高三数学 坐标系与参数方程

合集下载

高考数学核心考点 第十四章坐标系与参数方程

高考数学核心考点 第十四章坐标系与参数方程

高考数学核心考点 第十四章坐标系与参数方程1.伸缩变换:设点),(y x P 是平面直角坐标系中的任意一点,在变换⎩⎨⎧>⋅='>⋅=').0(,y y 0),(x,x :μμλλϕ的作用下,点),(y x P 对应到点),(y x P ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。

2.极坐标系的概念:在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox 叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。

3.点M 的极坐标:(1)设M 是平面内一点,极点O 与点M 的距离||OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的xOM ∠叫做点M 的极角,记为θ。

有序数对),(θρ叫做点M 的极坐标,记为),(θρM . 极坐标),(θρ与)Z )(2,(∈+k k πθρ表示同一个点。

极点O 的坐标为)R )(,0(∈θθ. (2)若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与),(θπρ+表示同一点。

如果规定πθρ20,0≤≤>,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是唯一确定的。

4.极坐标与直角坐标的互化:)0(n t ,sin ,cos ,222≠===+=x xy a y x y x θθρθρρ 5.圆的极坐标方程:在极坐标系中,以极点为圆心,r 为半径的圆的极坐标方程是r =ρ; 在极坐标系中,以)0,(a C )0(>a 为圆心, a 为半径的圆的极坐标方程是 θρcos 2a =; 在极坐标系中,以 )2,(πa C )0(>a 为圆心,a 为半径的圆的极坐标方程是θρsin 2a =; 6. 在极坐标系中,)0(≥=ραθ表示以极点为起点的一条射线;)R (∈=ραθ表示过极点的一条直线.在极坐标系中,过点)0)(0,(>aa A ,且垂直于极轴的直线l 的极坐标方程是a =θρcos .7.参数方程的概念在平面直角坐标系中,如果曲线上任意一点的坐标y x ,都是某个变数t 的函数⎩⎨⎧==),(),(t g y t f x 并且对于t 的每一个允许值,由这个方程所确定的点),(y x M 都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数y x ,的变数t 叫做参变数,简称参数。

高考数学专题--坐标系与参数方程

高考数学专题--坐标系与参数方程

高考数学专题--坐标系与参数方程高考考点:1、直角坐标与极坐标方程的互化2、普通方程与参数方程的互化3、坐标系与参数方程的综合考点1 两种互化及其应用调研1 在平面直角坐标系xOy 中,已知曲线122cos :12sin x tC y t =-+⎧⎨=+⎩(t 为参数),以坐标原点O 为极点,x轴的正半轴为极轴建立极坐标系,曲线:2C 01sin cos 4=+-θρθρ. (1)求曲线1C 的普通方程与曲线2C 的直角坐标方程; (2)若点P 在曲线1C 上,Q 在曲线2C 上,求||PQ 的最小值.【答案】(1)曲线1C 的普通方程为4)1()2(22=-++y x ,曲线2C 的直角坐标方程为014=+-y x ;(2)217178-. 【解析】(1)由122cos :12sin x tC y t=-+⎧⎨=+⎩消去t 得4)1()2(22=-++y x ,因为01sin cos 4=+-θρθρ,由直角坐标与极坐标的转化公式可得014=+-y x . 所以曲线1C 的普通方程为4)1()2(22=-++y x ,曲线2C 的直角坐标方程为014=+-y x . (2)由(1)知:1C 4)1()2(22=-++y x 的圆心为)1,2(-,半径为2,:2C 014=+-y x ,||PQ 的最小值即为)1,2(-到直线014=+-y x 的距离减去圆的半径,因为)1,2(-到直线014=+-y x 的距离为17178)1(4|1142|22=-++-⨯-=d , 所以||PQ 的最小值为217178-. ☆技巧点拨☆1.参数方程化为普通方程基本思路是消去参数,常用的消参方法有:①代入消元法;②加减消元法;③恒等式(三角的或代数的)消元法等,其中代入消元法、加减消元法一般是利用解方程的技巧. 2.普通方程化为参数方程曲线上任意一点的坐标与参数的关系比较明显且关系相对简单;当参数取某一值时,可以唯一确定x,y 的值.一般地,与旋转有关的问题,常采用旋转角作为参数;与直线有关的常选用直线的倾斜角、斜率、截距作为参数;与实践有关的问题,常取时间作为参数.此外,也常常用线段的长度、某一点的横坐标(纵坐标)作为参数.3.极坐标方程与直角坐标方程互化进行极坐标方程与直角坐标方程互化的关键是熟练掌握互化公式:x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2,tan θ=yx (x ≠0).4.参数方程与极坐标方程互化进行参数方程与极坐标方程互化的关键是可先将参数方程(或极坐标方程)化为普通方程(或直角坐标方程),再转化为极坐标方程(或参数方程). 考点2 利用参数几何意义解题调研1 以平面直角坐标系的坐标原点O 为极点,以x 轴的正半轴为极轴,以平面直角坐标系的长度为长度单位建立极坐标系. 已知直线l 的参数方程为2312x t y t =-⎧⎨=-+⎩(t 为参数),曲线C 的极坐标方程为2sin 4cos ρθθ=.(1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于A B 、两点,求AB . 【答案】(1)24y x =;(2)143.【解析】(1)由2sin 4cos ρθθ=,即22sin 4cos ρθρθ=,得曲线C 的直角坐标方程为24y x =. (2)将l 的参数方程代入24y x =,整理得24870t t +-=, ∴122t t +=-,1274t t =-, ∴()()222121212321341347143AB t t t t t t =-+-=⨯+-=⨯+=.☆技巧点拨☆若直线过(x 0,y 0),α为直线的倾斜角,则直线的参数方程为(t 为参数).考点3 利用ρθ,的几何意义解题调研 1 平面直角坐标系xOy 中,曲线1C 的参数方程为1cos sin x a y a ϕϕ=+⎧⎨=⎩(ϕ为参数,0a >),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为()222cos24sin 20ρθρθρ+=>.(1)求出曲线1C 的极坐标方程及曲线2C 的直角坐标方程; (2)若直线3C 的极坐标方程为π=4θ,曲线1C 与2C 的公共点都在3C 上,求2a 的值. 【答案】(1)1C 的极坐标方程为222cos 10a ρρθ-+-=,2C 的直角坐标方程为2232x y +=;(2)22-.【解析】(1)消去参数ϕ得到1C 的普通方程为()2221x y a -+=,将cos ,sin x y ρθρθ==代入1C 的普通方程,得到1C 的极坐标方程为222cos 10a ρρθ-+-=. 由222cos24sin 2ρθρθ+=得2222cos 3sin 2ρθρθ+=,把cos ,sin x y ρθρθ==代入上式得曲线2C 的直角坐标方程为2232x y +=.(2)曲线1C 与2C 的公共点的极坐标满足方程组2222222cos 10cos 3sin 2a ρρθρθρθ⎧-+-=⎨+=⎩, 因为曲线1C 与2C 的公共点都在3C 上,所以把π4θ=代入方程组得2222101a ρρρ⎧-+-=⎪⎨=⎪⎩,消去ρ得222a =-. 强化训练:1.若椭圆的参数方程为5cos 3sin x y θθ=⎧⎨=⎩ (θ为参数),则它的两个焦点坐标是A .B .C .D .【答案】A【解析】消去参数可得椭圆的标准方程为221259x y +=,所以椭圆的半焦距4c =,两个焦点坐标为()40±,,故选A.2.在平面直角坐标系xOy 中,曲线C 的参数方程为1cos sin x y αα=+⎧⎨=⎩(α为参数).若以射线Ox 为极轴建立极坐标系,则曲线C 的极坐标方程为 A .ρ=sin θ B .ρ=2sin θ C .ρ=cos θD .ρ=2cos θ【答案】D3.在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,两种坐标系中取相同的长度单位.已知圆C 是以极坐标系中的点7π2,6⎛⎫⎪⎝⎭为圆心,3为半径的圆,直线l 的参数方程为12322x t y t ⎧=-⎪⎪⎨⎪=-+⎪⎩. (1)求C 与l 的直角坐标方程;(2)若直线l 与圆C 交于M ,N 两点,求MON △的面积. 【答案】(1)见解析;(2)2.4.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为212cos 110ρρθ++=.(1)求圆C 的直角坐标方程;(2)设()1,0P ,直线l 的参数方程是1cos sin x t y t αα=+⎧⎨=⎩(t 为参数),已知l 与圆C 交于,A B 两点,且34PA PB =,求l 的普通方程. 【答案】(1)()22625x y ++=;(2)()1y x =±-.【思路点拨】(1)利用222,cos x y x ρρθ=+=代入212cos 110ρρθ++=,即可得圆C 的直角坐标方程;(2)将直线l 的参数方程1cos sin x t y t αα=+⎧⎨=⎩(t 为参数)代入圆C 的直角坐标方程()22625x y ++=中,化简得214cos 240t t α++=,利用根与系数的关系以及直线参数的几何意义可得tan 1k α==±,从而可得结果.【名师点睛】参数方程主要通过代入法或者已知恒等式(如22cos sin 1αα+=等三角恒等式)消去参数化为普通方程,通过选取相应的参数可以把普通方程化为参数方程,利用关系式cos sin x y ρθρθ=⎧⎨=⎩,222tan x y yxρθ⎧+=⎪⎨=⎪⎩等可以把极坐标方程与直角坐标方程互化,这类问题一般我们可以先把曲线方程化为直角坐标方程,用直角坐标方程解决相应问题.5.已知平面直角坐标系xOy 中,曲线C 的参数方程为15cos 25sin x y αα⎧=+⎪⎨=+⎪⎩(α为参数),直线1:0l x =,直线2:0l x y -=,以原点为极点,x 轴正半轴为极轴,建立极坐标系. (1)写出曲线C 和直线12,l l 的极坐标方程;(2)若直线1l 与曲线C 交于,O A 两点,直线2l 与曲线C 交于,O B 两点,求AB . 【答案】(1)()()12ππ:,:24l l θρθρ=∈=∈R R ;(2)10.AB =【名师点睛】(1)直角坐标方程化为极坐标方程,只要运用公式cos x ρθ=及sin y ρθ=直接代入并化简即可;(2)极坐标方程化为直角坐标方程时常通过变形,构造形如2cos ,sin ,ρθρθρ的形式,进行整体代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.6.在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1x a t t y t=+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到l 距离的最大值为17,求a . 【答案】(1)(3,0),2124(,)2525-;(2)8a =或16a =-.当4a <-时,d 的最大值为117a -+.由题设得11717a -+=,所以16a =-. 综上,8a =或16a =-.【思路点拨】(1)先将曲线C 和直线l 的参数方程化成普通方程,然后联立两方程即可求出交点坐标;(2)由直线l 的普通方程为440x y a +--=,设C 上的点为(3cos ,sin )θθ,易求得该点到l 的距离为|3cos 4sin 4|17a d θθ+--=.对a 再进行讨论,即当4a ≥-和4a <-时,求出a 的值.【名师点睛】化参数方程为普通方程的关键是消参,可以利用加减消元、平方消元、代入法等等;在极坐标方程与参数方程的条件下求解直线与圆的位置关系问题时,通常将极坐标方程化为直角坐标方程,参数方程化为普通方程来解决.7.在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB △面积的最大值.【答案】(1)()()22240x y x -+=≠;(2)23+.所以OAB △面积的最大值为23+.【思路点拨】(1)设出P 的极坐标,然后利用题意得出极坐标方程,最后转化为直角坐标方程; (2)利用(1)中的结论,设出点的极坐标,然后结合面积公式得到面积的三角函数,结合三角函数的性质可得OAB △面积的最大值.【名师点睛】本题考查了极坐标方程的求法及应用。

高考数学-坐标系与参数方程(含22年真题讲解)

高考数学-坐标系与参数方程(含22年真题讲解)

高考数学-坐标系与参数方程 (含22年真题讲解)1.【2022年全国甲卷】在直角坐标系xOy 中,曲线C 1的参数方程为{x =2+t 6y =√t(t 为参数),曲线C 2的参数方程为{x =−2+s 6y =−√s(s 为参数).(1)写出C 1的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 3的极坐标方程为2cosθ−sinθ=0,求C 3与C 1交点的直角坐标,及C 3与C 2交点的直角坐标. 【答案】(1)y 2=6x −2(y ≥0);(2)C 3,C 1的交点坐标为(12,1),(1,2),C 3,C 2的交点坐标为(−12,−1),(−1,−2).【解析】 【分析】(1)消去t ,即可得到C 1的普通方程;(2)将曲线C 2,C 3的方程化成普通方程,联立求解即解出. (1) 因为x =2+t 6,y =√t ,所以x =2+y 26,即C 1的普通方程为y 2=6x −2(y ≥0).(2) 因为x =−2+s 6,y =−√s ,所以6x =−2−y 2,即C 2的普通方程为y 2=−6x −2(y ≤0),由2cosθ−sinθ=0⇒2ρcosθ−ρsinθ=0,即C 3的普通方程为2x −y =0. 联立{y 2=6x −2(y ≥0)2x −y =0 ,解得:{x =12y =1 或{x =1y =2 ,即交点坐标为(12,1),(1,2);联立{y 2=−6x −2(y ≤0)2x −y =0 ,解得:{x =−12y =−1 或{x =−1y =−2 ,即交点坐标为(−12,−1),(−1,−2). 2.【2022年全国乙卷】在直角坐标系xOy 中,曲线C 的参数方程为{x =√3cos2t y =2sint ,(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为ρsin (θ+π3)+m =0. (1)写出l 的直角坐标方程;(2)若l 与C 有公共点,求m 的取值范围. 【答案】(1)√3x +y +2m =0 (2)−1912≤m ≤52 【解析】 【分析】(1)根据极坐标与直角坐标的互化公式处理即可;(2)联立l 与C 的方程,采用换元法处理,根据新设a 的取值范围求解m 的范围即可. (1)因为l :ρsin (θ+π3)+m =0,所以12ρ⋅sinθ+√32ρ⋅cosθ+m =0,又因为ρ⋅sinθ=y,ρ⋅cosθ=x ,所以化简为12y +√32x +m =0,整理得l 的直角坐标方程:√3x +y +2m =0 (2)联立l 与C 的方程,即将x =√3cos2t ,y =2sint 代入 √3x +y +2m =0中,可得3cos2t +2sint +2m =0, 所以3(1−2sin 2t)+2sint +2m =0, 化简为−6sin 2t +2sint +3+2m =0,要使l 与C 有公共点,则2m =6sin 2t −2sint −3有解,令sint =a ,则a ∈[−1,1],令f(a)=6a 2−2a −3,(−1≤a ≤1), 对称轴为a =16,开口向上,所以f(a)max =f(−1)=6+2−3=5, f(a)min =f(16)=16−26−3=−196,所以−196≤2m ≤5m 的取值范围为−1912≤m ≤52.1.(2022·宁夏·吴忠中学三模(文))在平面直角坐标系xOy 中,曲线1C 的参数方程为244x t y t ⎧=-⎨=⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos ρθ=.(1)求曲线1C 与2C 的直角坐标方程;(2)已知直线l 的极坐标方程为πR 02θαρα⎛⎫ ⎪=∈⎝<<⎭,,直线l 与曲线1C ,2C 分别交于M ,N (均异于点O )两点,若4OMON=,求α. 【答案】(1)曲线1C 的直角坐标方程为24y x =-,曲线2C 的直角坐标方程为2220x y x +-=, (2)π4α=【解析】 【分析】(1)1C 的参数方程消参可求出1C 的直角坐标方程;2C 的极坐标方程同乘ρ,把cos x ρθ=,222x y ρ=+代入2C 的极坐标方程可求出2C 的直角坐标方程.(2)设M 、N 两点的极坐标分别为()1,ρα、()2,ρα,用极径的几何意义表示出4OMON=,即124ρρ=,解方程即可求出α. (1)解:1C 的参数方程为244x t y t ⎧=-⎨=⎩(t 为参数),把2216y t =代入24x t =-中可得,24y x =-,所以曲线1C 的直角坐标方程为24y x =-,2C 的极坐标方程为2cos ρθ=,即22cos ρρθ=,所以曲线2C 的直角坐标方程为2220x y x +-=,综上所述:曲线1C 的直角坐标方程为24y x =-,曲线2C 的直角坐标方程为2220x y x +-=, (2)由(1)知,1C 的极坐标方程为2sin 4cos ρθθ=-, 设M 、N 两点的极坐标分别为()1,ρα、()2,ρα,则21sin 4cos ραα=-,22cos ρα=,由题意知02πα<<可得sin 0α≠,因为4OMON=,所以124ρρ=,所以24cos 42cos sin ααα-=⨯,故21sin 2α=,所以sin 2α=或sin 2α=(舍) 所以π4α=.2.(2022·四川·宜宾市叙州区第一中学校模拟预测(理))在平面直角坐标系xOy 中,曲线1C 的参数方程为1cos sin x y θθ=+⎧⎨=⎩(θ为参数),曲线2C 的参数方程为2221x t t y t ⎧=-⎨=-⎩(t 为参数).已知曲线2C 与x ,y 正半轴分别相交于,A B 两点.(1)写出曲线1C 的极坐标方程,并求出,A B 两点的直角坐标;(2)若过原点O 且与直线AB 垂直的直线l 与曲线1C 交于P 点,与直线AB 交于Q 点,求线段PQ 的长度.【答案】(1)2cos ρθ=,A 点为()3,0,B 点为()0,3(2)2【解析】 【分析】(1)普通方程()2211x y -+=,即可得2cos ρθ=(2)求出直线AB 的方程为3y x =-+,然后求出直线l 的方程,然后可求出PQ 的长度 (1)曲线1C 的普通方程()2211x y -+=,极坐标方程()()22cos 1sin 1ρθρθ-+=,∴2cos ρθ=.在曲线2C 上,当0x =时,0=t 或2t =,此时3y =或1y =-(舍),所以B 点为()0,3. 当0y =时,1t =-或1t =,此时3x =或1x =-(舍),所以A 点为()3,0. (2)直线AB 的方程为3y x =-+,极坐标方程为sin cos 3ρθρθ=-+, ∴()sin cos 3ρθθ+=,过原点O 且与直线AB 垂直的直线l 的极坐标方程为4πθ=.4πθ=与2cos ρθ=联立,得1ρ 4πθ=与()sin cos 3ρθθ+=联立,得2ρ=∴21PQ ρρ=-=. 3.(2022·江西·南昌市八一中学三模(理))在直角坐标系xOy 中,直线l的参数方程为11x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4sin 6πρθ⎛⎫=-+ ⎪⎝⎭.(1)求C 和l 的直角坐标方程;(2)设点Q的直角坐标为(,P 为C 上的动点,求PQ 中点R 的轨迹的极坐标方程. 【答案】(1)直线l 的普通方程为2x y +=,曲线C 的普通方程为()(2214x y ++=;(2)21ρ= 【解析】 【分析】(1)消去参数t ,即可得到直线l 的普通方程,再由两角和的正弦公式及222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪=+⎩,将曲线C 的极坐标方程化为直角坐标方程;(2)设(),R x y ,即可表示P 点坐标,再根据点P 在曲线C 上,代入C 的方程,即可得到点R 的轨迹方程,再将直角坐标方程化为极坐标方程即可;(1)解:因为直线l的参数方程为11x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数), 所以直线l 的普通方程为2x y +=,因为曲线C 的极坐标方程为4sin 6πρθ⎛⎫=-+ ⎪⎝⎭,即4sin cos cos sin 66ππρθθ⎛⎫=-+ ⎪⎝⎭,即2cos ρθθ=--,所以2sin 2cos ρθρθ=--,又222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪=+⎩,所以222x y x +=--,即()(2214x y +++=,即曲线C 的普通方程为()(2214x y ++=;(2)解:设(),R x y,则(21,2P x y -,因为点P 在曲线C 上,所以()(2221124x y -++=,即221x y +=,所以PQ 中点R 的轨迹方程为221x y +=,即21ρ=4.(2022·黑龙江·哈尔滨三中模拟预测(理))在平面直角坐标系xOy 中,已知直线l 的参数方程为21x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为()2cos θsin θρ=+. (1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)设点()2,1P ,直线l 与曲线C 的交点为A ,B ,求PA PBPB PA+的值. 【答案】(1)10x y --=,22220x y x y +--= (2)4 【解析】 【分析】(1)直接消去参数,将直线l 的方程化为普通方程,利用互化公式将曲线C 的极坐标方程转化为直角坐标方程(2)将直线的参数方程代入曲线C的普通方程,得到210t -=,得到12121t t t t +==- ,化简()222121212122112122PA PBt t t t t t t t PB PA t t t t t t +-++=+==,代入韦达定理,即可得到答案 (1)直线l的参数方程为21x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数), 消去参数t 可得l 的普通方程为10x y --=.曲线C 的极坐标方程为2(cos θsin θ)ρ=+,即22(cos θsin θ)ρρ=+,根据222cos θsin θx y x y ρρρ=⎧⎪=⎨⎪=+⎩,可得2222x y x y +=+.∴曲线C 的直角坐标方程为22220x y x y +--= (2)在直线l的参数方程21x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数)中,设点A ,B 对应的参数分别为1t ,2t , 将直线l的参数方程221x y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),代入22220x y x y +--=,得210t +-=,∴12t t +=121t t =-.∴()2221212121221121224PA PBt t t t t t t t PB PA t t t t t t +-++=+=== 5.(2022·安徽淮南·二模(文))在平面直角坐标系xOy 中,曲线C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(其中α为参数,02πα≤<),以原点O 为极点,x 轴非负半轴为极轴,取相同的单位长度建立极坐标系,直线1l 的极坐标方程为(R)3πθρ=∈.(1)求曲线C 的极坐标方程与直线1l 的直角坐标方程;(2)设直线1l 与曲线C 交于点O ,A ,直线2l 与曲线C 交于点O ,B ,求AOB 面积的最大值. 【答案】(1)4sin ρθ=,y(2)【解析】【分析】(1)依据参数方程与普通方程的互化和极坐标方程与直角坐标方程的互化即可解决; (2)先求得AOB 面积的表达式,再对其求最大值即可. (1)曲线C 的直角坐标方程为22(2)4x y +-=,展开得2240x y y +-=, 则曲线C 的极坐标方程为4sin ρθ=. 直线1l的直角坐标方程为y (2)由(1)可知π||4sin3OA == 设直线2l 的极坐标方程为(R)θβρ=∈,根据条件知要使AOB 面积取最大值,则ππ3β<<,则||4sin OB β=,于是1ππsin sin 233OAB S OA OB βββ⎛⎫⎛⎫=⨯⨯⨯-=- ⎪ ⎪⎝⎭⎝⎭2π6sin cos cos 2)3sin 226ββββββ⎛⎫=-=--=+ ⎪⎝⎭,所以当π3π262β+=即2π3β=时,AOB的面积取最大值,最大值为6.(2022·内蒙古呼和浩特·二模(理))在直角坐标系xOy 中,曲线C的参数方程为))cos sin cos sin 2x y ϕϕϕϕ⎧=+⎪⎨=-⎪⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,两坐标系取相同单位长度,直线l 的极坐标方程为2cos 3sin 100ρθρθ+-=. (1)求曲线C 的普通方程和直线l 的直角坐标方程; (2)求曲线C 上的点到直线l 距离的最小值. 【答案】(1)2214x y +=,23100x y +-=;【解析】 【分析】(1)消去曲线C 的参数方程中的参数即可得解,利用极坐标与直角坐标互化得直线l 的直角坐标方程作答.(2)设出曲线C 上任意一点的坐标,利用点到直线距离公式及辅助角公式求解作答. (1)由))cos sin cos sin x y ϕϕϕϕ⎧=+⎪⎨=-⎪⎩(ϕ为参数),消去参数得2214x y +=, 所以曲线C 的普通方程为2214x y +=,把cos sin x y ρθρθ=⎧⎨=⎩代入直线l 的极坐标方程2cos 3sin 100ρθρθ+-=得:23100x y +-=,所以直线l 的直角坐标方程为23100x y +-=. (2)由(1)知,曲线C 的参数方程为2cos sin x y αα=⎧⎨=⎩(α为参数),设()2cos ,sin P αα为曲线C 上一点,P 到直线l 的距离为d ,则105sin d αϕ-+===ϕ由4tan 3ϕ=确定,因此,当()sin 1αϕ+=时,d所以曲线C 上的点到直线l 7.(2022·甘肃·武威第六中学模拟预测(文))在直角坐标系xOy 中,曲线C 的参数方程为11x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),以坐标原点极点,以x 轴正半轴为极轴建立极坐标系,直线l 的极坐sin cos 0θρθ-.(1)求曲线C 的普通方程和直线l 的直角坐标方程: (2)若直线与曲线C 交于A ,B 两点,点P 的坐标为(0,1),求11||||PA PB +的值. 【答案】(1)224x y -=,0x+= (2)5【解析】【分析】(1)消去参数t 可得曲线C 的方程,利用公式法转化得到直线l 的直角坐标方程; (2)利用直线l 的参数方程中t 的几何意义求解. (1)∴11x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),∴22222222112112x t t t t y t t t t ⎧⎛⎫=+=++⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=-=+- ⎪⎪⎝⎭⎩,所以224x y -=, 所以曲线C 的方程为224x y -=又∴cos x ρθ=,sin y ρθ=,0x - 所以直线l的直角坐标方程为0x =; (2)∴()0,1P 在直线l 上,∴直线l的参数方程为112x y t⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数)设A ,B 对应的参数分别为1t 与2t将直线l 的参数方程代入到224x y -=得22100t t --=. ∴2Δ(2)41(10)440=--⨯⨯-=>, ∴122t t +=,12100t t ⋅=-<, ∴1||PA t =,2||PB t =∴1212121111||||-+=+====t tPA PB t t t t,所以11||||+=PA PB 8.(2022·全国·赣州市第三中学模拟预测(理))在平面直角坐标系xOy 中,曲线1C 满足参数方程2241421t x t y t ⎧=⎪⎪+⎨⎪=-⎪+⎩(t 为参数且11t -≤≤).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,点P 为曲线1C 上一动点,且极坐标为(),ρθ. (1)求曲线1C 的直角坐标方程; (2)求()cos 3sin ρθθ+的取值范围.【答案】(1)y =()2204y x y +=≥(2)⎡-⎣ 【解析】 【分析】(1)消去参数t 可得普通方程,由11t -≤≤,得到0y ≥,即可求出曲线1C 的直角坐标方程; (2)先判断出2ρ=利用三角函数出()cos 3sin ρθθ+的范围. (1)由2241421t x t y t ⎧=⎪⎪+⎨⎪=-⎪+⎩消去t 可得:224x y +=. 由于11t -≤≤,则212t +≤,即0y ≥.因此曲线1C的直角坐标方程为y ()2204y x y +=≥(2)曲线1C 为上半圆,点P 在1C 上,因此2ρ=,0,θπ⎡⎤∈⎣⎦ 由三角函数的性质知,在[]0,π上,1cos 3sin θθ-≤+≤因此()cos 3sin 2,ρθθ⎡+∈-⎣9.(2022·黑龙江·哈尔滨三中三模(理))在平面直角坐标系xOy 中,已知直线l 的参数方程为22x y t ⎧=⎪⎨=-⎪⎩(t 为参数).以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,圆C 的极坐标方程为22cos 4sin 10ρρθρθ---=. (1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A 、B ,若点P 的坐标为()2,2,求1PA PB-.【答案】(1)()()22126x y -+-=;【解析】 【分析】(1)将222x y ρ=+、cos x ρθ=、sin y ρθ=代入圆C 的极坐标方程即可求其直角坐标方程; (2)将直线l 的参数方程化为标准形式,代入圆C 的直角坐标方程得到关于参数t 的二次方程,根据韦达定理和直线参数方程参数的几何意义即可求出1PA PB-.(1)∴22cos 4sin 10ρρθρθ---=,∴222410x y x y +---=, 即()()22126x y -+-=; (2)直线l参数方程的标准形式为2122x y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数), 代入圆C直角坐标方程整理得250t -=, 设方程的两根为1t 、2t ,则A 、B 对应参数1t 、2t ,则121250t t t t ⋅=-<⎧⎪⎨+⎪⎩,∴1PA PB-121211t t t t ==+-10.(2022·河南·模拟预测(理))在平面直角坐标系xOy 中,曲线1C 的参数方程为222x m y m⎧=⎨=⎩(m 为参数),直线l 的参数方程为12x tcos y tsin αα⎧=+⎪⎨⎪=⎩,(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos ρθ=,直线l 与1C 交于点P ,Q ,与2C 交于点S ,T ,与x 轴交于点R .(1)写出曲线1C 的普通方程和曲线2C 的直角坐标方程; (2)若()4PR QR SR TR -=-,求直线l 的倾斜角. 【答案】(1)22y x =,()2211x y -+= (2)2π或4π或34π【解析】 【分析】(1)消参求得曲线1C 的普通方程为22y x =.由2cos ρθ=同乘ρ得到2C 的直角坐标方程. (2)l 过定点1,02R ⎛⎫ ⎪⎝⎭.将直线l 的参数方程代入21:2C y x =,整理得22sin 2cos 10t t αα--=,利用参数的几何含义化简求解. (1)曲线1C 的普通方程为22y x =.由2cos ρθ=得22cos ρρθ=.所以2C 的直角坐标方程为222x y x +=,即()2211x y -+=.(2)不妨设0απ<<,则sin 0α>.易知1,02R ⎛⎫ ⎪⎝⎭是l 过的定点.将直线l 的参数方程代入21:2C y x =,整理得22sin 2cos 10t t αα--=,设P ,Q 对应的参数分别为P t ,Q t ,则22cos sin P Q PR QR t t αα-=+=.将直线l 的参数方程代入()222:11C x y -+=,得23cos 04t t α--=, 设S ,T 对应的参数分别为S t ,T t ,则cos S T SR TR t t α-=+=.由()4PR QR SR TR -=-得22cos 4cos sin ααα=,得cos 0α=或sin α=l 的倾斜角为2π或4π或34π. 11.(2022·河南洛阳·三模(理))在直角坐标系xOy 中,直线1l的参数方程为12x ty kt⎧=⎪⎨=⎪⎩(t 为参数),直线2l的参数方程为x m m y k ⎧=⎪⎨=-⎪⎩(m 为参数),设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线1C .(1)求曲线1C 的普通方程;(2)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,设曲线2C 的极坐标方程为2cos ρθ=,射线OM :()04πθρ=≥与1C ,2C 分别交于A ,B 两点,求线段AB 的长.【答案】(1)22163x y +=,()0y ≠(2)2【解析】 【分析】(1)消去参数得到直线1l 、2l 的普通方程,联立两方程消去k ,即可得到P 的轨迹; (2)首先将1C 的方程化为极坐标方程,再将()04πθρ=≥代入两极坐标方程即可求出OA ,OB ,即可得解;(1)解:因为直线1l的参数方程为12x ty kt⎧⎪⎨=⎪⎩(t 为参数), 消去参数t 得直线1l的普通方程为(12y k x =①, 直线2l的参数方程为x m m y k ⎧=⎪⎨=-⎪⎩(m 为参数), 消去参数m 得直线2l的普通方程为(1y x k=-②, 设(),P x y ,由①②联立得((121y k x y x k ⎧=⎪⎪⎨⎪=-⎪⎩,消去k 得()22162y x =--即曲线1C 的普通方程为22163x y +=,()0y ≠;(2)解:设1OA ρ=,2OB ρ=,由cos sin x y ρθρθ=⎧⎨=⎩得曲线1C 的极坐标方程为2261sin ρθ=+(02θπ<<,θπ≠),代入()04πθρ=≥得12OA ρ==,将()04πθρ=≥代入2cos ρθ=得2OB ρ==所以2AB OA OB =-= 即线段AB的长度为212.(2022·安徽省芜湖市教育局模拟预测(理))在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos 3sin x y ββ=+⎧⎨=⎩(β为参数),将曲线1C 经过伸缩变换13x xy y =⎧''⎪⎨=⎪⎩得到曲线2C .以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线2C 的极坐标方程;(2)已知射线():0l θαρ=≥与曲线2C 交于A 、B 两点,若3OB OA =,求tan α的值. 【答案】(1)24cos 30ρρθ-+= (2)0 【解析】 【分析】(1)求出曲线2C 的参数方程,化为普通方程,再利用极坐标方程与直角坐标方程之间的转换关系可得出曲线2C 的极坐标方程;(2)设()1,A ρα、()2,B ρα,则1ρ、2ρ为方程24cos 30ρρα-+=的两根,由已知可得213ρρ=,结合韦达定理可求得cos α的值,利用同角三角函数的基本关系可求得tan α的值. (1)解:由题可得2C 的参数方程为2cos sin x y ββ=+⎧⎨=⎩(β为参数),则2C 的直角方程为()2221x y -+=,即22430x y x +-+=, 因为cos x ρθ=,sin y ρθ=,所以24cos 30ρρθ-+=,所以曲线2C 的极坐标方程为24cos 30ρρθ-+=. (2)解:设()1,A ρα、()2,B ρα,则1ρ、2ρ为方程24cos 30ρρα-+=的两根, 2Δ16cos 120α=->,则124cos ρρα+=①,123ρρ=②, 因为3OB OA =,所以213ρρ=③,由①②③解得cos 1α=,则sin 0α=,tan 0α∴=,此时16120∆=->,合乎题意. 故tan 0α=.13.(2022·贵州遵义·三模(文))在极点为O 的极坐标系中,经过点π2,6M ⎛⎫⎪⎝⎭的直线l 与极轴所成角为α,且与极轴的交点为N . (1)当π2α=时,求l 的极坐标方程; (2)当ππ,43α⎡⎤∈⎢⎥⎣⎦时,求MON △面积的取值范围.【答案】(1)cos ρθ=(2)⋃⎣⎦⎣⎦【解析】 【分析】(1)先求得l 的直角坐标方程,再转化为极坐标方程.(2)对直线l 的倾斜角进行分类讨论,结合三角形的面积公式求得MON △面积的取值范围. (1)点π2,6M ⎛⎫ ⎪⎝⎭,则π2cos 6π2sin 16x y ⎧=⨯=⎪⎪⎨⎪=⨯=⎪⎩,所以M点的直角坐标为),当π2α=时,直线l的直角坐标方程为x =转化为极坐标方程为cos ρθ=.(2)在极坐标系下:经过点π2,6M ⎛⎫⎪⎝⎭的直线l 与极轴所成角为α,在直角坐标系下:经过点)M的直线l 的倾斜角为α或πα-.即直线l 的倾斜角是α或πα-. 当直线l 的倾斜角为α时,直线l 的方程为(1tan y x α-=,令0y =得1tan N x α-=ππ,43α⎡⎤∈⎢⎥⎣⎦,tan α⎡∈⎣,111,1,,tan tan tan N x ααα⎤⎡∈-∈-=-⎥⎢⎣⎦⎣⎦⎦,所以1π111sin 2262tan 2MONSOM ON α⎛=⨯⨯⨯=⨯⨯-+⨯ ⎝11tan 2α⎛=-⨯∈ ⎝⎣⎦.当直线l 的倾斜角为πα-时,直线l 的方程为()((1tan πtan y x x αα-=-=-,令0y =得1tan N x α=11,1tan tan N x αα⎤⎤∈=⎥⎥⎣⎦⎣⎦,所以1π111sin 2262tan 2MONSOM ON α⎛=⨯⨯⨯=⨯⨯⨯ ⎝11tan 2α⎛=⨯∈ ⎝⎣⎦.综上所述,MON △面积的取值范围是⋃⎣⎦⎣⎦. 14.(2022·江西·上饶市第一中学二模(文))在平面直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的普通方程为:22(2)4x y -+=,曲线2C 的参数方程是2cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数),点2,2P π⎛⎫⎪⎝⎭.(1)求曲线1C 和2C 的极坐标方程; (2)设射线(0)3πθρ=>分别与曲线1C 和2C 相交于A ,B 两点,求PAB △的面积.【答案】(1)4cos ρθ=,22123sin ρθ=+(2)1 【解析】 【分析】(1)由公式法求极坐标方程(2)联立方程后分别求出A ,B 坐标,及P 到直线AB 距离后求面积 (1)曲线1C 的直角坐标方程为:2240x y x +-=, 将cos ,sin x y ρθρθ==代入上式并化简, 得曲线1C 的极坐标方程为:4cos ρθ=. 曲线2C 的普通方程是:22143x y +=, 将cos ,sin x y ρθρθ==代入上式并化简, 得曲线2C 的极坐标方程为:22123sin ρθ=+.(2)设12,,,33A B ππρρ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,则1||4cos23OA πρ===,22221216||53sin 3OB ρπ===+,所以||OB =,所以||||||2AB OA OB =-=-. 又(0,2)P到直线:AB y =的距离为:1d ==所以12112PABS⎛=⨯⨯= ⎝⎭ 15.(2022·全国·模拟预测(文))在直角坐标系xOy 中,曲线C的参数方程为x y θθ⎧=⎪⎨=⎪⎩(θ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos sin 4ρθθ=. (1)求C 和l 的直角坐标方程;(2)若点M ,N 分别为曲线C 和直线l 上的动点,求MN 的最小值.【答案】(1)22163x y +=,40x -=2- 【解析】 【分析】(1)利用22cos sin 1θθ+=消去参数θ,可得曲线C 的普通方程,利用极坐标与直角坐标的互化公式可求出直线l 的直角坐标方程, (2)设曲线C上任意一点)Mθθ到直线l 的距离为d ,然后利用点到直线的距离公式表示出d ,再根据三角函数的性质可求出其最小值 (1)由曲线C的参数方程为x y θθ⎧=⎪⎨=⎪⎩(θ为参数)可知2222cos sin 1θθ+=+=,故曲线C 的直角坐标方程为22163x y +=.由直线l的极坐标方程为cos sin 4ρθθ=,结合cos x ρθ=,sin y ρθ=可知l的直角坐标方程为40x -=. (2)MN 的最小值即为曲线C 上任意一点到直线l 距离的最小值.设曲线C上任意一点)Mθθ到直线l 的距离为d ,则2cos 24d πθ⎛⎫==+≥ ⎪⎝⎭,故MN 2..。

坐标系和与参数方程

坐标系和与参数方程

坐标系和与参数方程
知识点一(参数方程化普通方程)
【知识梳理】
参数方程:
(1)一般地,在平面直角坐标系中,如果曲线C 上任何一点P 的坐标x 和y 都可以表示为
某个变量t 特色函数: ⎩⎨⎧==)()(t g y t f x ;反过来,对于t 的每个允许值,由函数式⎩⎨⎧==)
()
(t g y t f x ,所确定
的点P (x ,y ) 都在曲线C 上 ,那么方程⎩
⎨⎧==)()
(t g y t f x 叫作曲线C 的 参数方程 ,变量t 是参变
数,简称参数。

相对于参数方程而言,直接给出 点的坐标间关系 的方程叫做普通方程,参数方程可以转化为普通方程。

(2)参数方程中参数可以有物理意义、几何意义、也可以没有明显意义。

参数方程与xy 方程的互相转换:
曲线的参数方程可以通过消去参数而得到普通方程;若知道变数x 、y 中的一个与参数t 的
3cos θ.
2C 与3C 交点的直角坐标;1C 与2C 相交于点
【课堂练习】
1.已知曲线C 的极坐标方程2cos ρθ=,以极点为原点,极轴为轴的正半轴建立直角坐标
系,则曲线C 的参数方程为 .
在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐
标方程为2cos ρθ=,0,2θπ⎡⎤∈⎢⎥⎣⎦
. (1)求C 的参数方程;
(2)设点D 在C 上,C 在D 处的切线与直线:32l y x =+垂直,根据(1)中你得到的参数方程,确定D 的坐标.
一、参数方程化普通方程
二、普通方程化参数方程
三、极坐标方程化直角坐标方程
四、直角坐标方程化极坐标方程
五、参数方程与极坐标方程的互化。

“坐标系与参数方程”高考考查分析

“坐标系与参数方程”高考考查分析

“坐标系与参数方程”高考考查分析高考数学中,“坐标系与参数方程”是一个经常被考查的知识点。

这部分内容一般在高二下学期学习,主要是介绍平面直角坐标系的性质、参数方程的定义与应用等。

接下来,本文将对“坐标系与参数方程”这一知识点进行详细的考查分析。

一、知识点概要1.平面直角坐标系平面直角坐标系是描述平面点的一种方法,它由两个互相垂直的坐标轴组成。

我们通常称横坐标轴为x轴,纵坐标轴为y轴。

坐标系的原点是两个坐标轴的交点。

在平面直角坐标系中,除了原点之外的点,均可表示为一个有序数对(x,y),称为点的坐标。

坐标系具有以下性质:1)两个点的距离公式:$\large\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$2)平行于x轴或y轴的直线称为坐标轴上的直线;直线不与坐标轴平行或垂直则称为斜直线。

对于一般方程$ax+by+c=0$的直线,称其为隐式方程,也可以转化为$y=kx+b$的斜截式方程。

反之,斜截式方程可转化为隐式方程。

坐标系中,平面内任意两点坐标已知,就可确定它们所在的直线,反之,也可以通过直线方程,求出相应的点的坐标。

3)圆的方程:$(x-a)^2+(y-b)^2=r^2$,其中(a,b)是圆心的坐标,r是半径的长度。

4)图形的相似性:在坐标系中,若两个图形中点的相对位置关系保持不变,则称这两个图形相似。

相似性质可以用来求解坐标变换等问题。

2.参数方程参数方程是一类常见的函数定义方式,它将自变量x,y表示成另一个变量t的函数,形式为$x=x(t)$,$y=y(t)$。

参数方程在数学、物理等领域具有广泛的应用,在分析曲线和图形变换上尤其有用。

在参数方程中,当参数t的取值范围确定时,对于不同的t值,所对应点的坐标(x,y)也就明确了。

二、考查形式1.单选题高考中涉及坐标系与参数方程的单选题,在形式上比较多样化,主要分为以下几种:(1)考察基础定义如2018年全国卷II第23题,考查了$x=\frac{y+2}{y-2}$的定义域,此题需要学生掌握函数的定义,促使其灵活运用数学知识。

高三数学-坐标系与参数方程(选修4—4)+三角函数

高三数学-坐标系与参数方程(选修4—4)+三角函数

3π 2, . 4
5.(2012· 江西模拟)在极坐标系中,圆 ρ=4cos θ 的圆心 C 到 直线
π ρsinθ+4=2
2的距离为________.
解析:注意到圆 ρ=4cos θ 的直角坐标方程是 x2+y2 =4x, 圆心 C 的坐标是(2,0). 直线
π ρsinθ+4 =2
解析:由 ρ=2sin θ,得 ρ2=2ρsin θ, 其普通方程为 x2+y2=2y, ρcos θ=-1 的普通方程为 x=-1,
2 2 x + y =2y, 联立 x=-1,
x=-1, 解得 y=1,
故交点(-1,1)的极坐标为 3π 答案: 2, 4
三、常见曲线的极坐标方程
曲线 圆心在极点, 半径为 r 的圆 圆心为(r,0), 半径为 r 的圆 图形 极坐标方程
ρ=r (0≤θ<2π) ρ=2rcos θ
π π (- ≤θ< ) 2 2
曲线
π 圆心为r,2 ,半径
图形
极坐标方程 ρ=2rsin_θ (0≤θ<π)
为 r 的圆
过极点,倾斜角为
(1)θ=α(ρ∈R)或 (2)θ=α和θ=π+ αθ=π+α(ρ∈R)
α的直线
曲线 过点(a,0),与极轴 垂直的直线
π 过点a,2 ,与极
图形
极坐标方程
ρcos θ=
π π a-2<θ<2
ρsin θ=a
π)
(0<θ<
Байду номын сангаас
轴平行的直线
[小题能否全取]
x′=λx,λ>0, π 解: 设伸缩变换为 代入 y′=2sin4x′+ 4 , y ′ = μy , μ >0 ,

坐标系与参数方程高考知识点 2024数学

坐标系与参数方程高考知识点 2024数学

坐标系与参数方程高考知识点 2024数学2024年的高考数学考试中,坐标系与参数方程是一个重要的知识点。

本文将对坐标系和参数方程的概念、性质以及应用进行详细的论述。

一、坐标系的概念与性质坐标系是一种用来确定平面或空间中点位置的方法。

在平面上,常用的坐标系有直角坐标系和极坐标系;在空间中,常用的坐标系有直角坐标系和球坐标系。

1. 直角坐标系:直角坐标系是平面上最常用的一种坐标系,使用两个数值来确定平面上的点的位置。

我们用横坐标x和纵坐标y来表示一个点的位置,记作P(x, y)。

直角坐标系具有以下性质:- 原点:坐标系的交叉点称为原点,表示为O(0, 0)。

- 坐标轴:直角坐标系由两条相互垂直的直线组成,分别称为x轴和y轴。

- 单位长度:直角坐标系中x轴和y轴的单位长度相等。

2. 极坐标系:极坐标系是另一种表示点位置的方法,它使用距离和角度来确定点的位置。

对于平面上的点P,极坐标系表示为(r, θ),其中r为点P到原点的距离,θ为点P与正半轴的夹角。

极坐标系具有以下性质:- 极轴:极坐标系有一条特殊的直线称为极轴,通常与x轴重合。

- 极角:极坐标系中,与极轴正向的夹角称为极角,通常用θ表示。

- 极径:点P到原点的距离称为极径,用r表示。

二、参数方程的概念与性质参数方程是用参数的变化规律来确定点的位置的方法。

它通常由一组含有参数的方程组成,通过给参数赋值,可以确定出点的坐标。

在坐标系中,参数方程可以用来表示一条曲线或曲面。

常见的参数方程有平面曲线的参数方程和空间曲线的参数方程。

1. 平面曲线的参数方程:平面曲线的参数方程通常用两个参数t、u来表示。

例如,曲线C可以由参数方程表示为:x = f(t)y = g(t)其中t的取值范围确定了曲线上点的位置。

平面曲线的参数方程具有以下性质:- 曲线上的点的坐标是参数t的函数,参数t的值域决定了曲线的范围。

- 在参数方程中,可以通过改变参数的取值来绘制不同部分的曲线。

高三数学坐标系及参数方程

高三数学坐标系及参数方程

高三数学 坐标系与参数方程( 1)认识坐标系的作用,认识在平面直角坐标系伸缩变换作用下平面图形的变化状况。

( 2)认识坐标系的基本观点,会在极坐标系顶用极坐标刻画点的地点,能进行极坐标和直角坐标的互化。

( 3)能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的极坐标方程。

( 4)认识参数方程,认识参数的意义。

( 5)能选择适合的参数写出直线、圆和椭圆的参数方程。

1. 极坐标系MOθx①极坐标是用 “距离 ”与“角度 ”来刻画平面上点的地点的坐标形式。

极点、极轴、长度单位、角度单位和它的方向组成极坐标系的四因素,缺一不行。

规定:当点 M 在极点时,它的极坐标 0, 能够取随意值。

② 平面直角坐标与极坐标的差别: 在平面直角坐标系内,点与有序实数对( x ,y )是一一对应的,但是在极坐标系中,固然一个有序实数对 ( , ) 只好与一个点 P 对应,但一个点 P 却能够与无数多个有序实数对对应 ( , ) , 极坐标系中的点与有序实数对极坐标 ( , ) 不是一一对应的。

③ 极坐标系中,点 M ( ,) 的极坐标一致表达式 ( ,2k), k Z 。

④ 假如规定 0,02 ,那么除极点外, 平面内的点可用独一的极坐标 ( , ) 表示,同时, 极坐标 ( , ) 表示的点也是独一确立的。

2.极坐标与直角坐标的互化: ( 1)互化的前提:① 极点与直角坐标的原点重合;极轴与 x 轴的正方向重合; ③ 两种坐标系中取同样的长度单位。

xcos2x 2y 2( 2)互化公式,tany, x 0ysinx2是常用的方法 .注:极坐标方程化为直角坐标方程 ,方程两边同乘 ,使之出现1. 已知点的极坐标分别为 A(3,) , B(2, 2 3 ) ,求它们的直角坐标。

), C(, ),D( 4,4322答案:A (3 2,3 2) B( 1, 3)C(3,0) D (0, 4)2225 2、已知点的直角坐标分别为A(3, 3), B(0,), C ( 2, 2 3) ,求它们的极坐标。

2024高考数学坐标系与参数方程

2024高考数学坐标系与参数方程

2024高考数学坐标系与参数方程数学一直是高考中重要的一门科目,而在数学中,坐标系与参数方程是常见的概念与应用。

本文将围绕2024年高考数学坐标系与参数方程这一题目展开讨论,并通过几个例子来加深我们对这一知识点的理解。

一、坐标系的概念与应用坐标系是数学中表示点的位置的一种方法,常见的有直角坐标系和极坐标系。

直角坐标系由x轴和y轴组成,通过确定点与坐标轴的交点来确定点的位置;而极坐标系则通过半径和极角来表示点的位置。

在解决实际问题中,坐标系有着广泛的应用。

例如,在地图上,我们可以利用坐标系确定两个城市之间的距离;在物理学中,通过坐标系可以确定物体在空间中的位置等。

因此,对坐标系的理解与应用非常重要。

二、参数方程的概念与应用参数方程是一种描述曲线、曲面等几何对象的方法。

它通过一个或多个参数的变化来表示对象上的点的坐标。

常见的参数方程有二维参数方程和三维参数方程。

在数学中,参数方程的应用非常广泛。

例如,在物理学中,我们可以通过参数方程描述质点在空间中的运动轨迹;在计算机图形学中,参数方程可以用来描述各种曲线和曲面等。

因此,对参数方程的理解与应用也是非常重要的。

三、坐标系与参数方程的联系与区别虽然坐标系和参数方程都是描述几何对象的方法,但它们之间存在一定的联系与区别。

首先,坐标系可以通过确定坐标轴和交点来确定点的位置,而参数方程则通过参数的变化来表示点的位置。

其次,坐标系通常是直角坐标系或极坐标系,而参数方程可以是二维参数方程或三维参数方程。

此外,在解决问题时,选择使用坐标系还是参数方程,取决于问题的特点和需要。

对于某些问题,坐标系可能更直观、更方便,而对于另一些问题,参数方程则可能更简洁、更易于处理。

四、案例分析为了更好地理解坐标系与参数方程的应用,我们通过几个案例进行分析。

案例一:求解直线与圆的交点已知直线的方程为y = 2x + 1,圆的方程为x^2 + y^2 = 9。

我们可以将直线和圆的方程转化为参数方程,求解它们的交点。

高三数学选修4—4 坐标系与参数方程

高三数学选修4—4 坐标系与参数方程

方向),这样就建立了一个极坐标系.
(2)极坐标:设M是平面内一点,极点O与点M的 距离|OM| 叫做
点M的极径,记为 ρ ;以极轴Ox为始边,射线OM为终边的角 xOM
叫做点M的极角,记为 θ .有序数对 (ρ,θ) 叫做点M的极坐
标,记为 M(ρ,θ)
.
-5-
知识梳理 双基自测
123456
3.极坐标与直角坐标的互化 (1)设点P的直角坐标为(x,y),它的极坐标为(ρ,θ),
x2+y2-2√2y=0,即 x2+(y-√2)2=2,
C
①圆心位于极点,半径为r:ρ= r ;
②圆心位于M(a,0),半径为a:ρ= 2acos θ
;
③圆心位于 M
������,
π 2
,半径为 a:ρ= 2asin θ
.
-8-
知识梳理 双基自测
123456
6.曲线的参数方程
(1)定义:在平面直角坐标系 xOy 中,如果曲线上任意一点的坐标
x,y
都是某个变数
高三理数一轮课件
高中数学选修4—4 坐标系与参数方程
-3-
知识梳理 双基自测
123456
1.平面直角坐标系中的伸缩变换
设点 P(x,y)是平面直角坐标系中的任意一点,在变换
φ:
������' ������'
= =
������·������,������ ������·������,������
> >
(1)× (2)× (3)√ (4)√ (5)×
() 关闭
答案
-11-
知识梳理 双基自测
12345
2.若原点与极点重合,x 轴正半轴与极轴重合,则点(-5,-5√3)的极

高三坐标系与参数方程总结最全

高三坐标系与参数方程总结最全

高三综合复习坐标系与参数方程题型一:极坐标与直角坐标的互化;互化原理(三角函数定义)、数形结合。

1、在直角坐标系中,直线的参数方程为(为参数),以为极点,轴的非负半轴为极轴建立极坐标系,并在两种坐标系中取相同的长度单位,曲线的极坐标方程为。

(Ⅰ)把曲线的极坐标方程化为普通方程; (Ⅱ)求直线与曲线的交点的极坐标(规定:)。

题型二:曲线(圆与椭圆)的参数方程.(1)普通方程和参数方程的互化;最值问题;“1”的代换()、辅助角公式.2、已知曲线的参数方程是,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,的极坐标分别为。

(Ⅰ)求直线的直角坐标方程和曲线的普通方程;(Ⅱ)设为曲线上的点,求点到直线的距离的最大值.3、已知在平面直角坐标系中,直线的参数方程是是参数),以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为。

(Ⅰ)判断直线与曲线的位置关系,并说明理由;(Ⅱ)设为曲线上任意一点,求的取值范围.4、已知平面直角坐标系,以为极点,轴的非负半轴为极轴建立极坐标系,点的极坐标为,曲线的参数方程为(为参数)。

(Ⅰ)写出点的直角坐标及曲线的直角坐标方程;(Ⅱ)若为曲线上的动点,求中点到直线的距离的最小值。

(2)公共点问题;“直线与圆锥曲线"采用联立求解判别式;“直线与圆”采用“-—-法”。

5、在直角坐标系中曲线的参数方程为(为参数).若以直角坐标系中的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(Ⅰ)求曲线的普通方程和曲线的直角坐标方程;(Ⅱ)若曲线与曲线有公共点,求实数的取值范围.6、在直角坐标系中,直线的参数方程为(为参数).在极坐标系(以原点为极点,以轴非负半轴为极轴,且与直角坐标系取相同的长度单位)中,圆的方程为.(Ⅰ)求直线的极坐标方程和圆的直角坐标方程;(Ⅱ)若直线与圆相切,求实数的值.7、在极坐标系中,直线的极坐标方程为,以极点为原点极轴为轴的正半轴建立平面直角坐标系,曲线的参数方程为为参数,且)。

坐标系与参数方程_知识点总结

坐标系与参数方程_知识点总结

坐标系与参数方程_知识点总结一、坐标系1.直角坐标系直角坐标系是最常见的坐标系,在平面上由两个垂直的坐标轴组成,分别为x轴和y轴。

一个点在直角坐标系中的位置可以用坐标(x,y)来表示,其中x为横坐标,y为纵坐标。

2.极坐标系3.球坐标系球坐标系是一种用于描述空间点位置的坐标系统,它由径向距离、极角和方位角组成。

一个点的位置可以用有序数组(r,θ,φ)来表示,其中r为点到原点的距离,θ为点与一些固定轴的夹角,φ为点的方位角。

二、参数方程1.一维参数方程一维参数方程是指由一个参数确定的直线或曲线的方程。

例如,一个点在直线上的一维参数方程可以表示为x=f(t),其中x为点在直线上的位置,t为参数,f(t)为关于参数t的函数。

2.二维参数方程二维参数方程是指由两个参数确定的平面曲线的方程。

一个点在平面上的位置可以表示为(x(t),y(t)),其中x(t)和y(t)分别为关于参数t的函数。

二维参数方程常用于描述曲线、圆、椭圆等几何图形。

3.三维参数方程三维参数方程是指由三个参数确定的空间曲线的方程。

一个点在空间中的位置可以表示为(x(t),y(t),z(t)),其中x(t)、y(t)和z(t)分别为关于参数t的函数。

三维参数方程常用于描述空间曲线、曲面等几何图形。

三、坐标系与参数方程的关系坐标系和参数方程之间存在着密切的关系。

在直角坐标系中,一个函数的参数方程可以通过将x和y用参数表示来得到,即将x=f(t)和y=g(t)的参数方程转化为直角坐标系中的函数y=f(x)的形式。

反之,一个函数的直角坐标系方程也可以通过将x和y用参数表示来得到参数方程。

参数方程在极坐标系和球坐标系中也可以通过类似的方式转化。

总结:坐标系是描述点的位置的系统,常见的坐标系有直角坐标系、极坐标系和球坐标系。

参数方程是用参数表示的函数方程,常用于描述直线、曲线、曲面等几何图形。

坐标系和参数方程之间存在密切的关系,可以通过转化将一个方程从坐标系表示转化为参数方程,反之亦然。

高三数学坐标系与参数方程(较适合文科生)

高三数学坐标系与参数方程(较适合文科生)

高三数学坐标系与参数方程(较适合文科生)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高三数学 坐标系与参数方程(1)了解坐标系的作用,了解在平面直角坐标系伸缩变换作用下平面图形的变化情况。

(2)了解坐标系的基本概念,会在极坐标系中用极坐标刻画点的位置,能进行极坐标和直角坐标的互化。

(3)能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的极坐标方程。

(4)了解参数方程,了解参数的意义。

(5)能选择适当的参数写出直线、圆和椭圆的参数方程。

1. 极坐标系①极坐标是用“距离”与“角度”来刻画平面上点的位置的坐标形式。

极点、极轴、长度单位、角度单位和它的方向构成极坐标系的四要素,缺一不可。

规定:当点M 在极点时,它的极坐标θρ,0=可以取任意值。

②平面直角坐标与极坐标的区别:在平面直角坐标系内,点与有序实数对(x ,y )是一一对应的,可是在极坐标系中,虽然一个有序实数对),(θρ只能与一个点P 对应,但一个点P 却可以与无数多个有序实数对对应),(θρ,极坐标系中的点与有序实数对极坐标),(θρ不是一一对应的。

③极坐标系中,点M ),(θρ的极坐标统一表达式Z k k ∈+),2,(θπρ。

④如果规定πθρ20,0<≤>,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示,同时,极坐标),(θρ表示的点也是唯一确定的。

2.极坐标与直角坐标的互化:(1)互化的前提:①极点与直角坐标的原点重合;极轴与x 轴的正方向重合;③ 两种坐标系中取相同的长度单位。

(2)互化公式⎩⎨⎧==θρθρsin cos y x , ⎪⎩⎪⎨⎧≠=+=0,tan 222x x y y x θρ 注:极坐标方程化为直角坐标方程,方程两边同乘ρ,使之出现ρ2是常用的方法. 1. 已知点的极坐标分别为)4,3(π-A ,)32,2(πB ,),23(πC ,)2,4(π-D ,求它们的直角坐标。

高三数学总复习《坐标系与参数方程》课件

高三数学总复习《坐标系与参数方程》课件
极轴,选定一个单位长度和角的正方向(通常取逆时针方向),这 样就确定了一个平面极坐标系,简称为极坐标系. 对于平面内任意一点M,用ρ表示线段OM的长,θ表示以Ox为 始边,OM为终边的角度,ρ叫作点M的极径,θ叫做点M的极角, 有序实数对(ρ,θ)叫作点M的极坐标,记作M(ρ,θ). 当点M在极点时,它的极径ρ=0,极角θ可以取任意值.
为x=ρcosθy=ρsinθ. 将点M直角坐标(x,y)化为极坐标(ρ,θ)的关系式为
2 x2 y 2 y tan (x 0). x
曲线方程两种形式互化也可根据点的坐标互化完成.
3.曲线的极坐标方程 (1)极坐标方程 在极坐标系中,曲线可以用含有ρ,θ这两个变量的方程

(4)圆锥曲线的极坐标方程 圆锥曲线的统一定义:与一个定点的距离和一条定直线(定点
不在定直线上)的距离的比等于常数e的点轨迹.
若以定点F为极点,过定点F作定直线l的垂线,垂足为K,FK的 反向延长线Fx为极轴,建立极坐标系,其中|KF|=p,|MF|=ρ得圆
锥曲线统一的极坐标方程.
. ep 1 ecos
x OP cos rsincos y OP sin rsinsin . z rcos
(2)直线的极坐标方程 若直线经过点M(ρ0,θ0),且极轴到此直线的角为α,则直线l的极
坐标方程为ρsin(θ-α)=ρ0sin(θ0-α).
特殊情况: ①当直线l过极点,即ρ0=0时,方程为θ=α.
②当直线l过点M(a,0)且垂直于极轴时,l的极坐标方程是
ρcosθ=a.
③当直线l过点M (b, 程是 sin b.
当0<e<1时,表示椭圆,定点是它的左焦点,定直线是它的左准 线. 当e=1时,表示开口向右的抛物线, 当e>1时,方程只表示双曲线的右支,定点是它的右焦点,定直 线是它的右准线.

高考数学 《坐标系与参数方程》

高考数学 《坐标系与参数方程》

坐标系与参数方程主标题:坐标系与参数方程副标题:为学生详细的分析坐标系与参数方程的高考考点、命题方向以及规律总结。

关键词:极坐标,参数方程难度:3重要程度:5考点剖析:1.理解坐标系的作用.了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.2.会在极坐标系中用极坐标刻画点的位置,能进行极坐标和直角坐标的互化.3.能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)表示的极坐标方程.4.了解参数方程,了解参数的意义.5.能选择适当的参数写出直线、圆和椭圆的参数方程.6.掌握直线的参数方程及参数的几何意义,能用直线的参数方程解决简单的相关问题.命题方向:高考主要考查平面直角坐标系中的伸缩变换、直线和圆的极坐标方程;参数方程与普通方程的互化,常见曲线的参数方程及参数方程的简单应用.以极坐标、参数方程与普通方程的互化为主要考查形式,同时考查直线与曲线位置关系等解析几何知识.规律总结:1.主要题型有极坐标方程、参数方程和普通方程的互化,在极坐标方程或参数方程背景下的直线与圆的相关问题.2.规律方法方程解决直线、圆和圆锥曲线的有关问题,将极坐标方程化为直角坐标方程或将参数方程化为普通方程,有助于对方程所表示的曲线的认识,从而达到化陌生为熟悉的目的,这是化归与转化思想的应用.在涉及圆、椭圆的有关最值问题时,若能将动点的坐标用参数表示出来,借助相应的参数方程,可以有效地简化运算,从而提高解题的速度.3.极坐标方程与普通方程互化核心公式⎩⎪⎨⎪⎧ x =ρcos θy =ρsin θ,⎩⎪⎨⎪⎧ρ2=x 2+y 2tan θ=y x (x ≠0).4.过点A (ρ0,θ0) 倾斜角为α的直线方程为ρ=ρ0sin (θ0-α)sin (θ-α).特别地,①过点A (a,0),垂直于极轴的直线l 的极坐标方程为ρcos θ=a .②平行于极轴且过点A (b ,π2)的直线l 的极坐标方程为ρsin θ=b .5.圆心在点A (ρ0,θ0),半径为r 的圆的方程为r 2=ρ2+ρ20-2ρρ0cos(θ-θ0).6.重点掌握直线的参数方程⎩⎪⎨⎪⎧x =x 0+t cos θy =y 0+t sin θ(t 为参数),理解参数t 的几何意义.知 识 梳 理1.直角坐标与极坐标的互化把直角坐标系的原点作为极点,x 轴正半轴作为极轴,且在两坐标系中取相同的长度单位.如图,设M 是平面内的任意一点,它的直角坐标、极坐标分别为(x ,y )和(ρ,θ),则⎩⎪⎨⎪⎧ x =ρcos θy =ρsin θ,⎩⎪⎨⎪⎧ρ2=x 2+y 2tan θ=y x (x ≠0). 2.直线的极坐标方程若直线过点M (ρ0,θ0),且极轴到此直线的角为α,则它的方程为ρsin(θ-α)=ρ0sin(θ0-α). 几个特殊位置的直线的极坐标方程(1)直线过极点:θ=α;(2)直线过点M (a,0)且垂直于极轴:ρcos θ=a ;(3)直线过点M (b ,π2)且平行于极轴:ρsin θ=b . 3.圆的极坐标方程若圆心为M (ρ0,θ0),半径为r 的圆的方程为ρ2-2ρ0ρcos(θ-θ0)+ρ20-r 2=0.几个特殊位置的圆的极坐标方程(1)当圆心位于极点,半径为r :ρ=r ;(2)当圆心位于M (r,0),半径为r :ρ=2r cos θ;(3)当圆心位于M (r ,π2),半径为r :ρ=2r sin θ. 4.直线的参数方程过定点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).5.圆的参数方程圆心在点M (x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数,0≤θ≤2π). 6.圆锥曲线的参数方程(1)椭圆x 2a 2+y 2b 2=1的参数方程为⎩⎪⎨⎪⎧ x =a cos θ,y =b sin θ(θ为参数). (2)抛物线y 2=2px (p >0)的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数).。

2024年高考数学总复习选考部分坐标系与参数方程

2024年高考数学总复习选考部分坐标系与参数方程

坐标系与参数方程是高中数学中的重要内容,也是高考数学中的选考部分。

本文将全面复习这一内容,包括坐标系的基本概念、参数方程的基本性质和解题方法。

首先,我们来复习坐标系的基本概念。

坐标系常见的有笛卡尔坐标系、极坐标系和球坐标系。

其中,笛卡尔坐标系是最常用的坐标系,它由两个相互垂直的数轴(x轴和y轴)组成。

点在坐标系中的位置由其横坐标和纵坐标确定。

而极坐标系则由一个极轴和一个极径组成,点在极坐标系中的位置由其极角和极径确定。

球坐标系则由一个极轴、一个极角和一个极径组成,点在球坐标系中的位置由其极角、极径和高度确定。

其次,我们要了解参数方程的基本性质和解题方法。

参数方程是用参数表示的一组函数方程。

常见的参数方程有平面曲线的参数方程和空间曲线的参数方程。

平面曲线的参数方程是指用参数t表示平面上的点的坐标。

例如,直线的参数方程可以写成x=t,y=2t;曲线的参数方程可以写成x=cos(t),y=sin(t)。

空间曲线的参数方程是指用参数t表示空间中的点的坐标。

例如,直线的参数方程可以写成x=a+mt,y=b+nt,z=c+pt;曲线的参数方程可以写成x=a+cos(t),y=b+sin(t),z=ct。

解题时,我们需要掌握参数方程与坐标系之间的相互转化关系,以及利用参数方程求解问题的方法。

对于平面曲线的参数方程,我们可以通过消去参数t,得到相应的笛卡尔坐标系方程。

反过来,我们也可以通过将笛卡尔坐标系方程分别用x和y表示,再令x=t,y=2t,得到相应的参数方程。

对于空间曲线的参数方程,我们可以通过类似的方法得到笛卡尔坐标系方程。

此外,还可以通过求导、积分等方法求解参数方程问题。

最后,我们来总结一下解题方法。

解题时,首先需要理清题意,明确要求。

然后,根据题目给出的条件,确定使用何种参数方程或笛卡尔坐标系方程。

接着,根据解题思路,通过参数的消去或替换,得到问题的解。

最后,对解进行检验,并确定结果的合理性。

总之,坐标系与参数方程是高考数学中的选考部分,是数学知识体系中的重要内容。

“坐标系与参数方程”高考考查分析

“坐标系与参数方程”高考考查分析

“坐标系与参数方程”高考考查分析坐标系与参数方程是数学中的重要概念,在高考中经常被考查。

本文将从简单介绍坐标系和参数方程的基本概念开始,然后分析高考中可能会涉及到的相关考题,并给出解题方法和思路。

一、坐标系的概念坐标系是指由直角坐标轴和原点组成的平面或空间上的一个几何结构。

一般来说,二维坐标系由x轴和y轴组成,原点为坐标系的起点,x轴和y轴互相垂直。

三维坐标系由x 轴、y轴和z轴组成,原点为坐标系的起点,x轴和y轴在平面上互相垂直,z轴与平面垂直。

二、参数方程的概念参数方程是一种用参数表示的的函数方程。

通常将一个二元函数的两个自变量分别用两个参数表示,并用参数方程将它们联系起来。

在空间曲线方程中,我们常常用参数方程来表示曲线上的各个点的坐标。

对于平面上的一条直线,我们可以通过两个参数t和s来表示各个点的坐标。

三、高考考点与命题思路1. 坐标系的性质和计算高考中,常常会考察学生对坐标系性质的理解和计算能力。

考生可能需要根据已知条件绘制坐标系,并计算平面上的点的坐标。

此类题目主要要求考生对坐标系的性质有清晰的认识,能够正确运用计算方法。

2. 转动曲线方程和参数方程之间的转换高考中,经常会涉及到参数方程和曲线方程之间的转换。

考生可能会被给出一个曲线方程,然后要求将其转化为参数方程,或者反过来。

此类题目要求考生对参数方程和曲线方程之间的关系有较深入的理解,并能够找到相应的转换方法。

四、解题方法与思路1. 掌握基本知识考生需要牢固掌握坐标系和参数方程的基本概念和性质。

只有对基本知识有清晰的认识,才能够灵活运用。

2. 熟练计算能力在解决与坐标系和参数方程有关的题目时,熟练的计算能力是必不可少的。

考生需熟悉坐标系的性质,能够准确计算各个点的坐标。

3. 深入理解思考在解答参数方程和曲线方程之间的转换题目时,考生需要深入理解参数方程和曲线方程之间的关系,找到相应的转换方法。

可以通过观察坐标的变化规律,或者利用变量之间的相关关系来解决。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学 坐标系与参数方程
(1)了解坐标系的作用,了解在平面直角坐标系伸缩变换作用下平面图形的变化情况。

(2)了解坐标系的基本概念,会在极坐标系中用极坐标刻画点的位置,能进行极坐标和直角坐标的互化。

(3)能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的极坐标方程。

(4)了解参数方程,了解参数的意义。

(5)能选择适当的参数写出直线、圆和椭圆的参数方程。

1. 极坐标系
①极坐标是用“距离”与“角度”来刻画平面上点的位置的坐标形式。

极点、极轴、长度单位、角度单位和它的方向构成极坐标系的四要素,缺一不可。

规定:当点M 在极点时,它的极坐标θρ,0=可以取任意值。

②平面直角坐标与极坐标的区别:
在平面直角坐标系内,点与有序实数对(x ,y )是一一对应的,可是在极坐标系中,虽然一个有序实数对),(θρ只能与一个点P 对应,但一个点P 却可以与无数多个有序实数对对应),(θρ,极坐标系中的点与有序实数对极坐标),(θρ不是一一对应的。

③极坐标系中,点M ),(θρ的极坐标统一表达式Z k k ∈+),2,(θπρ。

④如果规定πθρ20,0<≤>,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示,同时,极坐标),(θρ表示的点也是唯一确定的。

2.极坐标与直角坐标的互化:
(1)互化的前提:
①极点与直角坐标的原点重合;极轴与x 轴的正方向重合;③ 两种坐标系中取相同的长度单位。

(2)互化公式⎩⎨⎧==θρθρsin cos y x , ⎪⎩
⎪⎨⎧≠=+=0,tan 222x x y y x θρ 注:极坐标方程化为直角坐标方程,方程两边同乘ρ,使之出现ρ2是常用的方法. 1. 已知点的极坐标分别为)4,3(π-A ,)32,2(πB ,),23(πC ,)2
,4(π-D ,求它们的直角坐标。

答案:A (3232 3(3)((0,4)B C D -- 2、已知点的直角坐标分别为)32,2(),35,0(),3,3(---
C B A ,求它们的极坐标。

答案:534(23,))(4,).62
3A B C πππ θx
M
一、选择题(本大题共6小题,每小题5分,满分30分)
1.把方程1xy =化为以t 参数的参数方程是( )
A .1212x t y t -⎧=⎪⎨⎪=⎩
B .sin 1sin x t y t =⎧⎪⎨=⎪⎩
C .cos 1cos x t y t =⎧⎪⎨=⎪⎩
D .tan 1tan x t y t =⎧⎪⎨=⎪⎩
2.曲线25()12x t t y t
=-+⎧⎨=-⎩为参数与坐标轴的交点是( )
A .21(0,)(,0)52、
B .11(0,)(,0)52、
C .(0,4)(8,0)-、
D .5(0,)(8,0)9

3.直线12()2x t t y t
=+⎧⎨
=+⎩为参数被圆229x y +=截得的弦长为( ) A .125 B
C
D
4.若点(3,)P m 在以点F 为焦点的抛物线2
4()4x t t y t
⎧=⎨=⎩为参数上,则PF 等于( )
A .2
B .3
C .4
D .5
5.极坐标方程cos 20ρθ=表示的曲线为( )
A .极点
B .极轴
C .一条直线
D .两条相交直线
6.在极坐标系中与圆4sin ρθ=相切的一条直线的方程为( )
A .cos 2ρθ=
B .sin 2ρθ=
C .4sin()3πρθ=+
D .4sin()3π
ρθ=-
二、填空题(本大题共5小题,每小题5分,满分25分) 1.已知曲线2
2()2x pt t p y pt
⎧=⎨=⎩为参数,为正常数上的两点,M N 对应的参数分别为12,t t 和,120t t +=且,那么MN = 。

2
.直线2()3x t y ⎧=--⎪⎨=⎪⎩为参数上与点(2,3)A -
的点的坐标是 。

3.圆的参数方程为3sin 4cos ()4sin 3cos x y θθθθθ=+⎧⎨=-⎩
为参数,则此圆的半径为 。

4.极坐标方程分别为cos ρθ=与sin ρθ=的两个圆的圆心距为 。

5.直线cos sin x t y t θθ=⎧⎨=⎩与圆42cos 2sin x y αα
=+⎧⎨=⎩相切,则θ= 。

高三数学 坐标系与参数方程参考答案
一、选择题
1.D 1xy =,x 取非零实数,而A ,B ,C 中的x 的范围有各自的限制
2.B 当0x =时,25t =,而12y t =-,即15y =,得与y 轴的交点为1(0,)5
; 当0y =时,12t =,而25x t =-+,即12x =,得与x 轴的交点为1(,0)2
3.B
11221x x t y t y ⎧=+⎪=+⎧⎪⇒⎨⎨=+⎩⎪=+⎪⎩,把直线122x t y t =+⎧⎨=+⎩代入 229x y +=得222(12)(2)9,5840t t t t +++=+-=
12125t t -===
12t -=4.C 抛物线为24y x =,准线为1x =-,PF 为(3,)P m 到准线1x =-的距离,即为4
5.D cos 20,cos 20,4k πρθθθπ===±
,为两条相交直线 6.A 4sin ρθ=的普通方程为22(2)4x y +-=,cos 2ρθ=的普通方程为2x =
圆22
(2)4x y +-=与直线2x =显然相切 二、填空题
1.14p t 显然线段MN 垂直于抛物线的对称轴。

即x 轴,121222MN p t t p t =-=
2.(3,4)-,或(1,2)-
22221()),,22
t t +==
=± 3.5 由3sin 4cos 4sin 3cos x y θθθθ
=+⎧⎨=-⎩得2225x y += 4

2 圆心分别为1(,0)2和1(0,)2
5.6
π,或56π 直线为tan y x θ=,圆为22(4)4x y -+=,作出图形,相切时,
易知倾斜角为
6
π,或56π
三、解答题
1.已知曲线C 1:4cos ,3sin ,x t y t =-+⎧⎨=+⎩ (t 为参数), C 2:8cos ,3sin ,
x y θθ=⎧⎨=⎩(θ为参数)。

(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;
(2)若C 1上的点P 对应的参数为2t π
=,Q 为C 2上的动点,求PQ 中点M 到直线
332,:2x t C y t =+⎧⎨=-+⎩
(t 为参数)距离的最小值。

答案解解析:(Ⅰ)22
22
12:(4)(3)1,: 1.649x y C x y C ++-=+= 1C 为圆心是(4,3)-,半径是1的圆.
2C 为中心是坐标原点,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆. (Ⅱ)当2t π
=时,3(4,4).(8cos ,3sin ),(24cos ,2sin ).2P Q M θθθθ--++故
3C 为直线3270,|4cos 3sin 13|.5x y M C d θθ--==
--到的距离
从而当43cos ,sin 55θθ==-时,5d 取得最小值。

相关文档
最新文档