坐标系与参数方程(题型归纳)
高考数学-坐标系与参数方程(含22年真题讲解)

高考数学-坐标系与参数方程 (含22年真题讲解)1.【2022年全国甲卷】在直角坐标系xOy 中,曲线C 1的参数方程为{x =2+t 6y =√t(t 为参数),曲线C 2的参数方程为{x =−2+s 6y =−√s(s 为参数).(1)写出C 1的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 3的极坐标方程为2cosθ−sinθ=0,求C 3与C 1交点的直角坐标,及C 3与C 2交点的直角坐标. 【答案】(1)y 2=6x −2(y ≥0);(2)C 3,C 1的交点坐标为(12,1),(1,2),C 3,C 2的交点坐标为(−12,−1),(−1,−2).【解析】 【分析】(1)消去t ,即可得到C 1的普通方程;(2)将曲线C 2,C 3的方程化成普通方程,联立求解即解出. (1) 因为x =2+t 6,y =√t ,所以x =2+y 26,即C 1的普通方程为y 2=6x −2(y ≥0).(2) 因为x =−2+s 6,y =−√s ,所以6x =−2−y 2,即C 2的普通方程为y 2=−6x −2(y ≤0),由2cosθ−sinθ=0⇒2ρcosθ−ρsinθ=0,即C 3的普通方程为2x −y =0. 联立{y 2=6x −2(y ≥0)2x −y =0 ,解得:{x =12y =1 或{x =1y =2 ,即交点坐标为(12,1),(1,2);联立{y 2=−6x −2(y ≤0)2x −y =0 ,解得:{x =−12y =−1 或{x =−1y =−2 ,即交点坐标为(−12,−1),(−1,−2). 2.【2022年全国乙卷】在直角坐标系xOy 中,曲线C 的参数方程为{x =√3cos2t y =2sint ,(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为ρsin (θ+π3)+m =0. (1)写出l 的直角坐标方程;(2)若l 与C 有公共点,求m 的取值范围. 【答案】(1)√3x +y +2m =0 (2)−1912≤m ≤52 【解析】 【分析】(1)根据极坐标与直角坐标的互化公式处理即可;(2)联立l 与C 的方程,采用换元法处理,根据新设a 的取值范围求解m 的范围即可. (1)因为l :ρsin (θ+π3)+m =0,所以12ρ⋅sinθ+√32ρ⋅cosθ+m =0,又因为ρ⋅sinθ=y,ρ⋅cosθ=x ,所以化简为12y +√32x +m =0,整理得l 的直角坐标方程:√3x +y +2m =0 (2)联立l 与C 的方程,即将x =√3cos2t ,y =2sint 代入 √3x +y +2m =0中,可得3cos2t +2sint +2m =0, 所以3(1−2sin 2t)+2sint +2m =0, 化简为−6sin 2t +2sint +3+2m =0,要使l 与C 有公共点,则2m =6sin 2t −2sint −3有解,令sint =a ,则a ∈[−1,1],令f(a)=6a 2−2a −3,(−1≤a ≤1), 对称轴为a =16,开口向上,所以f(a)max =f(−1)=6+2−3=5, f(a)min =f(16)=16−26−3=−196,所以−196≤2m ≤5m 的取值范围为−1912≤m ≤52.1.(2022·宁夏·吴忠中学三模(文))在平面直角坐标系xOy 中,曲线1C 的参数方程为244x t y t ⎧=-⎨=⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos ρθ=.(1)求曲线1C 与2C 的直角坐标方程;(2)已知直线l 的极坐标方程为πR 02θαρα⎛⎫ ⎪=∈⎝<<⎭,,直线l 与曲线1C ,2C 分别交于M ,N (均异于点O )两点,若4OMON=,求α. 【答案】(1)曲线1C 的直角坐标方程为24y x =-,曲线2C 的直角坐标方程为2220x y x +-=, (2)π4α=【解析】 【分析】(1)1C 的参数方程消参可求出1C 的直角坐标方程;2C 的极坐标方程同乘ρ,把cos x ρθ=,222x y ρ=+代入2C 的极坐标方程可求出2C 的直角坐标方程.(2)设M 、N 两点的极坐标分别为()1,ρα、()2,ρα,用极径的几何意义表示出4OMON=,即124ρρ=,解方程即可求出α. (1)解:1C 的参数方程为244x t y t ⎧=-⎨=⎩(t 为参数),把2216y t =代入24x t =-中可得,24y x =-,所以曲线1C 的直角坐标方程为24y x =-,2C 的极坐标方程为2cos ρθ=,即22cos ρρθ=,所以曲线2C 的直角坐标方程为2220x y x +-=,综上所述:曲线1C 的直角坐标方程为24y x =-,曲线2C 的直角坐标方程为2220x y x +-=, (2)由(1)知,1C 的极坐标方程为2sin 4cos ρθθ=-, 设M 、N 两点的极坐标分别为()1,ρα、()2,ρα,则21sin 4cos ραα=-,22cos ρα=,由题意知02πα<<可得sin 0α≠,因为4OMON=,所以124ρρ=,所以24cos 42cos sin ααα-=⨯,故21sin 2α=,所以sin 2α=或sin 2α=(舍) 所以π4α=.2.(2022·四川·宜宾市叙州区第一中学校模拟预测(理))在平面直角坐标系xOy 中,曲线1C 的参数方程为1cos sin x y θθ=+⎧⎨=⎩(θ为参数),曲线2C 的参数方程为2221x t t y t ⎧=-⎨=-⎩(t 为参数).已知曲线2C 与x ,y 正半轴分别相交于,A B 两点.(1)写出曲线1C 的极坐标方程,并求出,A B 两点的直角坐标;(2)若过原点O 且与直线AB 垂直的直线l 与曲线1C 交于P 点,与直线AB 交于Q 点,求线段PQ 的长度.【答案】(1)2cos ρθ=,A 点为()3,0,B 点为()0,3(2)2【解析】 【分析】(1)普通方程()2211x y -+=,即可得2cos ρθ=(2)求出直线AB 的方程为3y x =-+,然后求出直线l 的方程,然后可求出PQ 的长度 (1)曲线1C 的普通方程()2211x y -+=,极坐标方程()()22cos 1sin 1ρθρθ-+=,∴2cos ρθ=.在曲线2C 上,当0x =时,0=t 或2t =,此时3y =或1y =-(舍),所以B 点为()0,3. 当0y =时,1t =-或1t =,此时3x =或1x =-(舍),所以A 点为()3,0. (2)直线AB 的方程为3y x =-+,极坐标方程为sin cos 3ρθρθ=-+, ∴()sin cos 3ρθθ+=,过原点O 且与直线AB 垂直的直线l 的极坐标方程为4πθ=.4πθ=与2cos ρθ=联立,得1ρ 4πθ=与()sin cos 3ρθθ+=联立,得2ρ=∴21PQ ρρ=-=. 3.(2022·江西·南昌市八一中学三模(理))在直角坐标系xOy 中,直线l的参数方程为11x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4sin 6πρθ⎛⎫=-+ ⎪⎝⎭.(1)求C 和l 的直角坐标方程;(2)设点Q的直角坐标为(,P 为C 上的动点,求PQ 中点R 的轨迹的极坐标方程. 【答案】(1)直线l 的普通方程为2x y +=,曲线C 的普通方程为()(2214x y ++=;(2)21ρ= 【解析】 【分析】(1)消去参数t ,即可得到直线l 的普通方程,再由两角和的正弦公式及222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪=+⎩,将曲线C 的极坐标方程化为直角坐标方程;(2)设(),R x y ,即可表示P 点坐标,再根据点P 在曲线C 上,代入C 的方程,即可得到点R 的轨迹方程,再将直角坐标方程化为极坐标方程即可;(1)解:因为直线l的参数方程为11x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数), 所以直线l 的普通方程为2x y +=,因为曲线C 的极坐标方程为4sin 6πρθ⎛⎫=-+ ⎪⎝⎭,即4sin cos cos sin 66ππρθθ⎛⎫=-+ ⎪⎝⎭,即2cos ρθθ=--,所以2sin 2cos ρθρθ=--,又222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪=+⎩,所以222x y x +=--,即()(2214x y +++=,即曲线C 的普通方程为()(2214x y ++=;(2)解:设(),R x y,则(21,2P x y -,因为点P 在曲线C 上,所以()(2221124x y -++=,即221x y +=,所以PQ 中点R 的轨迹方程为221x y +=,即21ρ=4.(2022·黑龙江·哈尔滨三中模拟预测(理))在平面直角坐标系xOy 中,已知直线l 的参数方程为21x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为()2cos θsin θρ=+. (1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)设点()2,1P ,直线l 与曲线C 的交点为A ,B ,求PA PBPB PA+的值. 【答案】(1)10x y --=,22220x y x y +--= (2)4 【解析】 【分析】(1)直接消去参数,将直线l 的方程化为普通方程,利用互化公式将曲线C 的极坐标方程转化为直角坐标方程(2)将直线的参数方程代入曲线C的普通方程,得到210t -=,得到12121t t t t +==- ,化简()222121212122112122PA PBt t t t t t t t PB PA t t t t t t +-++=+==,代入韦达定理,即可得到答案 (1)直线l的参数方程为21x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数), 消去参数t 可得l 的普通方程为10x y --=.曲线C 的极坐标方程为2(cos θsin θ)ρ=+,即22(cos θsin θ)ρρ=+,根据222cos θsin θx y x y ρρρ=⎧⎪=⎨⎪=+⎩,可得2222x y x y +=+.∴曲线C 的直角坐标方程为22220x y x y +--= (2)在直线l的参数方程21x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数)中,设点A ,B 对应的参数分别为1t ,2t , 将直线l的参数方程221x y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),代入22220x y x y +--=,得210t +-=,∴12t t +=121t t =-.∴()2221212121221121224PA PBt t t t t t t t PB PA t t t t t t +-++=+=== 5.(2022·安徽淮南·二模(文))在平面直角坐标系xOy 中,曲线C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(其中α为参数,02πα≤<),以原点O 为极点,x 轴非负半轴为极轴,取相同的单位长度建立极坐标系,直线1l 的极坐标方程为(R)3πθρ=∈.(1)求曲线C 的极坐标方程与直线1l 的直角坐标方程;(2)设直线1l 与曲线C 交于点O ,A ,直线2l 与曲线C 交于点O ,B ,求AOB 面积的最大值. 【答案】(1)4sin ρθ=,y(2)【解析】【分析】(1)依据参数方程与普通方程的互化和极坐标方程与直角坐标方程的互化即可解决; (2)先求得AOB 面积的表达式,再对其求最大值即可. (1)曲线C 的直角坐标方程为22(2)4x y +-=,展开得2240x y y +-=, 则曲线C 的极坐标方程为4sin ρθ=. 直线1l的直角坐标方程为y (2)由(1)可知π||4sin3OA == 设直线2l 的极坐标方程为(R)θβρ=∈,根据条件知要使AOB 面积取最大值,则ππ3β<<,则||4sin OB β=,于是1ππsin sin 233OAB S OA OB βββ⎛⎫⎛⎫=⨯⨯⨯-=- ⎪ ⎪⎝⎭⎝⎭2π6sin cos cos 2)3sin 226ββββββ⎛⎫=-=--=+ ⎪⎝⎭,所以当π3π262β+=即2π3β=时,AOB的面积取最大值,最大值为6.(2022·内蒙古呼和浩特·二模(理))在直角坐标系xOy 中,曲线C的参数方程为))cos sin cos sin 2x y ϕϕϕϕ⎧=+⎪⎨=-⎪⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,两坐标系取相同单位长度,直线l 的极坐标方程为2cos 3sin 100ρθρθ+-=. (1)求曲线C 的普通方程和直线l 的直角坐标方程; (2)求曲线C 上的点到直线l 距离的最小值. 【答案】(1)2214x y +=,23100x y +-=;【解析】 【分析】(1)消去曲线C 的参数方程中的参数即可得解,利用极坐标与直角坐标互化得直线l 的直角坐标方程作答.(2)设出曲线C 上任意一点的坐标,利用点到直线距离公式及辅助角公式求解作答. (1)由))cos sin cos sin x y ϕϕϕϕ⎧=+⎪⎨=-⎪⎩(ϕ为参数),消去参数得2214x y +=, 所以曲线C 的普通方程为2214x y +=,把cos sin x y ρθρθ=⎧⎨=⎩代入直线l 的极坐标方程2cos 3sin 100ρθρθ+-=得:23100x y +-=,所以直线l 的直角坐标方程为23100x y +-=. (2)由(1)知,曲线C 的参数方程为2cos sin x y αα=⎧⎨=⎩(α为参数),设()2cos ,sin P αα为曲线C 上一点,P 到直线l 的距离为d ,则105sin d αϕ-+===ϕ由4tan 3ϕ=确定,因此,当()sin 1αϕ+=时,d所以曲线C 上的点到直线l 7.(2022·甘肃·武威第六中学模拟预测(文))在直角坐标系xOy 中,曲线C 的参数方程为11x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),以坐标原点极点,以x 轴正半轴为极轴建立极坐标系,直线l 的极坐sin cos 0θρθ-.(1)求曲线C 的普通方程和直线l 的直角坐标方程: (2)若直线与曲线C 交于A ,B 两点,点P 的坐标为(0,1),求11||||PA PB +的值. 【答案】(1)224x y -=,0x+= (2)5【解析】【分析】(1)消去参数t 可得曲线C 的方程,利用公式法转化得到直线l 的直角坐标方程; (2)利用直线l 的参数方程中t 的几何意义求解. (1)∴11x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),∴22222222112112x t t t t y t t t t ⎧⎛⎫=+=++⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=-=+- ⎪⎪⎝⎭⎩,所以224x y -=, 所以曲线C 的方程为224x y -=又∴cos x ρθ=,sin y ρθ=,0x - 所以直线l的直角坐标方程为0x =; (2)∴()0,1P 在直线l 上,∴直线l的参数方程为112x y t⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数)设A ,B 对应的参数分别为1t 与2t将直线l 的参数方程代入到224x y -=得22100t t --=. ∴2Δ(2)41(10)440=--⨯⨯-=>, ∴122t t +=,12100t t ⋅=-<, ∴1||PA t =,2||PB t =∴1212121111||||-+=+====t tPA PB t t t t,所以11||||+=PA PB 8.(2022·全国·赣州市第三中学模拟预测(理))在平面直角坐标系xOy 中,曲线1C 满足参数方程2241421t x t y t ⎧=⎪⎪+⎨⎪=-⎪+⎩(t 为参数且11t -≤≤).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,点P 为曲线1C 上一动点,且极坐标为(),ρθ. (1)求曲线1C 的直角坐标方程; (2)求()cos 3sin ρθθ+的取值范围.【答案】(1)y =()2204y x y +=≥(2)⎡-⎣ 【解析】 【分析】(1)消去参数t 可得普通方程,由11t -≤≤,得到0y ≥,即可求出曲线1C 的直角坐标方程; (2)先判断出2ρ=利用三角函数出()cos 3sin ρθθ+的范围. (1)由2241421t x t y t ⎧=⎪⎪+⎨⎪=-⎪+⎩消去t 可得:224x y +=. 由于11t -≤≤,则212t +≤,即0y ≥.因此曲线1C的直角坐标方程为y ()2204y x y +=≥(2)曲线1C 为上半圆,点P 在1C 上,因此2ρ=,0,θπ⎡⎤∈⎣⎦ 由三角函数的性质知,在[]0,π上,1cos 3sin θθ-≤+≤因此()cos 3sin 2,ρθθ⎡+∈-⎣9.(2022·黑龙江·哈尔滨三中三模(理))在平面直角坐标系xOy 中,已知直线l 的参数方程为22x y t ⎧=⎪⎨=-⎪⎩(t 为参数).以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,圆C 的极坐标方程为22cos 4sin 10ρρθρθ---=. (1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A 、B ,若点P 的坐标为()2,2,求1PA PB-.【答案】(1)()()22126x y -+-=;【解析】 【分析】(1)将222x y ρ=+、cos x ρθ=、sin y ρθ=代入圆C 的极坐标方程即可求其直角坐标方程; (2)将直线l 的参数方程化为标准形式,代入圆C 的直角坐标方程得到关于参数t 的二次方程,根据韦达定理和直线参数方程参数的几何意义即可求出1PA PB-.(1)∴22cos 4sin 10ρρθρθ---=,∴222410x y x y +---=, 即()()22126x y -+-=; (2)直线l参数方程的标准形式为2122x y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数), 代入圆C直角坐标方程整理得250t -=, 设方程的两根为1t 、2t ,则A 、B 对应参数1t 、2t ,则121250t t t t ⋅=-<⎧⎪⎨+⎪⎩,∴1PA PB-121211t t t t ==+-10.(2022·河南·模拟预测(理))在平面直角坐标系xOy 中,曲线1C 的参数方程为222x m y m⎧=⎨=⎩(m 为参数),直线l 的参数方程为12x tcos y tsin αα⎧=+⎪⎨⎪=⎩,(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos ρθ=,直线l 与1C 交于点P ,Q ,与2C 交于点S ,T ,与x 轴交于点R .(1)写出曲线1C 的普通方程和曲线2C 的直角坐标方程; (2)若()4PR QR SR TR -=-,求直线l 的倾斜角. 【答案】(1)22y x =,()2211x y -+= (2)2π或4π或34π【解析】 【分析】(1)消参求得曲线1C 的普通方程为22y x =.由2cos ρθ=同乘ρ得到2C 的直角坐标方程. (2)l 过定点1,02R ⎛⎫ ⎪⎝⎭.将直线l 的参数方程代入21:2C y x =,整理得22sin 2cos 10t t αα--=,利用参数的几何含义化简求解. (1)曲线1C 的普通方程为22y x =.由2cos ρθ=得22cos ρρθ=.所以2C 的直角坐标方程为222x y x +=,即()2211x y -+=.(2)不妨设0απ<<,则sin 0α>.易知1,02R ⎛⎫ ⎪⎝⎭是l 过的定点.将直线l 的参数方程代入21:2C y x =,整理得22sin 2cos 10t t αα--=,设P ,Q 对应的参数分别为P t ,Q t ,则22cos sin P Q PR QR t t αα-=+=.将直线l 的参数方程代入()222:11C x y -+=,得23cos 04t t α--=, 设S ,T 对应的参数分别为S t ,T t ,则cos S T SR TR t t α-=+=.由()4PR QR SR TR -=-得22cos 4cos sin ααα=,得cos 0α=或sin α=l 的倾斜角为2π或4π或34π. 11.(2022·河南洛阳·三模(理))在直角坐标系xOy 中,直线1l的参数方程为12x ty kt⎧=⎪⎨=⎪⎩(t 为参数),直线2l的参数方程为x m m y k ⎧=⎪⎨=-⎪⎩(m 为参数),设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线1C .(1)求曲线1C 的普通方程;(2)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,设曲线2C 的极坐标方程为2cos ρθ=,射线OM :()04πθρ=≥与1C ,2C 分别交于A ,B 两点,求线段AB 的长.【答案】(1)22163x y +=,()0y ≠(2)2【解析】 【分析】(1)消去参数得到直线1l 、2l 的普通方程,联立两方程消去k ,即可得到P 的轨迹; (2)首先将1C 的方程化为极坐标方程,再将()04πθρ=≥代入两极坐标方程即可求出OA ,OB ,即可得解;(1)解:因为直线1l的参数方程为12x ty kt⎧⎪⎨=⎪⎩(t 为参数), 消去参数t 得直线1l的普通方程为(12y k x =①, 直线2l的参数方程为x m m y k ⎧=⎪⎨=-⎪⎩(m 为参数), 消去参数m 得直线2l的普通方程为(1y x k=-②, 设(),P x y ,由①②联立得((121y k x y x k ⎧=⎪⎪⎨⎪=-⎪⎩,消去k 得()22162y x =--即曲线1C 的普通方程为22163x y +=,()0y ≠;(2)解:设1OA ρ=,2OB ρ=,由cos sin x y ρθρθ=⎧⎨=⎩得曲线1C 的极坐标方程为2261sin ρθ=+(02θπ<<,θπ≠),代入()04πθρ=≥得12OA ρ==,将()04πθρ=≥代入2cos ρθ=得2OB ρ==所以2AB OA OB =-= 即线段AB的长度为212.(2022·安徽省芜湖市教育局模拟预测(理))在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos 3sin x y ββ=+⎧⎨=⎩(β为参数),将曲线1C 经过伸缩变换13x xy y =⎧''⎪⎨=⎪⎩得到曲线2C .以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线2C 的极坐标方程;(2)已知射线():0l θαρ=≥与曲线2C 交于A 、B 两点,若3OB OA =,求tan α的值. 【答案】(1)24cos 30ρρθ-+= (2)0 【解析】 【分析】(1)求出曲线2C 的参数方程,化为普通方程,再利用极坐标方程与直角坐标方程之间的转换关系可得出曲线2C 的极坐标方程;(2)设()1,A ρα、()2,B ρα,则1ρ、2ρ为方程24cos 30ρρα-+=的两根,由已知可得213ρρ=,结合韦达定理可求得cos α的值,利用同角三角函数的基本关系可求得tan α的值. (1)解:由题可得2C 的参数方程为2cos sin x y ββ=+⎧⎨=⎩(β为参数),则2C 的直角方程为()2221x y -+=,即22430x y x +-+=, 因为cos x ρθ=,sin y ρθ=,所以24cos 30ρρθ-+=,所以曲线2C 的极坐标方程为24cos 30ρρθ-+=. (2)解:设()1,A ρα、()2,B ρα,则1ρ、2ρ为方程24cos 30ρρα-+=的两根, 2Δ16cos 120α=->,则124cos ρρα+=①,123ρρ=②, 因为3OB OA =,所以213ρρ=③,由①②③解得cos 1α=,则sin 0α=,tan 0α∴=,此时16120∆=->,合乎题意. 故tan 0α=.13.(2022·贵州遵义·三模(文))在极点为O 的极坐标系中,经过点π2,6M ⎛⎫⎪⎝⎭的直线l 与极轴所成角为α,且与极轴的交点为N . (1)当π2α=时,求l 的极坐标方程; (2)当ππ,43α⎡⎤∈⎢⎥⎣⎦时,求MON △面积的取值范围.【答案】(1)cos ρθ=(2)⋃⎣⎦⎣⎦【解析】 【分析】(1)先求得l 的直角坐标方程,再转化为极坐标方程.(2)对直线l 的倾斜角进行分类讨论,结合三角形的面积公式求得MON △面积的取值范围. (1)点π2,6M ⎛⎫ ⎪⎝⎭,则π2cos 6π2sin 16x y ⎧=⨯=⎪⎪⎨⎪=⨯=⎪⎩,所以M点的直角坐标为),当π2α=时,直线l的直角坐标方程为x =转化为极坐标方程为cos ρθ=.(2)在极坐标系下:经过点π2,6M ⎛⎫⎪⎝⎭的直线l 与极轴所成角为α,在直角坐标系下:经过点)M的直线l 的倾斜角为α或πα-.即直线l 的倾斜角是α或πα-. 当直线l 的倾斜角为α时,直线l 的方程为(1tan y x α-=,令0y =得1tan N x α-=ππ,43α⎡⎤∈⎢⎥⎣⎦,tan α⎡∈⎣,111,1,,tan tan tan N x ααα⎤⎡∈-∈-=-⎥⎢⎣⎦⎣⎦⎦,所以1π111sin 2262tan 2MONSOM ON α⎛=⨯⨯⨯=⨯⨯-+⨯ ⎝11tan 2α⎛=-⨯∈ ⎝⎣⎦.当直线l 的倾斜角为πα-时,直线l 的方程为()((1tan πtan y x x αα-=-=-,令0y =得1tan N x α=11,1tan tan N x αα⎤⎤∈=⎥⎥⎣⎦⎣⎦,所以1π111sin 2262tan 2MONSOM ON α⎛=⨯⨯⨯=⨯⨯⨯ ⎝11tan 2α⎛=⨯∈ ⎝⎣⎦.综上所述,MON △面积的取值范围是⋃⎣⎦⎣⎦. 14.(2022·江西·上饶市第一中学二模(文))在平面直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的普通方程为:22(2)4x y -+=,曲线2C 的参数方程是2cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数),点2,2P π⎛⎫⎪⎝⎭.(1)求曲线1C 和2C 的极坐标方程; (2)设射线(0)3πθρ=>分别与曲线1C 和2C 相交于A ,B 两点,求PAB △的面积.【答案】(1)4cos ρθ=,22123sin ρθ=+(2)1 【解析】 【分析】(1)由公式法求极坐标方程(2)联立方程后分别求出A ,B 坐标,及P 到直线AB 距离后求面积 (1)曲线1C 的直角坐标方程为:2240x y x +-=, 将cos ,sin x y ρθρθ==代入上式并化简, 得曲线1C 的极坐标方程为:4cos ρθ=. 曲线2C 的普通方程是:22143x y +=, 将cos ,sin x y ρθρθ==代入上式并化简, 得曲线2C 的极坐标方程为:22123sin ρθ=+.(2)设12,,,33A B ππρρ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,则1||4cos23OA πρ===,22221216||53sin 3OB ρπ===+,所以||OB =,所以||||||2AB OA OB =-=-. 又(0,2)P到直线:AB y =的距离为:1d ==所以12112PABS⎛=⨯⨯= ⎝⎭ 15.(2022·全国·模拟预测(文))在直角坐标系xOy 中,曲线C的参数方程为x y θθ⎧=⎪⎨=⎪⎩(θ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos sin 4ρθθ=. (1)求C 和l 的直角坐标方程;(2)若点M ,N 分别为曲线C 和直线l 上的动点,求MN 的最小值.【答案】(1)22163x y +=,40x -=2- 【解析】 【分析】(1)利用22cos sin 1θθ+=消去参数θ,可得曲线C 的普通方程,利用极坐标与直角坐标的互化公式可求出直线l 的直角坐标方程, (2)设曲线C上任意一点)Mθθ到直线l 的距离为d ,然后利用点到直线的距离公式表示出d ,再根据三角函数的性质可求出其最小值 (1)由曲线C的参数方程为x y θθ⎧=⎪⎨=⎪⎩(θ为参数)可知2222cos sin 1θθ+=+=,故曲线C 的直角坐标方程为22163x y +=.由直线l的极坐标方程为cos sin 4ρθθ=,结合cos x ρθ=,sin y ρθ=可知l的直角坐标方程为40x -=. (2)MN 的最小值即为曲线C 上任意一点到直线l 距离的最小值.设曲线C上任意一点)Mθθ到直线l 的距离为d ,则2cos 24d πθ⎛⎫==+≥ ⎪⎝⎭,故MN 2..。
坐标系与参数方程知识点总结及练习题-高考数学(全面)

坐标系与参数方程知识点总结及练习题1.在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρθ=.(1)将C 的极坐标方程化为直角坐标方程;(2)设点A 的直角坐标为()1,0,M 为C 上的动点,点P 满足AP AM =,写出Р的轨迹1C 的参数方程,并判断C 与1C 是否有公共点.【答案】(1)(222x y +=;(2)P 的轨迹1C 的参数方程为32cos 2sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数),C 与1C 没有公共点.【分析】(1)将曲线C 的极坐标方程化为2cos ρθ=,将cos ,sin x y ρθρθ==代入可得;(2)设(),P x y ,设)Mθθ,根据向量关系即可求得P 的轨迹1C 的参数方程,求出两圆圆心距,和半径之差比较可得.【详解】(1)由曲线C 的极坐标方程ρθ=可得2cos ρθ=,将cos ,sin x y ρθρθ==代入可得22x y +=,即(222x y -+=,即曲线C 的直角坐标方程为(222x y +=;(2)设(),P x y ,设)Mθθ+ AP =,())()1,22cos 2sin x y θθθθ∴-=-=+,则122cos 2sin x y θθ⎧-=+-⎪⎨=⎪⎩32cos 2sin x y θθ⎧=-+⎪⎨=⎪⎩,故P 的轨迹1C 的参数方程为32cos 2sin x y θθ⎧=-+⎪⎨=⎪⎩(θ为参数)曲线C 的圆心为),曲线1C 的圆心为()3,半径为2,则圆心距为3-,32-<- ,∴两圆内含,故曲线C 与1C 没有公共点.【点睛】关键点睛:本题考查参数方程的求解,解题的关键是设出M 的参数坐标,利用向量关系求解.1.直线的极坐标方程若直线过点M (ρ0,θ0),且极轴到此直线的角为α,则它的方程为:ρsin(θ-α)=ρ0sin(θ0-α).几个特殊位置的直线的极坐标方程(1)直线过极点:θ=α;(2)直线过点M (a,0)且垂直于极轴:ρcos θ=a ;(3)直线过M ρsin θ=b .2.圆的极坐标方程若圆心为M (ρ0,θ0),半径为r 的圆方程为:ρ2-2ρ0ρcos(θ-θ0)+ρ20-r 2=0.几个特殊位置的圆的极坐标方程(1)圆心位于极点,半径为r :ρ=r ;(2)圆心位于M (r,0),半径为r :ρ=2r cos θ;(3)圆心位于r :ρ=2r sin θ.3.常见曲线的参数方程(1)圆x 2+y 2=r 2=r cos θ,=r sin θ(θ为参数).(2)圆(x -x 0)2+(y -y 0)2=r 2的参数方程为x =x 0+r cos θ,y =y 0+r sin θ(θ为参数).(3)椭圆x 2a 2+y 2b 2=1的参数方程为x =a cos θ,y =b sin θ(θ为参数).(4)抛物线y 2=2px 的参数方程为x =2pt 2,y =2pt(t 为参数).(5)过定点P (x 0,y 0)的倾斜角为α的直线的参数方程为x =x 0+t cos α,y =y 0+t sin α(t 为参数).4.直角坐标与极坐标的互化把直角坐标系的原点作为极点,x 轴正半轴作为极轴,且在两坐标系中取相同的长度单位.如图,设M 是平面内的任意一点,它的直角坐标、极坐标分别为(x ,y )和(ρ,θ),则x =ρcos θy =ρsin θ,ρ2=x 2+y 2tan θ=yx(x ≠0).1.曲线C 的方程为22 341x y +=,曲线C 经过伸缩变换3{4x xy y='='得到新曲线的方程为()A .2227641xy +=B .2264271xy +=C .22134x y +=D .221916x y +=2.直线l 的方程为10x y +-=,则极坐标为32,4π⎛⎫⎪⎝⎭的点A 到直线l 的距离为A 2B .22C .222-D .222+3.在边长为1的正方形ABCD 中,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值是A .3B .22C .23D .44.椭圆的参数方程为53x cos y sin θθ=⎧⎨=⎩(θ为参数),则它的两个焦点坐标是()A .()4,0±B .()0,4±C .()5,0±D .()0,3±5.已知抛物线2:2C y x =,过定点(,0)M a 的直线与抛物线C 交于,A B 两点,若2211||||MA MB +常数,则常数a 的值是()A .1B .2C .3D .46.在极坐标系中与圆4sin ρθ=相切的一条直线的方程为()A .1cos 2ρθ=B .sin 2ρθ=C .cos 2ρθ=D .1sin 2ρθ=7.在平面直角坐标系中,参数方程2211x ty t⎧=-⎪⎨=+⎪⎩(t 是参数)表示的曲线是()A .一条直线B .一个圆C .一条线段D .一条射线8.若动点(,)x y 在曲线2221(0)4x yb b+=>上变化,则22x y +的最大值为()A.24(04)42(4)b b b b ⎧+<⎪⎨⎪>⎩B.24(02)42(4)b b b b ⎧+<<⎪⎨⎪⎩C .244b +D .2b9.已知实数满足,则的最小值是()A .55-B .C .D .10.在直角坐标系xoy 中,直线l 的参数方程为212222x y ⎧=--⎪⎪⎨⎪=+⎪⎩(t 为参数),曲线C 的方程为2y x =.若直线l 与曲线C 交于A ,B 两点,(1,2)P -,则PA PB +=()AB .10CD .211.当t R ∈时,参数方程2228444t x t t y t -⎧=⎪⎪+⎨-⎪=⎪+⎩(t 为参数)表示的图形是()A .双曲线的一部分B .椭圆(去掉一个点)C .抛物线的一部分D .圆(去掉一个点)12.已知直线:60l x y -+=与圆12cos :12sin x C y θθ=+⎧⎨=+⎩,则C 上各点到l 的距离的最小值为()A.2-B.C.D.2+13.P 是直线:40l x y +-=上的动点,Q 是曲线C:sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数)上的动点,则PQ 的最小值是()A.2B.2CD.214.直线2413x t y t =-+⎧⎨=--⎩(t 为参数)被圆25cos 15sin x y θθ=+⎧⎨=+⎩(θ为参数)所截得的弦长为()A .6B .5C .8D .715.在直角坐标系xOy 中,曲线C 的参数方程为22223x t t y t t⎧=--⎨=-+⎩,(t 为参数且t ≠1),C 与坐标轴交于A ,B 两点.(1)求|AB |:(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.16.在极坐标系中,已知两点3,,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭.(1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离.17.在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l 过点(4,0)A 且与OM 垂直,垂足为P .(1)当0=3θπ时,求0ρ及l 的极坐标方程;(2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程.18.在直角坐标系xOy 中,曲线C 的参数方程为2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2cos sin 110ρθθ+=.(1)求C 和l 的直角坐标方程;(2)求C 上的点到l 距离的最小值.19.在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2π⎡⎤θ∈⎢⎥⎣⎦.(1)求C 的参数方程;(2)设点D 在C 上,C 在D处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,确定D 的坐标.20.将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .(1)写出C 的参数方程;(2)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12PP 的中点且与l 垂直的直线的极坐标方程.1.C 【分析】先将34x x y y ''=⎧⎨=⎩反解为34x x y y ⎧=⎪⎪⎨''⎪=⎪⎩,再代入22 341x y +=,最后得到新曲线的方程即可.【详解】解:因为伸缩变换34x x y y ''=⎧⎨=⎩,所以34x x y y ⎧=⎪⎪⎨''⎪=⎪⎩,代入22 341x y +=,所以得到的新曲线的方程为:22134x y +=,故选:C 【点睛】本题考查函数的伸缩变换,是基础题.2.B 【分析】将点432,A π⎛⎫⎪⎝⎭的极坐标化为直角坐标(2,2-,再利用点到直线的距离公式,即可得答案;【详解】点432,A π⎛⎫ ⎪⎝⎭的直角坐标为(2,2,则由点到直线的距离公式得222212211d -+-==+.故选:B.【点睛】本题考查极坐标化为直角坐标、点到直线距离公式的应用,考查运算求解能力.3.A 【分析】以A 为原点,以AB ,AD 所在的直线为x ,y 轴建立如图所示的坐标系,先求出圆的标准方程,再设点P 的坐标为2cos 12θ+,2sin 1)2θ+,根据AP AB AD λμ=+ ,求出λ,μ,根据三角函数的性质即可求出最值【详解】如图:以A 为原点,以AB ,AD 所在的直线为x ,y 轴建立如图所示的坐标系,则()0,0A ,()1,0B ,()0,1D ,()1,1C ,动点P 在以点C 为圆心且与BD 相切的圆上,设圆的半径为r ,1BC =,1CD =,22BD r ∴===,∴圆的方程为()()221112x y -+-=,设点P 的坐标为2cos 12θ+,2sin 1)2θ+,AP AB AD λμ=+,即2cos 12θ+2sin 1)2θ+=(1λ,0)(0μ+,1)(λ=,)μ,2cos 12θλ∴+=2sin 12θμ+=,22cos 11sin 21sin 12244ππλμθθθθ⎛⎫⎛⎫∴+=+++=++-+ ⎪ ⎪⎝⎭⎝⎭ ,13λμ∴+,故λμ+的最大值为3,故选:A.【点睛】本题考查了向量的坐标运算以及圆的方程和三角函数的性质,关键是设点P 的坐标,考查了学生的运算能力和转化能力,属于中档题.4.A 【解析】消去参数可得椭圆的标准方程221259x y +=,所以椭圆的半焦距4c =,两个焦点坐标为(40)±,,故填(±4,0).5.A 【分析】设直线AB 的标准参数方程cos sin x a t y t αα=+⎧⎨=⎩(t 为参数,α是直线的倾斜角),代入抛物线方程应用韦达定理,利用12,MA t MB t ==计算可求解.【详解】设直线AB 的方程为cos sin x a t y t αα=+⎧⎨=⎩(t 为参数,α是直线的倾斜角),代入抛物线方程得22sin 2cos 20t t a αα--=,224cos 8sin 0a αα∆=+>,1222cos sin t t αα+=,1222sin a t t α=-,2221212122222222121212()21111()t t t t t t t t t t t t MA MB++-+=+==242244cos 4sin sin 4sin aa αααα+=222cos sin a a αα+=221(1)sin a aα+-=,此值与α的取值无关,则10a -=,即1a =.故选:A .【点睛】关键点点睛:本题考查直线与抛物线相交问题的定值问题.解题关键是利用直线的参数方程,利用参数的几何意义求解.即设直线AB 的方程为cos sin x a t y t αα=+⎧⎨=⎩(t 为参数,α是直线的倾斜角),代入抛物线方程后应用韦达定理得1212,t t t t +,而12,MA t MB t ==,由此易计算2211||||MA MB +.6.C 【分析】把极坐标方程化为直角坐标方程,再判断是否相切.【详解】由题意圆的直角坐标方程为224x y y +=,即22(2)4x y +-=,圆心上(0,2)C ,半径为2r =,A 中直线方程是12x =,B 中直线方程是2y =,C 中直线方程是2x =,D 中直线方程是12y =,只有直线2x =与圆相切.故选:C .【点睛】方法点睛:本题考查极坐标方程与直角坐标方程的互化,考查直线与圆的位置关系.在极坐标系中两者位置关系的差别是不方便的,解题方法是把极坐标方程化为直角坐标方程,在直角坐标系中判断直线与圆的位置关系.7.D 【分析】参数方程2211x t y t⎧=-⎨=+⎩,消去参数t ,由于20t ≥,得到方程20x y +-=,1,1x y ≤≥,故表示的曲线是射线.【详解】将参数方程2211x t y t⎧=-⎨=+⎩,消去参数t ,由于20t ≥,得到方程20x y +-=,其中1,1x y ≤≥,又点(1,1)在直线上,故表示的曲线是以(1,1)为起点的一条射线故选:D.【点睛】易错点睛:本题考查参数方程与普通方程的互化,但互化时一定要注意消去参数,得到的普通方程中x,y 的范围,本题中20t ≥,所以消去参数得到的方程为一条射线,考查学生的转化能力与运算求解能力,属于基础题.8.A 【分析】用参数表示出,x y ,由此化简22x y +,结合三角函数、二次函数的性质,求得22x y +的最大值.【详解】记2cos x θ=,sin y b θ=,2224cos 2sin ()x y b f θθθ+=+=,222()4sin 2sin 44(sin )444b b f b θθθθ=-++=--++,[]sin 1,1θ∈-.若01044b b <⇒<,则当sin 4b θ=时()f θ取得最大值244b +;若144bb >⇒>,则当sin 1θ=时()f θ取得最大值2b .故选:A 【点睛】本题考查的是椭圆的性质及椭圆的参数方程,可以从不同角度寻求方法求解,本题用了椭圆的参数方程结合三角函数的最值进行求解.9.A 【分析】先由2246120x y x y +-++=化为圆的参数方程2{3x cos y sin αα+-==,将()22255x y cos sin αααθ--=-+=++()5555αθ⎡++∈-+⎣,求解.【详解】∵实数x ,y 满足2246120x y x y +-++=,∴2{3x cos y sin αα+-==,所以()22255x y cos sin αααθ--=-+=++,()55αθ⎡++∈⎣,min22[5225x y x y∴--∈-+∴--=-,故选A.10.A【分析】将直线的参数方程代入曲线C的直角坐标方程,得到关于t的二次方程,根据直线参数方程中t的几何意义可知,12PA PB t t+=+,然后利用韦达定理代值求解.【详解】设在直线l的参数方程中,点A和点B所对应的参数分别为1t和2t,将直线的参数方程代入曲线C 的直角坐标方程得:2222122t t⎛⎫+=--⎪⎪⎝⎭,整理得:220t-=,则12t t+=,122t t⋅=-,故1212PA PB t t t t+=+=-==故选:A.【点睛】本题考查直线参数方程中t的几何意义,考查弦长问题的求解,难度一般.11.B【分析】由t R∈,令2tan,(,)22tππαα=∈-结合三角恒等变换即有sin22cos2xyαα⎧-=⎪⎨⎪=⎩即知2214x y+=,不过点(0,1)-,可确定选项;【详解】t R∈时,可令2tan,()22tππαα=∈-,即有:2224tan1tan1tan1tanxyαααα-⎧=⎪⎪+⎨-⎪=⎪+⎩,即sin22cos2xyαα⎧-=⎪⎨⎪=⎩,∴2214x y +=,不过点(0,1)-,故选:B 【点睛】本题考查了根据参数方程确定曲线,利用等价换元,并结合三角恒等变换将参数方程转化为普通方程,注意取值范围;12.A 【分析】将圆的参数方程化为直角坐标系方程,计算圆心到直线的距离,判断直线与圆的位置关系为相离,最近距离为d r -.【详解】将圆12cos :12sin x C y θθ=+⎧⎨=+⎩化成在平面直角坐标系下的形式,圆22:(1)(1)4C x y -+-=,圆心C 为(1,1),半径2r =.已知直线:60l x y -+=,那么,圆心C 到直线l的距离为d r ==>,故直线l 与圆C相离,所以C 上各点到l的距离的最小值为2d r -=-.故选:A.【点睛】本题主要考查了参数方程,直线与圆的位置关系,综合性较强,是常考题型.13.C 【分析】设点,sin )Q θθ,利用点到直线的距离公式,结合三角函数的性质,即可求解.【详解】由曲线C:sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数)消去参数,设点,sin )Q θθ,则点Q 到直线:40l x y +-=的距离为d ==当2,6k k Z πθπ=+∈时,min d ==.故选:C.【点睛】本题主要考查曲线的参数方程,点到直线的距离公式,以及三角函数的恒等变换和余弦函数的性质的应用,着重考查运算与求解能力,以及转换能力,属于基础题.14.A 【分析】把直线和圆的参数方程化为普通方程,结合点到直线的距离公式和利用圆的弦长公式,即可求解.【详解】由题意,直线2413x ty t=-+⎧⎨=--⎩(t 为参数)可得直线的方程为34100x y ++=,圆25cos 15sin x y θθ=+⎧⎨=+⎩(θ为参数)的普通方程为22(2)(1)25x y -+-=,可得圆心(2,1)C ,半径为=5r ,所以圆心到直线34100x y ++=的距离为4d ==,由圆的弦长公式可得,弦长6L ===.故选:A.【点睛】本题主要考查了参数方程与普通方程的互化,以及直线与圆的位置关系的应用,其中解答中把参数方程化为普通方程,结合圆的弦长公式求解是解答的关键,着重考查推理与运算能力.15.(1)(2)3cos sin 120ρθρθ-+=【分析】(1)由参数方程得出,A B 的坐标,最后由两点间距离公式,即可得出AB 的值;(2)由,A B 的坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可.【详解】(1)令0x =,则220t t +-=,解得2t =-或1t =(舍),则26412y =++=,即(0,12)A .令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即(4,0)B -.AB ∴==;(2)由(1)可知12030(4)AB k -==--,则直线AB 的方程为3(4)y x =+,即3120x y -+=.由cos ,sin x y ρθρθ==可得,直线AB 的极坐标方程为3cos sin 120ρθρθ-+=.【点睛】本题主要考查了利用参数方程求点的坐标以及直角坐标方程化极坐标方程,属于中档题.16.(1)(2)2.【分析】(1)由题意,在OAB 中,利用余弦定理求解AB 的长度即可;(2)首先确定直线的倾斜角和直线所过的点的极坐标,然后结合点B 的坐标结合几何性质可得点B 到直线l 的距离.【详解】(1)设极点为O .在△OAB 中,A (3,4π),B ,2π),由余弦定理,得AB =(2)因为直线l 的方程为sin()34ρθπ+=,则直线l 过点2π,倾斜角为34π.又)2B π,所以点B 到直线l 的距离为3sin(242ππ⨯-=.【点睛】本题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.17.(1)0ρ=l 的极坐标方程为sin()26πρθ+=;(2)4cos ()42ππρθθ=≤≤【分析】(1)先由题意,将0=3θπ代入4sin ρθ=即可求出0ρ;根据题意求出直线l 的直角坐标方程,再化为极坐标方程即可;(2)先由题意得到P 点轨迹的直角坐标方程,再化为极坐标方程即可,要注意变量的取值范围.【详解】(1)因为点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,所以004sin 4sin3πρθ===;即3M π,所以tan 3OM k π==,因为直线l 过点(4,0)A 且与OM 垂直,所以直线l 的直角坐标方程为3(4)3y x =--,即40x -=;因此,其极坐标方程为cos sin 4ρθθ=,即l 的极坐标方程为sin()26πρθ+=;(2)设(,)P x y ,则OP y k x =,4AP y k x =-,由题意,OP AP ⊥,所以1OP APk k =-,故2214y x x=--,整理得2240x y x +-=,因为P 在线段OM 上,M 在C 上运动,所以02,02x y ≤≤≤≤,所以,P 点轨迹的极坐标方程为24cos 0ρρθ-=,即4cos ()42ππρθθ=≤≤.【点睛】本题主要考查极坐标方程与直角坐标方程的互化,熟记公式即可,属于常考题型.18.(1)22:1,(1,1]4y C x x +=∈-;:2110l x ++=;(2【分析】(1)利用代入消元法,可求得C 的直角坐标方程;根据极坐标与直角坐标互化原则可得l 的直角坐标方程;(2)利用参数方程表示出C 上点的坐标,根据点到直线距离公式可将所求距离表示为三角函数的形式,从而根据三角函数的范围可求得最值.【详解】(1)由2211t x t -=+得:210,(1,1]1x t x x -=≥∈-+,又()2222161t y t =+()()222116141144111xx y x x x x x -⨯+∴==+-=--⎛⎫+ ⎪+⎝⎭整理可得C 的直角坐标方程为:221,(1,1]4y x x +=∈-又cos x ρθ=,sin y ρθ=l ∴的直角坐标方程为:2110x ++=(2)设C 上点的坐标为:()cos ,2sin θθ则C 上的点到直线l的距离d ==当sin 16πθ⎛⎫+=- ⎪⎝⎭时,d 取最小值则min d =【点睛】本题考查参数方程、极坐标方程与直角坐标方程的互化、求解椭圆上的点到直线距离的最值问题.求解本题中的最值问题通常采用参数方程来表示椭圆上的点,将问题转化为三角函数的最值求解问题.19.(1)[]1,0,.x cos y sin ααπα=+⎧∈⎨=⎩为参数;(2)3(,22【分析】(1)先求出半圆C 的直角坐标方程,由此能求出半圆C 的参数方程;(2)设点D 对应的参数为α,则点D 的坐标为()1+cos ,sin αα,且[]0,απ∈,半圆C 的圆心是()1,0C因半圆C 在D 处的切线与直线l 垂直,故直线DC 的斜率与直线l 的斜率相等,由此能求出点D 的坐标.【详解】(1)由ρ2cosθ=,得[]2220,01x y x y +-=∈,,所以C 的参数方程为[]1,0,.x cos y sin ααπα=+⎧∈⎨=⎩为参数(2)[]sin 0πtan 0,,,1+cos 12332D αααπαα⎛⎫-=⇒=∈∴= ⎪-⎝⎭【点睛】本题主要考查参数方程与极坐标方程,熟记直角坐标方程与参数方程的互化以及普通方程与参数方程的互化即可,属于常考题型.20.(1)cos {2sin x t y t==(t 为参数);(2)34sin 2cos ρθθ=-.【详解】试题分析:(1)设11(,)x y 为圆上的点,在曲线C 上任意取一点(x ,y ),再根据11{2x x y y ==,由于点11(,)x y 在圆221x y +=上,求出C 的方程,化为参数方程.(2)解方程组求得12P P 、的坐标,可得线段12PP 的中点坐标.再根据与l 垂直的直线的斜率为12,用点斜式求得所求的直线的方程,再根据x cos y sin ρθρθ==、可得所求的直线的极坐标方程.(1)设11(,)x y 为圆上的点,在已知变换下位C 上点(x ,y ),依题意,得11{2x x y y ==由22111x y +=得22)12(y x =+,即曲线C 的方程为2214y x +=.,故C 得参数方程为cos {2sin x t y t ==(t 为参数).(2)由221{4220y x x y +=+-=解得:10x y =⎧⎨=⎩,或02x y =⎧⎨=⎩.不妨设12(1,0),(0,2)P P ,则线段12PP 的中点坐标为1(,1)2,所求直线的斜率为12k =,于是所求直线方程为111()22y x -=-,化极坐标方程,并整理得2cos 4sin 3ρθρθ-=-,即34sin 2cos ρθθ=-.考点:1.参数方程化成普通方程;2.点的极坐标和直角坐标的互化.。
坐标系与参数方程与题型归纳(一)

(2)先求圆心坐标,再运用余弦定理求半径,最后借助过原点写出圆的极坐标
方程.
题型二:曲线(圆与椭圆)的参数方程。
(1)普通方程互化和最值问题。“1”的代换( cos2 sin2 1)、三角解决。
3.已知曲线
C
的参数方程是
x 2 cos
y sin
,(为参数)
,以坐标原点为极点,
x
轴的
正半轴为极轴建立极坐标系, A, B 的极坐标分别为 A(2, ), B(2, 4 ) . 3
(1)把曲线 C 的极坐标方程化为普通方程;
(2)求直线 l 与曲线 C 的交点的极坐标( 0,0 2 ).
试题解析:(1)由 2 cos 0 得 2 cos ,两边同乘以 ,得 x2 y2 2x ;
(2)由直线
l
的参数方程为
x
y
3 t 1t
(
t
为 参 数 ), 得 直 线 的 普 通 方 程 为
3
cos
2 sin
3
,
0,
,
直线 l 与曲线 C 有两个公共点,m 3, 2 .
考点:极坐标系,参数方程,直角坐标方程的转换.
第7页
y
x
2 3
cos 2sin
(
为参
数).
(1)写出点 P 的直角坐标及曲线 C 的直角坐标方程;
(2)若 Q 为曲线 C 上的动点,求 PQ 中点 M 到直线 l : cos 2 sin 1 0 的
第4页
距离的最小值.
试题解析:(1)点 P 的直角坐标 (3,
3)
,由
y
x
2 3
cos 2sin
(2)当直线 N 过点 (2,3) 时,与曲线 M 有公共点,此时 t 5 ,从该位置向左下
坐标系与参数方程常考题型及解析

坐标系与参数方程高考常考题型及解析随着高考改革的不但深入,考试内用也在不但改革,分为必修和选修两部分,选修部分又分为高考必考部分和选考部分,这是对部分学生的兴趣和爱好加上了不等式选讲及几何证明选讲坐标系与参数方程,矩阵及变换等等选讲部分,笔者以多年送高考的经验将坐标系与参数方程选讲部分高考常考题型及解析总结如下,供同行们商榷。
类型一:求直线或圆锥曲线的参数或极坐标方程问题。
例题1:(2013年高考陕西卷)以过原点的直线的倾斜角θ为参数, 则220y x x +-=的参数方程为_____解析 :222)21()21=+-⇒y x (圆的方程21=⇒r 圆的半径 θθθθθθθsin cos sin ,cos cos cos 2cos 2⋅=⋅==⋅=⇒=⋅=⇒OP y OP x r OP 。
所以圆的参数方程为R y x ∈⎩⎨⎧⋅==θθθθ,sin cos cos 2变式:(2013年高考江西卷)设曲线C 的参数方程为2x t y t=⎧⎨=⎩(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线c 的极坐标方程为__________解析:本题考查参数方程与极坐标方程的转化。
曲线C 的普通方程为2y x =。
将cos sin x y ρθρθ=⎧⎨=⎩代入2y x =,得22sin cos ρθρθ=,即2cos sin 0ρθθ-=。
所以曲线c 的极坐标方程为2cos sin 0ρθθ-=点评:求极坐标方程与参数方程是坐标系与参数方程是高考常考的题型,记住参数方程与极坐标方程的转化结合直线与圆的方程形式,解决起来比较容易,是中档题目。
类型二;考查在极坐标系下求两点距离或者点到直线距离问题。
例题2:(2013年高考上海卷(理))在极坐标系中,曲线cos 1ρθ=+与cos 1ρθ=的公共点到极点的距离为__________解析:联立方程组得15(1)12ρρρ±-=⇒=,又0ρ≥,故所求为152+. 变式:(2013年高考北京卷(理))在极坐标系中,点(2,6π)到直线ρsin θ=2的距离等于_________.解析:在极坐标系中,点化为直角坐标为( ,1),直线ρsinθ=2化为直角坐标方程为y=2,( ,1),到y=2的距离1,即为点到直线ρsinθ=2的距离1。
【高中数学】参数方程和极坐标方程常考题型及解题方法归纳

参数方程和极坐标方程常考题型及解题方法归纳一、根据直线参数方程中t的几何意义求与距离有关的问题经过点P(x0,y0),倾斜角为α的直线l的参数方程为x=x0+tcosαy=y0+tsin烅烄烆α(t为参数),参数t的几何意义是:直线上定点P到动点M的有向线段,t表示参数t对应的点M到定点P的距离,即|t|=|PM|.若A,B为直线l上两点,其对应的参数分别为t1与t2,则有:①AB=|t1-t2|;②当A,B在点P的同侧时,t1与t2同号;当A,B分别在点P的两侧时,t1与t2异号.需要注意的是:有时候直线的参数方程也可写为x=x0+aty=y0+烅烄烆bt(t为参数),如果a2+b2≠1,则参数t没有上述几何意义.例1 在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρll与l的普通方程;(2)若PM,MN,PN成等比数列,求a的值.分析 (1)利用x=ρcosθ,y=ρsinθ即可将曲线C的极坐标方程转化为直角坐标方程,在直线l的参数方程中消去参数t即可得直线l的普通方程;(2)将直线l的参数方程代入曲线C的直角坐标方程,利用参数的几何意义结合韦达定理即可建立关于a的方程求解.解 (1)由ρsin2θ=acosθ得ρ2 sin2θ=aρcosθ,可得曲线C的平面直角坐标方程y2=ax(a>0).由直线l的参数方程消去参数t,可得直线l的普通方程为x-y-1=0.(2)设点M,N对应的参数分别为t1,t2,则PM=t1,PN=t2,MN=t1-t2.将x=-1+槡22t,y=-2 +槡22t代入y2=ax,得t2-(槡4 2 +槡2a)t+8+2a=0.所以Δ=(槡4 2 +槡2a)2-4(8+2a)=2a2+8a>0,t1+t2=槡4 2 +槡2a,t1t2=8+2a.由PM,MN,PN成等比数列,可以得到t1-t22=t1t2,所以(t1+t2)2-4t1t2=t1t2,即(槡4 2 +槡2a)2-5(8+2a)=0,解得a=1(a=-4舍去).例2 (2015年高考湖南卷)已知直线l:x=5 +槡32ty =槡3+12烅烄烆t(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cosθ.(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;(Ⅱ)设点M的直角坐标为(5,槡3),直线l与曲线C的交点为A,B,求|MA|·|MB|的值.分析 (Ⅰ)利用ρ2=x2+y2,x=ρcosθ即可将已知条件中的极坐标方程转化为直角坐标方程;(Ⅱ)注意到点M在直线l上,将直线l的参数方程代入圆的直角坐标方程,利用参数的几何意义结合韦达定理即可求解.解 (Ⅰ)ρ=2cosθ等价于ρ2=2ρcosθ,将ρ2=x2+y2,ρcosθ=x代入即得曲线C的直角坐标方程为x2+y2-2x=0.(Ⅱ)结合直线l的参数方程,注意到点M在直线l上,且(槡32)2+(12)2=1,可设点M,N对应的参数分别为t1,t2,则MA=|t1|,MB=|t2|,所以MA·MB=t1t2. 将直线l的参数方程代入曲线C的直角坐标方程,整理得t2 +槡5 3t+18=0,则MA·MB=t1t2=18.例3 已知圆锥曲线C:x=2cosαy=sin{α(α为参数)和定点A(0,,槡3),F1,F2是此圆锥曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.(1)求直线AF2的极坐标方程;(2)经过点F1且与直线AF2垂直的直线l交此圆锥曲线于M,N两点,求MF1-NF1的值.解 (1)消去参数α即可将曲线C的方程化为普通方程x24+y2=1,从而可求得F1(-槡3,0),F2(槡3,0),于是可得直线AF2的普通方程为x+y-槡3=0,利用互化公式化为极坐标方程为ρcosθ+ρsinθ=槡3.(2)由(1)可得kAF2=-1,所以直线l的倾斜角为45°,从而可得直线l的参数方程为x=-槡3 +槡22ty =槡22烅烄烆t(t为参数),代入椭圆C的直角坐标方程:x24+y2=1,得5t2-槡2 6t-2=0,设点M,N对应的参数分别为t1,t2,注意到点M,N,F1都在直线l上且点M,N在点F1两侧,所以|MF1|-|NF1|=|t1+t2|=槡2 65.评注 对于直线上与定点距离有关的问题,利用直线参数方程中参数t的几何意义,能避免通过解方程组求交点坐标的繁琐运算,使解题过程得到简化.二、利用参数方程求最值和取值范围利用曲线的参数方程求解两曲线间的最值问题,是解决这类问题的常用方法,优点是解题过程比较简洁.为此,需要熟悉常见曲线的参数方程、参数方程与普通方程的互化以及参数方程的简单应用.例4 已知曲线C1:x=8costy=2sin{t(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ=7cosθ-sinθ.(1)将曲线C1的参数方程化为普通方程,将曲线C2的极坐标方程化为直角坐标方程.(2)设P为曲线C1上的点,点Q极坐标为(2槡2,π4),求PQ的中点与曲线C2上的点的距离的最小值.分析 (1)利用参数方程和普通方程之间的关系进行互化即可,(2)先把点Q的极坐标化为直角坐标,设出点P的参数形式的直角坐标(t为参数),进而得到PQ的中点M的直角坐标,可用公式得到点M到直线C2的距离d的表达式(用参数t表示),再求最值即可.解 (1)由曲线C1的参数方程消去参数t得曲线C1的普通方程x264+y24=1.由曲线C2的极坐标方程得ρcosθ-ρsinθ=7,于是可得它的直角坐标方程为x-y-7=0.(2)由点Q的极坐标(槡2 2,π4)可得它的直角坐标为(2,2),设P(8cost,2sint),则PQ的中点M的直角坐标为(4cost+1,sint+1),所以,点M到直线C2的距离d=4cost-sint-7槡2=槡17cos(t+φ)-7槡2,其中φ为锐角,且tanφ=14.当cos(t+φ)=1时,d取得最小值dmin=槡7 2 -槡342.所以,PQ的中点M与曲线C2上的点的距离的最小值为槡7 2 -槡342.例5 (2014年全国卷Ⅰ)已知曲线C:x24+y29=1,直线l:x=2+ty=2-2{t(t为参数).(Ⅰ)写出曲线C的参数方程和直线l的普通方程;(Ⅱ)过曲线C上任一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.分析 (Ⅰ)利用椭圆的普通方程及直线的参数的特征进行互化即可;(Ⅱ)由椭圆的参数方程建立|PA|的三角函数表达式,再求最值.图1解 (Ⅰ)曲线C的参数方程为x=2cosθy=3sin{θ(θ为参数),直线l的普通方程为2x+y-6=0.(Ⅱ)如图1,在曲线C上任意取一点P(2cosθ,3sinθ),它到直线l的距离为:d=槡554cosθ+3sinθ-6,则|PA|=dsin30°=槡2 55|5sin(θ+α)-6|,其中α为锐角,且tanα=43.当sin(θ+α)=-1时,|PA|取得最大值,最大值为槡22 55;当sin(θ+α)=1时,|PA|取得最小值,最小值为槡2 55.例6 (2015年高考陕西卷)在直角坐标系xΟy中,直线l的参数方程为x=3+12ty =槡32烅烄烆t(t为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=槡2 3sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)Ρ为直线l上一动点,当Ρ到圆心C的距离最小时,求Ρ的直角坐标.分析 (Ⅰ)利用x=ρcosθ,y=ρsinθ,由⊙C的极坐标方程可得它的直角坐标方程;(Ⅱ)先设点Ρ的参数坐标,可得ΡC的函数表达式,再利用函数的性质可得ΡC的最小值,进而可得Ρ的直角坐标;或将直线l的方程化为普通方程,再求过圆心且垂直于直线l的直线方程,联立两方程可解得点P的直角坐标.解 (Ⅰ)由ρ=槡2 3sinθ,得ρ2 =槡2 3ρsinθ,从而,⊙C的直角坐标方程为x2+y2 =槡2 3y,即x2+(y-槡3)2=3.(Ⅱ)设P(3+12t,槡32t),又C(0,槡3),则|PC|=(3+12t)2+(槡32t -槡3)槡2=t2+槡12,易知:当t=0时,ΡC取得最小值,此时Ρ点的直角坐标为(3,0).评注 将曲线的参数方程化为普通方程的关键是消去其中的参数,常用的技巧有:代入消参、加减消参、整体消参、平方后加减消参等.如果题目中涉及圆、椭圆上的动点求相关最值(范围)问题时,可考虑用其参数方程设出点的坐标,将问题转化为函数问题来解决,可以使解题的过程更简洁.例7 (2016年全国卷Ⅱ理科第20题)已知椭圆E:x2t+y23=1的焦点在x轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(Ⅰ)当t=4,AM=AN时,求△AMN的面积;(Ⅱ)当2 AM=AN时,求k的取值范围.分析 (Ⅰ)先结合已知条件设出直线AM的参数方程,代入椭圆方程,可求得AM,进而求得△AMN的面积;(Ⅱ)设出直线AM、AN的参数方程(以直线AM的倾斜角α为参数),代入椭圆方程,用t和α表示|AM|和|AN|,再利用2 AM=AN将t表示为k的函数,结合t>3,可求得k的取值范围.解 (Ⅰ)当t=4,AM=AN时,可得点A(-2,0),k=1.设直线AM的参数方程为x=-2+槡22my =槡22烅烄烆m(m为参数),代入椭圆方程,整理得72m2-槡6 2 m=0,故AM =槡12 27,所以S△AMN=12AM·AN=14449.(Ⅱ)设直线AM的倾斜角为α,又点A(-槡t,0),可设直线AM的参数方程为x=-槡t+mcosαy=msin烅烄烆α(m为参数),代入椭圆方程,整理得(3cos2α+t sin2α)m2-6tcosα·m=0,所以AM=6tcosα3cos2α+t sin2α.因为MA⊥NA,故直线AN的倾斜角为α+π2,同理可得:AN=6tcos(α+π2)3cos2(α+π2)+t sin2(α+π2)=6tsinα3sin2α+t cos2α.由2 AM=AN,k=tanα,代入化简得t=6k2-3kk3-2.又因为椭圆E:x2t+y23=1的焦点在x轴上,所以t>3,即6k2-3kk3-2>3,解得3槡2<k<2.所以,k的取值范围是(3槡2,2).评注 本题属于圆锥曲线试题,常规思路是利用直角坐标直接求解,过程比较复杂.利用直线的参数方程来求解本题,使问题的求解过程变得简洁.三、利用极坐标中ρ的几何意义求有关距离或相关问题我们知道,极坐标中的ρ为极径,表示曲线上一点与原点O之间的距离,因此,与原点O有关的距离、面积等问题都可考虑运用极坐标中ρ的几何意义来解决,这是一种有效的解题策略,很多时候比化为直角坐标运算更简便.例8 (2015年高考全国卷Ⅱ)在直角坐标系xOy中,曲线C1:x=tcosα,y=tsinα{,(t为参数,t≠0),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,曲线C3:ρ=2 槡3cosθ.(Ⅰ)求C2与C1的交点的直角坐标;(Ⅱ)若C2与C1相交于点A,C3与C1相交于点B,求AB的最大值.分析 (Ⅰ)可将曲线C2与C1的极坐标方程化为直角坐标方程后联立求交点的直角坐标,也可以直接联立极坐标方程求得交点的极坐标,再化为直角坐标;(Ⅱ)分别联立C2与C1、C3与C1的极坐标方程,求得A,B的极坐标,由极径的概念用α表示出AB,转化为求关于α的三角函数的最大值.解 (Ⅰ)曲线C2的直角坐标方程为x2+y2-2y=0,曲线C3的直角坐标方程为x2+y2 -槡2 3x=0.联立两方程解得:x1=0,y1=0烅烄烆,x2=槡32,y2=32烅烄烆,所以,C2与C1的交点的直角坐标为(0,0)和(槡32,32).(Ⅱ)曲线C1的极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤α<π.于是可得:点A的极坐标为(2sinα,α),点B的极坐标为(槡2 3cosα,α).所以AB=2sinα-槡2 3cosα=4|sin(α-π3)|,又0≤α<π,所以,当α=5π6时,AB取得最大值,最大值为4.评注 如果用直角坐标来处理本题,计算量较大.例9 (2016年全国卷Ⅱ理科第23题)在直线坐标系xOy中,圆C的方程为(x+6)2+y2=25.(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(Ⅱ)直线l的参数方程是x=tcosα,y=tsinα{,(t为参数),l与C交于A,B两点,|AB|=槡10,求l的斜率.分析 (Ⅰ)利用ρ2=x2+y2,x=ρcosθ可得C的极坐标方程;(Ⅱ)先将直线l的参数方程化为极坐标方程,再利用弦长公式可求得l的斜率.解 (Ⅰ)由x=ρcosθ,y=ρsinθ可得C的极坐标方程ρ2+12ρcosθ+11=0.(Ⅱ)在(Ⅰ)中建立的极坐标系中,直线l的极坐标方程为θ=α(ρ∈R),与C的极坐标方程联立得ρ2+12ρcosα+11=0.设点A,B所对应的极径分别为ρ1,ρ2,则ρ1+ρ2=-12cosα,ρ1ρ2=11,所以|AB|=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ槡2=144cos2α-槡44.又|AB|=槡10,所以144cos2α-槡44 =槡10,解得cos2α=38,故tanα=±槡153,所以,直线l的斜率为槡153或-槡153.例10 (2015年高考全国卷Ⅰ理科第23题)在直角坐标系xOy中,直线C1:x=-2,圆C2:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=π4(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.分析 (Ⅰ)根据公式x=ρcosθ,y=ρsinθ,x2+y2=ρ2即可求得C1,C2的极坐标方程;(Ⅱ)联立直线C3和圆C2的极坐标方程得到关于ρ的方程,可求得MN,进而可求出△C2MN的面积.解 (Ⅰ)因为x=ρcosθ,y=ρsinθ,所以,可求得:C1的极坐标方程为ρcosθ=-2,C2的极坐标方程为ρ2-2ρcosθ-4ρsinθ+4=0.(Ⅱ)将C3的极坐标方程θ=π4代入C2的极坐标方程ρ2-2ρcosθ-4ρsinθ+4=0,得ρ2 -槡3 2ρ+4=0,解得ρ1=槡2 2,ρ2=槡2,所以,MN=ρ1-ρ2=槡2.又因为C2的半径为1,∠C2MN=π4,所以△C2MN的面积为S=12×槡2×1×sinπ4=12.评注 过坐标原点、倾斜角为θ0的直线的极坐标方程为θ=θ0,其上两点P(ρ1,θ0),Q(ρ2,θ0)间的距离为PQ=ρ1-ρ2.【一点感悟】参数方程和极坐标虽然是选考内容,也应得到充分的重视,如果能够将它们和普通方程有机联系,相互补充,可以优化解题思路,简化计算过程,减少运算量,提高解题的效率.。
高三坐标系与参数方程总结最全

高三综合复习坐标系与参数方程题型一:极坐标与直角坐标的互化;互化原理(三角函数定义)、数形结合。
1、在直角坐标系中,直线的参数方程为(为参数),以为极点,轴的非负半轴为极轴建立极坐标系,并在两种坐标系中取相同的长度单位,曲线的极坐标方程为。
(Ⅰ)把曲线的极坐标方程化为普通方程; (Ⅱ)求直线与曲线的交点的极坐标(规定:)。
题型二:曲线(圆与椭圆)的参数方程.(1)普通方程和参数方程的互化;最值问题;“1”的代换()、辅助角公式.2、已知曲线的参数方程是,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,的极坐标分别为。
(Ⅰ)求直线的直角坐标方程和曲线的普通方程;(Ⅱ)设为曲线上的点,求点到直线的距离的最大值.3、已知在平面直角坐标系中,直线的参数方程是是参数),以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为。
(Ⅰ)判断直线与曲线的位置关系,并说明理由;(Ⅱ)设为曲线上任意一点,求的取值范围.4、已知平面直角坐标系,以为极点,轴的非负半轴为极轴建立极坐标系,点的极坐标为,曲线的参数方程为(为参数)。
(Ⅰ)写出点的直角坐标及曲线的直角坐标方程;(Ⅱ)若为曲线上的动点,求中点到直线的距离的最小值。
(2)公共点问题;“直线与圆锥曲线"采用联立求解判别式;“直线与圆”采用“-—-法”。
5、在直角坐标系中曲线的参数方程为(为参数).若以直角坐标系中的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(Ⅰ)求曲线的普通方程和曲线的直角坐标方程;(Ⅱ)若曲线与曲线有公共点,求实数的取值范围.6、在直角坐标系中,直线的参数方程为(为参数).在极坐标系(以原点为极点,以轴非负半轴为极轴,且与直角坐标系取相同的长度单位)中,圆的方程为.(Ⅰ)求直线的极坐标方程和圆的直角坐标方程;(Ⅱ)若直线与圆相切,求实数的值.7、在极坐标系中,直线的极坐标方程为,以极点为原点极轴为轴的正半轴建立平面直角坐标系,曲线的参数方程为为参数,且)。
坐标系与参数方程题型总结

坐标系与参数方程题型总结注意1:直线参数方程中参数t 的几何意义①注意方程中参数t 的几何意义,直线参数方程的一般型与标准型的转化;直线的参数方程:经过点),(000y x M ,倾斜角为α的直线L 的参数方程是⎩⎨⎧+=+=ααsin cos 00t y y t x x ,其中t 为参数;通常称上式为直线L 的参数方程的“标准型”。
对于参数t 而言,若0M M 方向与直线的正方向一致,则t>0,否则取负值。
其中参数t 的几何意义是:│t │是直线上定点M 0(x 0,y 0)到任一动点M (x,y )的距离,即│M 0M │=│t │。
若直线上任意两点P 1,P 2对应的参数分别为t 1,t 2,则│P 1P 2│=│t 1-t 2│,P 1P 2的中点对应的参数12(t 1+t 2)。
直 直线参数方程的标准化 例题1. 已知直线方程)为参数(3221t t y tx ⎩⎨⎧-=+=,请写出该直线参数方程的标准型。
解:直线参数方程标准型⎩⎨⎧+=+=θθsin cos 00t y y t x x (t 为参数),tan θ=-23,考虑到θ∈[0,π)所以⎪⎪⎩⎪⎪⎨⎧=-=13132sin 13133cos θθ,故)为参数(131322131331t t y t x ⎪⎪⎩⎪⎪⎨⎧+=-= 总结:直线过定点的参数方程标准型的步骤:首先求tan θ,然后求出相应的cos θ与sin θ,在这里sin θ≥0,进而按照⎩⎨⎧+=+=θθsin cos 00t y y t x x (t 为参数)得出直线参数方程的标准型。
②利用直线参数方程求解平面几何图形中的弦长计算等问题;直线参数方程参数t 的几何性质应用例题2. 已知曲线C :(x+2)2 +(y-1)2= 1,过P (-4,0)且倾斜角为π4的直线L 交曲线C 于A ,B 两点,求│AB │.解:直线L 的参数方程为)为参数t (22224⎪⎪⎩⎪⎪⎨⎧=+-=t y t x ,将其代入曲线C ,整理得t 2 - 32t + 4 = 0 ,则12124t t tt ⎧+=⎪⎨=⎪⎩ 由参数t 的几何意义可知,|PA|=t 1, |PB|=t 2,所以|AB|=│t 1- t 2│=212214)(t t t t -+=2.例题 3. 在极坐标系中,曲线C 的方程为2cos29ρθ=,点6P π⎛⎫ ⎪⎝⎭.以极点O 为原点,极轴为x 轴的正半轴建立直角坐标系.(1)求直线OP 的参数方程的标准式和曲线C 的直角坐标方程; (2)若直线OP 与曲线C 交于A 、B 两点,求11+PA PB的值.解:(1)∵2cos29ρθ=,∴ρ2(cos 2θ - sin 2θ)= 9,∵⎩⎨⎧==αραρsin cos y x ,∴曲线C 的直角坐标方程为229x y -=,而由23,6P π⎛⎫ ⎪⎝⎭,易知在直角坐标系中23cos ,23sin (3,3)66ππ⎛⎫= ⎪⎝⎭P P ,所以直线OP 的普通方程为33y x =,故直线OP 的参数方程为332132x t y t ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数)。
高考数学极坐标与参数方程题型归纳

(3)P为曲线C2上任意一点,求点P到直线l的距离的最值及此时P的直角坐标.
7.在坐标系xOy中,曲线C1的参数方程为 (α为参数),以坐标原点为极点,以x轴的正半轴为极轴,,建立极坐标系,曲线C2的极坐标方程为ρsin =2 .
极坐标系与参数方程
题型一与圆有关的问题
1.已知曲线C1的参数方程为 ( 为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为 .(Ⅰ)把C1的参数方程化为极坐标方程;(Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)。
2.在直角坐标系xOy中,以坐标原点为极点,x轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈ .(1)求C的参数方程.(2)设点D在C上,C在D处的切线与直线l:y= x+2垂直,根据(1)中你得到的参数方程,确定D的坐标.
题型二 根据椭圆参数方程求最值
6.曲线C1的参数方程为 (θ为参数),将曲线C1上所有点的横坐标伸长为原来的2倍,纵坐标伸长为原来的 倍,得到曲线C2.以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(cosθ-2sinθ)=6.
(1)求曲线C2和直线l的普通方程.
9.以平面直角坐标系的原点 为极点, 轴的正半轴为极轴建立极坐标系,已知点 的直角坐标为 ,若直线l的极坐标方程为 ,曲线 的参数方程是 ,( 为参数).
(1)求直线l的直角坐标方程和曲线 的普通方程;
(2)设直线l与曲线 交于 两点,求 .
10.在直角坐标系中,以原点为极点, 轴的正半轴为极轴,以相同的长度单位建立极坐标系,已知直线 的极坐标方程为 ,曲线 的极坐标方程为 .
坐标与参数方程公式与题型总结

坐标与参数方程公式与题型总结一、坐标与参数方程的基础概念坐标方程是指通过自变量与因变量之间的关系来描述一个图形的方程形式。
以二元函数 y=f(x) 为例,它的坐标方程就是y=f(x)。
参数方程是以参数形式表示图形的方程形式。
一般地,参数方程可以表示为 x=f(t),y=g(t),其中参数 t 可以是时间、角度或其他任何量。
参数方程与坐标方程的区别在于,坐标方程中以x 和 y 为自变量和因变量,而参数方程则以参数 t 为自变量,将 x 和 y 表示为 t 的函数。
二、坐标与参数方程的转化公式1.将坐标方程转化为参数方程:对于形如 y=f(x) 的函数,我们可以通过参数化自变量 x 来得到该函数的参数方程。
其中一个常见的参数方程形式是 x=t,y=f(t)。
例如,对于直线 y=2x+1,可以将 x=t,y=2t+1 得到其参数方程。
2.将参数方程转化为坐标方程:一般地,我们可以通过消去参数 t 来将参数方程转化为坐标方程。
具体操作时,将两个方程中的 t 看作相同的变量,通过变形来求解出 x 和 y 的关系式。
例如,对于参数方程 x=3t+1,y=2t-1,将 t 看作相同的变量,可以消去 t,得到坐标方程 y=2/3x-5/3。
三、坐标与参数方程的题型1. 直线的坐标与参数方程:(1) 已知两点求直线方程:直线方程的坐标点公式一般为 y=kx+b 或 Ax+By+C=0。
参数方程通常表述为x=x_0+t*(x_1-x_0),y=y_0+t*(y_1-y_0),其中 (x_0,y_0) 和 (x_1,y_1) 为直线上的两个点,t 为参数。
(2) 已知斜率与一个点求直线方程:直线方程的斜截式公式为y=kx+b,其中k 为斜率,b 为截距。
(3) 已知截距与一个点求直线方程:直线方程的截距式公式为 y=b,其中 b 为 y 轴截距,即直线与y 轴相交的位置。
2. 圆的坐标与参数方程:(1) 圆的坐标方程:圆的标准坐标方程是 (x-a)^2+(y-b)^2=r^2,其中圆心坐标为(a,b),圆的半径为 r。
坐标与参数方程公式与题型总结

坐标与参数方程公式与题型总结在数学中,坐标与参数方程是描述曲线的两种常见方式。
坐标方程是通过直接给出曲线上的点的坐标关系来表示曲线,而参数方程则是通过参数的变化来表示曲线上的点。
在本文中,我们将总结坐标与参数方程的公式以及相关的题型。
一、坐标方程:坐标方程是最常见也是最直观的描述曲线的方式,通常用(x, y)的形式表示曲线上的点。
常见的坐标方程包括直线方程、二次曲线方程等等。
1. 直线方程:直线的坐标方程通常采用一般形式y = mx + b来表示,其中m是斜率,b是截距。
通过斜率和截距,我们可以确定直线在坐标系中的位置和倾斜程度。
2. 二次曲线方程:二次曲线的坐标方程通常采用一般形式y = ax^2 + bx + c来表示,其中a、b、c是常数。
根据a的正负和大小,可以确定二次曲线的开口方向和形状。
二、参数方程:参数方程是通过参数的变化来描述曲线上的点。
参数方程通常采用参数t来表示曲线上的点的坐标,例如(x(t), y(t))。
参数方程可以描述出一些坐标方程无法直接表示的曲线,如圆、椭圆、螺旋线等等。
1. 圆的参数方程:圆的参数方程可以表示为x = r*cos(t),y = r*sin(t),其中r是半径,t是参数的取值范围。
通过改变参数t的取值,可以确定圆上的每个点的坐标。
2. 椭圆的参数方程:椭圆的参数方程可以表示为x = a*cos(t),y = b*sin(t),其中a、b分别表示椭圆在x轴和y轴上的半轴长度。
通过改变参数t的取值,可以确定椭圆上的每个点的坐标。
在解题中,我们常常会遇到与坐标方程和参数方程相关的题型。
一些常见的题型包括:1. 求直线与曲线的交点:给定一条直线和一个曲线的方程,求它们的交点坐标。
2. 求参数方程的导数:给定一个参数方程,求它的导数表达式,用于求取曲线的切线等相关问题。
3. 求曲线的长度:给定一个参数方程或坐标方程,求取曲线的长度。
4. 求曲线的面积:给定一个参数方程或坐标方程,求取曲线所包围的面积。
【高中数学】参数方程和极坐标方程常考题型及解题方法归纳

参数方程和极坐标方程常考题型及解题方法归纳一、根据直线参数方程中t的几何意义求与距离有关的问题经过点P(x0,y0),倾斜角为α的直线l的参数方程为x=x0+tcosαy=y0+tsin烅烄烆α(t为参数),参数t的几何意义是:直线上定点P到动点M的有向线段,t表示参数t对应的点M到定点P的距离,即|t|=|PM|.若A,B为直线l上两点,其对应的参数分别为t1与t2,则有:①AB=|t1-t2|;②当A,B在点P的同侧时,t1与t2同号;当A,B分别在点P的两侧时,t1与t2异号.需要注意的是:有时候直线的参数方程也可写为x=x0+aty=y0+烅烄烆bt(t为参数),如果a2+b2≠1,则参数t没有上述几何意义.例1 在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρll与l的普通方程;(2)若PM,MN,PN成等比数列,求a的值.分析 (1)利用x=ρcosθ,y=ρsinθ即可将曲线C的极坐标方程转化为直角坐标方程,在直线l的参数方程中消去参数t即可得直线l的普通方程;(2)将直线l的参数方程代入曲线C的直角坐标方程,利用参数的几何意义结合韦达定理即可建立关于a的方程求解.解 (1)由ρsin2θ=acosθ得ρ2 sin2θ=aρcosθ,可得曲线C的平面直角坐标方程y2=ax(a>0).由直线l的参数方程消去参数t,可得直线l的普通方程为x-y-1=0.(2)设点M,N对应的参数分别为t1,t2,则PM=t1,PN=t2,MN=t1-t2.将x=-1+槡22t,y=-2 +槡22t代入y2=ax,得t2-(槡4 2 +槡2a)t+8+2a=0.所以Δ=(槡4 2 +槡2a)2-4(8+2a)=2a2+8a>0,t1+t2=槡4 2 +槡2a,t1t2=8+2a.由PM,MN,PN成等比数列,可以得到t1-t22=t1t2,所以(t1+t2)2-4t1t2=t1t2,即(槡4 2 +槡2a)2-5(8+2a)=0,解得a=1(a=-4舍去).例2 (2015年高考湖南卷)已知直线l:x=5 +槡32ty =槡3+12烅烄烆t(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cosθ.(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;(Ⅱ)设点M的直角坐标为(5,槡3),直线l与曲线C的交点为A,B,求|MA|·|MB|的值.分析 (Ⅰ)利用ρ2=x2+y2,x=ρcosθ即可将已知条件中的极坐标方程转化为直角坐标方程;(Ⅱ)注意到点M在直线l上,将直线l的参数方程代入圆的直角坐标方程,利用参数的几何意义结合韦达定理即可求解.解 (Ⅰ)ρ=2cosθ等价于ρ2=2ρcosθ,将ρ2=x2+y2,ρcosθ=x代入即得曲线C的直角坐标方程为x2+y2-2x=0.(Ⅱ)结合直线l的参数方程,注意到点M在直线l上,且(槡32)2+(12)2=1,可设点M,N对应的参数分别为t1,t2,则MA=|t1|,MB=|t2|,所以MA·MB=t1t2. 将直线l的参数方程代入曲线C的直角坐标方程,整理得t2 +槡5 3t+18=0,则MA·MB=t1t2=18.例3 已知圆锥曲线C:x=2cosαy=sin{α(α为参数)和定点A(0,,槡3),F1,F2是此圆锥曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.(1)求直线AF2的极坐标方程;(2)经过点F1且与直线AF2垂直的直线l交此圆锥曲线于M,N两点,求MF1-NF1的值.解 (1)消去参数α即可将曲线C的方程化为普通方程x24+y2=1,从而可求得F1(-槡3,0),F2(槡3,0),于是可得直线AF2的普通方程为x+y-槡3=0,利用互化公式化为极坐标方程为ρcosθ+ρsinθ=槡3.(2)由(1)可得kAF2=-1,所以直线l的倾斜角为45°,从而可得直线l的参数方程为x=-槡3 +槡22ty =槡22烅烄烆t(t为参数),代入椭圆C的直角坐标方程:x24+y2=1,得5t2-槡2 6t-2=0,设点M,N对应的参数分别为t1,t2,注意到点M,N,F1都在直线l上且点M,N在点F1两侧,所以|MF1|-|NF1|=|t1+t2|=槡2 65.评注 对于直线上与定点距离有关的问题,利用直线参数方程中参数t的几何意义,能避免通过解方程组求交点坐标的繁琐运算,使解题过程得到简化.二、利用参数方程求最值和取值范围利用曲线的参数方程求解两曲线间的最值问题,是解决这类问题的常用方法,优点是解题过程比较简洁.为此,需要熟悉常见曲线的参数方程、参数方程与普通方程的互化以及参数方程的简单应用.例4 已知曲线C1:x=8costy=2sin{t(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ=7cosθ-sinθ.(1)将曲线C1的参数方程化为普通方程,将曲线C2的极坐标方程化为直角坐标方程.(2)设P为曲线C1上的点,点Q极坐标为(2槡2,π4),求PQ的中点与曲线C2上的点的距离的最小值.分析 (1)利用参数方程和普通方程之间的关系进行互化即可,(2)先把点Q的极坐标化为直角坐标,设出点P的参数形式的直角坐标(t为参数),进而得到PQ的中点M的直角坐标,可用公式得到点M到直线C2的距离d的表达式(用参数t表示),再求最值即可.解 (1)由曲线C1的参数方程消去参数t得曲线C1的普通方程x264+y24=1.由曲线C2的极坐标方程得ρcosθ-ρsinθ=7,于是可得它的直角坐标方程为x-y-7=0.(2)由点Q的极坐标(槡2 2,π4)可得它的直角坐标为(2,2),设P(8cost,2sint),则PQ的中点M的直角坐标为(4cost+1,sint+1),所以,点M到直线C2的距离d=4cost-sint-7槡2=槡17cos(t+φ)-7槡2,其中φ为锐角,且tanφ=14.当cos(t+φ)=1时,d取得最小值dmin=槡7 2 -槡342.所以,PQ的中点M与曲线C2上的点的距离的最小值为槡7 2 -槡342.例5 (2014年全国卷Ⅰ)已知曲线C:x24+y29=1,直线l:x=2+ty=2-2{t(t为参数).(Ⅰ)写出曲线C的参数方程和直线l的普通方程;(Ⅱ)过曲线C上任一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.分析 (Ⅰ)利用椭圆的普通方程及直线的参数的特征进行互化即可;(Ⅱ)由椭圆的参数方程建立|PA|的三角函数表达式,再求最值.图1解 (Ⅰ)曲线C的参数方程为x=2cosθy=3sin{θ(θ为参数),直线l的普通方程为2x+y-6=0.(Ⅱ)如图1,在曲线C上任意取一点P(2cosθ,3sinθ),它到直线l的距离为:d=槡554cosθ+3sinθ-6,则|PA|=dsin30°=槡2 55|5sin(θ+α)-6|,其中α为锐角,且tanα=43.当sin(θ+α)=-1时,|PA|取得最大值,最大值为槡22 55;当sin(θ+α)=1时,|PA|取得最小值,最小值为槡2 55.例6 (2015年高考陕西卷)在直角坐标系xΟy中,直线l的参数方程为x=3+12ty =槡32烅烄烆t(t为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=槡2 3sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)Ρ为直线l上一动点,当Ρ到圆心C的距离最小时,求Ρ的直角坐标.分析 (Ⅰ)利用x=ρcosθ,y=ρsinθ,由⊙C的极坐标方程可得它的直角坐标方程;(Ⅱ)先设点Ρ的参数坐标,可得ΡC的函数表达式,再利用函数的性质可得ΡC的最小值,进而可得Ρ的直角坐标;或将直线l的方程化为普通方程,再求过圆心且垂直于直线l的直线方程,联立两方程可解得点P的直角坐标.解 (Ⅰ)由ρ=槡2 3sinθ,得ρ2 =槡2 3ρsinθ,从而,⊙C的直角坐标方程为x2+y2 =槡2 3y,即x2+(y-槡3)2=3.(Ⅱ)设P(3+12t,槡32t),又C(0,槡3),则|PC|=(3+12t)2+(槡32t -槡3)槡2=t2+槡12,易知:当t=0时,ΡC取得最小值,此时Ρ点的直角坐标为(3,0).评注 将曲线的参数方程化为普通方程的关键是消去其中的参数,常用的技巧有:代入消参、加减消参、整体消参、平方后加减消参等.如果题目中涉及圆、椭圆上的动点求相关最值(范围)问题时,可考虑用其参数方程设出点的坐标,将问题转化为函数问题来解决,可以使解题的过程更简洁.例7 (2016年全国卷Ⅱ理科第20题)已知椭圆E:x2t+y23=1的焦点在x轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(Ⅰ)当t=4,AM=AN时,求△AMN的面积;(Ⅱ)当2 AM=AN时,求k的取值范围.分析 (Ⅰ)先结合已知条件设出直线AM的参数方程,代入椭圆方程,可求得AM,进而求得△AMN的面积;(Ⅱ)设出直线AM、AN的参数方程(以直线AM的倾斜角α为参数),代入椭圆方程,用t和α表示|AM|和|AN|,再利用2 AM=AN将t表示为k的函数,结合t>3,可求得k的取值范围.解 (Ⅰ)当t=4,AM=AN时,可得点A(-2,0),k=1.设直线AM的参数方程为x=-2+槡22my =槡22烅烄烆m(m为参数),代入椭圆方程,整理得72m2-槡6 2 m=0,故AM =槡12 27,所以S△AMN=12AM·AN=14449.(Ⅱ)设直线AM的倾斜角为α,又点A(-槡t,0),可设直线AM的参数方程为x=-槡t+mcosαy=msin烅烄烆α(m为参数),代入椭圆方程,整理得(3cos2α+t sin2α)m2-6tcosα·m=0,所以AM=6tcosα3cos2α+t sin2α.因为MA⊥NA,故直线AN的倾斜角为α+π2,同理可得:AN=6tcos(α+π2)3cos2(α+π2)+t sin2(α+π2)=6tsinα3sin2α+t cos2α.由2 AM=AN,k=tanα,代入化简得t=6k2-3kk3-2.又因为椭圆E:x2t+y23=1的焦点在x轴上,所以t>3,即6k2-3kk3-2>3,解得3槡2<k<2.所以,k的取值范围是(3槡2,2).评注 本题属于圆锥曲线试题,常规思路是利用直角坐标直接求解,过程比较复杂.利用直线的参数方程来求解本题,使问题的求解过程变得简洁.三、利用极坐标中ρ的几何意义求有关距离或相关问题我们知道,极坐标中的ρ为极径,表示曲线上一点与原点O之间的距离,因此,与原点O有关的距离、面积等问题都可考虑运用极坐标中ρ的几何意义来解决,这是一种有效的解题策略,很多时候比化为直角坐标运算更简便.例8 (2015年高考全国卷Ⅱ)在直角坐标系xOy中,曲线C1:x=tcosα,y=tsinα{,(t为参数,t≠0),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,曲线C3:ρ=2 槡3cosθ.(Ⅰ)求C2与C1的交点的直角坐标;(Ⅱ)若C2与C1相交于点A,C3与C1相交于点B,求AB的最大值.分析 (Ⅰ)可将曲线C2与C1的极坐标方程化为直角坐标方程后联立求交点的直角坐标,也可以直接联立极坐标方程求得交点的极坐标,再化为直角坐标;(Ⅱ)分别联立C2与C1、C3与C1的极坐标方程,求得A,B的极坐标,由极径的概念用α表示出AB,转化为求关于α的三角函数的最大值.解 (Ⅰ)曲线C2的直角坐标方程为x2+y2-2y=0,曲线C3的直角坐标方程为x2+y2 -槡2 3x=0.联立两方程解得:x1=0,y1=0烅烄烆,x2=槡32,y2=32烅烄烆,所以,C2与C1的交点的直角坐标为(0,0)和(槡32,32).(Ⅱ)曲线C1的极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤α<π.于是可得:点A的极坐标为(2sinα,α),点B的极坐标为(槡2 3cosα,α).所以AB=2sinα-槡2 3cosα=4|sin(α-π3)|,又0≤α<π,所以,当α=5π6时,AB取得最大值,最大值为4.评注 如果用直角坐标来处理本题,计算量较大.例9 (2016年全国卷Ⅱ理科第23题)在直线坐标系xOy中,圆C的方程为(x+6)2+y2=25.(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(Ⅱ)直线l的参数方程是x=tcosα,y=tsinα{,(t为参数),l与C交于A,B两点,|AB|=槡10,求l的斜率.分析 (Ⅰ)利用ρ2=x2+y2,x=ρcosθ可得C的极坐标方程;(Ⅱ)先将直线l的参数方程化为极坐标方程,再利用弦长公式可求得l的斜率.解 (Ⅰ)由x=ρcosθ,y=ρsinθ可得C的极坐标方程ρ2+12ρcosθ+11=0.(Ⅱ)在(Ⅰ)中建立的极坐标系中,直线l的极坐标方程为θ=α(ρ∈R),与C的极坐标方程联立得ρ2+12ρcosα+11=0.设点A,B所对应的极径分别为ρ1,ρ2,则ρ1+ρ2=-12cosα,ρ1ρ2=11,所以|AB|=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ槡2=144cos2α-槡44.又|AB|=槡10,所以144cos2α-槡44 =槡10,解得cos2α=38,故tanα=±槡153,所以,直线l的斜率为槡153或-槡153.例10 (2015年高考全国卷Ⅰ理科第23题)在直角坐标系xOy中,直线C1:x=-2,圆C2:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=π4(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.分析 (Ⅰ)根据公式x=ρcosθ,y=ρsinθ,x2+y2=ρ2即可求得C1,C2的极坐标方程;(Ⅱ)联立直线C3和圆C2的极坐标方程得到关于ρ的方程,可求得MN,进而可求出△C2MN的面积.解 (Ⅰ)因为x=ρcosθ,y=ρsinθ,所以,可求得:C1的极坐标方程为ρcosθ=-2,C2的极坐标方程为ρ2-2ρcosθ-4ρsinθ+4=0.(Ⅱ)将C3的极坐标方程θ=π4代入C2的极坐标方程ρ2-2ρcosθ-4ρsinθ+4=0,得ρ2 -槡3 2ρ+4=0,解得ρ1=槡2 2,ρ2=槡2,所以,MN=ρ1-ρ2=槡2.又因为C2的半径为1,∠C2MN=π4,所以△C2MN的面积为S=12×槡2×1×sinπ4=12.评注 过坐标原点、倾斜角为θ0的直线的极坐标方程为θ=θ0,其上两点P(ρ1,θ0),Q(ρ2,θ0)间的距离为PQ=ρ1-ρ2.【一点感悟】参数方程和极坐标虽然是选考内容,也应得到充分的重视,如果能够将它们和普通方程有机联系,相互补充,可以优化解题思路,简化计算过程,减少运算量,提高解题的效率.。
坐标与参数方程公式与题型总结

坐标与参数方程公式与题型总结
坐标与参数方程是描述平面上曲线的两种常见方式。
坐标方程使用直角坐标系中的x和y坐标来表示曲线上的点,而参数方程使用一个参数t来表示曲线上的点的位置。
坐标方程的一般形式为:y = f(x),其中f(x)是一个关于x的函数。
通过给定x的值,可以计算出对应的y值,从而确定曲线上的点的位置。
坐标方程适用于描述直线、抛物线、双曲线等曲线。
参数方程的一般形式为:x = f(t),y = g(t),其中f(t)和g(t)是关于参数t的函数。
通过给定参数t的值,可以计算出对应的x和y值,从而确定曲线上的点的位置。
参数方程适用于描述圆、椭圆、螺旋线等曲线。
在解题过程中,常见的坐标与参数方程的题型包括:
1. 给定坐标方程,求曲线上的点的坐标。
2. 给定参数方程,求曲线上的点的坐标。
3. 给定坐标方程,求曲线的方程或性质。
4. 给定参数方程,求曲线的方程或性质。
5. 给定曲线的方程或性质,求坐标或参数方程。
解题时,可以根据题目要求选择使用坐标方程或参数方程进行计算。
对于坐标方程,可以通过代入x值或y值来求解对应的坐标。
对于参数方程,可以通过给定的参数值来计算对应的坐标。
需要注意的是,坐标方程和参数方程描述的是同一条曲线,它们之间可以通过消元或代换的方式相互转换。
在解题过程中,可以根据具体情况选择使用坐标方程或参数方程,或者将它们相互转换来简化计算。
2021届高考理科数学复习《坐标系与参数方程》题型汇总

考点13坐标系与参数方程1.(2020·江苏南通高三其他)在极坐标系中,已知曲线:2C cos ρθ=,直线32:12x l t y ⎧=⎪⎪⎨⎪=-+⎪⎩(t 是参数),且直线l 与曲线C 交于A ,B 两点.(1)求曲线C 的直角坐标方程;(2)设定点()0,1P -,求()()11PA PB ++的值.【答案】(1)()2211x y -+=;(2)3.【解析】(1)曲线22o :c s C ρρθ=,化简得直角坐标方程为:2220x y x +-=;即22(1)1x y -+=.(2)因为(0,1)P -,所以直线l 过P 点.将直线l 的参数方程代入曲线C 的方程22(1)1x y -+=中,得221(1)(1+)122t -+-=,即)210t t -+=.设A 、B 两点对应的参数分别为1t ,2t ,所以12t t +=,121t t =,所以()()1212++3111t t t PA B t P ⋅++=+=.2.(2020·全国高三其他(理))以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为22cos2a ρθ=(a R ∈,a 为常数)),过点()2,1P 、倾斜角为30︒的直线l的参数方程满足22x t =+,(t 为参数).(1)求曲线C 的普通方程和直线l 的参数方程;(2)若直线l 与曲线C 相交于A、B 两点(点P 在A、B 之间),且2PA PB ⋅=,求a 和PA PB -的值.【答案】(1)222x y a -=322(12x t t t y ⎧=+⎪⎪⎨⎪=+⎪⎩为参数);(2)2.2021届高考理科数学复习《坐标系与参数方程》题型汇总【解析】(1)由22cos2a ρθ=得()2222cos sin aρθθ-=,又cos x ρθ=,sin y ρθ=,得222x y a -=,∴C 的普通方程为222x y a -=,∵过点()2,1P 、倾斜角为30︒的直线l的普通方程为()213y x =-+,由22x t =+得112y t=+∴直线l 的参数方程为32212x t t y ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数);(2)将32212x t t y ⎧=+⎪⎪⎨⎪=+⎪⎩代入222x y a -=,得()()2221230t t a +-+-=,依题意知()()2221830a ⎡⎤∆=-->⎣⎦则上方程的根1t 、2t 就是交点A、B 对应的参数,∵()21223t t a ⋅=-,由参数t 的几何意义知1212PA PB t t t t ⋅=⋅=⋅,得122t t ⋅=,∵点P 在A、B 之间,∴120t t ⋅<,∴122t t ⋅=-,即()2232a-=-,解得24a=(满足0∆>),∴2a =±,∵1212PA PB t t t t -=-=+,又()1221t t +=--,∴2PA PB -=.3.(2020·内蒙古青山北重三中高二期中(理))在平面直角坐标系xOy 中,直线l 的参数方程为4x aty ⎧=+⎪⎨=+⎪⎩(其中t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,点A 的极坐标为2,6π⎛⎫ ⎪⎝⎭,直线l 经过点A .曲线C 的极坐标方程为2sin 4cos ρθθ=.(1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)过点)P作直线l 的垂线交曲线C 于D ,E 两点(D 在x 轴上方),求11PD PE-的值.【答案】(1)直线l的普通方程为2y =-,曲线C 的直角坐标方程为24y x =;(2)12.【解析】(1)由题意得点A的直角坐标为),将点A代入4x at y ⎧=+⎪⎨=+⎪⎩得1a t =⎧⎪⎨=⎪⎩,则直线l的普通方程为2y =-.由2sin 4cos ρθθ=得22sin 4cos ρθρθ=,即24y x =.故曲线C 的直角坐标方程为24y x =.(2)设直线DE的参数方程为3212x ty t ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),代入24y x =得20t +-=.设D 对应参数为1t ,E 对应参数为2t .则12t t +=-,12t t =-,且10t >,20t <.∴1212121211111112t t PD PE t t t t t t +-=-=+==.4.(2020·内蒙古青山北重三中高二期中(理))在平面直角坐标系xoy 中,曲线C 的参数方程是23cos 3sin x y θθ=+⎧⎨=⎩(θ为参数).以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系,直线l 的极坐标方程为:(cos sin )tρθθ+=(1)求曲线C 的极坐标方程;(2)设直线θ=()6R πρ∈与直线l 交于点M,与曲线C 交于P,Q 两点,已知|OM|•|OP |•|OQ)=10,求t 的值.【答案】(1)24cos 50ρρθ--=;(2)1--1+.【解析】(1)由曲线C 的参数方程,可得曲线C 的普通方程为()2229x y -+=,即22450x y x +--=.∵cos x ρθ=,sin y ρθ=,故曲线C 的极坐标方程为24cos 50ρρθ--=.(2)将6πθ=代入()cos sin t ρθθ+=中,得12t ρ=,则)1t ρ=.∴|OM|=)1t .将6πθ=代入24cos 50ρρθ--=中,得250ρ--=.设点P 的极径为1ρ,点Q 的极径为2ρ,则125ρρ=-.所以|OP |⋅|OQ |=5.又|OM |⋅|OP |⋅|OQ |=10,则5)1t -=10.∴t=1-1+5.(2020·湖北蔡甸汉阳一中高三其他(理))平面直角坐标系xOy 中,曲线1C 的参数方程为131121x y λλλλ-+⎧=⎪⎪+⎨-⎪=⎪+⎩(λ为参数,且1λ≠-).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为212cos 320ρρθ++=.(1)求曲线1C 的普通方程和曲线2C 的直角坐标方程;(2)已知点P的极坐标为4π⎛⎫⎪⎝⎭,Q 为曲线2C 上的动点,求PQ 的中点M 到曲线1C 的距离的最大值.【答案】(1)()34103x y x +-=≠,2212320x y x +++=.(2)85【解析】(1)因为13,112,1x y λλλλ-+⎧=⎪⎪+⎨-⎪=⎪+⎩①②,所以3×①+4×②,得341x y +=.又133(1)4433111x λλλλλ-++-===-≠+++,所以1C 的普通方程为()34103x y x +-=≠,将cos x ρθ=,222x y ρ=+代入曲线2C 的极坐标方程,得曲线2C 的直角坐标方程为2212320x y x +++=.(2)由点P的极坐标4π⎛⎫⎪⎝⎭,可得点P 的直角坐标为()2,2.设点()00,M x y ,因为M 为PQ 的中点,所以()0022,22Q x y --将Q 代入2C 的直角坐标方程得()()2200211x y ++-=,即M 在圆心为()2,1-,半径为1的圆上.所以点M 到曲线1C 距离的最大值为|23141|8155d -⨯+⨯-=+=,由(1)知1C 不过点()3,2N -,且312391423420MN k +⎛⎫⎛⎫⋅-=⋅-=≠- ⎪ ⎪--⎝⎭⎝⎭,即直线MN 与1C 不垂直.综上知,M 到曲线1C 的距离的最大值为85.6.(2020·广西兴宁南宁三中高二期末(理))在平面直角坐标系xOy 中,曲线1C 的参数方程为1cos sin x y αα=+⎧⎨=⎩(α为参数),以坐标原点O 为极点,x 轴非负半轴为极轴建立极坐标系,点A 为曲线1C 上的动点,点B 在线段OA 的延长线上且满足||||8,OA OB ⋅=点B 的轨迹为2C .(1)求曲线12,C C 的极坐标方程;(2)设点M 的极坐标为32,2π⎛⎫⎪⎝⎭,求ABM ∆面积的最小值.【答案】(1)1C :2cos ρθ=,2C :cos 4ρθ=;(2)2.【解析】(1)由曲线1C 的参数方程为1cos sin x y αα=+⎧⎨=⎩(α为参数),消去参数,可得普通方程为()2211x y -+=,即2220x y x +-=,又由cos ,sin x y ρθρθ==,代入可得曲线1C 的极坐标方程为2cos ρθ=,设点B 的极坐标为(,)ρθ,点A 点的极坐标为00(,)ρθ,则0000,,2cos ,OB OA ρρρθθθ====,因为||||8OA OB ⋅=,所以08ρρ⋅=,即82cos θρ=,即cos 4ρθ=,所以曲线2C 的极坐标方程为cos 4ρθ=.(2)由题意,可得2OM =,则2211||||242cos 42cos 22ABM B OBM O M A A S S S OM x x θθ∆∆∆=⋅-=⋅⋅=-=--,即242cos ABM S θ∆=-,当2cos 1θ=,可得ABM S ∆的最小值为2.7.(2020·四川德阳高三其他(理))在平面直角坐标系xOy 中,已知直线:4l x =,以原点为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为4sin ρθ=.(1)求直线l 的极坐标方程和圆C 的直角坐标方程;(2)射线:0,2OP πθαα⎛⎫⎛⎫=∈ ⎪ ⎪⎝⎭⎝⎭交圆C 于O 、A ,交直线l 于B ,若A ,B 两点在x 轴上投影分别为M 、N ,求MN 长度的最小值,并求此时A 、B 两点的极坐标.【答案】(1)cos 4ρθ=,()2224x y +-=;(2)MN 长度的最小值为2,此时A 、B 两点的极坐标为,44A B ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,.【解析】(1)直线:4l x =,则极坐标方程为:cos 4ρθ=,圆C 的极坐标方程为4sin ρθ=,则24sin ρρθ=,则圆C 的直角坐标方程()2224x y +-=.(2)由圆C 的极坐标方程为4sin ρθ=,可得4sin A ρα=.由直线l 的极坐标方程可得:4cos B ρα=,所以B A AB ρρ=-且B A ρρ>,则()4cos cos 4sin cos 42sin 2cos B A MN AB αρρααααα⎛⎫==-=-=-⎪⎝⎭,因为0,2πα⎛⎫∈ ⎪⎝⎭,当2=2πα,即=4πα时,min42=2MN=-,此时4sin4A πρ=4cos4B ρπ=,所以此时A 、B两点的极坐标44ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,.8.(2020·江苏清江浦淮阴中学高三三模)在直角坐标系xOy 中,已知直线l 的参数方程是21y t x t =+⎧⎨=⎩(t是参数),若以O 为极点,x 轴的正半轴为极轴,取与直角坐标系中相同的单位长度,建立极坐标系,曲线C的极坐标方程为)4πρθ=+.求直线l 被曲线C 截得的弦长.【解析】消去参数t ,得直线l 的普通方程为21y x =+,)4πρθ=+即2(sin cos )ρθθ=+,两边同乘以ρ得22(sin cos )ρρθρθ=+,所以()()22112x x -+-=,圆心C 到直线l的距离5d ==,所以弦长为2305AB ==.9.(2021·广西钦州一中高三开学考试(理))在直角坐标系中,直线l的参数方程为,55x t y t ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为22cos sin 2cos 10ρθρθρθ--+=,曲线C 与x 轴、y 轴分别交于,A B 两点,直线l 与曲线C 交于,P Q 两点.(1)求,A B 两点的极坐标;(2)求OP OQ -的值.【答案】(1)(1,0)A ,1,2B π⎛⎫⎪⎝⎭;(2)【解析】(1)令=0θ,得221=0=1ρρρ-+∴,,故A 的极坐标为(1,0)A ;令=2πθ,得=1ρ,故B 的极坐标为(1,)2B π.(2)由cos ,sin x y ρθρθ==得曲线C 的直角坐标方程为2(1)y x =-,将l 的参数方程代入得250t -+=,12t t ∴+=1250t t =>则12OP OQ t t -=-==10.(2020·全国高三其他(理))在平面直角坐标系xOy 中,O 为既为原点也为极坐标的极点,极轴即为x轴正半轴,已知直线l 方程为sin 32πρθ⎛⎫-=⎪⎝⎭,曲线C 参数方程为1cos sin x y αα=+⎧⎨=⎩(α为参变数,且0απ≤≤)(1)写出直线l 方程与曲线C 的普通方程;(2)若P 是曲线C 上一动点,求P 到直线l 距离的取值范围.【答案】(1):l 0y -=,()22:11C x y -+=(02x ≤≤,01y ≤≤);(2)[]0,1.【解析】(1)∵l 极坐标方程为sin 32πρθ⎛⎫-=⎪⎝⎭,整理得313cos sin 222ρθρθ-=,cos sin θρθ-=,将cos ,sin x y ρθρθ==代入得直线l 普通方程0y -=,又C 参数方程为1cos sin x y αα=+⎧⎨=⎩(α为参变数,且0απ≤≤),可知02x ≤≤且01y ≤≤,消去参变数α得曲线()22:11C x y -+=(02x ≤≤,01y ≤≤);(2).根据(1)知,直线l 方程)1y x =-过定点(1,0),曲线C 的轨迹是以(1,0)为圆心,半径为1的的半圆,可知,动点P 到直线l 的距离最大值为1d r ==,最小值为0d =,故d 的取值范围是[]0,1d ∈.。
专题一 坐标系与参数方程

专题一、坐标系与参数方程知识点:1、直角坐标),(y x 与极坐标),(θρ互化的依据⎩⎨⎧==θρθρsin cos y x ,⎪⎩⎪⎨⎧=+=x yy x θρtan 222 2、参数方程(1)直线的:.,)(sin cos 0000是倾斜角)是直线上的点,,其中(是参数αααy x t t y y t x x ⎩⎨⎧+=+= (2)圆的:.,)(sin cos 是半径)是圆心,,其中(是参数r b a r b y r a x θθθ⎩⎨⎧+=+=(3)椭圆的:).(sin cos 是参数θθθ⎩⎨⎧==b y a x说明:三种方程的特征直角坐标方程体现的是的关系与y x ;参数方程是把y x 与分开写;极坐标方程体现的关系与θρ. 3、对直线参数方程的考查(1)求弦长:若直线与曲线交于21221214)(t t t t t t AB B A ⋅-+=-=两点,则、 (2)直线l 与曲线交于21t t PB PA P B A ⋅=⋅在直线上,则两点,点、说明:用以上结论时都需先把直线的参数方程带入曲线的普通方程后,整理成关于t 的二次方程后,便可得act t a b t t =⋅-=+2121;专题训练:1.在极坐标系中,曲线C :ρsin 2θ=2cos θ,过点A (5,α)(α为锐角且tan α= 34作平行于θ= π4(ρ∈R )的直线l ,且l 与曲线C 分别交于A ,B 两点.(1)以极点为原点,极轴为x 轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线C 和直线l 的普通方程; (2)求|AB |的长.2.已知曲线C 的极坐标方程是4cos ρθ=.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立直角坐标系,直线l的参数方程为x m y ⎧=+⎪⎪⎨⎪=⎪⎩(t 是参数). (Ⅰ)将曲线C 的极坐标方程化为直角坐标方程,将直线l 的参数方程化为普通方程;(Ⅱ)若直线l 与曲线C 相交于A 、B 两点,且||AB =试求实数m 值.3.已知在直角坐标系xOy 中,圆锥曲线C 的参数方程为4cos 4sin x y θθ⎧⎨⎩==(θ为参数),直线l 经过定点P (2,3),倾斜角为3π.(Ⅰ)写出直线l 的参数方程和圆的标准方程;(Ⅱ)设直线l 与圆相交于A ,B 两点,求|PA |·|PB |的值.4.已知曲线1C 的极坐标方程为6cos ρθ=,曲线2C 的极坐标方程为()4R πθρ=∈,曲线1C 、2C 相交于点,A B .(1)将曲线1C 、2C 的极坐标方程化为直角坐标方程;(2)求弦AB 的长.()()()().3,.2;.13cos 4213235.5的范围上,求在圆若点的位置关系与圆判断直线的极坐标方程,圆半轴为极轴建立坐标系轴的正,以坐标原点为极点,为参数的参数方程为已知直线y x C y x P C l C x t t y t x l +⎪⎭⎫ ⎝⎛-=⎪⎪⎩⎪⎪⎨⎧+-=-=πθρ6.在直角坐标系xoy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.圆1C ,直线2C的极坐标方程分别为4sin ,cos 4πρθρθ⎛⎫=-= ⎪⎝⎭. (I)求1C 与2C 交点的极坐标;(II)设P 为1C 的圆心,Q 为1C 与2C 交点连线的中点.已知直线PQ 的参数方程为()3312x t a t R b y t ⎧=+⎪∈⎨=+⎪⎩为参数,求,a b 的值.7.已知直线l 的参数方程:⎩⎪⎨⎪⎧x =ty =1+2t(t 为参数)和圆C 的极坐标方程:ρ=22sin(θ+π4).(1)将直线l 的参数方程化为普通方程,圆C 的极坐标方程化为直角坐标方程;(2)判断直线l 和圆C 的位置关系.8.已知曲线1C 的参数方程为45cos ,55sin x t y t =+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=. (Ⅰ)把1C 的参数方程化为极坐标方程;(Ⅱ)求1C 与2C 交点的极坐标(0,02ρθπ≥≤<).9.已知曲线C 的极坐标方程是ρ=2,以极点为原点,极轴为x 轴的正半轴建立平面直角 坐标系,(I)写出直线l 与曲线C 的直角坐标系下的方程; (II)设曲线C 经过伸缩变换⎩⎨⎧='=',2,y y x x 得到曲线C '设曲线C '上任一点为M(x,y),求10.在平面直角坐标系xOy 中,曲线1:221=+y x C ,以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线ρθθ8sin 2cos 3:-=-l .(1)将曲线C 1上的所有点的横坐标,纵坐标分别伸长为原来的2倍,3倍后得到曲线C 2,(1)试写出直线l 的直角坐标方程和曲线C 2的参数方程; (2)求C 2上一点P 的l 的距离的最大值.11.在平面直角坐标系xOy 中,已知曲线1C : 122=+y x ,在极坐标系(与平面直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 的极坐标方程为6)sin cos 2(=-θθρ.(I)将曲线1C 上的所有点的横坐标、纵坐标分别伸长为原来的3倍、2倍后得到曲线2C ,试写出直线l 的直角坐标方程和曲线2C 的参数方程;(II)在曲线2C 上求一点P ,使点P 到直线l 的距离最大,并求出此最大值12.已知曲线C 的极坐标方程为θθρ2sin cos 4=,直线l 的参数方程为⎩⎨⎧+==ααsin 1cos t y t x ( t 为参数,0≤α<π).(Ⅰ)把曲线C 的极坐标方程化为直角坐标方程,并说明曲线C 的形状;(Ⅱ)若直线l 经过点(1,0),求直线l 被曲线C 截得的线段AB 的长.。
专题39坐标系与参数方程

专题39坐标系与参数方程一、填空题1.在平面直角坐标系x y O 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的极坐标方程为()cos sin 2ρθθ+=-,曲线2C 的参数方程为2x ty ⎧=⎪⎨=⎪⎩(t 为参数),则1C 与2C 交点的直角坐标为.2.在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为2sin ρθ=,则曲线C 的直角坐标方程为.二、解答题3.在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为2,3π⎛⎫⎪⎝⎭,点B 在曲线2C 上,求ABO ∆面积的最大值.4.在直角坐标系xOy 中,直线1;2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (1)求1C ,2C 的极坐标方程; (2)若直线3C 的极坐标方程为()4R πθρ=∈,设23,C C 的交点为,M N ,求2C M N∆的面积.5.在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+. (1)写出C 的直角坐标方程;(2)设直线l :x ty t a =⎧⎨=+⎩(t 为参数),若C 与l 相交于AB 、两点,若2AB =,求a .6.如图,在极坐标系Ox 中,(2,0)A ,)4B π,)4C 3π,(2,)D π,弧»AB ,»BC,»CD所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧»AB ,曲线2M 是弧»BC ,曲线3M 是弧»CD.(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M上,且||OP P 的极坐标.7.在直角坐标系xOy 中,曲线C 的参数方程为2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2cos sin 110ρθθ+=.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.8.在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若1a =-,求C 与l 的交点坐标;(2)若C 上的点到la .9.在直角坐标系xOy 中,曲线1C的参数方程为sin x y αα⎧⎪⎨=⎪⎩(α为参数),以坐标原点为极点,以x 轴正半轴为极轴,建立极坐标系,曲线2C的极坐标方程为sin()4ρθπ+=(1)写出1C 的普通方程和2C 的直角坐标方程;(2)设点P 在1C 上,点Q 在2C 上,求PQ 的最小值以及此时P 的直角坐标. 10.在直角坐标系xOy 中,圆C 的方程为22(6)25x y ++=.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于,A B两点,||AB =求l 的斜率.11.选修4-4:坐标系与参数方程 在直角坐标系xOy 中,曲线1cos ,:{sin ,x t C y t αα== (t 为参数,且0t ≠ ),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线23:2sin ,:.C C ρθρθ== (Ⅰ)求2C 与3C 交点的直角坐标;(Ⅱ)若1C 与2C 相交于点A,1C 与3C 相交于点B,求AB 最大值. 12.选修4-4:坐标系与参数方程在直角坐标系x y O 中,直线l的参数方程为132{x ty =+=(t 为参数).以原点为极点,x 轴正半轴为极 轴建立极坐标系,的极坐标方程为.(Ⅰ)写出的直角坐标方程;(Ⅱ)P 为直线l 上一动点,当P 到圆心的距离最小时,求P 的直角坐标.13.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为ππ2sin 42⎛⎫=≤≤ ⎪⎝⎭ρθθ,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.14.在直角坐标系xOy 中,曲线C的参数方程为22sin x ty t ⎧⎪⎨=⎪⎩,(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为sin 03m πρθ⎛⎫ ⎪⎝+⎭+=.(1)写出l 的直角坐标方程;(2)若l 与C 有公共点,求m 的取值范围.15.在直角坐标系xOy 中,曲线1C的参数方程为26t x y +⎧=⎪⎨⎪=⎩(t 为参数),曲线2C 的参数方程为26s x y +⎧=-⎪⎨⎪=⎩(s 为参数).(1)写出1C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线3C 的极坐标方程为2cos sin 0θθ-=,求3C 与1C 交点的直角坐标,及3C 与2C 交点的直角坐标.16.在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρθ=.(1)将C 的极坐标方程化为直角坐标方程;(2)设点A 的直角坐标为()1,0,M 为C 上的动点,点P满足AP =u u u r u u u r,写出Р的轨迹1C 的参数方程,并判断C 与1C 是否有公共点.17.在直角坐标系xOy 中,曲线1C 的参数方程为cos ,sin k kx t y t ⎧=⎨=⎩(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=.(1)当1k =时,1C 是什么曲线?(2)当4k =时,求1C 与2C 的公共点的直角坐标. 18.在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,x m m m y k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设()3:cos sin 0l ρθθ+,M 为l 3与C 的交点,求M 的极径.19.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线C 1的参数方程为cos {1sin x a t y a t==+(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (Ⅰ)说明C 1是哪种曲线,并将C 1的方程化为极坐标方程;(Ⅱ)直线C 3的极坐标方程为θ=α0,其中α0满足ta n α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .20.已知点(2,1)P ,直线2cos :1sin x t l y t αα=+⎧⎨=+⎩(t 为参数),α为l 的倾斜角,l 与x 轴正半轴,y轴正半轴分别交于A ,B 两点,且||||4PA PB ⋅=. (1)求α;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求l 的极坐标方程. 21.在直角坐标系xOy 中,C e 的圆心为()2,1C ,半径为1. (1)写出C e 的一个参数方程;(2)过点()4,1F 作C e 的两条切线.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.22.在直角坐标系xOy 中,曲线C 的参数方程为22223x t t y t t ⎧=--⎨=-+⎩,(t 为参数且t ≠1),C 与坐标轴交于A ,B 两点. (1)求|AB |:(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.23.已知曲线C 1,C 2的参数方程分别为C 1:224cos 4sin x y θθ⎧=⎨=⎩,(θ为参数),C 2:1,1x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数).(1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.24.在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l 过点(4,0)A 且与OM 垂直,垂足为P .(1)当0=3θπ时,求0ρ及l 的极坐标方程;(2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程.25.在直角坐标系xOy 中,曲线1C 的方程为2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=. (1)求2C 的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.26.在直角坐标系xOy 中,曲线C 的参数方程为=2cos =4sin x y θθ⎧⎨⎩(θ为参数),直线l 的参数方程为=1+cos =2+sin x t y t αα⎧⎨⎩(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为()1,2,求l 的斜率. 27.在平面直角坐标系xOy 中,O e 的参数方程为cos sin x y ,θθ=⎧⎨=⎩(θ为参数),过点(0,且倾斜角为α的直线l 与O e 交于A B ,两点. (1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
坐标系与参数方程(一)极坐标系:1、定义:在平面内取一个定点O ,叫做极点,引一条射线Ox ,叫做极轴,再选一个长度单位和角度的正方向(通常取逆时针方向).对于平面内的任意一点M ,用ρ表示线段OM 的长度,θ表示从Ox 到OM 的角,ρ叫做点M 的极径,θ叫做点M 的极角,有序数对(ρ, θ)就叫做点M 的极坐标.这样建立的坐标系叫做极坐标系.2、极坐标与直角坐标互化公式:★极坐标与直角坐标的互化公式:⎩⎨⎧==θρθρsin cos y x ,⎪⎩⎪⎨⎧≠=+=0,tan 222x x y y x θρ。
★极坐标与直角坐标的互化的前提:①极点与直角坐标的原点重合;②极轴与x 轴的正方向重合;③两种坐标系中取相同的长度单位。
例如:极坐标方程cos sin 11x y ρθρθ+=⇒+=(在转化成,x y 时要设法构造cos ,sin ρθρθ , 然后进行整体代换即可)3、求极坐标方程的两种方法:★处理极坐标系中问题大致有两种思路:(1)公式互化法:把极坐标方程与直角坐标方程进行互化;(2)几何法:利用几何关系(工具如:三角函数的概念、正弦定理、余弦定理)建立ρ与θ的方程.(二)参数方程:1、参数方程的定义:如果曲线(),0F x y =中的变量,x y 均可以写成关于参数t 的函数()()x f t y g t =⎧⎪⎨=⎪⎩,那么()()x f t y g t =⎧⎪⎨=⎪⎩ 就称为该曲线的参数方程,其中t 称为参数。
2、常见的消参技巧: (1)代入法:()3()2333723x t t y x y x y t=+⎧⇒=+-⇒=-⎨=+⎩为参数(2)整体消元法:2211x t t y t t ⎧=+⎪⎪⎨⎪=+⎪⎩()t 为参数,由222112t t t t ⎛⎫+=++ ⎪⎝⎭可得:22x y =+ (3)三角函数法:利用22sin cos 1θθ+=消去参数例如:22cos 3cos 3()12sin 94sin 2x x x y y yθθθθθ⎧=⎪=⎧⎪⇒⇒+=⎨⎨=⎩⎪=⎪⎩为参数3、常见曲线的参数方程如下:(1)圆:()()222x a y b r -+-=的参数方程为:[)cos 0,2sin x a r y b r θθπθ=+⎧∈⎨=+⎩,,其中θ为参数,其几何含义为该圆的圆心角;(2)椭圆:()222210x y a b a b +=>>的参数方程为[)cos 0,2sin x a y b θθπθ=⎧∈⎨=⎩,,其中θ为参数,其几何含义为椭圆的离心角;(3)双曲线:()222210x y a b a b -=>>的参数方程为[)10,2cos tan x ay b θπθθ⎧=⎪∈⎨⎪=⎩,,其中θ为参数,其几何含义为双曲线的离心角;(4)抛物线:()220y px p =>的参数方程为222x pt y pt⎧=⎨=⎩,其中t 为参数;(5)直线:过()00,M x y ,倾斜角为θ的直线参数方程为00cos sin x x t t R y y t θθ=+⎧∈⎨=+⎩,,其中t 为参数,其中t 代表该点与M 的距离。
注:对于极坐标与参数方程等问题,通常的处理手段是将方程均转化为直角坐标系下的一般方程,然后利用传统的解析几何知识求解。
4、直线的参数方程进一步讨论:1、过定点()00,x y ,倾角为θ的直线的标准参数方程形式:00cos sin x x t t y y t θθ=+⎧⎨=+⎩(为参数)其中参数t 是“以定点P (x 0,y 0)为起点,动点M (x ,y )为终点的有向线段PM 的数量”,又称为点P 与点M 间的有向距离。
[提醒] 在直线的标准参数方程中,参数t 的系数的平方和为1时,t 才有几何意义并且t 的几何意义为:|t|是直线上任一点M(x ,y)到M 0(x 0,y 0)的距离,即|M 0M|=|t|. 2、根据t 的几何意义,有以下结论.经过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).若A ,B 为直线l 上两点,其对应的参数分别为t 1,t 2,线段AB 的中点为P ,点P 所对应的参数为t 0, 则以下结论在解题中经常用到:(1)|AM |=|t 1|, |BM |=|t 2|;(2)|AB |=|t 2-t 1|;(3)|AM |·|BM |=|t 1·t 2|;(4)AB =A B t t -=B A A B t t t t ⋅-+4)(2; (5)t 0=t 1+t 22.★常常涉及的相关内容:(1)辅助角公式及三角函数的值域.(2)直线斜率的几何意义、点到直线的距离公式、圆的弦长公式. (3)韦达定理、圆锥曲线两种弦长公式及其推导过程.(三)常见的四种题型:1、方程互换;2、直线标准参数方程的应用;3、最值问题;4、简单的平面解析几何问题。
极坐标与参数方程经典问题:题型一:客观题1.在极坐标系中,关于曲线:4sin 3C πρθ⎛⎫=- ⎪⎝⎭的下列判断中正确的是( ) A.曲线C 关于直线56πθ=对称 B.曲线C 关于直线3πθ=对称 C.曲线C 关于点2,3π⎛⎫⎪⎝⎭对称 D.曲线C 关于极点()0,0对称 2.已知直线l 的极坐标方程为24sin(2=-)πθρ,点A的极坐标为74A π⎛⎫⎪⎝⎭,则点A 到直线l 的距离为 .3.在直角坐标系xOy 中,曲线1C 的参数方程为11x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是sin 13πρθ⎛⎫+= ⎪⎝⎭,则两曲线交点间的距离是 .解:1.由4sin 3πρθ⎛⎫=- ⎪⎝⎭得22sin cos ρρθθ=-即(()2214x y ++-=,所以曲线C 是圆心为(),半径为2的圆,所以曲线C 关于直线56πθ=对称,关于点52,6π⎛⎫⎪⎝⎭对称,答案A . 2.直线:sin cos sin cos 1l θθρθρθ-=⇒-=,转化为直角坐标方程为1y x -=,点A的直角坐标为()2,2-,则A 到直线的距离为2d==,答案:2.3.1:C 11x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩ 2222114y x t t t t ⎛⎫⎛⎫∴-=+--= ⎪ ⎪⎝⎭⎝⎭21:sin coscos sin1sin cos 13322C ππρθρθρθρθ+=⇒+= 2C ∴的方程为1122x y += 联立方程可得:2242y x y ⎧-=⎪⎨=+⎪⎩ 代入消去y可得:()2222420x x +-=⇒-=设交点()()1122,,,A xy B x y 则120,x x ==12AB x ∴=-=答案:题型二:方程互换+直线标准参数方程的应用 2.1: 选修4-4:坐标系与参数方程已知曲线1C 的极坐标方程为22cos sin θρθ=,2C的参数方程为22x y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数). (1)将曲线1C 与2C 的方程化为直角坐标系下的普通方程; (2)若1C 与2C 相交于A B 、两点,求AB . 解:(1)曲线1C 的直角坐标系的普通方程为22y x =曲线2C 的直角坐标系的普通方程为4x y += ………………5分 (2)将2C 的参数方程代入1C 的方程22y x =得2(2)2(2)22-=+得:2102t -=解得120,t t ==12||||AB t t ∴=-= ………………10分2.2: 选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为325425x t y t ⎧=-⎪⎪⎨⎪=-+⎪⎩(t 为参数).以坐标原点为极点,以x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为cos tan ρθθ=.(1)求曲线1C 的普通方程与曲线2C 的直角坐标方程;(2)若1C 与2C 交于A B ,两点,点P的极坐标为π4⎛⎫- ⎪⎝⎭,求11||||PA PB +的值. 解:(1)曲线1C 的普通方程为4320;x y +-=曲线2C 的直角坐标方程为:2y x =.(2)1C 的参数方程的标准形式为32,5(42.5x t t y t ⎧=-⎪⎪⎨⎪=-+⎪⎩为参数)代入2y x =得 29801500,t t -+=设12,t t 是A B 、对应的参数,则121280500.93t t t t +==>, 1212||11||||8.||||||||||15t t PA PB PA PB PA PB t t ++∴+===⋅题型三:方程互换+最值问题3.1:选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为cos 2sin x y αα=⎧⎨=⎩,(α为参数),将曲线1C 经过伸缩变换2x x y y'=⎧⎨'=⎩,后得到曲线2C .在以原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为cos sin 100ρθρθ--=.(1)说明曲线2C 是哪一种曲线,并将曲线2C 的方程化为极坐标方程;(2)已知点M 是曲线2C 上的任意一点,求点M 到直线l 的距离的最大值和最小值.解:(1)因为曲线1C 的参数方程为cos 2sin x y αα=⎧⎨=⎩(α为参数),因为2.x x y y '=⎧⎨'=⎩,,则曲线2C 的参数方程2cos 2sin .x y αα'=⎧⎨'=⎩,.所以2C 的普通方程为224x y ''+=. 所以2C 为圆心在原点,半径为2的圆.所以2C 的极坐标方程为24ρ=,即2ρ=.(2)解法1:直线l 的普通方程为100x y --=.曲线2C 上的点M 到直线l的距离+)10|d απ-==. 当cos +=14απ⎛⎫ ⎪⎝⎭即()=24k k αππ-∈Z 时,d2-. 当cos +=14απ⎛⎫- ⎪⎝⎭即()3=24k k απ+π∈Z 时,d+ 解法2:直线l 的普通方程为100x y --=.因为圆2C 的半径为2,且圆心到直线l 的距离252|1000|=--=d , 因为225>,所以圆2C 与直线l 相离.所以圆2C 上的点M 到直线l 的距离最大值为225+=+r d ,最小值为225-=-r d .3.2:选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线1C 的参数方程为cos (1sin x y θθθ=⎧⎨=+⎩为参数),曲线2C 的参数方程为2cos (sin x y ϕϕϕ=⎧⎨=⎩为参数) (1)将1C ,2C 的方程化为普通方程,并说明它们分别表示什么曲线;(2)以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,已知直线l 的极坐标方程为(cos 2sin )4ρθθ-=,若1C 上的点P 对应的参数为2πθ=,点Q 上在2C ,点M 为PQ 的中点,求点M 到直线l 距离的最小值.解:(1)1C 的普通方程为22(1)1x y +-=,它表示以(0,1)为圆心,1为半径的圆,2C 的普通方程为2214x y +=,它表示中心在原点,焦点在x 轴上的椭圆.(2)由已知得(0,2)P ,设(2cos ,sin )Q θθ,则1(cos ,1sin )2M θθ+, 直线:240l x y --=,点M 到直线l的距离为d ==,所以d ≤=,即M 到直线l的距离的最小值为5.题型四:方程互换+简单的平面解析几何问题 4.1:选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C:2x y αα⎧=+⎪⎨=⎪⎩,.(α为参数).以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为θρcos 8=,直线l 的极坐标方程为)(3R ∈=ρπθ.(1)求曲线1C 的极坐标方程与直线l 的直角坐标方程;(2)若直线l 与1C ,2C 在第一象限分别交于A ,B 两点,P 为2C 上的动点,求PAB ∆面积的最大值. 解:(1)依题意得,曲线1C 的普通方程为7)2(22=+-y x , 曲线1C 的极坐标方程为03cos 42=--θρρ, 直线l 的直角坐标方程为x y 3=.(2)曲线2C 的直角坐标方程为16)4(22=+-y x ,由题意设)3,(1πρA ,)3,(2πρB ,则033cos4121=--πρρ,即032121=--ρρ,得31=ρ或11-=ρ(舍),43cos82==πρ,则121=-=ρρAB , 2C )0,4(到l 的距离为32434==d .以AB 为底边的PAB ∆的高的最大值为324+,则PAB ∆的面积的最大值为32)324(121+=+⨯⨯.4.2:选修4-4:坐标系与参数方程将圆221x y +=上每一点的纵坐标不变,横坐标变为原来的14,得曲线C . (1)写出C 的参数方程;(2)设直线l :410x y ++=与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1 P 2的中点且与l 垂直的直线的极坐标方程.解:(1)由坐标变换公式1',4'.x x y y ⎧=⎪⎨⎪=⎩ 得4','x x y y == 代入221x y +=中得2216''1x y +=,故曲线C 的参数方程为1cos ,4sin .x y θθ⎧=⎪⎨⎪=⎩(θ为参数); (2)由题知,121(,0),(0,1)4P P --,----------6分 故线段P 1 P 2中点11(,)82M --, ∵直线l 的斜率4k =-∴线段P 1 P 2的中垂线斜率为14,故线段P 1 P 2的中垂线的方程为111()248y x +=+即832150x y --=,将cos ,sin x y ρθρθ==代入,得其极坐标方程为8cos 32sin 150ρθρθ--=4.3:选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l 倾斜角为α,其参数方程为2cos sin x t y t αα=-+⎧⎨=⎩(t 为参数),在以原点O 为极点,x 轴非负半轴为极轴的极坐标系中(取相同的长度单位),曲线C 的极坐标方程为4cos 0-=ρθ.(1)若直线l 与曲线C 有公共点,求直线l 倾斜角α的取值范围;(2)设()M x y ,为曲线C 上任意一点,求x 的取值范围. 解:(1)法一:由曲线C 的极坐标方程得24cos 0ρρθ-=,∴曲线C 的直角坐标方程为2240x y x +-=,即()2224x y -+=∴曲线C 是圆心为C (2, 0),半径为2的圆.∵直线l 过点P (−2,0),当l 斜率不存在时,l 的方程为x = -2与曲线C 没有公共点;∴当直线l 斜率存在时,设直线l 的方程为:(2)y k x =+,即20kx y k -+= 直线l 与圆有公共点,则2d =≤∴33k -≤≤…………4分 ∵[)0πα∈,,∴α的取值范围是π5π[0]π66⎡⎫⎪⎢⎣⎭,,法二:∵曲线C 的极坐标方程为24cos 0ρρθ-=,∴曲线C 的直角坐标方程为2240x y x +-=, 将2cos sin x t y t αα=-+=⎧⎨⎩,代入2240x y x +-=整理得28cos 120t t α-+=∵直线l 与曲线C 有公共点,∴264cos 480α∆=-≥即cos α或cos α≤,∵[)0πα∈,,∴α的取值范围是π5π[0]π66⎡⎫⎪⎢⎣⎭,,(2)法一:设x m +=,由于圆2240x y x +-=即()2224x y -+=与0x m -=有交点, ∴|m 2|22d -==≤26m ∴-≤≤ ∴x 的取值范围是[]26-,. 法二:曲线C 的直角坐标方程为2240x y x +-=可化为()2224x y -+= 其参数方程为22cos 2sin x y θθ=+=⎧⎨⎩(θ为参数)∵()M x y ,为曲线C 上任意一点,∴22cos x θθ=++ π24sin 6θ⎛⎫=++ ⎪⎝⎭∴x 的取值范围是[]26-,.。