2014高考物理机械能专题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章机械能
一、基本概念
1、做功的两个必备因素是力和在力方向上的位移.而往往某些力与物体的位移不在同一直线上,这时应注意这些力在位移方向上有无分力,确定这些力是否做功.
2、应用公式W=Fscosα计算时,应明确是哪个力或哪些力做功、做什么功,同时还应注意:
(1)F必须是整个过程中大小、方向均不变的恒力,与物体运动轨迹和性质无关.当物体做曲线运动而力的方向总在物体速度的方向上,大小不变,式中α应为0,而s是物体通过的路程.
(2)公式中α是F、s之间夹角,在具体问题中可灵活应用矢量的分解;一般来说,物体作直线运动时,可将F沿s方向分解;物体作曲线运动时,应将s沿F方向分解,
(3)功是标量,但有正负,其正负特性由F与s的夹角α的取值范围反映出来.但必须注意,功的正负不表示方向,也不表示大小,其意义是表示物体与外界的能量转换.
(4)本公式只是计算功的一种方法,今后还会学到计算功的另外一些方法,尤其是变力做功问题,决不能用本公式计算,那时应灵活巧妙地应用不同方法,思维不能僵化.
3、公式P=W/t求得的是功率的平均值。P=Fvcosα求得的是功率的瞬时值。当物体做匀速运动时,平均值与瞬时值相等。
4、P=Fvcosα中的α为F与v的夹角,计算时一般情况下当物体做直线运动时,可将F沿v方向与垂直v方向上分解,若物体作曲线运动时可将v沿F及垂直F的两个方向分解.
5、P=W/t提供了机械以额定功率做功而物体受变力作用时计算功的一种方法.
6、功和能的关系应从以下方面理解:不论什么形式的能,只要能量发生了转化,则一定有力做功;能量转化了多少,力就做了多少功.反之,只要有力做功,则一定发生了能量转化;力做了多少功,能量就转化了多少.所以功是能量转化的量度,但决不是能的量度.
7、功与能是不同的概念,功是一个过程的量,而能是状态量。正是力在过程中做了功,才使始末状态的能量不同,即能量的转化.说功转化为能是错误的.
8、“运动的物体具有的能叫动能”这句话是错误的.因为运动的物体除了动能外还有势能.
9、关于重力势能,应明确:(1)重力势能的系统性,即重力势能是物体和地球共有的,而不是物体独有的,“物体的重力势能”是一种不够严谨的习惯说法.(2)重力势能的相对性,势能的量值与零势能参考平面的选取有关.E p=mgh中的h是物体到参考平面的竖直高度.通常取地面为参考平面.解题时也可视问题的方便随意选取参考平面.(3)重力势能的变化与参考平面的选取无关,只与物体的始末位置有关.
10、重力做功的特点:(1)与路径无关,只由重力和物体始、末位置高度差决定.(2)重力做功一定等于重力势能的改变.即W G=E p1-E p2,当重力做正功时,重力势能减少;当重力做负功时,重力势能增加。
11、关于动能定理,要注意动能定理的表达式的等号左边是且仅是所有外力的功,等号右边是且仅是物体动能的改变量。在列动能定理方程时,不要考虑势能及势能的变化。
12、关于机械能守恒定律应明确:
(1)定律成立的条件是“只有重力做功或弹力做功”,不是“只有重力作用或弹力作用”.有其它力作用,但其它力不做功,而只有重力做功或弹力做功时,机械能仍守恒.
(2)定律表示的是任一时刻、任一状态下物体机械能总量保持不变,故可以在整个过程中任取两个状态写出方程求解.
(3)定律的表达式除了写成E p1+E p2=E k1+E k2外,还可写成ΔE p=-ΔE k,即在任一机械能守恒的过程中,重力势能的减少(增加)一定等于动能的增加(减少)。利用ΔE p=-ΔE k进行计算有
时会显得简明.
13、应用机械能守恒定律解题时,只要考虑始末态下的机械能,无须顾及中间过程运动情况的细节。因此,对于运动过程复杂、受变力作用、作曲线运动等不能直接应用牛顿运动定律处理的问题,利用机械能守恒律会带来方便。
14、应用机械能守恒定律解题的一般步骤:
(1)认真审题,确定研究对象;
(2)对研究对象进行受力分析和运动过程、状态的分析,弄清整个过程中各力做功的情况,确认是否符合机械能守恒的条件;
(3)确定一个过程、两个状态(始末),选取零势能参考平面,确定始末状态的动能、势能值或这个过程中ΔE p 和ΔE k 的值;
(4)利用机械能守恒定律列方程,必要时还要根据其它力学知识列出联立方程;
(5)统一单位求解.
解题的关键是准确找出始、末状态的动能和势能的值,尤其是势能值的确定.
二、恒力做功与变力做功问题
1、恒力做功
求解恒力功的方法一般是用功的定义式W=Fscos α,需要特别注意:
(1)位移s 的含义:是力直接作用的物体对地的位移。当力在物体上的作用位置不变时,s 就是力作用的那个质点的位移;当力在物体上的作用位置不断改变时,s 应是物体的位移。如:一个不能视为质点的物体受到滑动摩擦力作用时,摩擦力的作用点时时变化,此时s 就不是摩擦力作用点的位移,而是物体的位移。
例 如图示,质量为m 、初速为v 0的小木块,在桌面上
滑动。动摩擦因数为μ,求木块停止滑动前摩擦力对木块
和桌面所做的功。
解 对木块:W 1=-fs=-μmg ·v 02/(2g μ)=-mv 02/2
对桌面:W 2=0
例 如图示,质量为m 、初速为v 0的小木
块,在一块质量为M 的木板上滑动,板放在光
滑水平桌面上,求木块和板相对静止前,摩擦
力对木块和木板所做的功。
解 据动量守恒mv 0=(m+M )v 得
W 1=-fs 2=-μmg ·M (M+2m )v 02/(M+m )22g μ=-Mm(M+2m)v 02/2(M+m )2
W 2=fs 1=Mm 2v 02/2(M+m )2g μ
(2)一对相互作用力所做功之和不一定为零
如:人竖直向上跳起,地面对人的作用力对人做正功,人对地而不做功(地球位移视为零),总功为正;
一对静摩擦力,位移值一定相同,总功必为零;
一对滑动摩擦力,做功时必然发热,系统内能增加,总功必为负。转化为内能值为 相fs E k =∆
2、判断做功正负的方法
(1)从力与位移或速度方向的关系进行判断。
如:“子弹打木块”问题,摩擦力对子弹做负功,对木块做正功。
例 如图所示,质量为M 的木块静止在光滑水平面上,质量为m 的子弹以水平速度0v 射