东南大学数值分析上机报告完整版

合集下载

数值分析上机实习报告

数值分析上机实习报告

指导教师:姓名:学号:专业:联系电话:上海交通大学目录序言 (3)实验课题(一) 雅可比迭代法和高斯-塞得尔迭代法的收敛性和收敛速度 (4)数值分析 (6)实验课题(二) 松弛因子对SOR法收敛速度的影响 (6)数值分析 (12)总结 (13)附录(程序清单) (14)1.雅可比迭代法和高斯-塞得尔迭代法的收敛性和收敛速度 (14)雅可比迭代法: (14)高斯-塞得尔迭代法: (16)2.松弛因子对SOR法收敛速度的影响 (18)松弛法(SOR) (18)序言随着科学技术的发展,提出了大量复杂的数值计算问题,在实际解决这些计算问题的长期过程中,形成了计算方法这门学科,专门研究各种数学问题的数值解法(近似解法),包括方法的构造和求解过程的误差分析,是一门内容丰富,有自身理论体系的实用性很强的学科。

解决工程问题,往往需要处理很多数学模型,这就要花费大量的人力和时间,但是还有不少数学模型无法用解析法得到解。

使用数值方法并利用计算机,就可以克服这些困难。

事实上,科学计算已经与理论分析、科学实验成为平行的研究和解决科技问题的科学手段,经常被科技工作者所采用。

作为科学计算的核心内容——数值分析(数值计算方法),已逐渐成为广大科技工作者必备的基本知识并越来越被人重视。

由于数值方法是解数值问题的系列计算公式,所以数值方法是否有效,不但与方法本身的好坏有关,而且与数值问题本身的好坏也有关,因此,研究数值方法时,不但需要研究数值方法的好坏,即数值稳定性问题,而且还需要研究数值问题本身的好坏,即数值问题的性态,以及它们的判别问题。

数值计算的绝大部分方法都具有近似性,而其理论又具有严密的科学性,方法的近似值正是建立在理论的严密性基础上,根据计算方法的这一特点。

因此不仅要求掌握和使用算法,还要重视必要的误差分析,以保证计算结果的可靠性。

数值计算还具有应用性强的特点,计算方法的绝大部分方法如求微分方程近似解,求积分近似值,求解超越方程,解线性方程组等都具有较强的实用性,而插值法,最小二乘法,样条函数等也都是工程技术领域中常用的,有实际应用价值的方法。

数值分析上机报告

数值分析上机报告

数值分析上机实习报告专业:土木工程班级:学号:姓名:指导老师:联系电话:2015.12.12序言随着本学期逐渐接近尾声,我也逐渐掌握了数值分析的一些基本理论•本次上机作业是理论与实践的结合•本次作业使用了matlab与C++两种语言•其中matlab具有编程效率高,用户使用方便,方便的绘图功能的优点。

而C++是一种基本的编程语言,在实际的工程中也有广泛的应用。

本次作业根据题目的特点,结合两种语言各自的优势,采用了不同的方法。

其中牛顿法,Steffensen加速法采用了c语言。

插值与多项式拟合使用了两种语言。

Ru n ge-Kutt a 4阶算法仅使用了matlab编程。

本次作业注重问题的计算过程,分析总结,及编程。

由于所涉及原理课本均有详细陈述,在此不再赘述。

第一题 (3)1.1题目 (3)1.2计算过程和结果 (3)1.3结果分析 (3)第二题 (4)2.1题目 (4)2.2计算过程和结果 (4)2.3结果分析 (8)第三题 (8)3.1题目 (8)3.2问题求解及过程 (8)3.3结果分析 (9)总结 (10)附件 (11)第一题 (11)1.1.1第一问牛顿法 (11)1.1.2 第一问牛顿-Steffensen法 (11)1.2.1第二问牛顿法 (12)1.2.2 第二问牛顿-Steffensen法 (13)第二题 (14)2.1.1最小二乘法求解 (14)2.2.1拉格朗日差值多项式拟合 (15)2.2.2牛顿插值 (15)第三题 (17)3.1.1Runge-Kutta 4 阶算法 (17)1.1题目分别用牛顿法,及基于牛顿算法下的Steffe nsen加速法⑴求ln(x+sin x)=0的根。

初值x0分别取0.1, 1,1.5, 2, 4进行计算。

(2)求sin x=0的根。

初值x0分别取1,1.4,1.6, 1.8,3进行计算。

分析其中遇到的现象与问题。

1・2计算过程和结果1.对方程In(x+sinx)=O,可求解x+sinx=1的解。

数值分析第一次上机练习实验报告

数值分析第一次上机练习实验报告

数值分析第一次上机练习实验报告一、实验目的本次实验旨在通过上机练习,加深对数值分析方法的理解,并掌握实际应用中的数值计算方法。

二、实验内容1. 数值计算的基本概念和方法在本次实验中,我们首先回顾了数值计算的基本概念和方法。

数值计算是一种通过计算机进行数值近似的方法,其包括近似解的计算、误差分析和稳定性分析等内容。

2. 方程求解的数值方法接下来,我们学习了方程求解的数值方法。

方程求解是数值分析中非常重要的一部分,其目的是找到方程的实数或复数解。

我们学习了二分法、牛顿法和割线法等常用的数值求解方法,并对它们的原理和步骤进行了理论学习。

3. 插值和拟合插值和拟合是数值分析中常用的数值逼近方法。

在本次实验中,我们学习了插值和拟合的基本原理,并介绍了常见的插值方法,如拉格朗日插值和牛顿插值。

我们还学习了最小二乘拟合方法,如线性拟合和多项式拟合方法。

4. 数值积分和数值微分数值积分和数值微分是数值分析中的两个重要内容。

在本次实验中,我们学习了数值积分和数值微分的基本原理,并介绍了常用的数值积分方法,如梯形法和辛卜生公式。

我们还学习了数值微分的数值方法,如差商法和牛顿插值法。

5. 常微分方程的数值解法常微分方程是物理和工程问题中常见的数学模型,在本次实验中,我们学习了常微分方程的数值解法,包括欧拉法和四阶龙格-库塔法。

我们学习了这些方法的步骤和原理,并通过具体的实例进行了演示。

三、实验结果及分析通过本次实验,我们深入理解了数值分析的基本原理和方法。

我们通过实际操作,掌握了方程求解、插值和拟合、数值积分和数值微分以及常微分方程的数值解法等数值计算方法。

实验结果表明,在使用数值计算方法时,我们要注意误差的控制和结果的稳定性。

根据实验结果,我们可以对计算结果进行误差分析,并选择适当的数值方法和参数来提高计算的精度和稳定性。

此外,在实际应用中,我们还需要根据具体问题的特点和条件选择合适的数值方法和算法。

四、实验总结通过本次实验,我们对数值分析的基本原理和方法有了更加深入的了解。

数值分析上机实验报告

数值分析上机实验报告

数值分析上机实验报告摘要:本报告是对数值分析课程上机实验的总结和分析,涵盖了多种算法和数据处理方法,通过对实验结果的分析,探究了数值计算的一般过程和计算的稳定性。

1. 引言数值计算是数学的一个重要分支,广泛应用于物理、金融、工程等领域。

本次实验是对数值分析课程知识的实际应用,通过上机实现算法,探究数值计算的可靠性和误差分析。

2. 实验方法本次实验中,我们实现了多种算法,包括:(1)牛顿迭代法求方程的根;(2)高斯消元法求线性方程组的解;(3)最小二乘法拟合数据点;(4)拉格朗日插值法估计函数值;(5)梯形公式和辛普森公式求积分近似值。

对于每个算法,我们都进行了多组数值和不同参数的实验,并记录了相关数据和误差。

在实验过程中,我们着重考虑了算法的可靠性和计算的稳定性。

3. 实验结果与分析在实验中,我们得到了大量的实验数据和误差分析,通过对数据的展示和分析,我们得到了以下结论:(1)牛顿迭代法求解非线性方程的根能够对算法的初始值和迭代次数进行适当的调整,从而达到更高的稳定性和可靠性。

(2)高斯消元法求解线性方程组的解需要注意到矩阵的奇异性和精度的影响,从而保证计算的准确性。

(3)最小二乘法拟合数据点需要考虑到拟合的函数形式和数据的误差范围,采取适当的数据预处理和拟合函数的选择能够提高计算的准确性。

(4)拉格朗日插值法估计函数值需要考虑到插值点的选择和插值函数的阶数,防止出现龙格现象和插值误差过大的情况。

(5)梯形公式和辛普森公式求积分近似值需要考虑到采样密度和拟合函数的选择,从而保证计算的稳定性和收敛速度。

4. 结论通过本次实验的分析和总结,我们得到了深入的认识和理解数值计算的一般过程和算法的稳定性和可靠性,对于以后的数值计算应用也提供了一定的指导和参考。

优质文档精选——数值分析上机实验报告

优质文档精选——数值分析上机实验报告

数值分析上机实验报告《数值分析》上机实验报告1.用Newton 法求方程 X 7-X 4+14=0在(0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001)。

1.1 理论依据:设函数在有限区间[a ,b]上二阶导数存在,且满足条件{}αϕ上的惟一解在区间平方收敛于方程所生的迭代序列迭代过程由则对任意初始近似值达到的一个中使是其中上不变号在区间],[0)(3,2,1,0,)(')()(],,[x |))(),((|,|,)(||)(|.4;0)(.3],[)(.20)()(.110......b a x f x k x f x f x x x Newton b a b f a f mir b a c x f ab c f x f b a x f b f x f k k k k k k ==-==∈≤-≠>+令)9.1()9.1(0)8(4233642)(0)16(71127)(0)9.1(,0)1.0(,1428)(3225333647>⋅''<-=-=''<-=-='<>+-=f f x x x x x f x x x x x f f f x x x f故以1.9为起点⎪⎩⎪⎨⎧='-=+9.1)()(01x x f x f x x k k k k 如此一次一次的迭代,逼近x 的真实根。

当前后两个的差<=ε时,就认为求出了近似的根。

本程序用Newton 法求代数方程(最高次数不大于10)在(a,b )区间的根。

1.2 C 语言程序原代码:#include<stdio.h>#include<math.h> main(){double x2,f,f1;double x1=1.9; //取初值为 1.9 do{x2=x1;f=pow(x2,7)-28*pow(x2,4)+14; f1=7*pow(x2,6)-4*28*pow(x2,3); x1=x2-f/f1;}while(fabs(x1-x2)>=0.00001||x1<0.1); //限制循环次数 printf("计算结果:x=%f\n",x1);}1.3 运行结果:1.4 MATLAB 上机程序function y=Newton(f,df,x0,eps,M) d=0;for k=1:Mif feval(df,x0)==0d=2;breakelsex1=x0-feval(f,x0)/feval(df,x0);ende=abs(x1-x0);x0=x1;if e<=eps&&abs(feval(f,x1))<=epsd=1;breakendendif d==1y=x1;elseif d==0y='迭代M次失败';elsey= '奇异'endfunction y=df(x)y=7*x^6-28*4*x^3;Endfunction y=f(x)y=x^7-28*x^4+14;End>> x0=1.9;>> eps=0.00001;>> M=100;>> x=Newton('f','df',x0,eps,M);>> vpa(x,7)1.5 问题讨论:1.使用此方法求方解,用误差来控制循环迭代次数,可以在误差允许的范围内得到比较理想的计算结果。

东南大学_数值分析_第七章_偏微分方程数值解法

东南大学_数值分析_第七章_偏微分方程数值解法

第七章 偏微分方程数值解法——Crank-Nicolson 格式****(学号) *****(姓名)上机题目要求见教材P346,10题。

一、算法原理本文研究下列定解问题(抛物型方程)22(,) (0,0)(,0)() (0)(0,)(), (1,)() (0)u ua f x t x l t T t x u x x x l u t t u t t t T ϕαβ⎧∂∂-=<<≤≤⎪∂∂⎪=≤≤⎨⎪==<≤⎪⎩(1)的有限差分法,其中a 为正常数,,,,f ϕαβ为已知函数,且满足边界条件和初始条件。

关于式(1)的求解,采用离散化方法,剖分网格,构造差分格式。

其中,网格剖分是将区域{}0,0D x l t T =≤≤≤≤用两簇平行直线(0)(0)i k x x ih i M t t k k N τ==≤≤⎧⎨==≤≤⎩ 分割成矩形网格,其中,l Th M Nτ==分别为空间步长和时间步长。

将式(1)中的偏导数使用不同的差商代替,将得到不同的差分格式,如古典显格式、古典隐格式、Crank-Nicolson 格式等。

其中,Crank-Nicolson 格式具有更高的收敛阶数,应用更广泛,故本文采用Crank-Nicolson 格式求解抛物型方程。

Crank-Nicolson 格式推导:在节点(,)2i k x t τ+处考虑式(1),有22(,)(,)(,)222i k i k i k u u x t a x t f x t t x τττ∂∂+-+=+∂∂ (2)对偏导数(,)2i k u x t t τ∂+∂用中心差分展开 []2311+131(,)(,)(,)(,) ()224k k i k i k i k i i k i k u ux t u x t u x t x t t t t ττηητ++∂∂+=--<<∂∂ (3) 将22(,)2i k u x t x τ∂+∂在节点(,)i k x t 和1(,)i k x t +表示为222+122224+1221(,)=(,)+(,)22 (,) ()8i k i k i k k k i i k i k u u ux t x t x t x x x ux t t x tττηη⎡⎤∂∂∂+⎢⎥∂∂∂⎣⎦∂-<<∂∂ (4)对以上两个偏导数用二阶差分展开[]2112224i+141(,)(,)2(,)(,) (,) ()12i k i k i k i k kk i k i i u x t u x t u x t u x t x hh u t x x x ξξ+-∂=-+∂∂-<<∂ (5)[]211111122241i+141(,)(,)2(,)(,) (,) ()12i k i k i k i k k ki k i i u x t u x t u x t u x t x hh u t x x xξξ++++-++∂=-+∂∂-<<∂ (6)将式(4)(5)(6)分别代入式(3),略去高阶小量,用k i u 代替(,)i k u x t 并化简得()()()2111111112122,22k k k k k k k k i i i i i i i i i k a u u u u u u u u f x t h ττ+++++-+-⎛⎫⎡⎤---++-+=+ ⎪⎣⎦⎝⎭ (7) 令2/r a h τ=,将式(7)联合式(1)初始条件和边界条件,用矩阵的形式表示为:11112212211111221122221122221122 k k k k k kM M k k M M r r r r u u r r r r r ru u r r r r u u r r u u r r r r +++--+--⎡⎤⎡⎤+---⎢⎥⎢⎥⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥-+--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-+--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥-+-⎢⎥⎢⎥⎣⎦⎣⎦()()()()()()112211,22,2 ,2,22k k k k M k M k k k r f x t t t f x t f x t r f x t t t ττααττττττββ+--+⎡⎤⎛⎫+++ ⎪⎢⎥⎝⎭⎢⎥⎢⎥⎛⎫+ ⎪⎢⎥⎝⎭⎢⎥+⎢⎥⎢⎥⎛⎫⎢⎥+ ⎪⎢⎥⎝⎭⎢⎥⎛⎫⎢⎥+++ ⎪⎢⎥⎝⎭⎣⎦(8) Crank-Nicolson 格式的截断误差为22()R O h τ=+,具有较高的精度。

数值分析报告上机题课后作业全部-东南大学

数值分析报告上机题课后作业全部-东南大学

实用标准文案文档大全上机作业题报告2015.1.9 USER1.Chapter 11.1题目设S N =∑1j 2−1N j=2,其精确值为)11123(21+--N N 。

(1)编制按从大到小的顺序11131121222-+⋯⋯+-+-=N S N ,计算S N 的通用程序。

(2)编制按从小到大的顺序1211)1(111222-+⋯⋯+--+-=N N S N ,计算S N 的通用程序。

(3)按两种顺序分别计算64210,10,10S S S ,并指出有效位数。

(编制程序时用单精度) (4)通过本次上机题,你明白了什么?1.2程序1.3运行结果1.4结果分析按从大到小的顺序,有效位数分别为:6,4,3。

按从小到大的顺序,有效位数分别为:5,6,6。

可以看出,不同的算法造成的误差限是不同的,好的算法可以让结果更加精确。

当采用从大到小的顺序累加的算法时,误差限随着N 的增大而增大,可见在累加的过程中,误差在放大,造成结果的误差较大。

因此,采取从小到大的顺序累加得到的结果更加精确。

2.Chapter 22.1题目(1)给定初值0x 及容许误差ε,编制牛顿法解方程f(x)=0的通用程序。

(2)给定方程03)(3=-=x xx f ,易知其有三个根3,0,3321=*=*-=*x x x○1由牛顿方法的局部收敛性可知存在,0>δ当),(0δδ+-∈x 时,Newton 迭代序列收敛于根x2*。

试确定尽可能大的δ。

○2试取若干初始值,观察当),1(),1,(),,(),,1(),1,(0+∞+-----∞∈δδδδx 时Newton 序列的收敛性以及收敛于哪一个根。

(3)通过本上机题,你明白了什么?2.2程序2.3运行结果(1)寻找最大的δ值。

算法为:将初值x0在从0开始不断累加搜索精度eps,带入Newton迭代公式,直到求得的根不再收敛于0为止,此时的x0值即为最大的sigma值。

运行Find.m,得到在不同的搜索精度下的最大sigma值。

东南大学数值分析上机报告2

东南大学数值分析上机报告2

数值分析上机报告作业4一、题目二、算法描述函数S(x)在每个小区间上都是三次多项式,故S’’(x)在小区间上是一次多项式,根据函数值、一阶差值、二阶差值求出d值,再求出M值,回代求出插值函数,最后节点差值输出结果。

三、源程序%求第一型3次样条插值函数的通用程序clearclc% 输入相关参数n = input('Input n: n =');n = n + 1;xn = zeros(1, n);yn = zeros(1, n);xn(1, :) = input('Input x:');yn(1, :) = input('Input y:');% 输入边界条件dy0 = input('Input the derivative of y(0):');dyn = input('Input the derivative of y(n):');% 求d值d = zeros(n, 1);h = zeros(1, n - 1);f1 = zeros(1, n- 1);f2 = zeros(1, n - 2);for i = 1: n - 1h(i) = xn(i + 1) - xn(i); % 一阶差商f1(i) = (yn(i + 1) - yn(i))/h(i);endfor i = 2 : n – 1 % 一二阶差商f2(i) = (f1(i) - f1(i - 1))/(xn(i + 1) - xn(i - 1));d(i) = 6*f2(i);endd(1) = 6*(f1(1) - dy0)/h(1);d(n) = 6*(dyn - f1(n - 1))/h(n - 1);% 求M值A = zeros(n);miu = zeros(1, n -2);lamda = zeros(1, n - 2);for i = 1: n - 2miu(i) = h(i)/(h(i) + h(i + 1));lamda(i) = 1 - miu(i);endA(1, 2) = 1;A(n, n - 1) = 1;for i = 1: nA(i, i) = 2;endfor i = 2: n - 1A(i, i - 1) = miu(i - 1);A(i, i + 1) = lamda(i - 1);endM = A\d;% 回代求插值函数syms x;for i = 1: n - 1Sx(i) = collect(yn(i) + (f1(i) - (M(i)/3 + M(i + 1)/6)*h(i))*(x - ... xn(i)) + M(i)/2*(x - xn(i))^2 + (M(i + 1) - M(i))/(6*h(i))*(x - ... xn(i))^3);Sx(i) = vpa(Sx(i), 4);endS = zeros(1, n - 1);% 求节点插值for i = 1: n - 1x = xn(i) + 0.5;S(i) = yn(i) + (f1(i) - (M(i)/3 + M(i + 1)/6)*h(i)) * (x - xn(i))... + M(i)/2*(x - xn(i))^2 + (M(i + 1) - M(i))/(6*h(i))*(x - xn(i))^3;end% 输出结果disp('S(x) = ');for i = 1: n - 1fprintf(' %s (%d, %d)\n', char(Sx(i)), xn(i), xn(i + 1))disp(' ------------------------------------------------')enddisp('S(i + 0.5)')disp(' i x(i + 0.5) S(i + 0.5)')for i = i: n - 1fprintf(' %d %.4f %.4f\n', i, xn(i) + 0.5, S(i))end四、心得体会使用变量精度算法(VPA)去计算A中每个元素为d小数位精度,其中d是当前设置的位数,结果使每个元素是符号表达式。

数值分析上机实验报告(插值)

数值分析上机实验报告(插值)

数值分析第一次上机练习实验报告——Lagrange 插值与三次样条插值一、 问题的描述设()2119f x x =+, []1,1x ∈-,取15iix =-+,0,1,2,...,10i =.试求出10次Lagrange 插值多项式()10L x 和三次样条插值函数()S x (采用自然边界条件),并用图画出()f x ,()10L x ,()S x .二、 方法描述——Lagrange 插值与三次样条插值我们取15i ix =-+,0,1,2,...,10i =,通过在i x 点的函数值()2119i i f x x =+来对原函数进行插值,我们记插值函数为()g x ,要求它满足如下条件:()()21,0,1,2,...,1019i i i g x f x i x ===+ (1)我们在此处要分别通过Lagrange 插值(即多项式插值)与三次样条插值的方法对原函数()2119f x x=+进行插值,看两种方法的插值结果,并进行结果的比较。

10次的Lagrange 插值多项式为:()()10100i i i L x y l x ==∑ (2)其中:()21,0,1,2,...,1019i i iy f x i x ===+ 以及()()()()()()()()()011011......,0,1,2,...,10......i i n i i i i i i i n x x x x x x x x l x i x x x x x x x x -+-+----==----我们根据(2)进行程序的编写,我们可以通过几个循环很容易实现函数的Lagrange 插值。

理论上我们根据区间[]1,1-上给出的节点做出的插值多项式()n L x 近似于()f x ,而多项式()n L x 的次数n 越高逼近()f x 的精度就越好。

但实际上并非如此,而是对任意的插值节点,当n →+∞的时候()n L x 不一定收敛到()f x ;而是有时会在插值区间的两端点附近会出现严重的()n L x 偏离()f x 的现象,即所谓的Runge 现象。

数值分析上机实践报告

数值分析上机实践报告

数值分析上机实践报告一、实验目的本次实验主要目的是通过上机操作,加深对数值分析算法的理解,并熟悉使用Matlab进行数值计算的基本方法。

在具体实验中,我们将实现三种常见的数值分析算法:二分法、牛顿法和追赶法,分别应用于解决非线性方程、方程组和线性方程组的求解问题。

二、实验原理与方法1.二分法二分法是一种常见的求解非线性方程的数值方法。

根据函数在给定区间端点处的函数值的符号,不断缩小区间的长度,直到满足精度要求。

2.牛顿法牛顿法是求解方程的一种迭代方法,通过构造方程的泰勒展开式进行近似求解。

根据泰勒展式可以得到迭代公式,利用迭代公式不断逼近方程的解。

3.追赶法追赶法是用于求解三对角线性方程组的一种直接求解方法。

通过构造追赶矩阵,采用较为简便的向前追赶和向后追赶的方法进行计算。

本次实验中,我们选择了一组非线性方程、方程组和线性方程组进行求解。

具体的实验步骤如下:1.调用二分法函数,通过输入给定区间的上下界、截止误差和最大迭代次数,得到非线性方程的数值解。

2.调用牛顿法函数,通过输入初始迭代点、截止误差和最大迭代次数,得到方程组的数值解。

3.调用追赶法函数,通过输入追赶矩阵的三个向量与结果向量,得到线性方程组的数值解。

三、实验结果与分析在进行实验过程中,我们分别给定了不同的参数,通过调用相应的函数得到了实验结果。

下面是实验结果的汇总及分析。

1.非线性方程的数值解我们通过使用二分法对非线性方程进行求解,给定了区间的上下界、截止误差和最大迭代次数。

实验结果显示,根据给定的输入,我们得到了方程的数值解。

通过与解析解进行比较,可以发现二分法得到的数值解与解析解的误差在可接受范围内,说明二分法是有效的。

2.方程组的数值解我们通过使用牛顿法对方程组进行求解,给定了初始迭代点、截止误差和最大迭代次数。

实验结果显示,根据给定的输入,我们得到了方程组的数值解。

与解析解进行比较,同样可以发现牛顿法得到的数值解与解析解的误差在可接受范围内,说明牛顿法是有效的。

数值分析上机实践报告

数值分析上机实践报告

数值分析上机实践报告一、实验目的本实验的目的是通过编写数值分析程序,掌握解决数学问题的数值计算方法,并通过实际应用来检验其有效性和准确性。

具体包括以下几个方面的内容:1.掌握二分法和牛顿迭代法的基本原理和实现方法;2.熟悉利用矩阵的LU分解和追赶法解线性方程组的过程;3.通过具体的实例应用,比较不同方法的计算效果和精度。

二、实验内容本实验分为三个部分,每个部分包括一个具体的数学问题和相应的数值计算方法。

1.问题一:求方程f(x)=x^3-5x^2+10x-80=0的近似解。

在问题一中,我们通过二分法和牛顿迭代法来求解方程的近似解,并比较两种方法的精度和收敛速度。

2.问题二:用LU分解解线性方程组。

问题二中,我们通过矩阵的LU分解方法解线性方程组Ax=b,然后和直接用追赶法解线性方程组进行对比,验证LU分解的有效性和准确性。

三、实验结果及分析1.问题一的结果分析:通过二分法和牛顿迭代法求解方程f(x)=x^3-5x^2+10x-80=0的近似解,得到的结果如下:从结果来看,两种方法得到的近似解均与真实解x≈5非常接近。

但是,通过比较可以发现,牛顿迭代法的计算速度比二分法更快,迭代的次数更少。

因此,在需要高精度近似解的情况下,牛顿迭代法是一个更好的选择。

2.问题二的结果分析:通过LU分解和追赶法解线性方程组Ax=b,得到的结果如下:-用LU分解解线性方程组得到的结果为x1≈1.0,x2≈2.0,x3≈3.0;-用追赶法解线性方程组得到的结果为x1≈1.0,x2≈2.0,x3≈3.0。

从结果来看,两种方法得到的结果完全一致,而且与真实解非常接近。

这表明LU分解方法和追赶法均可以有效地解决线性方程组问题。

但是,在实际应用中,当方程组规模较大时,LU分解方法的计算复杂度较高,因此追赶法更加适用。

四、实验总结通过本实验,我掌握了二分法和牛顿迭代法以及LU分解和追赶法的基本原理和实现方法。

通过具体的数学问题实例应用,我比较了不同方法的计算效果和精度,得出以下结论:1.在求解函数的近似解时,牛顿迭代法相对于二分法具有更快的收敛速度和更高的计算精度;2.在解决线性方程组问题时,LU分解方法在计算准确性方面与追赶法相当,但在处理较大规模的问题时,计算复杂度较高,追赶法更适合。

东南大学_数值分析_第六章_常微分方程数值解法

东南大学_数值分析_第六章_常微分方程数值解法

第六章 常微分方程数值解法——RK 4法、AB 4法******(学号) *****(姓名)上机题目要求见教材P307,23题。

一、算法原理题目要求采用RK 4法和AB 4法求解最简单的常微分方程初值问题(,),()y f x y a x by a η'=≤≤⎧⎨=⎩ (1)为求解式(1),采用离散化方法,就是寻求解)(x y 在区间],[b a 上的一系列点<<<<<n x x x x 321上的近似值 ,,,,21n y y y 。

记1(1,2,)i i i h x x i -=-=表示相邻两个节点的间距,称为步长。

求微分方程数值解的主要问题:(1) 如何将微分方程(,)y f x y '=离散化,并建立求其数值解的递推公式; (2) 递推公式的局部截断误差、数值数n y 与精确解)(n x y 的误差估计; (3) 递推公式的稳定性与收敛性. a) Runge-Kutta 方法基本思想:通过在1[,]i i x x +多预报几个点求斜率,并将其加权平均作为k *的近似值,以此构造更高精度的计算公式。

如果每步计算四次函数 的值,完全类似的,可以导出局部截断误差为)(5h O 的四阶Runge-Kutta 公式(RK 4):1123412132431(22),6(,),(,),221(,),22(,).n n n n n n n n n n y y k k k k k f x y h h k f x y k h k f x h y k k f x h y hk +⎧=++++⎪⎪=⎪⎪⎪=++⎨⎪⎪=++⎪⎪=++⎪⎩ (2)b) Adams 显式公式Runge-Kutta 方法是单步法,计算1+n y 时,只用到n y , 而已知信息1-n y 、2-n y 等没有被直接利用。

可以设想如果充分利用已知信息1-n y ,2-n y ,…来计算1+n y ,那么不但有可能提高精度,而且大大减少了计算量,这就是构造所谓线性多步法的基本思想。

数值分析上机实践报告

数值分析上机实践报告

数值分析上机实践报告班级:计算机1002姓名:陈斯琪学号:20102686课题三A . 实验题目:线性方程组的迭代法B . 实验要求(1) 应用迭代法求解线性方程组,并与直接法作比较;(2) 分别对不同精度要求,如5-4-3-10,10,10=ε,利用所需迭代次数体会该迭代法的收敛快慢;(3) 对方程组(2),(3)使用SOR 方法时,选取松弛因子=0.8,0.9,1,1.1,1.2等,试观察对算法收敛性的影响,并找出你所选用松弛因子的最佳值; (4) 编制出各种迭代法的程序并给出计算结果。

C . 目的和意义(1) 通过上机了解迭代法求解线性方程组的特点;掌握求解线性方程组的各类迭代法;(2) 体会上机计算时,终止准则‖X^(k+1)-X^k ‖∞<ε,对控制迭代精度的有效性; (3) 体会初始值和松弛因子的选择,对迭代收敛速度的影响 D . 实验方程组(1)线性方程组⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡1-421534100368-24-3-81-012029137-2621-234179-11-1003524-31-23-6217758-6233-761-62911-31-512-301-231-2-2010563-5-6000121-3-20416084-0484⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡10987654321x x x x x x x x x x =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-2119381346323125精确解Tx )2,1,1,3,0,2,1,0,1,1(*--=.(2) 对称正定线性方程组⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡45152211236601924-3-360024-3-36014110-3-5211144-3-310-4221-8-13-4-1-612-53-8-1141-2312-1-204204-2004204-2487654321x x x x x x x x精确解T*)2,0,1,1,2,0,1,1(--=x .(3)三对角线性方程组⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡554141262135741-000000001-0041-0000001-41-0000001-41-0000001-41-0000001-41-0000001-41-0000001-41-0000001-400000001-000000001-410987654321x x xx x x x x x x精确解Tx )1,1,0,3,2,1,0,3,1,2(*---=.E . 实验程序代码及截图(1) 应用Jacobi 迭代法求解方程组代码如下: #include<iostream.h> #include<math.h>#define N 10 //十阶矩阵 staticdoubleA[N][N]={4,2,-3,-1,2,1,0,0,0,0,8,6,-5,-3,6,5,0,1,0,0,4,2,-2,-1,3,2,-1,0,3,1,0,-2,1,5,-1,3,-1,1,9,4,-4,2,6,-1,6,7,-3,3,2,3,8,6,-8,5,7,17,2,6,-3,5,0,2,-1,3,-4,2,5,3,0,1,16,10,-11,-9,17,34,2,-1,2,2,4,6,2,-7,13,9,2,0,12,4,0,0,-1,8,-3,-24,-8,6,3,-1};//方程组左侧系数矩阵 static double B[N]={5,12,3,2,3,46,13,38,19,-21}; //右侧值static double Y[N]; //输出比较项static double Y[N];static double X[N]; //输出项static double G[N]; //X = BX' + G的G矩阵int i,j,k; //计数器double eps;int M=100;bool distance(){ //求两输出项的差的范数是否满足精度要求double temp=0;for (i=0;i<N;i++){temp=temp+fabs(X[i]-Y[i]);}if (temp>eps)return false;elsereturn true; //满足精度要求则结束程序}void main(){cout<<"最大迭代次数为100次"<<endl;cout<<"你希望的精度是多少?"<<endl;cout<<"eps=";cin>>eps;//形成迭代矩阵B,存放到A中for (i=0;i<N;i++){if (fabs(A[i][i])<eps){cout <<"打印失败"<<endl;return;}double T=A[i][i];for (j=0;j<N;j++){A[i][j]=-A[i][j]/T;}A[i][i] = 0;G[i]=B[i]/T;}int counter=0;while (counter<M){//迭代for (i=0;i<N;i++){double temp=0;for (j=0;j<N;j++){temp=temp+A[i][j]*Y[j];}X[i]=G[i]+temp;}if (distance()==true)break;else{//交换X,Y向量;for(i=0;i<N;i++){Y[i]=X[i];}}counter++;}//打印Xcout << "迭代次数为:"<<counter<<"次。

《数值分析》上机实验报告

《数值分析》上机实验报告

数值分析上机实验报告《数值分析》上机实验报告1.用Newton 法求方程 X 7-X 4+14=0在(0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001)。

1.1 理论依据:设函数在有限区间[a ,b]上二阶导数存在,且满足条件{}αϕ上的惟一解在区间平方收敛于方程所生的迭代序列迭代过程由则对任意初始近似值达到的一个中使是其中上不变号在区间],[0)(3,2,1,0,)(')()(],,[x |))(),((|,|,)(||)(|.4;0)(.3],[)(.20)()(.110......b a x f x k x f x f x x x Newton b a b f a f mir b a c x f ab c f x f b a x f b f x f k k k k k k ==-==∈≤-≠>+令)9.1()9.1(0)8(4233642)(0)16(71127)(0)9.1(,0)1.0(,1428)(3225333647>⋅''<-=-=''<-=-='<>+-=f f x x x x x f x x x x x f f f x x x f故以1.9为起点⎪⎩⎪⎨⎧='-=+9.1)()(01x x f x f x x k k k k 如此一次一次的迭代,逼近x 的真实根。

当前后两个的差<=ε时,就认为求出了近似的根。

本程序用Newton 法求代数方程(最高次数不大于10)在(a,b )区间的根。

1.2 C语言程序原代码:#include<stdio.h>#include<math.h>main(){double x2,f,f1;double x1=1.9; //取初值为1.9do{x2=x1;f=pow(x2,7)-28*pow(x2,4)+14;f1=7*pow(x2,6)-4*28*pow(x2,3);x1=x2-f/f1;}while(fabs(x1-x2)>=0.00001||x1<0.1); //限制循环次数printf("计算结果:x=%f\n",x1);}1.3 运行结果:1.4 MATLAB上机程序function y=Newton(f,df,x0,eps,M)d=0;for k=1:Mif feval(df,x0)==0d=2;breakelsex1=x0-feval(f,x0)/feval(df,x0);ende=abs(x1-x0);x0=x1;if e<=eps&&abs(feval(f,x1))<=epsd=1;breakendendif d==1y=x1;elseif d==0y='迭代M次失败';elsey= '奇异'endfunction y=df(x)y=7*x^6-28*4*x^3;Endfunction y=f(x)y=x^7-28*x^4+14;End>> x0=1.9;>> eps=0.00001;>> M=100;>> x=Newton('f','df',x0,eps,M);>> vpa(x,7)1.5 问题讨论:1.使用此方法求方解,用误差来控制循环迭代次数,可以在误差允许的范围内得到比较理想的计算结果。

数值分析上机实验报告

数值分析上机实验报告
结论:
对于二分法,只要能够保证在给定的区间内有根,使能够收敛的,当时收敛的速度和给定的区间有关,二且总体上来说速度比较慢。Newton法,收敛速度要比二分法快,但是最终其收敛的结果与初值的选取有关,初值不同,收敛的结果也可能不一样,也就是结果可能不时预期需要得结果。改进的Newton法求解重根问题时,如果初值不当,可能会不收敛,这一点非常重要,当然初值合适,相同情况下其速度要比Newton法快得多。
结果分析和讨论:
1.用二分法计算方程 在[1,2]内的根。( ,下同)
计算结果为
x=;
f(x)=;
k=18;
由f(x)知结果满足要求,但迭代次数比较多,方法收敛速度比较慢。
2.用二分法计算方程 在[1,]内的根。
计算结果为
x=;
f(x)=;
k=17;
由f(x)知结果满足要求,但迭代次数还是比较多。
3.用Newton法求解下列方程
程序设计:
本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下
function y=f(x);
y=-x*x-sin(x);
写成如上形式即可,下面给出主程序。
二分法源程序:
clear
%%%给定求解区间
b=;
a=0;
%%%误差
R=1;
k=0;%迭代次数初值
while (R>5e-6) ;
%%%改进常数或重根数
miu=2;
%%%初始值x0
x0=input('input initial value x0>>');
k=0;%迭代次数
max=100;%最大迭代次数
R=eval(subs(f,'x0','x'));%求解f(x0),以确定初值x0时否就是解

东南大学数值分析上机报告完整版

东南大学数值分析上机报告完整版

数值分析上机实验报告目录1.chapter1舍入误差及有效数 (2)2.chapter2Newton迭代法 (3)3.chapter3线性代数方程组数值解法-列主元Gauss消去法 (7)4.chapter3线性代数方程组数值解法-逐次超松弛迭代法 (9)5.chapter4多项式插值与函数最佳逼近 (10)1.chapter1舍入误差及有效数1.1题目设S N =∑1j 2−1N j=2,其精确值为)11123(21+--N N 。

(1)编制按从大到小的顺序11131121222-+⋯⋯+-+-=N S N ,计算S N 的通用程序。

(2)编制按从小到大的顺序1211)1(111222-+⋯⋯+--+-=N N S N ,计算S N 的通用程序。

(3)按两种顺序分别计算64210,10,10S S S ,并指出有效位数。

(编制程序时用单精度)(4)通过本次上机题,你明白了什么?1.2编写相应的matlab 程序clear;N=input('please input N:');AValue=((3/2-1/N-1/(N+1))/2);sn1=single(0);sn2=single(0);for i=2:Nsn1=sn1+1/(i*i-1); %从大到小相加的通用程序%endep1=abs(sn1-AValue);for j=N:-1:2sn2=sn2+1/(j*j-1); %从小到大相加的通用程序%endep2=abs(sn2-AValue);fprintf('精确值为:%f\n',AValue);fprintf('从大到小的顺序累加得sn=%f\n',sn1);fprintf('从大到小相加的误差ep1=%f\n',ep1);fprintf('从小到大的顺序累加得sn=%f\n',sn2);fprintf('从小到大相加的误差ep2=%f\n',ep2);disp('=================================');1.3matlab 运行程序结果>> chaper1please input N:100精确值为:0.740050从大到小的顺序累加得sn=0.740049从大到小相加的误差ep1=0.000001从小到大的顺序累加得sn=0.740050从小到大相加的误差ep2=0.000000>> chaper1please input N:10000精确值为:0.749900从大到小的顺序累加得sn=0.749852从大到小相加的误差ep1=0.000048从小到大的顺序累加得sn=0.749900从小到大相加的误差ep2=0.000000>> chaper1please input N:1000000精确值为:0.749999从大到小的顺序累加得sn=0.749852从大到小相加的误差ep1=0.000147从小到大的顺序累加得sn=0.749999从小到大相加的误差ep2=0.0000001.4结果分析以及感悟按照从大到小顺序相加的有效位数为:5,4,3。

《数值分析》上机实验报告

《数值分析》上机实验报告

数值分析上机实验报告x k x k - f(X k) f (X k)《数值分析》上机实验报告1. 用Newt on法求方程X7-X4+14=0在(0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001 )。

1.1理论依据:设函数在有限区间[a,b]上二阶导数存在,且满足条件1. f(x)f(b) 02. f(x)在区间[a, b]上不变号3f(x) = 0;4」f (c)〔f .(x) |,其中c是a,b中使mir(| f .(a), f .(b) |)达到的一个b -a则对任意初始近似值x0• [a,b],由Newton迭代过程込f(x k )X“ M(Xk) = Xk — T^,k = 0,1,2,3…f'(X k)所生的迭代序列 % [平方收敛于方程f(x)=0在区间[a,b]上的惟一解: 令7 4f(x)=x -28x 14, f (0.1) 0, f(1.9) ::0f (x) =7x6-112x3=7x3(x3-16) ::: 0f (x) =42x5-336x2=42x2(x3-8) :: 0f (1.9) f (1.9) 0故以1.9为起点x0 =1.9如此一次一次的迭代,逼近X的真实根。

当前后两个的差<=出寸,就认为求出了近似的根。

本程序用Newton法求代数方程(最高次数不大于10)在(a,b )区间的根//限制循环次数1.2 C 语言程序原代码:#i nclude<stdio.h> #in clude<math.h> mai n() {double x2,f,f1; double x1=1.9; // 取初值为 1.9do {x2=x1;f=pow(x2,7)-28*pow(x2,4)+14; f1=7*pow(x2,6)-4*28*pow(x2,3); x 仁 x2-f/f1;}while(fabs(x1-x2)>=0.00001||x1<0.1); printf("计算结果:x=%f\n",x1);}1.3运行结果:* D:\VC + +\EXERCIS E\Debu g\l1.4 MATLAB上机程序fun cti on y=Newt on( f,df,x0,eps,M)d=0;for k=1:Mif feval(df,x0)==0d=2; breakelsex1=x0-feval(f,x0)/feval(df,x0);ende=abs(x1-x0);x0=x1;if e<=eps&&abs(feval(f,x1))v=epsd=1; breakendendif d==1y=x1;elseif d==0y='迭代M次失败';elsey=奇异’endfun cti on y=df(x)y=7*x A6-28*4*x A3;Endfunction y=f(x) y=x A7-28*x A4+14;End>> x0=1.9;>> eps=0.00001;>> M=100;>> x=Newto n('f,'df,x0,eps,M);>> vpa(x,7)1.5问题讨论:1•使用此方法求方解,用误差来控制循环迭代次数,可以在误差允许的范围内得到比较理想的计算结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数值分析上机实验报告目录1.chapter1舍入误差及有效数 (1)2.chapter2Newton迭代法 (3)3.chapter3线性代数方程组数值解法-列主元Gauss消去法 (7)4.chapter3线性代数方程组数值解法-逐次超松弛迭代法 (8)5.chapter4多项式插值与函数最佳逼近 (10)1.chapter1舍入误差及有效数1.1题目设S N =∑1j 2−1N j=2,其精确值为)11123(21+--N N 。

(1)编制按从大到小的顺序11131121222-+⋯⋯+-+-=N S N ,计算S N 的通用程序。

(2)编制按从小到大的顺序1211)1(111222-+⋯⋯+--+-=N N S N ,计算S N 的通用程序。

(3)按两种顺序分别计算64210,10,10S S S ,并指出有效位数。

(编制程序时用单精度)(4)通过本次上机题,你明白了什么? 1.2编写相应的matlab 程序 clear;N=input('please input N:'); AValue=((3/2-1/N-1/(N+1))/2); sn1=single(0); sn2=single(0); for i=2:Nsn1=sn1+1/(i*i-1); %从大到小相加的通用程序% endep1=abs(sn1-AValue); for j=N:-1:2sn2=sn2+1/(j*j-1); %从小到大相加的通用程序% endep2=abs(sn2-AValue);fprintf('精确值为:%f\n',AValue);fprintf('从大到小的顺序累加得sn=%f\n',sn1); fprintf('从大到小相加的误差ep1=%f\n',ep1); fprintf('从小到大的顺序累加得sn=%f\n',sn2); fprintf('从小到大相加的误差ep2=%f\n',ep2); disp('================================='); 1.3matlab 运行程序结果 >> chaper1please input N:100 精确值为:0.740050从大到小的顺序累加得sn=0.740049 从大到小相加的误差ep1=0.000001 从小到大的顺序累加得sn=0.740050 从小到大相加的误差ep2=0.000000 >> chaper1please input N:10000 精确值为:0.749900从大到小的顺序累加得sn=0.749852 从大到小相加的误差ep1=0.000048 从小到大的顺序累加得sn=0.749900 从小到大相加的误差ep2=0.000000please input N:1000000精确值为:0.749999从大到小的顺序累加得sn=0.749852 从大到小相加的误差ep1=0.000147 从小到大的顺序累加得sn=0.749999 从小到大相加的误差ep2=0.0000001.4结果分析以及感悟按照从大到小顺序相加的有效位数为:5,4,3。

按照从小到大顺序相加的和的有效位数为:6,6,6。

从程序的输出误差结果可以看出,按照不同的顺序相加造成的误差限是不同的,按照从大到小相加的顺序就是一个病态问题,而按照从小到大顺序相加的误差很小,并且在从大到小顺序相加的误差随着n 的增大而增大。

因此,采取从小到大的顺序累加得到的结果更加精确。

2.chapter2Newton 迭代法2.1题目(1)给定初值0x 及容许误差ε,编制牛顿法解方程f(x)=0的通用程序。

(2)给定方程03)(3=-=x xx f ,易知其有三个根3,0,3321=*=*-=*x x x○1由牛顿方法的局部收敛性可知存在,0>δ当),(0δδ+-∈x 时,Newton 迭代序列收敛于根x2*。

试确定尽可能大的δ。

○2试取若干初始值,观察当),1(),1,(),,(),,1(),1,(0+∞+-----∞∈δδδδx 时Newton 序列的收敛性以及收敛于哪一个根。

(3)通过本上机题,你明白了什么? 2.2编写相应的matlab 程序 定义f(x)函数 function F=fu(x) F=x^3/3-x; end定义f(x)的导函数 function F=dfu(x) F=x*x-1; end求根的通用程序 clear;x0=input('请输入初始值x0:'); ep=input('请输入容许误差:'); flag=1;while flag==1x1=x0-fu(x0)/dfu(x0); if abs(x1-x0)<=ep flag=0; endendfprintf('方程的一个近似解为:%f\n',x0);求sigma的通用程序clear;eps=input('请输入搜索精度:');ep=input('请输入容许误差:');flag=1;k=0;x0=0;while flag==1;sigma=k*eps;x0=sigma;k=k+1;m=0;flag1=1;while flag1==1&&m<=10^3x1=x0-fu(x0)/dfu(x0);if abs(x1-x0)<epflag1=0;endm=m+1;x0=x1;endif flag1==1||abs(x0)>=epflag=0;endendfprintf('最大的sigma值为:%f\n',sigma);2.3运行结果寻找最大的sigma值主要是在0的基础上,不断的增加步长,带入Newton公式,验证该值是否收敛于0,不断的循环,最后得到最小的不收敛于0的sigma值,此时也为最大满足收敛于0的最大的sigma值。

改变不同的步长,分别得到不同的sigma值,取其中的最小值,即为满足条件的最大的sigma值。

程序相应的运行结果如下:>> chapter2_2请输入搜索精度:10^-6请输入容许误差:10^-6最大的sigma值为:0.774597>> chapter2_2请输入搜索精度:10^-4请输入容许误差:10^-6最大的sigma值为:0.774600>> chapter2_2请输入搜索精度:10^-2请输入容许误差:10^-6最大的sigma值为:0.780000运行chapter2_1程序(1)当初值x0属于(−∞,−1)内时,程序运行结果如下,>> chaper2_1请输入初始值x0:-10000请输入容许误差:10^-6方程的一个近似解为:-1.732051>> chaper2_1请输入初始值x0:-100请输入容许误差:10^-6方程的一个近似解为:-1.732051>> chaper2_1请输入初始值x0:-10请输入容许误差:10^-6方程的一个近似解为:-1.732051>> chaper2_1请输入初始值x0:-1.1请输入容许误差:10^-6方程的一个近似解为:-1.732051可以得出不论取何值,Newton迭代式收敛,方程的近似解都收敛于−√3。

(2)当初值x0属于(−1,−δ)内时,程序运行结果如下,>> chaper2_1请输入初始值x0:-0.9请输入容许误差:10^-6方程的一个近似解为:1.732051>> chaper2_1请输入初始值x0:-0.85请输入容许误差:10^-6方程的一个近似解为:1.732051>> chaper2_1请输入初始值x0:-0.774598请输入容许误差:10^-6方程的一个近似解为:1.732051可以得出不论取何值,在此区间上Newton迭代式不收敛。

(3)当初值x0属于(−δ,δ)内时,程序运行结果如下,>> chaper2_1请输入初始值x0:-0.76请输入容许误差:10^-6方程的一个近似解为:0.000000>> chaper2_1请输入初始值x0:-0.5请输入容许误差:10^-6方程的一个近似解为:0.000000>> chaper2_1请输入初始值x0:-0.1请输入容许误差:10^-6方程的一个近似解为:0.000000>> chaper2_1请输入初始值x0:-0.01请输入容许误差:10^-6方程的一个近似解为:-0.000000>> chaper2_1请输入初始值x0:0.01请输入容许误差:10^-6方程的一个近似解为:0.000000>> chaper2_1请输入初始值x0:0.1请输入容许误差:10^-6方程的一个近似解为:0.000000>> chaper2_1请输入初始值x0:0.5请输入容许误差:10^-6方程的一个近似解为:0.000000>> chaper2_1请输入初始值x0:0.76请输入容许误差:10^-6方程的一个近似解为:0.000000可以得出在此区间内,不论取何值,Newton迭代式收敛,方程的近似解都收敛于0。

(4)当初值x0属于(δ,1)内时,运行程序结果如下,>> chaper2_1请输入初始值x0:0.774598请输入容许误差:10^-6方程的一个近似解为:-1.732051>> chaper2_1请输入初始值x0:0.8请输入容许误差:10^-6方程的一个近似解为:-1.732051>> chaper2_1请输入初始值x0:0.9请输入容许误差:10^-6方程的一个近似解为:-1.732051>> chaper2_1请输入初始值x0:0.95请输入容许误差:10^-6方程的一个近似解为:-1.732051可以得出不论取何值,在此区间上Newton迭代式不收敛。

(5)当初值x0属于区间(1,+∞)内时,运行程序结果如下,>> chaper2_1请输入初始值x0:1.1请输入容许误差:10^-6方程的一个近似解为:1.732051>> chaper2_1请输入初始值x0:10请输入容许误差:10^-6方程的一个近似解为:1.732051>> chaper2_1请输入初始值x0:100 请输入容许误差:10^-6方程的一个近似解为:1.732051 >> chaper2_1请输入初始值x0:10000 请输入容许误差:10^-6方程的一个近似解为:1.732051可以得出,不管x0取何值,Newton 迭代式都收敛,且收敛于根√3。

相关文档
最新文档