:熟练掌握垂径定理及其推论和等腰梯形的性质;会运用二次函数的性质解决最值问题;熟练运用勾股定理和含30度的直角三角形三边的关系进行计算.5.(2013?玉溪)如图,AB是⊙O的直径,弦CD交AB于点E,OF⊥AC于点F,(1)请探索OF和BC的关系并说明理由;(2)若∠D=30°,BC=1时,求圆中阴影部分的面积.(结果保留π)考点:垂径定理;三角形中位线定理;圆周角定理;扇形面积的计算.分析:(1)先根据垂径定理得出AF=CF,再根据AO=BO得出OF是△ABC的中位线,由三角形的中位线定理即可得出结论;(2)连接OC,由(1)知OF=,再根据直角三角形的性质得出AB及AC的长,根据扇形的面积公式求出扇形AOC的度数,根据S阴影=S扇形AOC﹣S△AOC即可得出结论.解答:解:(1)OF∥BC,OF=BC.理由:由垂径定理得AF=CF.∵AO=BO,∴OF是△ABC的中位线.∴OF∥BC,OF=BC.(2)连接OC.由(1)知OF=.∵AB是⊙O的直径,∴∠ACB=90°.∵∠D=30°,∴∠A=30°.∴AB=2BC=2.∴AC=.∴S△AOC =×AC×OF=.∵∠AOC=120°,OA=1,∴S扇形AOC ==.∴S阴影=S扇形AOC﹣S△AOC =﹣.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.6.(2013?贵阳)已知:如图,AB是⊙O的弦,⊙O的半径为10,OE、OF分别交AB于点E、F,OF的延长线交⊙O于点D,且AE=BF,∠EOF=60°.(1)求证:△OEF是等边三角形;(2)当AE=OE时,求阴影部分的面积.(结果保留根号和π)考点:垂径定理;等边三角形的判定与性质;扇形面积的计算.分析:(1)作OC⊥AB于点C,由OC⊥AB可知AC=BC,再根据AE=BF可知EC=FC,因为OC⊥EF,所以OE=OF,再由∠EOF=60°即可得出结论;(2)在等边△OEF中,因为∠OEF=∠EOF=60°,AE=OE,所以∠A=∠AOE=30°,故∠AOF=90°,再由AO=10可求出OF的长,根据S阴影=S 扇形AOD﹣S△AOF即可得出结论.解答:(1)证明:作OC⊥AB于点C,∵OC⊥AB,∴AC=BC,∵AE=BF,∴EC=FC,∵OC⊥EF,∴OE=OF,∵∠EOF=60°,∴△OEF是等边三角形;(2)解:∵在等边△OEF中,∠OEF=∠EOF=60°,AE=OE,∴∠A=∠AOE=30°,∴∠AOF=90°,∵AO=10,∴OF=,∴S△AOF =××10=,S扇形AOD =×102=25π,∴S阴影=S扇形AOD﹣S△AOF =25π﹣.点评:本题考查的是垂径定理,涉及到等边三角形的判定与性质、直角三角形的性质及扇形的面积等知识,难度适中.7.(2013?厦门)(1)甲市共有三个郊县,各郊县的人数及人均耕地面积如表所示:郊县人数/万人均耕地面积/公顷A 20 0.15B 5 0.20C 10 0.18求甲市郊县所有人口的人均耕地面积(精确到0.01公顷);(2)先化简下式,再求值:,其中,;(3)如图,已知A,B,C,D是⊙O上的四点,延长DC,AB相交于点E,若BC=BE.求证:△ADE是等腰三角形.考点:圆周角定理;分式的化简求值;等腰三角形的判定;加权平均数.分析:(1)求出总面积和总人口,再相除即可;(2)先算加法,再化成最简分式,再代入求出即可;(3)求出∠A=∠BCE=∠E,即可得出AD=DE.解答:解:(1)甲市郊县所有人口的人均耕地面积是≈0.17(公顷);(2)原式===x﹣y,当x=+1,y=2﹣2时,原式=+1﹣(2﹣2)=3﹣;(3)证明:∵A、D、C、B四点共圆,∴∠A=∠BCE,∵BC=BE,∴∠BCE=∠E,∴∠A=∠E,∴AD=DE,即△ADE是等腰三角形.点评:本题考查了分式求值,四点共圆,等腰三角形的性质和判定,求平均数等知识点的应用,主要考查学生的推理和计算能力.8.(2013?梅州)如图,在矩形ABCD中,AB=2DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD的延长线于点F,设DA=2.(1)求线段EC的长;(2)求图中阴影部分的面积.考点:扇形面积的计算;含30度角的直角三角形;勾股定理;矩形的性质.分析:(1)根据扇形的性质得出AB=AE=4,进而利用勾股定理得出DE的长,即可得出答案;(2)利用锐角三角函数关系得出∠DEA=30°,进而求出图中阴影部分的面积为:S扇形FAB﹣S△DAE﹣S扇形EAB求出即可.解答:解:(1)∵在矩形ABCD中,AB=2DA,DA=2,∴AB=AE=4,∴DE==2,∴EC=CD﹣DE=4﹣2;(2)∵sin∠DEA==,∴∠DEA=30°,∴∠EAB=30°,∴图中阴影部分的面积为:S扇形FAB﹣S△DAE﹣S扇形EAB=﹣×2×2﹣=﹣2.点评:此题主要考查了扇形的面积计算以及勾股定理和锐角三角函数关系等知识,根据已知得出DE的长是解题关键.9.(2013?佛山)如图,圆锥的侧面展开图是一个半圆,求母线AB与高AO的夹角.参考公式:圆锥的侧面积S=πrl,其中r为底面半径,l为母线长.考点:圆锥的计算.分析:设出圆锥的半径与母线长,利用圆锥的底面周长等于侧面展开图的弧长得到圆锥的半径与母线长,进而表示出母线与高的夹角的正弦值,也就求出了夹角的度数.解答:解:设圆锥的母线长为l,底面半径为r,则:πl=2πr,∴l=2r,∴母线与高的夹角的正弦值==,∴母线AB与高AO的夹角30°.点评:此题主要考查了圆锥的侧面展开图的弧长等于圆锥的底面周长;注意利用一个角相应的三角函数值求得角的度数.10.(2013?龙岩)如图①,在矩形纸片ABCD中,AB=+1,AD=.(1)如图②,将矩形纸片向上方翻折,使点D恰好落在AB边上的D′处,压平折痕交CD于点E,则折痕AE的长为;(2)如图③,再将四边形BCED′沿D′E向左翻折,压平后得四边形B′C′ED′,B′C′交AE于点F,则四边形B′FED′的面积为﹣;(3)如图④,将图②中的△AED′绕点E顺时针旋转α角,得△A′ED″,使得EA′恰好经过顶点B,求弧D′D″的长.(结果保留π)考点:翻折变换(折叠问题);矩形的性质;弧长的计算.专题:探究型.分析:(1)先根据图形反折变换的性质得出AD′,D′E的长,再根据勾股定理求出AE 的长即可;(2)由(1)知,AD′=,故可得出BD′的长,根据图形反折变换的性质可得出B′D′的长,再由等腰直角三角形的性质得出B′F的长,根据梯形的面积公式即可得出结论;(3)先根据直角三角形的性质求出∠BEC的度数,由翻折变换的性质可得出∠DEA的度数,故可得出∠AEA′=75°=∠D′ED″,由弧长公式即可得出结论.解答:解:(1)∵△ADE反折后与△AD′E重合,∴AD′=AD=D′E=DE=,∴AE===;(2)∵由(1)知AD′=,∴BD′=1,∵将四边形BCED′沿D′E向左翻折,压平后得四边形B′C′ED′,∴B′D′=BD′=1,∵由(1)知AD′=AD=D′E=DE=,。

初中数学【圆的基本性质】练习题

初中数学【圆的基本性质】练习题

初中数学【圆的基本性质】练习题一.选择题(共9小题)1.在圆中,下列命题中正确的是()A.垂直于弦的直线平分这条弦B.平分弧的直线垂直于弧所对的弦C.平分弦的直径垂直于这条弦D.平分弦所对的两条弧的直线平分这条弦2.如图,在平面直角坐标系中,点A在第一象限,⊙A与x轴相切于B,与y轴交于C(0,1),D(0,4)两点,则点A的坐标是()A.B.C.D.3.如图A,B,C是⊙O上的三个点,若∠AOC=100°,则∠ABC等于()A.50°B.80°C.100°D.130°4.如图,AB是⊙O的弦,AB=10,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是BC、AB的中点,则MN长的最大值是()A.10B.5C.10D.205.如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为()A.70°B.90°C.110°D.120°6.在Rt△ABC中,∠C=90°,AB=6,△ABC的内切圆半径为1,则△ABC的周长为()A.13B.14C.15D.167.如图所示,在⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为()A.19B.16C.18D.208.如图,AB,CD是⊙O的弦,AB⊥CD,BE是⊙O的直径.若AC=3,则DE的长是()A.3B.3.5C.2D.1.59.已知⊙O的半径为13cm,弦AB∥CD,AB=24cm,CD=10cm,则AB,CD之间的距离为()A.17cm B.7cm C.12cm D.17cm或7cm 二.填空题(共8小题)10.如图,PT切⊙O于点T,经过圆心的割线P AB交⊙O于点A和B,PT=4,P A=2,则⊙O的半径是.11.如图,⊙O中两条弦AB、CD相交于点P,已知P A=3,PB=4,PC=2,那么PD长为.12.如图,圆内接四边形ABCD中两组对边的延长线分别相交于点E,F,且∠A=45°,∠E=30°,则∠F=.13.如图,AB是⊙O的弦,AB长为8,P是⊙O上一个动点(不与A、B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为.14.如图,E是⊙O上一点,AB是⊙O的弦,OE的延长线交AB的延长线于C.如果BC =OE,∠C=40°,求∠EOA=度.15.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则BD的长为.16.如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为.17.如图,⊙O是△ABC的外接圆,BC为直径,BC=4,点E是△ABC的内心,连接AE 并延长交⊙O于点D,则DE=.三.解答题(共2小题)18.如图,以△ABC的一边AB为直径的半圆与其他两边AC,BC的交点分别为D,E,且=(1)试判断△ABC的形状,并说明理由;(2)已知半圆的半径为5,BC=12,求AD的长.19.已知:如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,G是弧AC上的任意一点,AG、DC的延长线相交于点F.求证:∠FGC=∠AGD.答案一.选择题(共9小题)1.在圆中,下列命题中正确的是()A.垂直于弦的直线平分这条弦B.平分弧的直线垂直于弧所对的弦C.平分弦的直径垂直于这条弦D.平分弦所对的两条弧的直线平分这条弦【解答】解:A、直线只有过圆心时,垂直于弦的直线平分这条弦,故选项错误;B、直线只有过圆心时,平分弧的直线垂直于弧所对的弦,故选项错误;C、被平分的弦是直径时,不一定垂直于弦,故选项错误;D、正确.故选:D.2.如图,在平面直角坐标系中,点A在第一象限,⊙A与x轴相切于B,与y轴交于C(0,1),D(0,4)两点,则点A的坐标是()A.B.C.D.【解答】解:过点A作AM⊥CD∵⊙A与x轴相切于点B,与y轴交于C(0,1),D(0,4)两点∴OC=1,CD=3,DM=CM=1.5∴OM=AB=2.5,∴圆的半径R=2.5,∴AC=2.5∴AM==2,即点A的坐标是().故选:C.3.如图A,B,C是⊙O上的三个点,若∠AOC=100°,则∠ABC等于()A.50°B.80°C.100°D.130°【解答】解:如图,在优弧上取点D,连接AD,CD,∵∠AOC=100°,∴∠ADC=∠AOC=50°,∴∠ABC=180°﹣∠ADC=130°.故选:D.4.如图,AB是⊙O的弦,AB=10,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是BC、AB的中点,则MN长的最大值是()A.10B.5C.10D.20【解答】解:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC是直径时,最大,如图,∵∠ACB=∠D=45°,AB=10,∴AD=20,∴MN=AD=10,故选:A.5.如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为()A.70°B.90°C.110°D.120°【解答】解:∵∠A=50°,∴∠BOC=2∠A=100°,∵∠B=30°,∠BOC=∠B+∠BDC,∴∠BDC=∠BOC﹣∠B=100°﹣30°=70°,∴∠ADC=180°﹣∠BDC=110°,故选:C.6.在Rt△ABC中,∠C=90°,AB=6,△ABC的内切圆半径为1,则△ABC的周长为()A.13B.14C.15D.16【解答】解:根据直角三角形的内切圆的半径公式,得(AC+BC﹣AB)=1,∴AC+BC=8.则三角形的周长=8+6=14.故选:B.7.如图所示,在⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为()A.19B.16C.18D.20【解答】解:延长AO交BC于D,作OE⊥BC于E;∵∠A=∠B=60°,∴∠ADB=60°;∴△ADB为等边三角形;∴BD=AD=AB=12;∴OD=4,又∵∠ADB=60°,∴DE=OD=2;∴BE=10;∴BC=2BE=20;故选:D.8.如图,AB,CD是⊙O的弦,AB⊥CD,BE是⊙O的直径.若AC=3,则DE的长是()A.3B.3.5C.2D.1.5【解答】解:连接AE、AD,如图,∵BE是⊙O的直径.∴∠BAE=90°,∵AB⊥CD,∴AE∥CD,∴∠ADC=∠DAE,∴=,∴DE=AC=3.故选:A.9.已知⊙O的半径为13cm,弦AB∥CD,AB=24cm,CD=10cm,则AB,CD之间的距离为()A.17cm B.7cm C.12cm D.17cm或7cm 【解答】解:①当弦AB和CD在圆心同侧时,如图1,连接OA、OC.作OF⊥CD于F,交AB于E.∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=12﹣5=7cm;②当弦AB和CD在圆心异侧时,如图2,连接OA、OC.作OF⊥CD于F,交AB于E.∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=OF+OE=17cm.∴AB与CD之间的距离为7cm或17cm.故选:D.二.填空题(共8小题)10.如图,PT切⊙O于点T,经过圆心的割线P AB交⊙O于点A和B,PT=4,P A=2,则⊙O的半径是3.【解答】解:∵PT切⊙O于点T,∴由切割线定理得PT2=P A•PB,即42=2×(2+AB).解得AB=6.∴⊙O的半径是3,故答案为:3.11.如图,⊙O中两条弦AB、CD相交于点P,已知P A=3,PB=4,PC=2,那么PD长为6.【解答】解:∵两条弦AB、CD相交于点P,∵PD•PC=P A•PB,∴PD==6.故答案为6.12.如图,圆内接四边形ABCD中两组对边的延长线分别相交于点E,F,且∠A=45°,∠E=30°,则∠F=60°.【解答】解:∵四边形ABCD是圆内接四边形,∴∠BCD=180°﹣∠A=135°,有三角形的外角性质可知,∠EDC=∠BCD﹣∠E=105°,∴∠F=∠EDC﹣∠A=60°,故答案为:60°.13.如图,AB是⊙O的弦,AB长为8,P是⊙O上一个动点(不与A、B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为4.【解答】解:∵OC⊥AP,OD⊥PB,∴由垂径定理得:AC=PC,PD=BD,∴CD是△APB的中位线,∴CD=AB=×8=4,故答案为:4.14.如图,E是⊙O上一点,AB是⊙O的弦,OE的延长线交AB的延长线于C.如果BC =OE,∠C=40°,求∠EOA=60度.【解答】解:连接OB,∵OB=OE=BC,∠C=40°,∴∠COB=∠C=40°,∴∠ABO=∠C+∠COB=80°,∵OA=OB,∴∠A=∠ABO=80°,△AOC中,∠EOA=180°﹣40°﹣80°=60°,故答案为:60.15.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则BD的长为.【解答】解:过点C作CE⊥AD于点E,则AE=DE,∵∠ACB=90°,AC=3,BC=4,∴AB===5,∵S△ABC=AC•BC=AB•CE,∴CE==,∴AE===,∴AD=2AE=,∴BD=AB﹣AD=5﹣=,故答案为:.16.如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为5.【解答】∵AC平分∠BAD,∴=,∴∠BDC=∠CAD,∵∠ACD=∠DCE,∴△CDE∽△CAD,∴CD:AC=CE:CD,∴CD2=AC•CE,设AE=x,则AC=AE+CE=4+x,∴62=4(4+x),解得:x=5.∴AE=5.故答案为:5.17.如图,⊙O是△ABC的外接圆,BC为直径,BC=4,点E是△ABC的内心,连接AE 并延长交⊙O于点D,则DE=.【解答】解:如图,连接BD,CD,EC.∵点E是△ABC的内心,∴∠DAB=∠DAC,∠ECA=∠ECB,又∵∠DCB=∠DAB,∴∠DAC=∠DCB∵∠DEC=∠EAC+∠ECA,∠ECD=∠ECB+∠DCB,∴∠DEC=∠DCE,∴DE=DC,∵BC是直径,∴∠BDC=90°,∵∠DAB=∠DAC,∴=,∴BD=DC,∵BC=4,∴DC=DB=2,∴DE=2,故答案为2.三.解答题(共2小题)18.如图,以△ABC的一边AB为直径的半圆与其他两边AC,BC的交点分别为D,E,且=(1)试判断△ABC的形状,并说明理由;(2)已知半圆的半径为5,BC=12,求AD的长.【解答】(1)方法一:连接AE,∵AB是直径,∴∠AEB=∠AEC=90°,∵=,∴∠BAE=∠CAE,又AE=AE,∴△AEB≌△AEC(ASA),∴AB=AC,∴△ABC是等腰三角形;方法二:∵AB是直径,∴∠ADB=∠CDB=90°,∵=,∴DE=BE,∴∠CBD=∠BDE,∴∠C=∠CDE,∵ABED是圆内接四边形,∴∠CDE=∠CBA,∴∠C=∠CBA,∴AB=AC,∴△ABC是等腰三角形;(2)∵△ABC为等腰三角形,AE⊥BC,∴BE=CE=BC=×12=6,在Rt△ABE中,∵AB=10,BE=6,∴AE==8,∵AB为直径,∴∠ADB=90°,∴AE•BC=BD•AC,∴BD==,在Rt△ABD中,∵AB=10,BD=,∴AD==.19.已知:如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,G是弧AC上的任意一点,AG、DC的延长线相交于点F.求证:∠FGC=∠AGD.【解析】连接AD.∵CD⊥AB,∴弧AD=弧AC ,∴∠ADC=∠AGD.∵四边形ADCG是圆内接四边形,∴∠ADC=∠FGC,∴∠FGC=∠AGD.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

的基本性质考点1 对称性圆既是________ ① ___ 对称图形,又是_____ ② ________ 对称图形。

任何一条直径所在的直线都是它的—③_________ O它的对称中心是一④°同时圆又具有旋转不变性。

温馨提示:轴对称图形的对称轴是一条宜线,因此在谈及圆的对称轴时不能说圆的对称轴是直径。

考点2 垂径定理建理:垂直于弦的直径平分⑤并且平分弦所对的两条⑥。

常用推论:平分弦(不是直径)的直径垂直于⑦,并且平分弦所对的两条____ ⑧____________ 0温馨提示:垂径立理是中考中的重点考查内容,每年基本上都以选择或填空的形式岀现,一般分值都任3 分左右,这个题目难度不大,只要在平时的练习中,多注意总结它所用的数学方法或数学思想等,以及常用的辅助线的作法。

在这里总结一下:(1)垂径左理和勾股左理的有机结合是计算弦长、半径等问题的有效方法,其关键是构造直角三角形:(2)常用的辅助线:连接半径:过顶点作垂线;(3)另外要注意答案不唯一的情况,若点的位巻不确泄,则要考虑优弧、劣弧的区别;(4)为了更好理解垂径立理,一条直线只要满足:①过圆心:②垂直于弦;③平分弦:④平分弦所对的优弧:⑤平分弦所对的劣弧:考点3 圆心角、弧、弦之间的关系¥泄理:在同圆或等圆中,相等的圆心角所对的弧_______ (9)_____ ,所对的弦也______ ⑩________ 。

常用的还有:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角—⑪______________ ,所对的(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角—⑬_______________ ,所对的弧_____ ©方法点拨:为了便于理解和记忆,圆心角、狐、弦之间的关系立理,可以归纳为:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应地苴余各组量也都相等。

温馨提示:(1)上述怎理中不能忽视“在同圆或等圆中”这个条件。

否则,虽然圆心角相等,但是所对的弧、弦也不相等。

以同心圆中的圆心角为例,相等的圆心角在同心圆中,所对的狐与弦都不相等。

(2)在由弦相等推岀弧相等时,这里的弧要么是优弧,要么是劣弧,不能既是优弧又是劣弧。

考点4 圆周角泄理及其推论推论:半圆或直径所对的圆周角是 _______ © __________ • 90°的圆周角所对的弦是 ______ @ ____________ * 方法点拨:左理中的推论应用十分广泛,一般情况下用它来构造直角三角形,若需要直角或证明垂直时,通 常作出直径就能解决问题。

温馨提示:左理中的“同弧或等弧”不能改为是“同弦或等弦二因为在圆中一条弦所对的圆周角有两个, 这两个圆周角互补。

例匕如图1,正方形ABCD 是00的内接正方形,点P 在劣弧CD 上不同于点C 得到任意一点,则ZBPC 的度数是( )例2:如图,在OO 中,ZAO3的度数为m C 是ACB 上一点,D E 是AB h 不同的两点(不与A B 两点重合),则ZD+ZE 的度数为( )A. //? B ・ 180 一一 C ・ 90 +— D ・—2 2 2例3:髙速公路的隧道和桥梁最多.如图是一个隧道的横截面,若它的形状是以O 为圆心的圆的一部分,路面AB=10米,净高CD =7米,则此圆的半径OA=( )37 37A ・5B ・7C ・一D ・一5 7训练一、选择题(每题3分,共30分)1. (09年南宁)如图,AB 是00的直径,弦CD 丄AB 于点E, ZCDB=30° ,€>0的半径为,则弦CD 的长 为( ) )3A. —cm B ・ 3cm C ・ 2>/3cm D ・ 9cm2 VV 名 精解>>C. 75D. 90A. 45B. 60 例2图2.(09年天津市)如鼬僉炉内接于紀戚ZOABp?题购ZC的棣翅图)A. 28°B. 56°C・60°D・62°3.(09南宁)如图,AB是€>0的直径,弦CD丄AB于点E,ZCDB = 30° , 00的半径为屈加,则弦CD的长为()3A. —cmB. 3cm C・ 2、/5cm D・ 9cm24.(09年安徽)如图,弦CD垂直于00的直径AB,垂足为H,且CD = 2血,BD=>/3 ,则AB的长为()A・2 B・3 C・4 D・55.(09年安徽)AABC中,AB=AC, ZA为锐角,CD为AB边上的髙,I为Z\ACD的内切圆圆心,则ZAIB的度数是() A. 120° B. 125° C. 135° D. 150°6.(09年重庆)如图.©O是AABC的外接圆,AB是直径.若ZBOC=80° ,则ZA等于()A. B. C. D.7. (09年兰州)如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度^124^ 拱的半径为13米,则拱高为()A. 5米B. 8米C. 7米& (09年山东青岛市)一根水平放置的圆柱形输水管道横截而如图所示,其中有水部分水而宽米,最深处水深米,则此输水管道的直径是()A.米B•米 C.米D・1米9.(09山四省太原市)如图,在RtAABC中,ZC=90°, AB=10,若以点C为圆心,CB长为半径的圆恰好经过AB的中点D,则AC的长等于()A. 5松B. 5 C・ 5>/2 D. 610.(09年云南省)如图,A、D是00上的两个点,BC是直径,若ZD = 35° ,则ZOAC 的度数是(二填空题(每小题3分,共30分)12. (09年长春)如图,点C 在以A3为直径的0O 上,AB = 10, ZA = 30°,则3C 的长为 _____________・13. (09年福州)如图,AB 是00的直径,点C 在OO ± > OD 〃AC,若BD=1,则BC 的长为 __________________14. (09年北京市)如图,AB 为€)0的直径,弦CD 丄AB, E 为BC 上一点,若ZCEA= 28 ,则ZABD =15. (09年山东青岛市)如图,AB 为€)0的直径,CD 为O0的弦,ZACD=42° ,则ZBAD= ___________________16. (09年新疆乌鲁木齐币)如图,点C 、D 在以AB 为直径的OO 上,且CD 平分ZACB ,若AB = 2/ZCBA=15° ,则CD 的长为 ___________ •17. (09年广东省)已知00的直径AB = 8cm, C 为上的一点,ZBAC = 30则BC= ______________ cm.18. (09年山西省)如图所示,A. B.C. D 是圆上的点,Zl = 70°, ZA = 40°,则ZC = _ _________________ 度.第20题图 第X 、题图第12题图 第13题图 (09年长沙)如图,AB 是00的直径, C 是OO±一点,ZBOC=44° ,则ZA 的度数为 ______________第14题图第20题图8D第18题图19.(09年上海市)在中,弦AB的长为6,它所对应的弦心距为4,那么半径0A= _________________ ・20.(09 成都)如图,AABC 内接于00, AB = BC, ZABC = 120° , AD 为00 的直径,AD = 6,那么 BD= ________ ・三、解答题(共60分)21.(本题6分)(09年广四钦州)已知:如图,OOi与坐标轴交于A (1, 0)、B (5, 0)两点,点6的纵坐标为求00]的半径・22.(本题6分)(’09年四川省内江市)如图,四边形ABCD内接于圆,对角线AC与BD相交于点E、F在AC上,AB=AD, ZBFC=ZBAD = 2ZDFC・求证:(1) CD1DF;(2) BC = 2CD・C第22题图第22题图23.(本题6分)(09年甘肃庆阳)如图,在边长为2的圆内接正方形ABCD中,AC是对角线,P为边CD的中点,延长AP交圆于点E.Z E= ____________ 仪;第23题图25.(本题7分)(09年株洲市)如图,点4、B、C是0O上的三点,AB//OC・(1)求证:AC平分ZOAB・2 )过点O作OE丄A3于点E ,交AC于点P・若AB = 2 >ZAOE =30°,求 PE的长.第25题图26. (本题9分)(09年潍坊)如图所示,圆0是4ABC 的外接圆,ABAC 与ZABC 的平分线相交于点/ ,延长A/交圆O 于点D,连结BD 、DC.(1) 求证:BD = DC = D1 ;(2) 若圆O 的半径为10cm, ZBAC = 120°,求△BDC 的面积.基础知识回放①轴 ②中心 ③对称轴④圆心⑤弦 ⑥弧 ⑦弦⑧弧⑨相等⑩相等 ⑪相等 ⑪相等⑬相等 ©相等⑮相等⑯一半⑰直角⑱直径例1. A 例2、B 例3、C中考效能测试1. B 【解析】本题考查同狐所对的圆周角和圆心角的关系及垂径泄理的应用.因为ZC D B=30°,所以ZCO13 B=60°,所以在直角JCO E 中,O E = - C 0 =—,根据勾股宦理可得C E = -,所以C D=2C E =3 cm.2 2 2 2. D 【解析】本题考查了圆周角和圆心角的有关知识。

根据圆周角左理:一条弧所对的圆周角等于它所对的圆 心角的一半,所以ZAOB=2ZCo VOA=OB, .\ZOAB=ZOBA,又 VZOAB=28° , .•- ZAOB=124° ,所以ZC=62° ・ 故选D.3. B 【解析】本题考査同弧所对的圆周角和圆心角的关系及垂径左理的应用.因为ZC D B=30°,所以ZCO13 B=60°,所以在直角JCO E 中,OE = _CO = =,根拯勾股立理可得C E = -,所以C D=2C E =3 cm. 2 2 24. B 【解析】由垂径泄理,可得DH=>/2 ,所以BH= yjBD 2 - BH 2 = 1,又可得△DHB S ^A DB.,所以有 BD 1 = BH •BA,(J 亍尸=1 x BA, AB = 3 .本题考査了垂径泄理及相似三角形判泄与性质。

5 . C 【解析】由 CD 为腰上的高,1为△ ACD 的内心,则Z IAC+ Z ICA= - (ZBAC + ZBCA) = 1(180° - ZADC) = 1(180° 一 90°) = 45°,2 2 2参考答案 A第27题图ZAIB=ZAIC=135°。

相关文档
最新文档