锐角三角函数的真题汇编及答案解析
初三数学锐角三角函数试题答案及解析
初三数学锐角三角函数试题答案及解析1.(2013四川乐山)如图,在直角坐标系中,P是第一象限内的点,其坐标是(3,m),且OP与x轴正半轴的夹角α的正切值是,则sinα的值为()A.B.C.D.【答案】A【解析】如图,过点P作PA⊥x轴于点A,则OA=3.在Rt△POA中,∵,∴.∴.∴.故选A.2.(2013广东汕头)在Rt△ABC中,∠ABC=90°,AB=3,BC=4,则sinA=________.【答案】【解析】∵∠ABC=90°,AB=3,BC=4,∴.∴.3.(2014江苏无锡)如图,□ABCD中,AE⊥BD于E,∠EAC=30°,AE=3,则AC的长等于________.【答案】【解析】设AC、BD交于点O.在Rt△AEO中,,即,解得.∵四边形ABCD是平行四边形,∴.4.如图,在Rt△ABC中,∠C=90°,∠B=37°,BC=32,则AC的值为________.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【答案】24【解析】在Rt△ABC中,∠C=90°,所以,即,所以AC=32·tan37°≈32×0.75=24.5. (2014江苏无锡)如图,在□ABCD中,AE⊥BD于E,∠EAC=30°,AE=3,则AC的长等于________.【答案】【解析】如图,在直角△AOE中,,∴.又∵四边形ABCD是平行四边形,∴.6. (2014四川宜宾)规定:sin(-x)=-sinx,cos(-x)=cosx,sin(x+y)=sinx·cosy+cosx·siny.据此判断下列等式中成立的是________(写出所有正确的序号).①;②;③sin2x=2sinx·cosx;④sin(x-y)=sinx·cosy-cosx·siny.【答案】②③④【解析】①,故①错误;②sin75°=sin(30°+45°)=sin30°·cos45°+cos30°·sin45°,故②正确;③sin2x=sinx·cosx+cosx·sinx=2sinx·cosx,故③正确;④sin(x-y)=sinx·cos(-y)+cosx·sin(-y)=sinx·cosy-cosx·siny,故④正确.7. (2014福建三明)如图,在山坡上植树,已知山坡的倾斜角α是20°,小明种植的两棵树之间的坡面距离AB是6米,要求相邻两棵树之间的水平距离AC为5.3~5.7米.问:小明种植的这两棵树是否符合这个要求?(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【答案】符合要求【解析】在Rt△ACB中,AB=6米,∠A=20°,∴AC=AB·cosA≈6×0.94=5.64(米).又5.3<5.64<5.7,∴小明种植这两棵树符合要求.8. (2014浙江绍兴)某校九(1)班的同学在上学期的社会实践活动中,对学校旁边的山坡护墙和旗杆进行了测量.(1)如图①,第一小组用一根木条CD斜靠在护墙上,使得DB与CB的长度相等,如果测量得到∠CDB=38°,求α的度数.(2)如图②,第二小组用皮尺量得EF的长为16米(E为护墙上的端点),EF的中点距离地面FB的高度为1.9米,请你求出E点距离地面FB的高度.(3)如图③,第三小组利用第一、第二小组的结果,来测量护墙上旗杆的高度,在点P处测得旗杆顶端A的仰角为45°,向前走4米到达点Q处,测得A的仰角为60°,求旗杆的高度AE(精确到0.1米.参考数据:tan60°≈1.732,tan30°≈0.577,,).【解析】(1)∵BD=BC,∴∠CDB=∠DCB,∴α=2∠CDB=2×38°=76°.(2)设EF的中点为M,过M作MN⊥BF,垂足为点N,过点E作EH⊥BF,垂足为点H,如图①.∴MN∥EH,又M为EF的中点,∴MN为△EFH的中位线,又∵MN=1.9米,∴EH=2MN=3.8米,∴E点距离地面FB的高度是3.8米.(3)延长AE,交PB于点C,如图②.设AE=x米,则AC=(x+3.8)米.∵∠APB=45°,∴PC=AC=(x+3.8)米.∵PQ=4米,∴CQ=x+3.8-4=(x-0.2)米.∵,∴,解得x≈5.7,即AE≈5.7米.答:旗杆的高度AE约为5.7米.9.(2014贵州六盘水)为践行党的群众路线,六盘水市教育局开展了大量的教育教学实践活动.下图是其中一次“测量旗杆高度”的活动场景抽象出的平面几何图形.活动中测得数据如下:①小明的身高DC=1.5m;②小明的影长CE=1.7m;③小明的脚到旗杆底部的距离BC=9m;④旗杆的影长BF=7.6m;⑤从D点看A点的仰角为30°.请选择你需要的数据,求出旗杆的高度.(计算结果精确到0.1,参考数据:,)【答案】6.7m【解析】解法一:选用①、②、④.∵AB⊥FC,CD⊥FC,∴∠ABF=∠DCE=90°.又∵AF∥DE,∴∠AFB=∠DEC.∴△ABF∽△DCE.∴.又∵DC=1.5m,FB=7.6m,EC=1.7m,∴AB≈6.7m.即旗杆高度约为6.7m.解法二:选用①、③、⑤.如图,过D点作DG⊥AB于G点.∵AB⊥FC,CD⊥FC,∴四边形BCDG为矩形.∴CD=GB=1.5m,DG=BC=9m.在Rt△AGD中,∠ADG=30°,∴,∴m.又∵AB=AG+GB,∴(m),即旗杆高度约为6.7m.10.为了响应某市人民政府“形象重于生命”的号召,在甲建筑物上从点A到点E挂一长为30米的宣传条幅.如图所示,在乙建筑物的顶点D处测得条幅顶端点A的仰角为45°,测得条幅底端点E的俯角为30°,求底部不能直接到达的甲、乙两建筑物之间的水平距离BC.(精确到1米)【答案】19米【解析】要求BC的长,即求△ADE中AE边上的高,如图,过点D作DF⊥AB,垂足为F.由题意,得∠ADF=45°,∠EDF=30°,∴AF=DF.在Rt△DFE中,.∵AE=30,∴,解关于DF的方程得.又∵DF=BC,∴.∴甲、乙两建筑物之间的水平距离约为19米.11.如图所示,在△ABC中,∠C=90°,,D为AC上一点,∠BDC=45°,DC=6,求AB的长.【答案】15【解析】先解直角三角形BCD,求得BC=DC=6,再解直角三角形ABC,由正弦的定义可得,从而得.所以在较复杂的图形中求线段的长度时,有时要通过两次或更多次解直角三角形才能达到目的.因为∠C=90°,∠BDC=45°,所以∠DBC=45°,所以BC=DC=6.在Rt△ABC中,,所以,即AB的长为15.12. (2014福建漳州)将一盒足量的牛奶按如图①所示的方式倒入一个水平放置的长方体容器中,当容器中的牛奶刚好接触到点P时停止倒入.图②是它的平面示意图,请根据图中的信息,求出容器中牛奶的高度.(结果精确到0.1cm.参考数据:,)【答案】约5.5cm【解析】过点P作PN⊥AB于点N,由题意可得∠ABP=30°,AB=8cm,则AP=4cm,cm.∵.∴(cm),∴(cm).∴容器中牛奶的高度约为5.5cm.13.如图,某翼装飞行运动员从离水平地面高AC=500m的A处出发,沿着俯角为15°的方向,直线滑行1600米到达D点,然后打开降落伞以75°的俯角降落到地面上的B点.求他飞行的水平距离(结果精确到1m).【答案】1575米【解析】如图,过点D作DE⊥AC,作DF⊥BC,垂足分别为E,F,∵AC⊥BC,∴四边形ECFD是矩形,∴EC=DF.在Rt△ADE中,∠ADE=15°,AD=1600.∴AE=AD·sin∠ADE=1600sin15°,DE=AD·cos∠ADE=1600cos15°,∵EC=AC-AE,∴EC=500-1600sin15°.在Rt△DBF中,BF=DF·tan∠FDB=ECtan15°,∴BC=CF+BF=1600cos15°+(500-1600sin15°)·tan15°≈1575.∴运动员飞行的水平距离约为1575米.14.(2014江苏南通)如图,海中有一灯塔P,它的周围8海里内有暗礁,海轮以18海里/时的速度由西向东航行,在A处测得灯塔P在北偏东60°方向上,航行40分钟到达B处,测得灯塔P在北偏东30°方向上,如果海轮不改变航线继续向东航行,有没有触礁的危险?【答案】没有【解析】如图,过点P作PH⊥AB于点H,则∠PHB=90°.∵海轮的速度是18海里/时,行驶了40分钟,∴(海里),由题意可得∠PAB=90°-60°=30°,∠PBH=90°-30°=60°,∴∠APB=30°,∴∠PAB=∠APB,∴BP=AB=12.在Rt△PBH中,,所以.∵,∴海轮不改变航线继续向东航行,没有触礁的危险.15.已知在△ABC中,∠C=90°,∠B=60°,,求a,b,c的值及∠A的度数.【答案】,b=3,,∠A=30°【解析】先求∠A,再根据∠A的三角函数关系及已知列方程组求a,b,最后利用勾股定理求c.∵∠C=90°,∴∠A+∠B=90°.∵∠B=60°,∴∠A=30°.由直角三角形的边角关系,得,即,所以,又∵,∴解得∴,∴,b=3,,∠A=30°.16.如图,在Rt△ABC中,∠C=90°,BC=8,,点D在BC上,且BD=AD.求AC的长和cos∠ADC的值.【答案】4;【解析】在Rt△ABC中,∵BC=8,,∴AC=4.设AD=x,则BD=x,CD=8-x,由勾股定理,得(8-x)2+42=x2.解得x=5.∴.17.已知:如图,在Rt△ABC中,∠C=90°,.点D为BC边上一点,且BD=2AD,∠ADC=60°,求△ABC的周长.(结果保留根号)【答案】【解析】在Rt△ADC中,∠C=90°,,∠ADC=60°,因为,即,所以AD=2.由勾股定理得:.所以BD=2AD=4,BC=BD+DC=5.在Rt△ABC中,∠C=90°,,BC=5,由勾股定理得:,所以Rt△ABC的周长为.18.已知:如图,在△ABC中,∠B=45°,∠C=60°,AB=6,求BC的长.(结果保留根号)【答案】【解析】如图,过点A作AD⊥BC于点D,在Rt△ABD中,∠B=45°,∴AD=BD,设AD=x,又∵AB=6,∴Rt△ABD中,x2+x2=62,解得,即.在Rt△ACD中,∠ACD=60°,∴∠CAD=30°,∴,即,∴,∴.19. (2014福建厦门)sin30°的值是( )A.B.C.D.1【答案】A【解析】直接根据特殊角的三角函数值进行计算即可..故选A.20. (2014贵州铜仁)cos60°=________.【答案】【解析】.。
中考数学锐角三角函数(大题培优)含详细答案
一、锐角三角函数真题与模拟题分类汇编(难题易错题)1.如图,△ABC 内接于⊙O ,2,BC AB AC ==,点D 为AC 上的动点,且10cos B =. (1)求AB 的长度;(2)在点D 运动的过程中,弦AD 的延长线交BC 的延长线于点E ,问AD•AE 的值是否变化?若不变,请求出AD•AE 的值;若变化,请说明理由.(3)在点D 的运动过程中,过A 点作AH ⊥BD ,求证:BH CD DH =+.【答案】(1) 10AB ;(2) 10AD AE ⋅=;(3)证明见解析.【解析】【分析】(1)过A 作AF ⊥BC ,垂足为F ,交⊙O 于G ,由垂径定理可得BF=1,再根据已知结合RtΔAFB 即可求得AB 长;(2)连接DG ,则可得AG 为⊙O 的直径,继而可证明△DAG ∽△FAE ,根据相似三角形的性质可得AD•AE=AF•AG ,连接BG ,求得AF=3,FG=13,继而即可求得AD•AE 的值; (3)连接CD ,延长BD 至点N ,使DN=CD ,连接AN ,通过证明△ADC ≌△ADN ,可得AC=AN ,继而可得AB=AN ,再根据AH ⊥BN ,即可证得BH=HD+CD. 【详解】(1)过A 作AF ⊥BC ,垂足为F ,交⊙O 于G ,∵AB=AC ,AF ⊥BC ,∴BF=CF=12BC=1, 在RtΔAFB 中,BF=1,∴AB=10cos 10BF B == (2)连接DG ,∵AF ⊥BC ,BF=CF ,∴AG 为⊙O 的直径,∴∠ADG=∠AFE=90°, 又∵∠DAG=∠FAE ,∴△DAG ∽△FAE , ∴AD :AF=AG :AE , ∴AD•AE=AF•AG ,连接BG ,则∠ABG=90°,∵BF ⊥AG ,∴BF 2=AF•FG , ∵22AB BF -=3,∴FG=13,∴AD•AE=AF•AG=AF•(AF+FG)=3×10=10;3(3)连接CD,延长BD至点N,使DN=CD,连接AN,∵∠ADB=∠ACB=∠ABC,∠ADC+∠ABC=180°,∠ADN+∠ADB=180°,∴∠ADC=∠ADN,∵AD=AD,CD=ND,∴△ADC≌△ADN,∴AC=AN,∵AB=AC,∴AB=AN,∵AH⊥BN,∴BH=HN=HD+CD.【点睛】本题考查了垂径定理、三角函数、相似三角形的判定与性质、全等三角形的判定与性质等,综合性较强,正确添加辅助线是解题的关键.2.小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架ACO'后,电脑转到AO'B'位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O'C⊥OA于点C,O'C=12cm.(1)求∠CAO'的度数.(2)显示屏的顶部B'比原来升高了多少?(3)如图4,垫入散热架后,要使显示屏O'B'与水平线的夹角仍保持120°,则显示屏O'B'应绕点O'按顺时针方向旋转多少度?【答案】(1)∠CAO′=30°;(2)(36﹣12)cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°.【解析】试题分析:(1)通过解直角三角形即可得到结果;(2)过点B作BD⊥AO交AO的延长线于D,通过解直角三角形求得BD=OBsin∠BOD=24×=12,由C、O′、B′三点共线可得结果;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,求得∠EO′B′=∠FO′A=30°,既是显示屏O′B′应绕点O′按顺时针方向旋转30°.试题解析:(1)∵O′C⊥OA于C,OA=OB=24cm,∴sin∠CAO′=,∴∠CAO′=30°;(2)过点B作BD⊥AO交AO的延长线于D,∵sin∠BOD=,∴BD=OBsin∠BOD,∵∠AOB=120°,∴∠BOD=60°,∴BD=OBsin∠BOD=24×=12,∵O′C⊥OA,∠CAO′=30°,∴∠AO′C=60°,∵∠AO′B′=120°,∴∠AO′B′+∠AO′C=180°,∴O′B′+O′C﹣BD=24+12﹣12=36﹣12,∴显示屏的顶部B′比原来升高了(36﹣12)cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,理由:∵显示屏O′B与水平线的夹角仍保持120°,∴∠EO′F=120°,∴∠FO′A=∠CAO′=30°,∵∠AO′B′=120°,∴∠EO′B′=∠FO′A=30°,∴显示屏O′B′应绕点O′按顺时针方向旋转30°.考点:解直角三角形的应用;旋转的性质.3.如图(1),在平面直角坐标系中,点A(0,﹣6),点B(6,0).Rt△CDE中,∠CDE=90°,CD=4,DE=4,直角边CD在y轴上,且点C与点A重合.Rt△CDE沿y轴正方向平行移动,当点C运动到点O时停止运动.解答下列问题:(1)如图(2),当Rt△CDE运动到点D与点O重合时,设CE交AB于点M,求∠BME的度数.(2)如图(3),在Rt△CDE的运动过程中,当CE经过点B时,求BC的长.(3)在Rt△CDE的运动过程中,设AC=h,△OAB与△CDE的重叠部分的面积为S,请写出S与h之间的函数关系式,并求出面积S的最大值.【答案】(1)∠BME=15°;(2BC=4;(3)h≤2时,S=﹣h2+4h+8,当h≥2时,S=18﹣3h.【解析】试题分析:(1)如图2,由对顶角的定义知,∠BME=∠CMA,要求∠BME的度数,需先求出∠CMA的度数.根据三角形外角的定理进行解答即可;(2)如图3,由已知可知∠OBC=∠DEC=30°,又OB=6,通过解直角△BOC就可求出BC的长度;(3)需要分类讨论:①h≤2时,如图4,作MN⊥y轴交y轴于点N,作MF⊥DE交DE于点F,S=S△EDC﹣S△EFM;②当h≥2时,如图3,S=S△OBC.试题解析:解:(1)如图2,∵在平面直角坐标系中,点A(0,﹣6),点B(6,0).∴OA=OB,∴∠OAB=45°,∵∠CDE=90°,CD=4,DE=4,∴∠OCE=60°,∴∠CMA=∠OCE﹣∠OAB=60°﹣45°=15°,∴∠BME=∠CMA=15°;如图3,∵∠CDE=90°,CD=4,DE=4,∴∠OBC=∠DEC=30°,∵OB=6,∴BC=4;(3)①h≤2时,如图4,作MN⊥y轴交y轴于点N,作MF⊥DE交DE于点F,∵CD=4,DE=4,AC=h,AN=NM,∴CN=4﹣FM,AN=MN=4+h﹣FM,∵△CMN∽△CED,∴,∴,解得FM=4﹣,∴S=S△EDC﹣S△EFM=×4×4﹣(44﹣h)×(4﹣)=﹣h2+4h+8,②如图3,当h≥2时,S=S△OBC=OC×OB=(6﹣h)×6=18﹣3h.考点:1、三角形的外角定理;2、相似;3、解直角三角形4.兰州银滩黄河大桥北起安宁营门滩,南至七里河马滩,是黄河上游的第一座大型现代化斜拉式大桥如图,小明站在桥上测得拉索AB与水平桥面的夹角是31°,拉索AB的长为152米,主塔处桥面距地面7.9米(CD的长),试求出主塔BD的高.(结果精确到0.1米,参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)【答案】主塔BD的高约为86.9米.【解析】【分析】根据直角三角形中由三角函数得出BC相应长度,再由BD=BC+CD可得出.【详解】在Rt△ABC中,∠ACB=90°,sin BCAAB=.∴sin152sin311520.5279.04BC AB A︒=⨯=⨯=⨯=.79.047.986.9486.9BD BC CD=+=+=≈(米)答:主塔BD的高约为86.9米.【点睛】本题考察了直角三角形与三角函数的结合,熟悉掌握是解决本题的关键.5.如图(1),已知正方形ABCD在直线MN的上方BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.(1)连接GD,求证:△ADG≌△ABE;(2)连接FC,观察并直接写出∠FCN的度数(不要写出解答过程)(3)如图(2),将图中正方形ABCD改为矩形ABCD,AB=6,BC=8,E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变,若∠FCN的大小不变,请求出tan∠FCN的值.若∠FCN的大小发生改变,请举例说明.【答案】(1)见解析;(2)∠FCN=45°,理由见解析;(3)当点E由B向C运动时,∠FCN的大小总保持不变,tan∠FCN=43.理由见解析.【解析】【分析】(1)根据三角形判定方法进行证明即可.(2)作FH ⊥MN 于H .先证△ABE ≌△EHF ,得到对应边相等,从而推出△CHF 是等腰直角三角形,∠FCH 的度数就可以求得了.(3)解法同(2),结合(1)(2)得:△EFH ≌△GAD ,△EFH ∽△ABE ,得出EH=AD=BC=8,由三角函数定义即可得出结论. 【详解】(1)证明:∵四边形ABCD 和四边形AEFG 是正方形, ∴AB =AD ,AE =AG =EF ,∠BAD =∠EAG =∠ADC =90°, ∴∠BAE +∠EAD =∠DAG +∠EAD ,∠ADG =90°=∠ABE , ∴∠BAE =∠DAG , 在△ADG 和△ABE 中,ADG ABE DAG BAE AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADG ≌△ABE (AAS ). (2)解:∠FCN =45°,理由如下: 作FH ⊥MN 于H ,如图1所示:则∠EHF =90°=∠ABE , ∵∠AEF =∠ABE =90°,∴∠BAE +∠AEB =90°,∠FEH +∠AEB =90°, ∴∠FEH =∠BAE ,在△EFH 和△ABE 中,EHF ABE FEH BAE AE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△EFH ≌△ABE (AAS ), ∴FH =BE ,EH =AB =BC , ∴CH =BE =FH , ∵∠FHC =90°, ∴∠FCN =45°.(3)当点E 由B 向C 运动时,∠FCN 的大小总保持不变,理由如下: 作FH ⊥MN 于H ,如图2所示:由已知可得∠EAG=∠BAD=∠AEF=90°,结合(1)(2)得:△EFH≌△GAD,△EFH∽△ABE,∴EH=AD=BC=8,∴CH=BE,∴EH FH FHAB BE CH==;在Rt△FEH中,tan∠FCN=8463 FH EHCH AB===,∴当点E由B向C运动时,∠FCN的大小总保持不变,tan∠FCN=43.【点睛】本题是四边形综合题目,考查了正方形,矩形的判定及全等三角形的判定方法等知识点的综合运用,其重点是通过证三角形全等或相似来得出线段的相等或成比例.6.如图,正方形OABC的顶点O与原点重合,点A,C分别在x轴与y轴的正半轴上,点A的坐标为(4,0),点D在边AB上,且tan∠AOD=12,点E是射线OB上一动点,EF⊥x轴于点F,交射线OD于点G,过点G作GH∥x轴交AE于点H.(1)求B,D两点的坐标;(2)当点E在线段OB上运动时,求∠HDA的大小;(3)以点G为圆心,GH的长为半径画⊙G.是否存在点E使⊙G与正方形OABC的对角线所在的直线相切?若不存在,请说明理由;若存在,请求出所有符合条件的点E的坐标.【答案】(1)B(4,4),D(4,2);(2)45°;(3)存在,符合条件的点为(8﹣42,8﹣42)或(8+42,8+42)或42164216,⎛⎫++ ⎪⎪⎝⎭或16421642,77⎛⎫-- ⎪ ⎪⎝⎭,理由见解析 【解析】 【分析】(1)由正方形性质知AB=OA=4,∠OAB=90°,据此得B (4,4),再由tan ∠AOD= 12得AD=12OA=2,据此可得点D 坐标; (2)由1tan 2GF GOF OF ∠==知GF=12OF ,再由∠AOB=∠ABO=45°知OF=EF ,即GF=12EF ,根据GH ∥x 轴知H 为AE 的中点,结合D 为AB 的中点知DH 是△ABE 的中位线,即HD ∥BE ,据此可得答案;(3)分⊙G 与对角线OB 和对角线AC 相切两种情况,设PG=x ,结合题意建立关于x 的方程求解可得. 【详解】解:(1)∵A (4,0), ∴OA =4,∵四边形OABC 为正方形, ∴AB =OA =4,∠OAB =90°, ∴B (4,4),在Rt △OAD 中,∠OAD =90°, ∵tan ∠AOD =12, ∴AD =12OA =12×4=2, ∴D (4,2);(2)如图1,在Rt △OFG 中,∠OFG =90°∴tan∠GOF=GFOF =12,即GF=12OF,∵四边形OABC为正方形,∴∠AOB=∠ABO=45°,∴OF=EF,∴GF=12EF,∴G为EF的中点,∵GH∥x轴交AE于H,∴H为AE的中点,∵B(4,4),D(4,2),∴D为AB的中点,∴DH是△ABE的中位线,∴HD∥BE,∴∠HDA=∠ABO=45°.(3)①若⊙G与对角线OB相切,如图2,当点E在线段OB上时,过点G作GP⊥OB于点P,设PG=x,可得PE=x,EG=FG2x,OF=EF=2x,∵OA=4,∴AF=4﹣2,∵G为EF的中点,H为AE的中点,∴GH为△AFE的中位线,∴GH=12AF=12×(4﹣2)=22,则x=22x,解得:x=22,∴E(8﹣2,8﹣2如图3,当点E在线段OB的延长线上时,x=2x﹣2,解得:x=2+2,∴E(8+42,8+42);②若⊙G与对角线AC相切,如图4,当点E在线段BM上时,对角线AC,OB相交于点M,过点G作GP⊥OB于点P,设PG=x,可得PE=x,EG=FG2,OF=EF=2x,∵OA=4,∴AF=4﹣2,∵G为EF的中点,H为AE的中点,∴GH为△AFE的中位线,∴GH=12AF=12×(4﹣2)=22,过点G作GQ⊥AC于点Q,则GQ=PM=3x﹣2∴3x﹣2=22x,∴227x=,∴42164216,77E⎛⎫⎪ ⎪⎝⎭;如图5,当点E在线段OM上时,GQ=PM=22﹣3x,则22﹣3x=2﹣2x,解得422x-=,∴16421642,77E⎛⎫--⎪ ⎪⎝⎭;如图6,当点E在线段OB的延长线上时,3x﹣22x﹣2,解得:4227x=(舍去);综上所述,符合条件的点为(8﹣2,8﹣2)或(2,2)或42164216++⎝⎭或16421642--⎝⎭.【点睛】本题是圆的综合问题,解题的关键是掌握正方形和直角三角形的性质、正切函数的定义、三角形中位线定理及分类讨论思想的运用.7.超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到万丰路(直线AO)的距离为120米的点P处.这时,一辆小轿车由西向东匀速行驶,测得此车从A处行驶到B处所用的时间为5秒且∠APO=60°,∠BPO=45°.(1)求A、B之间的路程;(2)请判断此车是否超过了万丰路每小时65千米的限制速度?请说明理由.(参考数≈≈).据:2 1.414,3 1.73【答案】【小题1】73.2【小题2】超过限制速度.【解析】AB=-73.2 (米).…6分解:(1)100(31)(2) 此车制速度v==18.3米/秒8.现有一个“Z“型的工件(工件厚度忽略不计),如图所示,其中AB为20cm,BC为60cm,∠ABC=90,∠BCD=60°,求该工件如图摆放时的高度(即A到CD的距离).(结果精确到0.1m,参考数据:≈1.73)【答案】工件如图摆放时的高度约为61.9cm.【解析】【分析】过点A作AP⊥CD于点P,交BC于点Q,由∠CQP=∠AQB、∠CPQ=∠B=90°知∠A=∠C =60°,在△ABQ中求得分别求得AQ、BQ的长,结合BC知CQ的长,在△CPQ中可得PQ,根据AP=AQ+PQ得出答案.【详解】解:如图,过点A作AP⊥CD于点P,交BC于点Q,∵∠CQP=∠AQB,∠CPQ=∠B=90°,∴∠A=∠C=60°,在△ABQ中,∵AQ=(cm),BQ=AB tan A=20tan60°=20(cm),∴CQ=BC﹣BQ=60﹣20(cm),在△CPQ中,∵PQ=CQ sin C=(60﹣20)sin60°=30(﹣1)cm,∴AP =AQ+PQ=40+30(﹣1)≈61.9(cm),答:工件如图摆放时的高度约为61.9cm.【点睛】本题主要考查解直角三角形的应用,熟练掌握三角函数的定义求得相关线段的长度是解题的关键.9.如图,湿地景区岸边有三个观景台、、.已知米,米,点位于点的南偏西方向,点位于点的南偏东方向.(1)求的面积;(2)景区规划在线段的中点处修建一个湖心亭,并修建观景栈道.试求、间的距离.(结果精确到米)(参考数据:,,,,,,)【答案】(1)560000(2)565.6【解析】试题分析:(1)过点作交的延长线于点,,然后根据直角三角形的内角和求出∠CAE,再根据正弦的性质求出CE的长,从而得到△ABC的面积;(2)连接,过点作,垂足为点,则.然后根据中点的性质和余弦值求出BE、AE的长,再根据勾股定理求解即可.试题解析:(1)过点作交的延长线于点,在中,,所以米.所以(平方米).(2)连接,过点作,垂足为点,则.因为是中点,所以米,且为中点,米,所以米.所以米,由勾股定理得,米.答:、间的距离为米.考点:解直角三角形10.如图,AB 为O 的直径,C 、D 为O 上异于A 、B 的两点,连接CD ,过点C作CE DB ⊥,交CD 的延长线于点E ,垂足为点E ,直径AB 与CE 的延长线相交于点F .(1)连接AC 、AD ,求证:180DAC ACF ∠+∠=︒. (2)若2ABD BDC ∠=∠. ①求证:CF 是O 的切线.②当6BD =,3tan 4F =时,求CF 的长. 【答案】(1)详见解析;(2)①详见解析;② 203CF =. 【解析】 【分析】(1)根据圆周角定理证得∠ADB=90°,即AD ⊥BD ,由CE ⊥DB 证得AD ∥CF ,根据平行线的性质即可证得结论;(2)①连接OC .先根据等边对等角及三角形外角的性质得出∠3=2∠1,由已知∠4=2∠1,得到∠4=∠3,则OC ∥DB ,再由CE ⊥DB ,得到OC ⊥CF ,根据切线的判定即可证明CF 为⊙O 的切线;②由CF ∥AD ,证出∠BAD=∠F ,得出tan ∠BAD=tan ∠F=BD AD =34,求出AD=43BD=8,利用勾股定理求得AB=10,得出OB=OC=,5,再由tanF=OC CF =34,即可求出CF . 【详解】 解:(1)AB 是O 的直径,且D 为O 上一点,90ADB ∴∠=︒, CE DB ⊥, 90DEC ∴∠=︒, //CF AD ∴,180DAC ACF ∴∠+∠=︒. (2)①如图,连接OC . OA OC =,12∴∠=∠. 312∠=∠+∠, 321∴∠=∠.42BDC ∠=∠,1BDC ∠=∠, 421∴∠=∠, 43∴∠=∠, //OC DB ∴. CE DB ⊥, OC CF ∴⊥.又OC 为O 的半径, CF ∴为O 的切线.②由(1)知//CF AD ,BAD F ∴∠=∠, 3tan tan 4BAD F ∴∠==,34BD AD ∴=. 6BD =483AD BD ∴==,10AB ∴==,5OB OC ==.OC CF ⊥, 90OCF ∴∠=︒,3tan 4OC F CF ∴==,解得203CF =. 【点睛】本题考查了切线的判定、解直角三角形、圆周角定理等知识;本题综合性强,有一定难度,特别是(2)中,需要运用三角函数、勾股定理和由平行线得出比例式才能得出结果.。
专题01 锐角三角函数和特殊角的三角函数(六大类型)(题型专练)(解析版)
专题01 锐角三角函数和特殊角的三角函数(六大类型)【题型1锐角三角函数的概念】【题型2 锐角三角函数的增减性】【题型3特殊角三角函数值】【题型4 同角三角函数的关系】【题型5 互余两角三角函数的关系】【题型6 三角函数的计算】【题型1锐角三角函数的概念】1.(2022秋•道县期末)在Rt△ABC中,∠C=90°,AC=5,BC=12,则tan A 的值为( )A.B.C.D.【答案】B【解答】解:在Rt△ABC中,∠C=90°,AC=5,BC=12,∴tan A=.故选:B.2.(2023•南岗区校级开学)在Rt△ABC中,∠C=90°,AB=2BC,则tan B 等于( )A.B.C.D.【答案】D【解答】解:∵∠C=90°,AB=2BC,∴AC===BC,∴tan B===.故选:D.3.(2022秋•路北区校级期末)在Rt△ABC中,∠C=90°,AB=10,AC=8,则cos B的值等于( )A.B.C.D.【答案】A【解答】解:∵∠C=90°,AB=10,AC=8,∴BC==6,∴cos B===.故选:A.4.(2023•新华区校级模拟)在Rt△ABC中,∠C=90°,若c为斜边,a、b 为直角边,且a=5,b=12,则sin A的值为( )A.B.C.D.【答案】B【解答】解:在Rt△ABC中,c===13,sin A=.故选:B.5.(2023•陈仓区模拟)如图,在Rt△ABC中,∠A=90°,AB=8,BC=10,则sin B的值是( )A.B.C.D.【答案】C【解答】解:∵在Rt△ABC中,∠A=90°,AB=8,BC=10,∴AC=,∴sin B===,故选:C .6.(2023•虹口区一模)如图,在Rt △ABC 中,∠C =90°,AC =1,BC =2,那么cos A 的值为( )A .B .2C .D .【答案】C【解答】解:在Rt △ABC 中,∠C =90°,AC =1,BC =2,由勾股定理,得AB ==.由锐角的余弦,得cos A ===.故选:C .7.(2023•金山区一模)在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,则∠B 的正切值等于( )A .B .C .D .【答案】A【解答】解:∵∠ACB =90°,AC =4,BC =3,∴tan B ==.故选:A .8.(2023•长宁区一模)在△ABC 中,∠C =90°,已知AC =3,AB =5,那么∠A 的余弦值为( )A .B .C .D .【答案】C【解答】解:在Rt △ABC 中,AC =3,AB =5,故选:C.【题型2 锐角三角函数的增减性】9.(2023•未央区校级三模)若tan A=2,则∠A的度数估计在( )A.在0°和30°之间B.在30°和45°之间C.在45°和60°之间D.在60°和90°之间【答案】D【解答】解:∵tan45°=1,tan60°=,而tan A=2,∴tan A>tan60°,∴60°<∠A<90°.故选:D.10.(2022秋•惠山区校级期中)已知∠A为锐角,且tan A=3,则∠A的取值范围是( )A.0°<∠A<30°B.30°<∠A<45°C.45°<∠A<60°D.60°<∠A<90°【答案】D【解答】解:tan30°=,tan45°=1,tan60°=,∵tan A=3,∴3,又∵一个锐角的正切值随锐角度数的增大而增大,∴60°<∠A<90°,故选:D.11.(2021秋•淮北月考)已知角α为△ABC的内角,且cosα=,则α的取值范围是( )A.0°<α<30°B.30°<α<45°C.45°<α<60°D.60°<α<90°【答案】C【解答】解:∵cos60°=,cos45°=,∴cos60°<cosα<cos45°,∴45°<α<60°,故选:C.【题型3特殊角三角函数值】12.(2022秋•嵊州市期末)已知tan A=,∠A是锐角,则∠A的度数为( )A.30°B.45°C.60°D.90°【答案】A【解答】解:∵,且∠A是锐角,∴∠A=30°,故选:A.13.(2023•河西区模拟)计算2cos30°的结果为( )A.B.1C.D.【答案】C【解答】解:∵cos30°=,∴2cos30°=2×=.故选:C.14.(2023•肃州区三模)sin60°的相反数( )A.B.C.D.【答案】C【解答】解:∵sin60°=,∴sin60°的相反数是﹣.故选:C.15.(2023•高州市一模)在Rt△ABC中,∠C=90°,若cos A=,则∠A的大小是( )A.30°B.45°C.60°D.75°【答案】C【解答】解:∵在Rt△ABC中,∠C=90°,∴∠A为锐角,∵cos A=,∴∠A=60°,故选:C.16.(2023•南开区二模)下列三角函数中,结果为的是( )A.cos30°B.tan30°C.sin60°D.cos60°【答案】D【解答】解:A.cos30°=,不符合题意;B.tan30°=,不符合题意;C.sin60°=,不符合题意;D.cos60°=sin30°=,符合题意.故选:D.17.(2023•河西区一模)cos60°的值等于( )A.B.C.D.【答案】D【解答】解:cos60°=,故选:D.18.(2023•东莞市校级一模)已知∠A为锐角且tan A=,则∠A=( )A.30°B.45°C.60°D.不能确定【答案】C【解答】解:∵∠A为锐角,tan A=,∴∠A=60°.故选:C.19.(2023•迎泽区校级二模)在Rt△ABC中,∠C=90°,BC=1,AC=,那么∠B的度数是( )A.15°B.45°C.30°D.60°【答案】D【解答】解:在Rt△ABC中,∠C=90°,∵tan B===,∴∠B=60°,故选:D.【题型4 同角三角函数的关系】20.(2023•泉港区模拟)已知∠A是锐角△ABC的内角,,则cos A的值是( )A.B.C.D.【答案】C【解答】解:由勾股定理可得sin2A+cos2A=1,∵,∴()2+cos2A=1,∴cos2A=,∴cos A=或cos A=﹣(舍去),故选:C.21.(2022秋•日照期末)若α为锐角,且sinα=,则tanα为( )A.B.C.D.【答案】D【解答】解:由α为锐角,且sinα=,得cosα===,tanα===,故选:D.22.(2022秋•桐柏县期末)已知在Rt△ABC中,∠C=90°.若sin A=,则cos A等于( )A.B.C.D.1【答案】A【解答】解:∵sin2A+cos2A=1,sin A=,∴+cos2A=1,∵∠A为锐角,∴cos A=.故选:A.23.(2022秋•滦州市期中)在Rt△ABC中,∠C=90°,,则cos A=( )A.B.C.D.【答案】C【解答】解:在Rt△ABC中,∠C=90°,=,可设BC=4k,则AB=5k,由勾股定理得,AC==3k,∴cos A==,故选:C.24.(2023•钟楼区校级模拟)在Rt△ABC中,∠C=90°,tan A=,则cos A 等于( )A.B.C.D.【答案】D【解答】解:如图:设BC=5x,∵tan A=,∴AC=12x,AB==13x,∴cos A===.故选:D.25.(2023秋•二道区校级月考)在Rt△ABC中,∠C=90°,若cos A=,则sin A的值为 .【答案】.【解答】解:∵sin2A+cos2A=1,又∵,∴,∴sin A=或(舍去),故答案为:.【题型5 互余两角三角函数的关系】26.(2023秋•肇源县校级月考)已知在Rt△ABC中,∠C=90°,sin A=,则tan B的值为( )A.B.C.D.【答案】D【解答】解:在Rt△ABC中,∵∠C=90°,,∴,设BC=12x,则AB=13x,,∴,故选:D.27.(2023•二道区校级模拟)在Rt△ABC中,AC≠BC,∠C=90°,则下列式子成立的是( )A.sin A=sin B B.sin A=cos B C.tan A=tan B D.cos A=tan B 【答案】B【解答】解:A、sin A=,sin B=,sin A≠sin B,故不符合题意;B、sin A=,cos B=,sin A=cos B,故B符合题意;C、tan A=,tan B=,tan A≠tan B,故不符合题意;D、cos A=,tan B=,则cos A≠tan B,故不符合题意;故选:B.28.(2023秋•东阿县校级月考)在Rt△ABC中,∠C=90°,sin A=,则cos B 的值为( )A.B.C.D.【答案】B【解答】解:∵cos B=,sin A==,∴cos B=.故选:B.29.(2022秋•双牌县期末)已知在Rt△ABC中,∠C=90°,sin A=,则tan B 的值为( )A.B.C.D.【答案】D【解答】解:在Rt△ABC中,∠C=90°,sin A=,∴sin A==,∴设BC=4a,AB=5a,∴AC===3a,∴tan B==,故选:D.30.(2023•新邵县校级一模)已知△ABC中,∠A=90°,tan B=,则sin C= .【答案】.【解答】解:如图.∵∠A=90°,tan B=,∴设AC=x,则AB=2x.∴BC==.∴sin C=.故答案为:.31.(2023•未央区校级二模)在Rt△ABC中,∠C=90°,sin A=,则tan B 的值为 .【答案】.【解答】解:在Rt△ABC中,∠C=90°,sin A=,∴sin A==,∴设BC=3a,AB=5a,∴AC===4a,∴tan B===.故答案为:.【题型6 三角函数的计算】32.(2023春•江岸区校级月考)计算:.【答案】1.【解答】解:==2﹣1=1.33.(2022秋•蜀山区校级期末)计算:sin245°+tan60°•cos30°.【答案】2.【解答】解:原式=()2+×=+=2.34.(2023春•朝阳区校级期末)计算:.【答案】见试题解答内容【解答】解:=2×﹣+1﹣×=﹣+1﹣=.35.(2022秋•武功县期末)计算:sin45°+2cos30°﹣tan60°.【答案】见试题解答内容【解答】解:原式=+2×﹣=+﹣=.36.(2022秋•南通期末)计算:tan45°﹣2sin30°+4cos230°.【答案】3.【解答】解:原式==1﹣1+3=3.37.(2022秋•辛集市期末)计算:sin60°•tan30°+.【答案】1.【解答】解:原式==+=1.。
备战中考数学综合题专题复习【锐角三角函数】专题解析附答案解析
一、锐角三角函数真题与模拟题分类汇编(难题易错题)1.(6分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).【答案】.【解析】试题分析:作AD⊥BC于D,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据正切的定义求出CD的长,得到答案.试题解析:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,又AB=60,∴AD=BD=,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°,∴∠C=60°,在Rt△ACD中,∠C=60°,AD=,则tanC=,∴CD==,∴BC=.故该船与B港口之间的距离CB的长为海里.考点:解直角三角形的应用-方向角问题.2.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.(2)若BC=2,sin∠BCP=,求点B到AC的距离.(3)在第(2)的条件下,求△ACP的周长.【答案】(1)证明见解析(2)4(3)20【解析】试题分析:(1)利用直径所对的圆周角为直角,2∠CAN=∠CAB,∠CAB=2∠BCP判断出∠ACP=90°即可;(2)利用锐角三角函数,即勾股定理即可.试题解析:(1)∵∠ABC=∠ACB,∴AB=AC,∵AC为⊙O的直径,∴∠ANC=90°,∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB,∵∠CAB=2∠BCP,∴∠BCP=∠CAN,∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°,∵点D在⊙O上,∴直线CP是⊙O的切线;(2)如图,作BF⊥AC∵AB=AC,∠ANC=90°,∴CN=CB=,∵∠BCP=∠CAN,sin∠BCP=,∴sin∠CAN=,∴∴AC=5,∴AB=AC=5,设AF=x,则CF=5﹣x,在Rt△ABF中,BF2=AB2﹣AF2=25﹣x2,在Rt△CBF中,BF2=BC2﹣CF2=2O﹣(5﹣x)2,∴25﹣x2=2O﹣(5﹣x)2,∴x=3,∴BF2=25﹣32=16,∴BF=4,即点B到AC的距离为4.考点:切线的判定3.如图,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,点D在边AC上且BD平分∠ABC,设CD=x.(1)求证:△ABC∽△BCD;(2)求x的值;(3)求cos36°-cos72°的值.【答案】(1)证明见解析;(215-+;(3758+【解析】试题分析:(1)由等腰三角形ABC中,顶角的度数求出两底角度数,再由BD为角平分线求出∠DBC的度数,得到∠DBC=∠A,再由∠C为公共角,利用两对角相等的三角形相似得到三角形ABC与三角形BCD相似;(2)根据(1)结论得到AD=BD=BC,根据AD+DC表示出AC,由(1)两三角形相似得比例求出x的值即可;(3)过B作BE垂直于AC,交AC于点E,在直角三角形ABE和直角三角形BCE中,利用锐角三角函数定义求出cos36°与cos72°的值,代入原式计算即可得到结果.试题解析:(1)∵等腰△ABC中,AB=AC,∠BAC=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=36°, ∵∠CBD=∠A=36°,∠C=∠C , ∴△ABC ∽△BCD ; (2)∵∠A=∠ABD=36°, ∴AD=BD , ∵BD=BC , ∴AD=BD=CD=1,设CD=x ,则有AB=AC=x+1, ∵△ABC ∽△BCD ,∴AB BC BD CD =,即111x x +=, 整理得:x 2+x-1=0,解得:x 1=15-+,x 2=15--(负值,舍去),则x=15-+; (3)过B 作BE ⊥AC ,交AC 于点E ,∵BD=CD ,∴E 为CD 中点,即DE=CE=154-+, 在Rt △ABE 中,cosA=cos36°=151514151AE AB -+++==-++ 在Rt △BCE 中,cosC=cos72°=1515414EC BC -+-+==, 则cos36°-cos72°=51+=15-+=12. 【考点】1.相似三角形的判定与性质;2.等腰三角形的性质;3.黄金分割;4.解直角三角形.4.如图,PB为☉O的切线,B为切点,过B作OP的垂线BA,垂足为C,交☉O于点A,连接PA,AO.并延长AO交☉O于点E,与PB的延长线交于点D.(1)求证:PA是☉O的切线;(2)若=,且OC=4,求PA的长和tan D的值.【答案】(1)证明见解析;(2)PA =3,tan D=.【解析】试题分析: (1)连接OB,先由等腰三角形的三线合一的性质可得:OP是线段AB的垂直平分线,进而可得:PA=PB,然后证明△PAO≌△PBO,进而可得∠PBO=∠PAO,然后根据切线的性质可得∠PBO=90°,进而可得:∠PAO=90°,进而可证:PA是⊙O的切线;(2)连接BE,由,且OC=4,可求AC,OA的值,然后根据射影定理可求PC的值,从而可求OP的值,然后根据勾股定理可求AP的值.试题解析:(1)连接OB,则OA=OB,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB,在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS)∴∠PBO=∠PAO,PB=PA,∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;(2)连接BE,∵,且OC=4,∴AC=6,∴AB=12,在Rt△ACO中,由勾股定理得:AO=,∴AE=2OA=4,OB=OA=2,在Rt△APO中,∵AC⊥OP,∴AC2=OC PC,解得:PC=9,∴OP=PC+OC=13,在Rt△APO中,由勾股定理得:AP==3.易证,所以,解得,则,在中,.考点:1.切线的判定与性质;2.相似三角形的判定与性质;3.解直角三角形.5.如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F 点.若AB=6cm.(1)AE的长为 cm;(2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值;(3)求点D′到BC的距离.【答案】(1);(2)12cm;(3)cm.【解析】试题分析:(1)首先利用勾股定理得出AC的长,进而求出CD的长,利用直角三角形斜边上的中线等于斜边的一半进而得出答案:∵∠BAC=45°,∠B=90°,∴AB=BC=6cm,∴AC=12cm.∵∠ACD=30°,∠DAC=90°,AC=12cm,∴(cm).∵点E为CD边上的中点,∴AE=DC=cm.(2)首先得出△ADE为等边三角形,进而求出点E,D′关于直线AC对称,连接DD′交AC 于点P,根据轴对称的性质,此时DP+EP值为最小,进而得出答案.(3)连接CD′,BD′,过点D′作D′G⊥BC于点G,进而得出△ABD′≌△CBD′(SSS),则∠D′BG=45°,D′G=GB,进而利用勾股定理求出点D′到BC边的距离.试题解析:解:(1).(2)∵Rt△ADC中,∠ACD=30°,∴∠ADC=60°,∵E为CD边上的中点,∴DE=AE.∴△ADE为等边三角形.∵将△ADE沿AE所在直线翻折得△AD′E,∴△AD′E为等边三角形,∠AED′=60°.∵∠EAC=∠DAC﹣∠EAD=30°,∴∠EFA=90°,即AC所在的直线垂直平分线段ED′.∴点E,D′关于直线AC对称.如答图1,连接DD′交AC于点P,∴此时DP+EP值为最小,且DP+EP=DD′.∵△ADE是等边三角形,AD=AE=,∴,即DP+EP最小值为12cm.(3)如答图2,连接CD′,BD′,过点D′作D′G⊥BC于点G,∵AC垂直平分线ED′,∴AE=AD′,CE=CD′,∵AE=EC,∴AD′=CD′=.在△ABD′和△CBD′中,∵,∴△ABD′≌△CBD′(SSS).∴∠D′BG=∠D′BC=45°.∴D′G=GB.设D′G长为xcm,则CG长为cm,在Rt△GD′C中,由勾股定理得,解得:(不合题意舍去).∴点D′到BC边的距离为cm.考点:1.翻折和单动点问题;2.勾股定理;3.直角三角形斜边上的中线性质;4.等边三角形三角形的判定和性质;5.轴对称的应用(最短线路问题);6.全等三角形的判定和性质;7.方程思想的应用.6.在正方形ABCD中,AC是一条对角线,点E是边BC上的一点(不与点C重合),连接AE,将△ABE沿BC方向平移,使点B与点C重合,得到△DCF,过点E作EG⊥AC于点G,连接DG,FG.(1)如图,①依题意补全图;②判断线段FG与DG之间的数量关系与位置关系,并证明;(2)已知正方形的边长为6,当∠AGD=60°时,求BE的长.BE【答案】(1)①见解析,②FG=DG,FG⊥DG,见解析;(2)3【解析】【分析】(1)①补全图形即可,②连接BG,由SAS证明△BEG≌△GCF得出BG=GF,由正方形的对称性质得出BG=DG,得出FG=DG,在证出∠DGF=90°,得出FG⊥DG即可,(2)过点D作DH⊥AC,交AC于点H.由等腰直角三角形的性质得出DH=AH=2FG=DG=2GH=6,得出DF2DG=3Rt△DCF中,由勾股定理得出CF=3得出结果.【详解】解:(1)①补全图形如图1所示,②FG=DG,FG⊥DG,理由如下,连接BG,如图2所示,∵四边形ABCD是正方形,∴∠ACB=45°,∵EG⊥AC,∴∠EGC =90°,∴△CEG 是等腰直角三角形,EG =GC , ∴∠GEC =∠GCE =45°, ∴∠BEG =∠GCF =135°, 由平移的性质得:BE =CF ,在△BEG 和△GCF 中,BE CF BEG GCF EG CG =⎧⎪∠=∠⎨⎪=⎩,∴△BEG ≌△GCF (SAS ), ∴BG =GF ,∵G 在正方形ABCD 对角线上, ∴BG =DG , ∴FG =DG ,∵∠CGF =∠BGE ,∠BGE+∠AGB =90°, ∴∠CGF+∠AGB =90°, ∴∠AGD+∠CGF =90°, ∴∠DGF =90°, ∴FG ⊥DG.(2)过点D 作DH ⊥AC ,交AC 于点H .如图3所示, 在Rt △ADG 中, ∵∠DAC =45°, ∴DH =AH =2在Rt △DHG 中,∵∠AGD =60°, ∴GH 33236,∴DG =2GH =6, ∴DF 2DG =3 在Rt △DCF 中,CF ()22436-3∴BE =CF =3.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的性质、勾股定理、解直角三角形的应用等知识;本题综合性强,证明三角形全等是解题的关键.7.在Rt△ABC中,∠ACB=90°,AB=7,AC=2,过点B作直线m∥AC,将△ABC绕点C 顺时针旋转得到△A′B′C(点A,B的对应点分别为A',B′),射线CA′,CB′分別交直线m于点P,Q.(1)如图1,当P与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长;(3)在旋转过程中,当点P,Q分别在C A′,CB′的延长线上时,试探究四边形PA'B′Q的面积是否存在最小值.若存在,求出四边形PA′B′Q的最小面积;若不存在,请说明理由.【答案】(1)60°;(2)PQ=72;(3)存在,S四边形PA'B′Q=33【解析】【分析】(1)由旋转可得:AC=A'C=2,进而得到BC3=∠A'BC=90°,可得cos∠A'CB3'BCA C==∠A'CB=30°,∠ACA'=60°;(2)根据M为A'B'的中点,即可得出∠A=∠A'CM,进而得到PB3=32=,依据tan∠Q=tan∠A32=BQ=BC3=2,进而得出PQ=PB+BQ72=;(3)依据S四边形PA'B'Q=S△PCQ﹣S△A'CB'=S△PCQ3-S四边形PA'B'Q最小,即S△PCQ最小,而S△PCQ12=PQ×BC3=,利用几何法即可得到S△PCQ的最小值=3,即可得到结论.【详解】(1)由旋转可得:AC =A 'C =2.∵∠ACB =90°,AB 7=,AC =2,∴BC 3=. ∵∠ACB =90°,m ∥AC ,∴∠A 'BC =90°,∴cos ∠A 'CB 3'BC A C ==,∴∠A 'CB =30°,∴∠ACA '=60°;(2)∵M 为A 'B '的中点,∴∠A 'CM =∠MA 'C ,由旋转可得:∠MA 'C =∠A ,∴∠A =∠A 'CM ,∴tan ∠PCB =tan ∠A 3=,∴PB 3=BC 32=. ∵∠BQC =∠BCP =∠A ,∴tan ∠BQC =tan ∠A 3=,∴BQ =BC 3⨯=2,∴PQ =PB +BQ 72=; (3)∵S 四边形PA 'B 'Q =S △PCQ ﹣S △A 'CB '=S △PCQ 3-,∴S 四边形PA 'B 'Q 最小,即S △PCQ 最小,∴S △PCQ 12=PQ ×BC 3=PQ , 取PQ 的中点G . ∵∠PCQ =90°,∴CG 12=PQ ,即PQ =2CG ,当CG 最小时,PQ 最小,∴CG ⊥PQ ,即CG 与CB 重合时,CG 最小,∴CG min 3=,PQ min =23,∴S △PCQ 的最小值=3,S 四边形PA 'B 'Q =33-;【点睛】本题属于几何变换综合题,主要考查了旋转的性质,解直角三角形以及直角三角形的性质的综合运用,解题时注意:旋转变换中,对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.8.在Rt △ABC 中,∠ACB =90°,CD 是AB 边的中线,DE ⊥BC 于E ,连结CD ,点P 在射线CB 上(与B ,C 不重合)(1)如果∠A =30°,①如图1,∠DCB 等于多少度;②如图2,点P 在线段CB 上,连结DP ,将线段DP 绕点D 逆时针旋转60°,得到线段DF ,连结BF ,补全图2猜想CP 、BF 之间的数量关系,并证明你的结论;(2)如图3,若点P 在线段CB 的延长线上,且∠A =α(0°<α<90°),连结DP ,将线段DP绕点逆时针旋转2α得到线段DF,连结BF,请直接写出DE、BF、BP三者的数量关系(不需证明)【答案】(1)①∠DCB=60°.②结论:CP=BF.理由见解析;(2)结论:BF﹣BP=2DE•tanα.理由见解析.【解析】【分析】(1)①根据直角三角形斜边中线的性质,结合∠A=30°,只要证明△CDB是等边三角形即可;②根据全等三角形的判定推出△DCP≌△DBF,根据全等的性质得出CP=BF,(2)求出DC=DB=AD,DE∥AC,求出∠FDB=∠CDP=2α+∠PDB,DP=DF,根据全等三角形的判定得出△DCP≌△DBF,求出CP=BF,推出BF﹣BP=BC,解直角三角形求出CE=DEtanα即可.【详解】(1)①∵∠A=30°,∠ACB=90°,∴∠B=60°,∵AD=DB,∴CD=AD=DB,∴△CDB是等边三角形,∴∠DCB=60°.②如图1,结论:CP=BF.理由如下:∵∠ACB=90°,D是AB的中点,DE⊥BC,∠DCB=60°,∴△CDB为等边三角形.∴∠CDB=60°∵线段DP绕点D逆时针旋转60°得到线段DF,∵∠PDF=60°,DP=DF,∴∠FDB=∠CDP,在△DCP和△DBF中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴△DCP ≌△DBF ,∴CP =BF.(2)结论:BF ﹣BP =2DEtanα.理由:∵∠ACB =90°,D 是AB 的中点,DE ⊥BC ,∠A =α,∴DC =DB =AD ,DE ∥AC ,∴∠A =∠ACD =α,∠EDB =∠A =α,BC =2CE ,∴∠BDC =∠A+∠ACD =2α,∵∠PDF =2α,∴∠FDB =∠CDP =2α+∠PDB ,∵线段DP 绕点D 逆时针旋转2α得到线段DF ,∴DP =DF ,在△DCP 和△DBF 中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴△DCP ≌△DBF ,∴CP =BF ,而 CP =BC+BP ,∴BF ﹣BP =BC ,在Rt △CDE 中,∠DEC =90°,∴tan ∠CDE =CE DE, ∴CE =DEtanα, ∴BC =2CE =2DEtanα,即BF ﹣BP =2DEtanα.【点睛】本题考查了三角形外角性质,等边三角形的判定和性质,全等三角形的性质和判定,直角三角形的性质,旋转的性质的应用,能推出△DCP ≌△DBF 是解此题的关键,综合性比较强,证明过程类似.9.如图,正方形ABCD+1,对角线AC 、BD 相交于点O ,AE 平分∠BAC 分别交BC 、BD 于E 、F ,(1)求证:△ABF ∽△ACE ;(2)求tan ∠BAE 的值;(3)在线段AC 上找一点P ,使得PE+PF 最小,求出最小值.【答案】(1)证明见解析;(2)tan∠EAB=2﹣1;(3)PE+PF的最小值为 .22【解析】【分析】(1)根据两角对应相等的两个三角形相似判断即可;(2)如图1中,作EH⊥AC于H.首先证明BE=EH=HC,设BE=EH=HC=x,构建方程求出x 即可解决问题;(3)如图2中,作点F关于直线AC的对称点H,连接EH交AC于点P,连接PF,此时PF+PE的值最小,最小值为线段EH的长;【详解】(1)证明:∵四边形ABCD是正方形,∴∠ACE=∠ABF=∠CAB=45°,∵AE平分∠CAB,∴∠EAC=∠BAF=22.5°,∴△ABF∽△ACE.(2)解:如图1中,作EH⊥AC于H.∵EA平分∠CAB,EH⊥AC,EB⊥AB,∴BE=EB,∵∠HCE=45°,∠CHE=90°,∴∠HCE=∠HEC=45°,∴HC=EH,∴BE=EH=HC,设BE=HE=HC=x,则EC2,∵BC2+1,∴x+x2+1,∴x=1,在Rt△ABE中,∵∠ABE=90°,∴tan ∠EAB =1221BE AB ==+﹣1. (3)如图2中,作点F 关于直线AC 的对称点H ,连接EH 交AC 于点P ,连接PF ,此时PF+PE 的值最小.作EM ⊥BD 于M .BM =EM =22, ∵AC =22AB BC +=2+2,∴OA =OC =OB =12AC =22+ , ∴OH =OF =OA•tan ∠OAF =OA•tan ∠EAB =222+ •(2﹣1)=22, ∴HM =OH+OM =222+, 在Rt △EHM 中,EH =2222222EM HM 22⎛⎫⎛⎫+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭= =22+.. ∴PE+PF 的最小值为22+..【点睛】本题考查正方形的性质,相似三角形的判定,勾股定理,最短问题等知识,解题的关键是学会添加常用辅助线,学会利用轴对称解决最短问题,属于中考常考题型.10.小明坐于堤边垂钓,如图①,河堤AC 的坡角为30°,AC 长米,钓竿AO 的倾斜角是60°,其长为3米,若AO 与钓鱼线OB 的夹角为60°,求浮漂B 与河堤下端C 之间的距离(如图②).【答案】1.5米.【解析】试题分析:延长OA交BC于点D.先由倾斜角定义及三角形内角和定理求出在Rt△ACD中,米,CD=2AD=3米,再证明△BOD是等边三角形,得到米,然后根据BC=BD−CD即可求出浮漂B与河堤下端C之间的距离.试题解析:延长OA交BC于点D.∵AO的倾斜角是,∴∵在Rt△ACD中, (米),∴CD=2AD=3米,又∴△BOD是等边三角形,∴(米),∴BC=BD−CD=4.5−3=1.5(米).答:浮漂B与河堤下端C之间的距离为1.5米.。
锐角三角函数的经典测试题及答案
锐角三角函数的经典测试题及答案锐角三角函数的经典测试题及答案一、选择题1.“奔跑吧,兄弟!”节目组预设计一个新的游戏:“奔跑”路线需经过A、B、C、D四地。
如图,其中A、B、C三地在同一直线上,D地在A地北偏东30°方向,在C地北偏西45°方向。
C地在A地北偏东75°方向。
且BD=BC=30m。
从A地到D地的距离是()A。
303mB。
205mC。
302mD。
156m答案】D解析】过点D作DH垂直于AC,垂足为H,求出∠DAC的度数,判断出△BCD是等边三角形,再利用三角函数求出AB的长,从而得到___的长。
详解】过点D作DH垂直于AC,垂足为H,由题意可知∠DAC=75°-30°=45°。
因为△BCD是等边三角形,所以∠DBC=60°,BD=BC=CD=30m。
因此,DH=3/2×30=45,AD=2DH=90m。
所以,从A地到D地的距离是156m。
故选D。
点睛】本题考查了解直角三角形的应用——方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想。
2.公元三世纪,我国汉代数学家___在注解《周髀算经》时给出的“___图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形。
如果大正方形的面积是125,小正方形面积是25,则(sinθ-cosθ)=()A。
1/5B。
5/5C。
35/5D。
9/5答案】A解析】根据正方形的面积公式可得大正方形的边长为5√5,小正方形的边长为5,再根据直角三角形的边角关系列式即可求解。
详解】解:因为大正方形的面积是125,小正方形面积是25,所以大正方形的边长为5√5,小正方形的边长为5.因此,55cosθ-55sinθ=5,cosθ-sinθ=2/5.因此,(sinθ-cosθ)=1/5.故选:A。
点睛】本题考查了解直角三角形、勾股定理的证明和正方形的面积,难度适中,解题的关键是正确得出cosθ-sinθ=2/5.3.如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平,再一次折叠纸片,使点A落在EF上的点A′处,并使折痕经过点B,得到折痕BM,若矩形纸片的宽AB=4,则折痕BM的长为()A。
中考数学锐角三角函数综合经典题及答案
一、锐角三角函数真题与模拟题分类汇编(难题易错题)1.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.(1)判断DE与⊙O的位置关系,并说明理由;(2)求证:BC2=2CD•OE;(3)若314cos,53BAD BE∠==,求OE的长.【答案】(1)DE为⊙O的切线,理由见解析;(2)证明见解析;(3)OE =356.【解析】试题分析:(1)连接OD,BD,由直径所对的圆周角是直角得到∠ADB为直角,可得出△BCD为直角三角形,E为斜边BC的中点,由直角三角形斜边上的中线等于斜边的一半,得到CE=DE,从而得∠C=∠CDE,再由OA=OD,得∠A=∠ADO,由Rt△ABC中两锐角互余,从而可得∠ADO与∠CDE互余,可得出∠ODE为直角,即DE垂直于半径OD,可得出DE为⊙O的切线;(2)由已知可得OE是△ABC的中位线,从而有AC=2OE,再由∠C=∠C,∠ABC=∠BDC,可得△ABC∽△BDC,根据相似三角形的对应边的比相等,即可证得;(3)在直角△ABC中,利用勾股定理求得AC的长,根据三角形中位线定理OE的长即可求得.试题解析:(1)DE为⊙O的切线,理由如下:连接OD,BD,∵AB为⊙O的直径,∴∠ADB=90°,在Rt△BDC中,E为斜边BC的中点,∴CE=DE=BE=BC,∴∠C=∠CDE,∵OA=OD,∴∠A=∠ADO,∵∠ABC=90°,∴∠C+∠A=90°,∴∠ADO+∠CDE=90°,∴∠ODE=90°,∴DE⊥OD,又OD为圆的半径,∴DE为⊙O的切线;(2)∵E是BC的中点,O点是AB的中点,∴OE是△ABC的中位线,∴AC=2OE,∵∠C=∠C,∠ABC=∠BDC,∴△ABC∽△BDC,∴,即BC2=AC•CD.∴BC2=2CD•OE;(3)解:∵cos∠BAD=,∴sin∠BAC=,又∵BE=,E是BC的中点,即BC=,∴AC=.又∵AC=2OE,∴OE=AC=.考点:1、切线的判定;2、相似三角形的判定与性质;3、三角函数2.如图,抛物线C1:y=(x+m)2(m为常数,m>0),平移抛物线y=﹣x2,使其顶点D 在抛物线C1位于y轴右侧的图象上,得到抛物线C2.抛物线C2交x轴于A,B两点(点A 在点B的左侧),交y轴于点C,设点D的横坐标为a.(1)如图1,若m=.①当OC=2时,求抛物线C2的解析式;②是否存在a,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP=BP?若存在,求出a的值;若不存在,请说明理由;(2)如图2,当OB=2﹣m(0<m<)时,请直接写出到△ABD的三边所在直线的距离相等的所有点的坐标(用含m的式子表示).【答案】(1) ①y=﹣x2+x+2.②.(2)P1(﹣m,1),P2(﹣m,﹣3),P3(﹣﹣m,3),P4(3﹣m,3).【解析】试题分析:(1)①首先写出平移后抛物线C2的解析式(含有未知数a),然后利用点C (0,2)在C2上,求出抛物线C2的解析式;②认真审题,题中条件“AP=BP”意味着点P在对称轴上,“点B与点C到直线OP的距离之和最大”意味着OP⊥BC.画出图形,如图1所示,利用三角函数(或相似),求出a的值;(2)解题要点有3个:i)判定△ABD为等边三角形;ii)理论依据是角平分线的性质,即角平分线上的点到角两边的距离相等;iii)满足条件的点有4个,即△ABD形内1个(内心),形外3个.不要漏解.试题解析:(1)当m=时,抛物线C1:y=(x+)2.∵抛物线C2的顶点D在抛物线C1上,且横坐标为a,∴D(a,(a+)2).∴抛物线C2:y=﹣(x﹣a)2+(a+)2(I).①∵OC=2,∴C(0,2).∵点C在抛物线C2上,∴﹣(0﹣a)2+(a+)2=2,解得:a=,代入(I)式,得抛物线C2的解析式为:y=﹣x2+x+2.②在(I)式中,令y=0,即:﹣(x﹣a)2+(a+)2=0,解得x=2a+或x=﹣,∴B(2a+,0);令x=0,得:y=a+,∴C(0,a+).设直线BC的解析式为y=kx+b,则有:,解得,∴直线BC的解析式为:y=﹣x+(a+).假设存在满足条件的a值.∵AP=BP,∴点P在AB的垂直平分线上,即点P在C2的对称轴上;∵点B与点C到直线OP的距离之和≤BC,只有OP⊥BC时等号成立,∴OP⊥BC.如图1所示,设C2对称轴x=a(a>0)与BC交于点P,与x轴交于点E,则OP⊥BC,OE=a.∵点P在直线BC上,∴P(a,a+),PE=a+.∵tan∠EOP=tan∠BCO=,∴,解得:a=.∴存在a=,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP="BP"(3)∵抛物线C2的顶点D在抛物线C1上,且横坐标为a,∴D(a,(a+m)2).∴抛物线C2:y=﹣(x﹣a)2+(a+m)2.令y=0,即﹣(x﹣a)2+(a+m)2=0,解得:x1=2a+m,x2=﹣m,∴B(2a+m,0).∵OB=2﹣m,∴2a+m=2﹣m,∴a=﹣m.∴D(﹣m,3).AB=OB+OA=2﹣m+m=2.如图2所示,设对称轴与x轴交于点E,则DE=3,BE=AB=,OE=OB﹣BE=﹣m.∵tan∠ABD=,∴∠ABD=60°.又∵AD=BD,∴△ABD为等边三角形.作∠ABD的平分线,交DE于点P1,则P1E=BE•tan30°=×=1,∴P1(﹣m,1);在△ABD形外,依次作各个外角的平分线,它们相交于点P2、P3、P4.在Rt△BEP2中,P2E=BE•tan60°=•=3,∴P2(﹣m,﹣3);易知△ADP3、△BDP4均为等边三角形,∴DP3=DP4=AB=2,且P3P4∥x轴.∴P3(﹣﹣m,3)、P4(3﹣m,3).综上所述,到△ABD 的三边所在直线的距离相等的所有点有4个,其坐标为:P 1(﹣m ,1),P 2(﹣m ,﹣3),P 3(﹣﹣m ,3),P 4(3﹣m ,3).【考点】二次函数综合题.3.如图,某校数学兴趣小组为测量校园主教学楼AB 的高度,由于教学楼底部不能直接到达,故兴趣小组在平地上选择一点C ,用测角器测得主教学楼顶端A 的仰角为30°,再向主教学楼的方向前进24米,到达点E 处(C ,E ,B 三点在同一直线上),又测得主教学楼顶端A 的仰角为60°,已知测角器CD 的高度为1.6米,请计算主教学楼AB 的高度.(3≈1.73,结果精确到0.1米)【答案】22.4m【解析】【分析】首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造等量关系,进而求解.【详解】解:在Rt △AFG 中,tan ∠AFG 3,∴FG =tan 3AG AFG =∠, 在Rt △ACG 中,tan ∠ACG =AG CG , ∴CG =tan AG ACG∠=3. 又∵CG ﹣FG =24m ,33=24m , ∴AG 3, ∴AB 3+1.6≈22.4m .4.2018年12月10日,郑州市城乡规划局网站挂出《郑州都市区主城区停车场专项规划》,将停车纳入城市综合交通体系,计划到2030年,在主城区新建停车泊位33.04万个,2019年初,某小区拟修建地下停车库,如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度为1:3,DE =3米,点C在DE上,CD=0.5米,CD是限高标志屏的高度(标志牌上写有:限高米),如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据2≈1.41,3≈1.73)【答案】该停车库限高约为2.2米.【解析】【分析】据题意得出3tan3B=,即可得出tan A,在Rt△ADE中,根据勾股定理可求得DE,即可得出∠1的正切值,再在Rt△CEF中,设EF=x,即可求出x,从而得出CF3的长.【详解】解:由题意得,3 tan B=∵MN∥AD,∴∠A=∠B,∴tan A=33,∵DE⊥AD,∴在Rt△ADE中,tan A=DEAD,∵DE=3,又∵DC=0.5,∴CE=2.5,∵CF⊥AB,∴∠FCE+∠CEF=90°,∵DE⊥AD,∴∠A+∠CEF=90°,∴∠A=∠FCE,∴tan∠FCE=3.在Rt△CEF中,设EF=x,CF=3x(x>0),CE=2.5,代入得(52)2=x2+3x2,解得x=1.25,∴CF=3x≈2.2,∴该停车库限高约为2.2米.【点睛】本题考查了解直角三角形的应用,坡面坡角问题和勾股定理,解题的关键是坡度等于坡角的正切值.5.如图1,以点M(-1,0)为圆心的圆与y轴、x轴分别交于点A、B、C、D,直线y=-x-与⊙M相切于点H,交x轴于点E,交y轴于点F.(1)请直接写出OE、⊙M的半径r、CH的长;(2)如图2,弦HQ交x轴于点P,且DP:PH=3:2,求cos∠QHC的值;(3)如图3,点K为线段EC上一动点(不与E、C重合),连接BK交⊙M于点T,弦AT 交x轴于点N.是否存在一个常数a,始终满足MN·MK=a,如果存在,请求出a的值;如果不存在,请说明理由.【答案】(1)OE=5,r=2,CH=2(2);(3)a=4【解析】【分析】(1)在直线y=-x-中,令y=0,可求得E的坐标,即可得到OE的长为5;连接MH,根据△EMH与△EFO相似即可求得半径为2;再由EC=MC=2,∠EHM=90°,可知CH 是RT△EHM斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半即可得出CH的长;(2)连接DQ、CQ.根据相似三角形的判定得到△CHP∽△QPD,从而求得DQ的长,在直角三角形CDQ中,即可求得∠D的余弦值,即为cos∠QHC的值;(3)连接AK,AM,延长AM,与圆交于点G,连接TG,由圆周角定理可知,∠GTA=90°,∠3=∠4,故∠AKC=∠MAN,再由△AMK∽△NMA即可得出结论.【详解】(1)OE=5,r=2,CH=2(2)如图1,连接QC、QD,则∠CQD =90°,∠QHC =∠QDC,易知△CHP∽△DQP,故,得DQ=3,由于CD=4,;(3)如图2,连接AK,AM,延长AM,与圆交于点G,连接TG,则,由于,故,;而,故在和中,;故△AMK∽△NMA;即:故存在常数,始终满足常数a="4"解法二:连结BM,证明∽得6.兰州银滩黄河大桥北起安宁营门滩,南至七里河马滩,是黄河上游的第一座大型现代化斜拉式大桥如图,小明站在桥上测得拉索AB与水平桥面的夹角是31°,拉索AB的长为152米,主塔处桥面距地面7.9米(CD的长),试求出主塔BD的高.(结果精确到0.1米,参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)【答案】主塔BD的高约为86.9米.【解析】【分析】根据直角三角形中由三角函数得出BC相应长度,再由BD=BC+CD可得出.【详解】在Rt△ABC中,∠ACB=90°,sin BCAAB=.∴sin152sin311520.5279.04BC AB A︒=⨯=⨯=⨯=.79.047.986.9486.9BD BC CD=+=+=≈(米)答:主塔BD的高约为86.9米.【点睛】本题考察了直角三角形与三角函数的结合,熟悉掌握是解决本题的关键.7.如图,正方形OABC的顶点O与原点重合,点A,C分别在x轴与y轴的正半轴上,点A的坐标为(4,0),点D在边AB上,且tan∠AOD=12,点E是射线OB上一动点,EF⊥x轴于点F,交射线OD于点G,过点G作GH∥x轴交AE于点H.(1)求B,D两点的坐标;(2)当点E在线段OB上运动时,求∠HDA的大小;(3)以点G为圆心,GH的长为半径画⊙G.是否存在点E使⊙G与正方形OABC的对角线所在的直线相切?若不存在,请说明理由;若存在,请求出所有符合条件的点E的坐标.【答案】(1)B(4,4),D(4,2);(2)45°;(3)存在,符合条件的点为(8﹣42,8﹣42)或(8+42,8+42)或42164216,⎛⎫++ ⎪⎪⎝⎭或16421642,77⎛⎫-- ⎪ ⎪⎝⎭,理由见解析 【解析】 【分析】(1)由正方形性质知AB=OA=4,∠OAB=90°,据此得B (4,4),再由tan ∠AOD= 12得AD=12OA=2,据此可得点D 坐标; (2)由1tan 2GF GOF OF ∠==知GF=12OF ,再由∠AOB=∠ABO=45°知OF=EF ,即GF=12EF ,根据GH ∥x 轴知H 为AE 的中点,结合D 为AB 的中点知DH 是△ABE 的中位线,即HD ∥BE ,据此可得答案;(3)分⊙G 与对角线OB 和对角线AC 相切两种情况,设PG=x ,结合题意建立关于x 的方程求解可得. 【详解】解:(1)∵A (4,0), ∴OA =4,∵四边形OABC 为正方形, ∴AB =OA =4,∠OAB =90°, ∴B (4,4),在Rt △OAD 中,∠OAD =90°, ∵tan ∠AOD =12, ∴AD =12OA =12×4=2, ∴D (4,2);(2)如图1,在Rt △OFG 中,∠OFG =90°∴tan∠GOF=GFOF =12,即GF=12OF,∵四边形OABC为正方形,∴∠AOB=∠ABO=45°,∴OF=EF,∴GF=12EF,∴G为EF的中点,∵GH∥x轴交AE于H,∴H为AE的中点,∵B(4,4),D(4,2),∴D为AB的中点,∴DH是△ABE的中位线,∴HD∥BE,∴∠HDA=∠ABO=45°.(3)①若⊙G与对角线OB相切,如图2,当点E在线段OB上时,过点G作GP⊥OB于点P,设PG=x,可得PE=x,EG=FG2x,OF=EF=2x,∵OA=4,∴AF=4﹣2,∵G为EF的中点,H为AE的中点,∴GH为△AFE的中位线,∴GH=12AF=12×(4﹣2)=22,则x=22x,解得:x=22,∴E(8﹣2,8﹣2如图3,当点E在线段OB的延长线上时,x=2x﹣2,解得:x=2+2,∴E(8+42,8+42);②若⊙G与对角线AC相切,如图4,当点E在线段BM上时,对角线AC,OB相交于点M,过点G作GP⊥OB于点P,设PG=x,可得PE=x,EG=FG2,OF=EF=2x,∵OA=4,∴AF=4﹣2,∵G为EF的中点,H为AE的中点,∴GH为△AFE的中位线,∴GH=12AF=12×(4﹣2)=22,过点G作GQ⊥AC于点Q,则GQ=PM=3x﹣2∴3x﹣2=22x,∴227x=,∴42164216,77E⎛⎫⎪ ⎪⎝⎭;如图5,当点E 在线段OM 上时,GQ =PM =22﹣3x ,则22﹣3x =2﹣2x , 解得4227x -=, ∴16421642,77E ⎛⎫-- ⎪ ⎪⎝⎭; 如图6,当点E 在线段OB 的延长线上时,3x ﹣22=2x ﹣2, 解得:4227x -=(舍去); 综上所述,符合条件的点为(8﹣42,8﹣42)或(8+42,8+42)或42164216,⎛⎫++ ⎪ ⎪⎝⎭或16421642,⎛⎫-- ⎪ ⎪⎝⎭. 【点睛】本题是圆的综合问题,解题的关键是掌握正方形和直角三角形的性质、正切函数的定义、三角形中位线定理及分类讨论思想的运用.8.如图,建筑物上有一旗杆,从与相距的处观测旗杆顶部的仰角为,观测旗杆底部的仰角为,求旗杆的高度.(参考数据:,,)【答案】旗杆的高度约为.【解析】【分析】在Rt△BDC中,根据tan∠BDC=求出BC,接着在Rt△ADC中,根据tan∠ADC==即可求出AB的长度【详解】解:∵在Rt△BDC中,tan∠BDC==1,∴BC=CD= 40m 在Rt△ADC中,tan∠ADC==∴tan50°= =1.19∴AB7.6m答:旗杆AB的高度约为7.6m.【点睛】此题主要考查了三角函数的应用9.已知抛物线y=﹣16x2﹣23x+2与x轴交于点A,B两点,交y轴于C点,抛物线的对称轴与x轴交于H点,分别以OC、OA为边作矩形AECO.(1)求直线AC的解析式;(2)如图,P为直线AC上方抛物线上的任意一点,在对称轴上有一动点M,当四边形AOCP 面积最大时,求|PM﹣OM|的值.(3)如图,将△AOC沿直线AC翻折得△ACD,再将△ACD沿着直线AC平移得△A'C′D'.使得点A′、C'在直线AC上,是否存在这样的点D′,使得△A′ED′为直角三角形?若存在,请求出点D′的坐标;若不存在,请说明理由.【答案】(1) y=13x+2;(2) 点M坐标为(﹣2,53)时,四边形AOCP的面积最大,此时|PM﹣OM|有最大值61; (3)存在,D′坐标为:(0,4)或(﹣6,2)或(35-,195).【解析】【分析】(1)令x=0,则y=2,令y=0,则x=2或﹣6,求出点A、B、C坐标,即可求解;(2)连接OP交对称轴于点M,此时,|PM﹣OM|有最大值,即可求解;(3)存在;分①A′D′⊥A′E;②A′D′⊥ED′;③ED′⊥A′E三种情况利用勾股定理列方程求解即可.【详解】(1)令x=0,则y=2,令y=0,则x=2或﹣6,∴A(﹣6,0)、B(2,0)、C(0,2),函数对称轴为:x=﹣2,顶点坐标为(﹣2,83),C点坐标为(0,2),则过点C的直线表达式为:y=kx+2,将点A坐标代入上式,解得:k13=,则:直线AC的表达式为:y13=x+2;(2)如图,过点P作x轴的垂线交AC于点H.四边形AOCP面积=△AOC的面积+△ACP的面积,四边形AOCP面积最大时,只需要△ACP的面积最大即可,设点P坐标为(m,16-m223-m+2),则点G坐标为(m,13m+2),S△ACP12=PG•OA12=•(16-m223-m+213-m﹣2)•612=-m2﹣3m,当m=﹣3时,上式取得最大值,则点P 坐标为(﹣3,52).连接OP 交对称轴于点M ,此时,|PM ﹣OM |有最大值,直线OP 的表达式为:y 56=-x ,当x =﹣2时,y 53=,即:点M 坐标为(﹣2,53),|PM ﹣OM |的最大值为:2222555(32)()2()233-++--+=61. (3)存在.∵AE =CD ,∠AEC =∠ADC =90°,∠EMA =∠DMC ,∴△EAM ≌△DCM (AAS ),∴EM =DM ,AM =MC ,设:EM =a ,则:MC =6﹣a .在Rt △DCM 中,由勾股定理得:MC 2=DC 2+MD 2,即:(6﹣a )2=22+a 2,解得:a 83=,则:MC 103=,过点D 作x 轴的垂线交x 轴于点N ,交EC 于点H .在Rt △DMC 中,12DH •MC 12=MD •DC ,即:DH 10833⨯=⨯2,则:DH 85=,HC 2265DC DH =-=,即:点D 的坐标为(61855-,); 设:△ACD 沿着直线AC 平移了m 个单位,则:点A ′坐标(﹣61010,D ′坐标为(618551010,-++),而点E 坐标为(﹣6,2),则2''A D =22618(6)()55-++=36,2'A E =22(2)1010+=2410m +,2'ED =22248(()551010+=2128510m +.若△A ′ED ′为直角三角形,分三种情况讨论:①当2''A D +2'A E =2'ED 时,36+2410m -=2128510m +,解得:m =105,此时D ′(618551010,-++)为(0,4); ②当2''A D +2'ED =2'A E 时,36+2128510m +=2410m +,解得:m =8105-,此时D ′(618551010,-++)为(-6,2); ③当2'A E +2'ED =2''A D 时,2410m -++2128510m ++=36,解得:m =810-或m =10,此时D ′(618551010,-++)为(-6,2)或(35,195). 综上所述:D 坐标为:(0,4)或(﹣6,2)或(35,195). 【点睛】本题考查了二次函数知识综合运用,涉及到一次函数、图形平移、解直角三角形等知识,其中(3)中图形是本题难点,其核心是确定平移后A ′、D ′的坐标,本题难度较大.10.问题探究: (一)新知学习:圆内接四边形的判断定理:如果四边形对角互补,那么这个四边形内接于圆(即如果四边形EFGH 的对角互补,那么四边形EFGH 的四个顶点E 、F 、G 、H 都在同个圆上). (二)问题解决:已知⊙O 的半径为2,AB ,CD 是⊙O 的直径.P 是上任意一点,过点P 分别作AB ,CD的垂线,垂足分别为N ,M . (1)若直径AB ⊥CD ,对于上任意一点P (不与B 、C 重合)(如图一),证明四边形PMON 内接于圆,并求此圆直径的长;(2)若直径AB ⊥CD ,在点P (不与B 、C 重合)从B 运动到C 的过程汇总,证明MN 的长为定值,并求其定值;(3)若直径AB 与CD 相交成120°角. ①当点P 运动到的中点P 1时(如图二),求MN 的长;②当点P (不与B 、C 重合)从B 运动到C 的过程中(如图三),证明MN 的长为定值. (4)试问当直径AB 与CD 相交成多少度角时,MN 的长取最大值,并写出其最大值.【答案】(1)证明见解析,直径OP=2; (2)证明见解析,MN 的长为定值,该定值为2; (3)①MN=;②证明见解析;(4)MN 取得最大值2.【解析】试题分析:(1)如图一,易证∠PMO+∠PNO=180°,从而可得四边形PMON内接于圆,直径OP=2;(2)如图一,易证四边形PMON是矩形,则有MN=OP=2,问题得以解决;(3)①如图二,根据等弧所对的圆心角相等可得∠COP1=∠BOP1=60°,根据圆内接四边形的对角互补可得∠MP1N=60°.根据角平分线的性质可得P1M=P1N,从而得到△P1MN是等边三角形,则有MN=P1M.然后在Rt△P1MO运用三角函数就可解决问题;②设四边形PMON的外接圆为⊙O′,连接NO′并延长,交⊙O′于点Q,连接QM,如图三,根据圆周角定理可得∠QMN=90°,∠MQN=∠MPN=60°,在Rt△QMN中运用三角函数可得:MN=QN•sin∠MQN,从而可得MN=OP•sin∠MQN,由此即可解决问题;(4)由(3)②中已得结论MN=OP•sin∠MQN可知,当∠MQN=90°时,MN最大,问题得以解决.试题解析:(1)如图一,∵PM⊥OC,PN⊥OB,∴∠PMO=∠PNO=90°,∴∠PMO+∠PNO=180°,∴四边形PMON内接于圆,直径OP=2;(2)如图一,∵AB⊥OC,即∠BOC=90°,∴∠BOC=∠PMO=∠PNO=90°,∴四边形PMON是矩形,∴MN=OP=2,∴MN的长为定值,该定值为2;(3)①如图二,∵P1是的中点,∠BOC=120°,∴∠COP1=∠BOP1=60°,∠MP1N=60°,∵P1M⊥OC,P1N⊥OB,∴P1M=P1N,∴△P1MN是等边三角形,∴MN=P1M.∵P1M=OP1•sin∠MOP1=2×sin60°=,∴MN=;②设四边形PMON的外接圆为⊙O′,连接NO′并延长,交⊙O′于点Q,连接QM,如图三,则有∠QMN=90°,∠MQN=∠MPN=60°,在Rt△QMN中,sin∠MQN=,∴MN=QN•sin∠MQN,∴MN=OP•sin∠MQN=2×sin60°=2×=,∴MN是定值.(4)由(3)②得MN=OP•sin∠MQN=2sin∠MQN.当直径AB与CD相交成90°角时,∠MQN=180°﹣90°=90°,MN取得最大值2.考点:圆的综合题.。
中考数学锐角三角函数-经典压轴题含答案解析
一、锐角三角函数真题与模拟题分类汇编(难题易错题)1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米.【答案】553【解析】【分析】如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可.【详解】解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.∵AM⊥CD,∴∠QMP=∠MPO=∠OQM=90°,∴四边形OQMP是矩形,∴QM=OP,∵OC=OD=10,∠COD=60°,∴△COD是等边三角形,∵OP⊥CD,∠COD=30°,∴∠COP=12∴QM=OP=OC•cos30°=3∵∠AOC=∠QOP=90°,∴∠AOQ=∠COP=30°,∴AQ=1OA=5(分米),2∴AM=AQ+MQ=5+3∵OB∥CD,∴∠BOD=∠ODC=60°在Rt△OFK中,KO=OF•cos60°=2(分米),FK=OF•sin60°=23(分米),在Rt△PKE中,EK=22-=26(分米),EF FK∴BE=10−2−26=(8−26)(分米),在Rt△OFJ中,OJ=OF•cos60°=2(分米),FJ=23(分米),在Rt△FJE′中,E′J=22-(2)=26,63∴B′E′=10−(26−2)=12−26,∴B′E′−BE=4.故答案为:5+53,4.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.2.如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为63米,山坡的坡角为30°.小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF=1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【答案】6.4米【解析】解:∵底部B点到山脚C点的距离BC为6 3 米,山坡的坡角为30°.∴DC=BC•cos30°=3639==米,2∵CF=1米,∴DC=9+1=10米,∴GE=10米,∵∠AEG=45°,∴AG=EG=10米,在直角三角形BGF中,BG=GF•tan20°=10×0.36=3.6米,∴AB=AG-BG=10-3.6=6.4米,答:树高约为6.4米首先在直角三角形BDC中求得DC的长,然后求得DF的长,进而求得GF的长,然后在直角三角形BGF中即可求得BG的长,从而求得树高3.已知:△ABC内接于⊙O,D是弧BC上一点,OD⊥BC,垂足为H.(1)如图1,当圆心O在AB边上时,求证:AC=2OH;(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB 于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣∠ABD=2∠BDN,AC=,BN=,tan∠ABC=,求BF的长.【答案】(1)证明见解析;(2)证明见解析;(3)24.【解析】试题分析:(1)易证OH为△ABC的中位线,可得AC=2OH;(2)∠APB=∠PAC+∠ACP,∠ACD=∠ACB+∠BCD,又∵∠PAC =∠BCD,可证∠ACD=∠APB;(3)连接AO延长交于⊙O于点I,连接IC,AB与OD相交于点M,连接OB,易证∠GBN=∠ABC,所以BG=BQ.在Rt△BNQ中,根据tan∠ABC=,可求得NQ、BQ的长.利用圆周角定理可求得IC和AI 的长度,设QH=x,利用勾股定理可求出QH和HD的长度,利用垂径定理可求得ED的长度,最后利用tan∠OED=即可求得RG的长度,最后由垂径定理可求得BF的长度.试题解析:(1)在⊙O中,∵OD⊥BC,∴BH=HC,∵点O是AB的中点,∴AC=2OH;(2)在⊙O中,∵OD⊥BC,∴弧BD=弧CD,∴∠PAC=∠BCD,∵∠APB=∠PAC+∠ACP,∠ACD=∠ACB+∠BCD,∴∠ACD=∠APB;(3)连接AO延长交于⊙O于点I,连接IC,AB 与OD相交于点M,连接OB,∵∠ACD﹣∠ABD=2∠BDN,∴∠ACD﹣∠BDN=∠ABD+∠BDN,∵∠ABD+∠BDN=∠AND,∴∠ACD﹣∠BDN=∠AND,∵∠ACD+∠ABD=180°,∴2∠AND=180°,∴∠AND=90°,∵tan∠ABC=,∴,∴,∴,∵∠BNQ=∠QHD=90°,∴∠ABC=∠QDH,∵OE=OD,∴∠OED=∠QDH,∵∠ERG=90°,∴∠OED=∠GBN,∴∠GBN=∠ABC,∵AB⊥ED,∴BG=BQ=,GN=NQ=,∵∠ACI=90°,tan∠AIC=tan∠ABC=,∴,∴IC=,∴由勾股定理可求得:AI=25,设QH=x,∵tan∠ABC=tan∠ODE=,∴,∴HD=2x,∴OH=OD﹣HD=,BH=BQ+QH=,∵OB2=BH2+OH2,∴,解得:,当QH=时,∴QD=,∴ND=,∴MN=,MD=15,∵,∴QH=不符合题意,舍去,当QH=时,∴QD=∴ND=NQ+QD=,ED=,∴GD=GN+ND=,∴EG=ED﹣GD=,∵tan∠OED=,∴,∴EG=RG,∴RG=,∴ BR=RG+BG=12,∴BF=2BR=24.考点:1圆;2相似三角形;3三角函数;4直角三角形.4.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知:如图,AB是半圆O的直径,弦//CD AB,动点P、Q分别在线段OC、CD 上,且DQ OP=,AP的延长线与射线OQ相交于点E、与弦CD相交于点F(点F与点C、D不重合),20AB=,4cos5AOC∠=.设OP x=,CPF∆的面积为y.(1)求证:AP OQ=;(2)求y关于x的函数关系式,并写出它的定义域;(3)当OPE∆是直角三角形时,求线段OP的长.【答案】(1)证明见解析;(2)236030050(10)13x xy xx-+=<<;(3)8OP=【解析】【分析】(1)证明线段相等的方法之一是证明三角形全等,通过分析已知条件,OP DQ=,联结OD后还有OA DO=,再结合要证明的结论AP OQ=,则可肯定需证明三角形全等,寻找已知对应边的夹角,即POA QDO∠=∠即可;(2)根据PFC∆∽PAO∆,将面积转化为相似三角形对应边之比的平方来求;(3)分成三种情况讨论,充分利用已知条件4cos5AOC∠=、以及(1)(2)中已证的结论,注意要对不符合(2)中定义域的答案舍去.【详解】(1)联结OD,∵OC OD=,∴OCD ODC∠=∠,∵//CD AB,∴OCD COA∠=∠,∴POA QDO∠=∠.在AOP∆和ODQ∆中,{OP DQPOA QDOOA DO=∠=∠=,∴AOP∆≌ODQ∆,∴AP OQ =;(2)作PH OA ⊥,交OA 于H , ∵4cos 5AOC ∠=, ∴4455OH OP x ==,35PH x =, ∴132AOP S AO PH x ∆=⋅=. ∵//CD AB , ∴PFC ∆∽PAO ∆, ∴2210()()AOPy CP x S OP x∆-==, ∴2360300x x y x-+=,当F 与点D 重合时,∵42cos 210165CD OC OCD =⋅∠=⨯⨯=, ∴101016x x =-,解得5013x =, ∴2360300x x y x-+=50(10)13x <<; (3)①当90OPE ∠=时,90OPA ∠=, ∴4cos 1085OP OA AOC =⋅∠=⨯=; ②当90POE ∠=时,1010254cos cos 25OC CQ QCO AOC ====∠∠,∴252OP DQ CD CQ CD ==-=-2571622=-=, ∵501013OP <<, ∴72OP =(舍去); ③当90PEO ∠=时,∵//CD AB , ∴AOQ DQO ∠=∠, ∵AOP ∆≌ODQ ∆, ∴DQO APO ∠=∠, ∴AOQ APO ∠=∠,∴90AEO AOP ∠=∠=,此时弦CD 不存在,故这种情况不符合题意,舍去;综上,线段OP 的长为8.5.如图,在正方形ABCD 中,E 是边AB 上的一动点,点F 在边BC 的延长线上,且CF AE =,连接DE ,DF ,EF . FH 平分EFB ∠交BD 于点H .(1)求证:DE DF ⊥; (2)求证:DH DF =:(3)过点H 作HM EF ⊥于点M ,用等式表示线段AB ,HM 与EF 之间的数量关系,并证明.【答案】(1)详见解析;(2)详见解析;(3)22EF AB HM =-,证明详见解析. 【解析】 【分析】(1)根据正方形性质, CF AE =得到DE DF ⊥.(2)由AED CFD △△≌,得DE DF =.由90ABC ∠=︒,BD 平分ABC ∠, 得45DBF ∠=︒.因为FH 平分EFB ∠,所以EFH BFH ∠=∠.由于45DHF DBF BFH BFH ∠=∠+∠=︒+∠,45DFH DFE EFH EFH ∠=∠+∠=︒+∠, 所以DH DF =.(3)过点H 作HN BC ⊥于点N ,由正方形ABCD 性质,得222BD AB AD AB =+=.由FH 平分,EFB HM EF HN BC ∠⊥⊥,,得HM HN =.因为4590HBN HNB ∠=︒∠=︒,,所以22sin 45HNBH HN HM ===︒.由22cos 45DFEF DF DH ===︒,得22EF AB HM =-.【详解】(1)证明:∵四边形ABCD 是正方形,∴AD CD =,90EAD BCD ADC ∠=∠=∠=︒. ∴90EAD FCD ∠=∠=︒. ∵CF AE =。
九年级数学锐角三角函数考试题及答案解析
达标训练基础•巩固1.在Rt △ABC 中,如果各边长度都扩大2倍,则锐角A 的正弦值和余弦值( )A.都没有变化B.都扩大2倍C.都缩小2倍D.不能确定 思路解析:当Rt △ABC 的各边长度都扩大二倍,所得新三角形与原三角形相似,故锐角A 大小不变. 答案:A2.已知α是锐角,且cosα=54,则sinα=( )A.259 B.54 C.53 D.2516 思路解析:由cosα=54,可以设α的邻边为4k ,斜边为5k ,根据勾股定理,α的对边为3k ,则sinα=53. 答案:C 3.Rt △ABC 中,∠C=90°,AC ∶BC=1∶3,则cosA=_______,tanA=_________.思路解析:画出图形,设AC=x ,则BC=x 3,由勾股定理求出AB=2x ,再根据三角函数的定义计算. 答案:21,34.设α、β为锐角,若sinα=23,则α=________;若tanβ=33,则β=_________.思路解析:要熟记特殊角的三角函数值 答案:60°,30°5.用计算器计算:sin51°30′+ cos49°50′-tan46°10′的值是_________. 思路解析:用计算器算三角函数的方法和操作步骤. 答案:0.386 06.△ABC 中,∠BAC=90°,AD 是高,BD=9,tanB=34,求AD 、AC 、BC.思路解析:由条件可知△ABC 、△ABD 、△ADC 是相似的直角三角形,∠B=∠CAD ,于是有tan ∠CAD=tanB=34,所以可以在△ABD 、△ADC 中反复地运用三角函数的定义和勾股定理来求解.解:根据题意,设AD=4k ,BD=3k ,则AB=5k.在Rt △ABC 中,∵tanB=34,∴AC=34AB=320k.∵BD=9,∴k=3. 所以AD=4×3=12,AC=320×3=20. 根据勾股定理25152022=+=BC .综合•应用7.已知α是锐角,且sinα=54,则cos(90°-α)=( )A.54B.43C.53D.51 思路解析:方法1.运用三角函数的定义,把α作为直角三角形的一个锐角看待,从而对边、邻边、斜边之比为4∶3∶5,(90°-α)是三角形中的另一个锐角,邻边与斜边之比为4∶5,cos(90°-α)=54.方法2.利用三角函数中互余角关系“sinα=cos(90°-α)”. 答案:A8.若α为锐角,tana=3,求ααααsin cos sin cos +-的值. 思路解析:方法1.运用正切函数的定义,把α作为直角三角形的一个锐角看待,从而直角三角形三边之比为3∶1∶10,sinα=103,cosα=101,分别代入所求式子中.方法2.利用tanα=ααcos sin 计算,因为cos α≠0,分子、分母同除以cosα,化简计算. 答案:原式=213131tan 1tan 1cos sin cos cos cos sin cos cos =+-=+-=+-αααααααααα. 9.已知方程x 2-5x·sinα+1=0的一个根为32+,且α为锐角,求tanα. 思路解析:由根与系数的关系可先求出方程的另一个根是32-,进而可求出sinα=54,然后利用前面介绍过的方法求tanα.解:设方程的另一个根为x 2,则(32+)x 2=1 ∴x 2=32-∴5sinα=(32+)+(32-),解得sinα=54.设锐角α所在的直角三角形的对边为4k ,则斜边为5k ,邻边为3k , ∴tanα=3434=k k . 10.同学们对公园的滑梯很熟悉吧!如图28.1-13是某公园(六·一)前新增设的一台滑梯,该滑梯高度AC=2 m ,滑梯着地点B 与梯架之间的距离BC=4 m.图28.1-13(1)求滑梯AB 的长(精确到0.1 m);(2)若规定滑梯的倾斜角(∠ABC)不超过45°属于安全范围,请通过计算说明这架滑梯的倾斜角是否要求?思路解析:用勾股定理可以计算出AB 的长,其倾斜角∠ABC 可以用三角函数定义求出,看是否在45°范围内.解:(1)在Rt △ABC 中,2242+=AB ≈4.5. 答:滑梯的长约为4.5 m.(2)∵tanB=5.0=BCAC ,∴∠ABC≈27°, ∠ABC≈27°<45°.所以这架滑梯的倾斜角符合要求. 11.四边形是不稳定的.如图28.1-14,一矩形的木架变形为平行四边形,当其面积变为原矩形的一半时,你能求出∠α的值吗?图28.1-14思路解析:面积的改变实际上是平行四边形的高在改变,结合图形,可以知道h=b 21,再在高所在的直角三角形中由三角函数求出α的度数.解:设原矩形边长分别为a ,b ,则面积为ab , 由题意得,平行四边形的面积S=21ab.又因为S=ah=a(bsinα),所以21ab=absinα,即sinα=21.所以α=30°.回顾•展望12.(2010海南模拟) 三角形在正方形网格纸中的位置如图28.3-15所示,则sinα的值是( )图28.1-15A.43B.34C.53D.54思路解析:观察格点中的直角三角形,用三角函数的定义. 答案:C13.(2010陕西模拟) 如图28.1-17,⊙O 是△ABC 的外接圆,AD 是⊙O的直径,连接CD ,若⊙O 的半径23 r ,AC=2,则cosB 的值是( )图28.1-17A.23B.35C.25D.32 思路解析:利用∠BCD=∠A 计算. 答案:D14.(浙江模拟) 在△ABC 中,∠C=90°,AB=15,sinA=31,则BC=( )A.45B.5C.51D.451 思路解析:根据定义sinA=ABBC ,BC=AB·sinA. 答案:B 15.(广西南宁课改模拟) 如图28.3-16,CD 是Rt △ABC 斜边上的高,AC=4,BC=3,则cos ∠BCD=( )图28.1-16A.53B.43C.34D.54思路解析:直径所对的圆周角是直角,设法把∠B 转移到Rt △ADC 中,由“同圆或等圆中,同弧或等弧所对的圆周角相等”,得到∠ADC=∠B. 答案:B16.(浙江舟山模拟) 课本中,是这样引入“锐角三角函数”的:如图28.1-18,在锐角α的终边OB 上,任意取两点P 和P 1,分别过点P和P 1做始边OA 的垂线PM 和P 1M 1,M 和M 1为垂足.我们规定,比值________叫做角α的正弦,比值________叫做角α的余弦.这是因为,由相似三角形的性质,可推得关于这些比值得两个等式:________,________.说明这些比值都是由________唯一确定的,而与P 点在角的终边上的位置无关,所以,这些比值都是自变量α的函数.图28.1-18思路解析:正弦、余弦函数的定义.答案:11111,,,OP OM OP OM OP M P OP PM OP OM OP PM ==,锐角α 17.(2010重庆模拟) 计算:2-1-tan60°+(5-1)0+|3|;思路解析:特殊角的三角函数,零指数次幂的意义,负指数次幂的意义. 解:2-1-tan60°+(5-1)0+|3|=21-3+1+3=23.18.(2010北京模拟) 已知:如图28.1-19,△ABC 内接于⊙O ,点D 在OC 的延长线上,sinB=21,∠CAD=30°.图28.1-19(1)求证:AD 是⊙O 的切线; (2)若OD ⊥AB ,BC=5,求AD 的长. 思路解析:圆的切线问题跟过切点的半径有关,连接OA ,证∠OAD=90°.由sinB=21可以得到∠B=30°,由此得到圆心角∠AOD=60°,从而得到△ACO 是等边三角形,由此∠OAD=90°.AD 是Rt △OAD 的边,有三角函数可以求出其长度.(1)证明:如图,连接OA.∵sinB=21,∴∠B=30°.∴∠AOD=60°.∵OA=OC ,∴△ACO 是等边三角形. ∴∠OAD=60°.∴∠OAD=90°.∴AD 是⊙O 的切线.(2)解:∵OD ⊥AB ∴ OC 垂直平分AB. ∴ AC=BC=5.∴OA=5. 在Rt △OAD 中,由正切定义,有tan ∠AOD=OA AD . ∴ AD=35.。
锐角三角函数的全集汇编附解析
锐角三角函数的全集汇编附解析一、选择题1.如图,正方形ABCD 中,点E 、F 分别在边CD ,AD 上,BE 与CF 交于点G .若4BC =,1DE AF ==,则GF 的长为( )A .135B .125C .195D .165【答案】A【解析】【分析】根据正方形的性质以及勾股定理求得5BE CF ==,证明BCE CDF ∆≅∆,根据全等三角形的性质可得CBE DCF ∠=∠,继而根据cos cos BC CG CBE ECG BE CE∠=∠==,可求得CG 的长,进而根据GF CF CG =-即可求得答案.【详解】∵四边形ABCD 是正方形,4BC =,∴4BC CD AD ===,90BCE CDF ∠=∠=︒,∵1AF DE ==,∴3DF CE ==, ∴22345BE CF =+=,在BCE ∆和CDF ∆中, BC CD BCE CDF CE DF =⎧⎪∠=∠⎨⎪=⎩,∴()BCE CDF SAS ∆≅∆,∴CBE DCF ∠=∠,∵90CBE CEB ECG CEB CGE ∠+∠=∠+∠=︒=∠,cos cos BC CG CBE ECG BE CE ∠=∠==, ∴453CG =,125CG =, ∴1213555GF CF CG =-=-=,故选A.【点睛】本题考查了正方形的性质,勾股定理,全等三角形的判定与性质,三角函数等知识,综合性较强,熟练掌握和灵活运用相关知识是解题的关键.注意数形结合思想的运用.2.如图,为了加快开凿隧道的施工进度,要在小山的两端同时施工.在AC 上找一点B ,取145ABD ∠=o ,500BD m =,55D ∠=o ,要使A ,C ,E 成一直线,那么开挖点E 离点D 的距离是( )A .500sin55m oB .500cos55m oC .500tan55m oD .500cos55m o【答案】B【解析】【分析】根据已知利用∠D 的余弦函数表示即可.【详解】 在Rt △BDE 中,cosD=DE BD, ∴DE=BD •cosD=500cos55°.故选B .【点睛】 本题主要考查了解直角三角形的应用,正确记忆三角函数的定义是解决本题的关键.3.如图,在△ABC 中,AC ⊥BC ,∠ABC =30°,点D 是CB 延长线上的一点,且AB =BD ,则tan D 的值为( )A .3B .33C .23D .23【答案】D【解析】【分析】 设AC =m ,解直角三角形求出AB ,BC ,BD 即可解决问题.【详解】设AC =m ,在Rt △ABC 中,∵∠C =90°,∠ABC =30°,∴AB =2AC =2m ,BC =3AC =3m ,∴BD =AB =2m ,DC =2m+3m ,∴tan ∠ADC =AC CD =23m m m+=2﹣3. 故选:D .【点睛】本题考查解直角三角形,直角三角形30度角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.如图,从点A 看一山坡上的电线杆PQ ,观测点P 的仰角是45︒,向前走6m 到达B 点, 测得顶端点P 和杆底端点Q 的仰角分别是60︒和30°,则该电线杆PQ 的高度( )A .623+B .63+C .103-D .83+【答案】A【解析】【分析】 延长PQ 交直线AB 于点E ,设PE=x 米,在直角△APE 和直角△BPE 中,根据三角函数利用x 表示出AE 和BE ,列出方程求得x 的值,再在直角△BQE 中利用三角函数求得QE 的长,则问题求解.【详解】解:延长PQ 交直线AB 于点E ,设PE=x .在直角△APE 中,∠A=45°,AE=PE=x ;∵∠PBE=60°∴∠BPE=30°在直角△BPE 中,BE=33PE=33x ,∵AB=AE-BE=6米,则x-3x=6,解得:x=9+33.则BE=33+3.在直角△BEQ中,QE=3BE=3(33+3)=3+3.∴PQ=PE-QE=9+33-(3+3)=6+23.答:电线杆PQ的高度是(6+23)米.故选:A.【点睛】本题考查解直角三角形的实际应用,解答关键是根据题意构造直角三角形解决问题.5.如图,在矩形ABCD中,AB=23,BC=10,E、F分别在边BC,AD上,BE=DF.将△ABE,△CDF分别沿着AE,CF翻折后得到△AGE,△CHF.若AG、CH分别平分∠EAD、∠FCB,则GH长为()A.3 B.4 C.5 D.7【答案】B【解析】【分析】如图作GM⊥AD于M交BC于N,作HT⊥BC于T.通过解直角三角形求出AM、GM的长,同理可得HT、CT的长,再通过证四边形ABNM为矩形得MN=AB=3BN=AM=3,最后证四边形GHTN为平行四边形可得GH=TN即可解决问题.【详解】解:如图作GM⊥AD于M交BC于N,作HT⊥BC于T.∵△ABE沿着AE翻折后得到△AGE,∴∠GAM=∠BAE,AB=AG=3∵AG分别平分∠EAD,∴∠BAE=∠EAG,∵∠BAD=90°,∴∠GAM=∠BAE=∠EAG=30°,∵GM⊥AD,∴∠AMG=90°,∴在Rt △AGM 中,sin ∠GAM =GM AG ,cos ∠GAM =AM AG, ∴GM =AG•sin30°=3,AM =AG•cos30°=3,同理可得HT =3,CT =3,∵∠AMG =∠B =∠BAD =90°,∴四边形ABNM 为矩形,∴MN =AB =23,BN =AM =3,∴GN =MN ﹣GM =3,∴GN =HT ,又∵GN ∥HT ,∴四边形GHTN 是平行四边形,∴GH =TN =BC ﹣BN ﹣CT =10﹣3﹣3=4,故选:B .【点睛】本题考查翻折变换,解直角三角形,矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.6.如图,已知圆O 的内接六边形ABCDEF 的边心距2OM =,则该圆的内接正三角形ACE 的面积为( )A .2B .4C .63D .43【答案】D【解析】【分析】 连接,OC OB ,过O 作ON CE ⊥于N ,证出COB ∆是等边三角形,根据锐角三角函数的定义求解即可.【详解】解:如图所示,连接,OC OB ,过O 作ON CE ⊥于N ,∵多边形ABCDEF 是正六边形,∴60COB ∠=o ,∵OC OB =,∴COB ∆是等边三角形,∴60OCM ∠=o ,∴sin OM OC OCM =•∠, ∴43()sin 60OM OC cm ︒==. ∵30OCN ∠=o , ∴123,223ON OC CN ===, ∴24CE CN ==, ∴该圆的内接正三角形ACE 的面积12334432=⨯⨯⨯=, 故选:D .【点睛】本题考查的是正六边形的性质、等边三角形的判定与性质、三角函数;熟练掌握正六边形的性质,由三角函数求出OC 是解决问题的关键.7.如图,某建筑物的顶部有一块标识牌 CD ,小明在斜坡上 B 处测得标识牌顶部C 的仰角为 45°, 沿斜坡走下来在地面 A 处测得标识牌底部 D 的仰角为 60°,已知斜坡 AB 的坡角为 30°,AB =AE =10 米.则标识牌 CD 的高度是( )米.A .15-3B .20-3C .10-3D .35【答案】A【分析】过点B 作BM ⊥EA 的延长线于点M ,过点B 作BN ⊥CE 于点N ,通过解直角三角形可求出BM ,AM ,CN ,DE 的长,再结合CD =CN +EN−DE 即可求出结论.【详解】解:过点B 作BM ⊥EA 的延长线于点M ,过点B 作BN ⊥CE 于点N ,如图所示.在Rt △ABE 中,AB =10米,∠BAM =30°,∴AM =AB•cos30°=53(米),BM =AB•sin30°=5(米).在Rt △ACD 中,AE =10(米),∠DAE =60°,∴DE =AE•tan60°=103(米).在Rt △BCN 中,BN =AE +AM =10+53(米),∠CBN =45°,∴CN =BN•tan45°=10+53(米),∴CD =CN +EN−DE =10+53+5−103=15−53(米).故选:A .【点睛】本题考查了解直角三角形−仰角俯角问题及解直角三角形−坡度坡脚问题,通过解直角三角形求出BM ,AM ,CN ,DE 的长是解题的关键.8.如图,AB 是垂直于水平面的建筑物.为测量AB 的高度,小红从建筑物底端B 点出发,沿水平方向行走了52米到达点C ,然后沿斜坡CD 前进,到达坡顶D 点处,DC BC =.在点D 处放置测角仪,测角仪支架DE 高度为0.8米,在E 点处测得建筑物顶端A 点的仰角AEF ∠为27︒(点A ,B ,C ,D ,E 在同一平面内).斜坡CD 的坡度(或坡比)1:2.4i =,那么建筑物AB 的高度约为( )(参考数据sin 270.45︒≈,cos270.89︒≈,tan 270.51︒≈)A .65.8米B .71.8米C .73.8米D .119.8米【解析】【分析】过点E 作EM AB ⊥与点M ,根据斜坡CD 的坡度(或坡比)1:2.4i =可设CD x =,则2.4 CG x =,利用勾股定理求出x 的值,进而可得出CG 与DG 的长,故可得出EG 的长.由矩形的判定定理得出四边形EGBM 是矩形,故可得出EM BG =,BM EG =,再由锐角三角函数的定义求出AM 的长,进而可得出结论.【详解】解:过点E 作EM AB ⊥与点M ,延长ED 交BC 于G ,∵斜坡CD 的坡度(或坡比)1:2.4i =,52BC CD ==米,∴设DG x =,则 2.4 CG x =.在Rt CDG ∆中,∵222DG CG DC +=,即222(2.4)52x x +=,解得20x =,∴20DG =米,48CG =米,∴200.820.8EG =+=米,5248100BG =+=米.∵EM AB ⊥,AB BG ⊥,EG BG ⊥,∴四边形EGBM 是矩形,∴100EM BG ==米,20.8BM EG ==米.在Rt AEM ∆中,∵27AEM ︒∠=,∴•tan 271000.5151AM EM ︒=≈⨯=米,∴5120.871.8AB AM BM =+=+=米.故选B .【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.9.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若∠B=60°,则c a a b c b+++的值为( )A .12B .22C .1D .2【答案】C【解析】【分析】先过点A 作AD ⊥BC 于D ,构造直角三角形,结合∠B=60°,利用3sin602︒=,cos60°=12,可求13,,22DB c AD c ==把这两个表达式代入到另一个Rt △ADC 的勾股定理表达式中,化简可得即a 2+c 2=b 2+ac ,再把此式代入通分后所求的分式中,可求其值等于1.【详解】解:过A 点作AD ⊥BC 于D ,在Rt △BDA 中,由于∠B=60°,∴13,,22DB c AD c == 在Rt △ADC 中,DC 2=AC 2﹣AD 2, ∴2221324a c b c ⎛⎫-=- ⎪⎝⎭, 即a 2+c 2=b 2+ac ,∴()()2222222 1.c a c cb a ab a c ab bc b ac ab bc a b c b a b c b ac ab bc b ac ab bc b ++++++++++====++++++++++ 故选C .【点睛】本题考查了特殊角的三角函数值、勾股定理的内容.在直角三角形中,两直角边的平方和等于斜边的平方.注意作辅助线构造直角三角形是解题的好方法.10.如图,在扇形OAB 中,120AOB ∠=︒,点P 是弧AB 上的一个动点(不与点A 、B 重合),C 、D 分别是弦AP ,BP 的中点.若33CD =,则扇形AOB 的面积为( )A .12πB .2πC .4πD .24π【答案】A【解析】【分析】如图,作OH⊥AB于H.利用三角形中位线定理求出AB的长,解直角三角形求出OB即可解决问题.【详解】解:如图作OH⊥AB于H.∵C、D分别是弦AP、BP的中点.∴CD是△APB的中位线,∴AB=2CD=63,∵OH⊥AB,∴BH=AH=33,∵OA=OB,∠AOB=120°,∴∠AOH=∠BOH=60°,在Rt△AOH中,sin∠AOH=AH AO,∴AO=336 sin3AHAOH==∠,∴扇形AOB的面积为:2120612360ππ=g g,故选:A.【点睛】本题考查扇形面积公式,三角形的中位线定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.11.如图,河堤横断面迎水坡AB的坡比是,堤高BC=10m,则坡面AB的长度是()A .15mB .C .20mD .【答案】C【解析】【分析】【详解】 解:∵Rt △ABC 中,BC=10m ,tanA=,∴AC===m . ∴AB=m .故选C .【点睛】 本题考查解直角三角形的应用(坡度坡角问题),锐角三角函数,特殊角的三角函数值及勾股定理,熟练掌握相关知识点正确计算是本题的解题关键.12.如图,在菱形ABCD 中,按以下步骤作图:①分别以点C 和点D 为圆心,大于12CD 为半径作弧,两弧交于点M ,N ;②作直线MN ,且MN 恰好经过点A ,与CD 交于点E ,连接BE ,则下列说法错误的是( )A .60ABC ∠=︒B .2ABE ADE S S ∆=VC .若AB=4,则7BE =D .21sin CBE ∠= 【答案】C【解析】【分析】 由作法得AE 垂直平分CD ,则∠AED=90°,CE=DE ,于是可判断∠DAE=30°,∠D=60°,从而得到∠ABC=60°;利用AB=2DE 得到S △ABE =2S △ADE ;作EH ⊥BC 于H ,如图,若AB=4,则可计算出CH=12CE=1,337 ;利用正弦的定义得sin ∠CBE=21EH BE =.解:由作法得AE垂直平分CD,∴∠AED=90°,CE=DE,∵四边形ABCD为菱形,∴AD=2DE,∴∠DAE=30°,∠D=60°,∴∠ABC=60°,所以A选项的说法正确;∵AB=2DE,∴S△ABE=2S△ADE,所以B选项的说法正确;作EH⊥BC于H,如图,若AB=4,在Rt△ECH中,∵∠ECH=60°,CH=12CE=1,EH=3CH=3,在Rt△BEH中,BE=22(3)527+=,所以C选项的说法错误;sin∠CBE=3211427EHBE==,所以D选项的说法正确.故选C.【点睛】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了菱形的性质和解直角三角形.13.如图,有一个边长为2cm的正六边形纸片,若在该纸片上沿虚线剪一个最大圆形纸片,则这个圆形纸片的半径是()A3cm B.2cm C.23cm D.4cm【答案】A【解析】根据题意画出图形,再根据正多边形圆心角的求法求出∠AOB 的度数,最后根据等腰三角形及直角三角形的性质解答即可.【详解】解:如图所示,正六边形的边长为2cm ,OG ⊥BC ,∵六边形ABCDEF 是正六边形,∴∠BOC=360°÷6=60°,∵OB=OC ,OG ⊥BC ,∴∠BOG=∠COG=12∠BOC =30°, ∵OG ⊥BC ,OB=OC ,BC=2cm , ∴BG=12BC=12×2=1cm , ∴OB=sin 30BG o =2cm , ∴OG=2222213OB BG -=-=, ∴圆形纸片的半径为3cm ,故选:A .【点睛】本题考查的是正多边形和圆,根据题意画出图形,利用直角三角形的性质及正六边形的性质解答是解答此题的关键.14.如图,抛物线y =ax 2+bx+c (a >0)过原点O ,与x 轴另一交点为A ,顶点为B ,若△AOB 为等边三角形,则b 的值为( )A 3B .﹣3C .﹣3D .﹣3【解析】【分析】根据已知求出B(﹣2,24b ba a-),由△AOB为等边三角形,得到2b4a=tan60°×(﹣2ba),即可求解;【详解】解:抛物线y=ax2+bx+c(a>0)过原点O,∴c=0,B(﹣2,24b ba a-),∵△AOB为等边三角形,∴2b4a=tan60°×(﹣2ba),∴b=﹣23;故选B.【点睛】本题考查二次函数图象及性质,等边三角形性质;能够将抛物线上点的关系转化为等边三角形的边关系是解题的关键.15.如图,矩形ABCD的对角线AC、BD相交于点O,AB:BC=2:1,且BE∥AC,CE∥DB,连接DE,则tan∠EDC=()A.14B.16C.26D.310【答案】B【解析】【分析】过点E作EF⊥直线DC交线段DC延长线于点F,连接OE交BC于点G.根据邻边相等的平行四边形是菱形即可判断四边形OBEC是菱形,则OE与BC垂直平分,易得EF=12 x,CF=x.再由锐角三角函数定义作答即可.【详解】解:∵矩形ABCD的对角线AC、BD相交于点O,AB:BC=2:1,∴BC=AD,设AB=2x,则BC=x.如图,过点E作EF⊥直线DC交线段DC延长线于点F,连接OE交BC于点G.∵BE∥AC,CE∥BD,∴四边形BOCE是平行四边形,∵四边形ABCD是矩形,∴OB=OC,∴四边形BOCE是菱形.∴OE与BC垂直平分,∴EF=12AD=12x,OE∥AB,∴四边形AOEB是平行四边形,∴OE=AB=2x,∴CF=12OE=x.∴tan∠EDC=EFDF=122xx x+=16.故选:B.【点睛】本题考查矩形的性质、平行四边形的判定与性质、菱形的判定与性质以及解直角三角形,解题的关键是熟练掌握矩形的性质和菱形的判定与性质,属于中考常考题型.16.如图,AB是⊙O的直径,弦CD⊥AB于E点,若AD=CD= 23.则»BC的长为()A.3πB.23πC3πD23π【答案】B【解析】【分析】根据垂径定理得到3CE DE==»»BC BD=,∠A=30°,再利用三角函数求出OD=2,即可利用弧长公式计算解答.【详解】如图:连接OD ,∵AB 是⊙O 的直径,弦CD ⊥AB 于E 点,AD =CD = 23, ∴3CE DE ==,»»BC BD = ,∠A=30°, ∴∠DOE=60°,∴OD=2sin 60DE =o, ∴»BC的长=»BD 的长=60221803ππ⨯=, 故选:B.【点睛】此题考查垂径定理,三角函数,弧长公式,圆周角定理,是一道圆的综合题.17.已知B 港口位于A 观测点北偏东45°方向,且其到A 观测点正北风向的距离BM 的长为102km ,一艘货轮从B 港口沿如图所示的BC 方向航行47km 到达C 处,测得C 处位于A 观测点北偏东75°方向,则此时货轮与A 观测点之间的距离AC 的长为( )km .A .3B .3C .3D .3【答案】A【解析】【分析】【详解】 解:∵∠MAB=45°,BM=102,∴22BM MA +22(102)(102)+,过点B作BD⊥AC,交AC的延长线于D,在Rt△ADB中,∠BAD=∠MAC﹣∠MAB=75°﹣45°=30°,tan∠BAD=BDAD=33,∴AD=3BD,BD2+AD2=AB2,即BD2+(3BD)2=202,∴BD=10,∴AD=103,在Rt△BCD中,BD2+CD2=BC2,BC=43,∴CD=23,∴AC=AD﹣CD=103﹣23=83km,答:此时货轮与A观测点之间的距离AC的长为83km.故选A.【考点】解直角三角形的应用-方向角问题.18.在Rt△ABC中,∠C=90°,如果∠A=α,BC=a,那么AC等于()A.a•tanαB.a•cotαC.a•sinαD.a•cosα【答案】B【解析】【分析】画出图形,根据锐角三角函数的定义求出即可.【详解】如图,∠C=90°,∠A=α,BC=a,∵cotαAC BC ,∴AC=BC•cotα=a•cotα,故选:B.【点睛】本题考查了锐角三角函数的定义的应用,在直角三角形中,锐角的正弦是角的对边与斜边的比;余弦是角的邻边与斜边的比;正切是对边与邻边的比;余切是邻边与对边的比;熟练掌握三角函数的定义是解题关键.19.如图,在Rt △ABC 内有边长分别为a ,b ,c 的三个正方形.则a 、b 、c 满足的关系式是( )A .b=a+cB .b=acC .b 2=a 2+c 2D .b=2a=2c【答案】A【解析】【分析】 利用解直角三角形知识.在边长为a 和b 两正方形上方的两直角三角形中由正切可得a b c b a c-=-,化简得b =a +c ,故选A. 【详解】请在此输入详解!20.如图,△ABC 的外接圆是⊙O ,半径AO=5,sinB=25,则线段AC 的长为( )A .1B .2C .4D .5【答案】C【解析】【分析】 首先连接CO 并延长交⊙O 于点D ,连接AD ,由CD 是⊙O 的直径,可得∠CAD=90°,又由⊙O 的半径是5,sinB=25,即可求得答案. 【详解】解:连接CO 并延长交⊙O 于点D ,连接AD ,由CD是⊙O的直径,可得∠CAD=90°,∵∠B和∠D所对的弧都为弧AC,∴∠B=∠D,即sinB=sinD=25,∵半径AO=5,∴CD=10,∴2 sin105AC ACDCD===,∴AC=4,故选:C.【点睛】本题考查了同弧所对的圆周角相等,以及三角函数的内容,注意到直径所对的圆周角是直角是解题的关键.。
专题01 锐角三角函数(解析版)
2021-2022学年北师大版数学九年级下册压轴题专题精选汇编专题01 锐角三角函数一.选择题1.(2021春•金台区期末)如图,在Rt△ABC中∠C=90°,直线MN垂直平分AB交AB于M,交BC于N,且∠B=15°,AC=3,则BC的长为( )A.6B.6+3C.6+2D.9【思路引导】如图,连接AN.证明AN=BN,推出∠B=∠NAB=15°,推出∠ANC=30°,再求出AN,CN,可得结论.【完整解答】如图,连接AN.∵MN垂直平分线段AB,∴NA=NB,∴∠B=∠BAN=15°,∴∠ANC=∠B+∠NAB=30°,∵AC=3,∠C=90°,∴AN=2AC=6,CN===3,∴BC=CN+BN=3+6,故选:B.2.(2020秋•南召县期末)如图,在4×5的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的格点上,那么tan∠ABC的值为( )A.B.C.4D.【思路引导】过点A作AE⊥BC于E.根据,tan∠ABC=,求解即可.【完整解答】过点A作AE⊥BC于E.在Rt△ABE中,tan∠ABC===4,故选:C.3.(2020秋•仁寿县期末)等腰三角形底边与底边上的高的比是2:,则它的顶角为( )A.30°B.45°C.60°D.120°【思路引导】证明△ABC是等边三角形,可得结论.【完整解答】如图,AB=AC,AD⊥BC,∴BD=CD,∵BC:AD=2:,∴tan B==,∴∠B=60°,∵AB=AC,∴△ABC是等边三角形,∴∠BAC=60°,故选:C.4.(2020秋•紫金县期末)如图,点A(3,4)在第一象限,OA与x轴所夹的锐角为α,则cosα=( )A.B.C.D.【思路引导】过点A作AE⊥x轴于E.利用勾股定理求出OA,再根据cosα=,可得结论.【完整解答】如图,过点A作AE⊥x轴于E.∵A(3,4),∴OE=3,AE=4,∴OA===5,∴cosα==,故选:B.5.(2021•淄博)如图,在Rt△ABC中,∠ACB=90°,CE是斜边AB上的中线,过点E作EF⊥AB交AC 于点F.若BC=4,△AEF的面积为5,则sin∠CEF的值为( )A.B.C.D.【思路引导】根据直角三角形的斜边中线等于斜边一半可得CE =AE =BE =AB ,进而得到∠BEC =2∠A =∠BFC ,从而有∠CEF =∠CBF ,根据三角形的面积公式求出AF ,由勾股定理,在Rt △BCF 中,求出CF ,再根据锐角三角函数的定义求解即可.【完整解答】连接BF ,∵CE 是斜边AB 上的中线,EF ⊥AB ,∴EF 是AB 的垂直平分线,∴S △AFE =S △BFE =5,∠FBA =∠A ,∴S △AFB =10=AF •BC ,∵BC =4,∴AF =5=BF ,在Rt △BCF 中,BC =4,BF =5,∴CF ==3,∵CE =AE =BE =AB ,∴∠A =∠FBA =∠ACE ,又∵∠BCA =90°=∠BEF ,∴∠CBF =90°﹣∠BFC =90°﹣2∠A ,∠CEF =90°﹣∠BEC =90°﹣2∠A ,∴∠CEF =∠FBC ,∴sin ∠CEF =sin ∠FBC ==,故选:A .6.(2021•宜兴市模拟)如图,在△ABC 中,∠ABC =90°,tan ∠BAC =,AD =2,BD =4,连接CD ,则CD 长的最大值是( )A .2+B .2+1C .2+D .2+2【思路引导】如图,在AD 的下方作Rt △ADT ,使得∠ADT =90°,DT =1,连接CT ,则AT =,证明△DAB ∽△TAC ,推出==,推出TC =2,再根据CD ≤DT +CT ,可得CD ≤1+2,由此即可解决问题.【完整解答】如图,在AD 的下方作Rt △ADT ,使得∠ADT =90°,DT =1,连接CT ,则AT =,∵==2,∴=,∵∠ADT =∠ABC =90°,∴△ADT ∽△ABC ,∴∠DAT =∠BAC ,=∴∠DAB =∠TAC ,∵=,∴△DAB ∽△TAC ,∴==,∴TC =2,∵CD≤DT+CT,∴CD≤1+2,∴CD的最大值为1+2,故选:B.7.(2020秋•北碚区校级期末)北碚区政府计划在缙云山半山腰建立一个基站AB,其设计图如图所示,BF,ED与地面平行,CD的坡度为i=1:0.75,EF的坡角为45°,小王想利用所学知识测量基站顶部A 到地面的距离,若BF=ED,CD=15米,EF=3米,小王在山脚C点处测得基站底部B的仰角为37°,在F点处测得基站顶部A的仰角为60°,则基站顶部A到地面的距离为( )(精确到0.1米,参考数据:≈1.73,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.21.5米B.21.9米C.22.0米D.23.9米【思路引导】延长AB交过点C的水平线于M,交DE延长线于点N,作DG⊥MC于G,FH⊥DN于H,根据锐角三角函数即可求出结果.【完整解答】如图,延长AB交过点C的水平线于M,交DE延长线于点N,作DG⊥MC于G,FH⊥DN于H,∵CD的坡度为i=1:0.75=,∴=,设DG=4k,CG=3k,则CD=5k,∴5k=15,∴k=3,∴DG=12,CG=9,∵EF的坡角为45°,EF=3,∴EH=FH=3,∵四边形BNHF和四边形DGMN是矩形,∴BF=NH=DE,BN=FH=3,DN=MG,NM=DG=12,∴BM=BN+NM=15,在Rt△BCM中,∠BCM=37°,MC=MG+CG=DN+CG=NH+HE+DE+CG=2BF+3+9=2BF+12,∴BM=CM•tan∠BCM,∴15=(2BF+12)×0.75,∴BF=4,在Rt△ABF中,∠AFB=60°,∴AB=BF•tan60°=4≈6.92(米),∴AM=AB+BM=6.92+15≈21.9(米).故选:B.8.(2021•渝中区校级二模)如图,旗杆AB竖立在斜坡CB的顶端,斜坡CB长为65米,坡度为i=.小明从与点C相距115米的点D处向上爬12米到达建筑物DE的顶端点E,在此测得旗杆顶端点A的仰角为39°,则旗杆的高度AB约为( )米.(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81)A.12.9B.22.2C.24.9D.63.1【思路引导】通过作高,构造直角三角形,利用直角三角形的边角关系和坡度即可求出答案.【完整解答】过点B作BF⊥CD,垂足为F,过点E作EG⊥BF,垂足为G,在Rt△BCF中,由斜坡BC的坡度i=,得,=,又BC=65,设BF=12x,FC=5x,由勾股定理得,(12x)2+(5x)2=652,∴x=5,∴BF=60,FC=25,又∵DC=115,∴DF=DC﹣FC=115﹣25=90=EG,在Rt△AEG中,AG=EG•tan39°≈90×0.81=72.9,∴AB=AG+FG﹣BF=72.9+12﹣60=24.9(米),故选:C.二.填空题(共11小题)9.(2021春•沙河口区期末)如图,从一艘船A上测得海岸上高为42米的灯塔顶部B的仰角∠BAC=30°,求船离灯塔的水平距离AC的长度是 71 米(参考数据:≈1.7,≈2.2,结果取整数).【思路引导】由含30°角的直角三角形的性质得AB=2BC=84(米),再由勾股定理即可求解.【完整解答】由题意得:∠ACB=90°,∠BAC=30°,BC=42米,∴AB=2BC=84(米),∴AC===42≈71(米),故答案为:71.10.(2020秋•肥城市期末)如图,在正方形网格中,△ABC的顶点都在格点上,则cos B+sin B的值为 .【思路引导】如图,过点A作AE⊥BC交BC的延长线于E.利用勾股定理求出AB,可得结论.【完整解答】如图,过点A作AE⊥BC交BC的延长线于E.在Rt△ABE中,∠E=90°,AE=3,BE=4,∴AB===5,∴cos B==,sin B==,∴cos B+sin A=+=,故答案为:.11.(2020秋•崇川区期末)如图,若A,B,C,D都在格点处,AB与CD相交于O,则∠BOD的余弦值为 .【思路引导】如图,取格点T,连接CT.DT.利用平行线的性质证明∠BOD=∠TCD,求出CT,CD,可得结论.【完整解答】如图,取格点T,连接CT.DT.观察图象可知,CT∥AB,CT⊥DT,∴∠BOD=∠TCD,∠CTD=90°,∵CT==,CD==5,∴cos∠BDO=cos∠TCD===,故答案为:.12.(2020秋•锡山区期末)如图的正方形网格中,△ABC的顶点都在格点上,则tan∠ACB的值为 .【思路引导】如图,过点A作AH⊥BC于H.利用面积法求出AH,再利用勾股定理求出BH,CH,可得结论.【完整解答】如图,过点A作AH⊥BC于H.∵AB=2,BC=5,=×2×4=•BC•AH,∴S△ABC∴AH=,∴BH===,∴CH=BC﹣BH=5﹣=,∴tan∠ACB===,故答案为:.13.(2020秋•龙口市期末)如图,在Rt△ABC中,∠C=90°,D为边AC上一点,∠A=∠CBD,若AC=8cm,cos∠CBD=,则边AB= 10 cm.【思路引导】根据锐角三角函数即可求出AB的值.【完整解答】∵∠C=90°,∠A=∠CBD,cos∠CBD=,∴cos∠A==,∵AC=8cm,∴AB=10cm.故答案为:10.14.(2020秋•德江县期末)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F,若AC=6,tan B=,则CE= 3 .【思路引导】过点F作FG⊥AB于点G,根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.【完整解答】过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴=,∵AC=6,∠ACB=90°,∴tan B==∴BC=8,AB===10,∴=,∵FC=FG,解得:FC=3,即CE的长为3.故答案为:3.15.(2020秋•新吴区期末)如图,△ABC的顶点都在正方形网格纸的格点上,则sin= .【思路引导】如图,取格点T,连接AT,BT,设BT的中点为H,连接CH.证明CB=CT,利用等腰三角形的性质求解即可.【完整解答】如图,取格点T,连接AT,BT,设BT的中点为H,连接CH.∵BC==5,CT==5,∴CB=CT,∵BH=HT,∴∠HCA=∠HCB,CH⊥BT,∵HT=,∴sin===,故答案为:.16.(2021春•瑞安市月考)如图,在河对岸有一等腰三角形场地EFG,FG=EG,为了估测场地的大小,在笔直的河岸上依次取点C,D,B,A,使FC⊥l,BG⊥l,EA⊥l,点E,G,D在同一直线上,在D观测F后,发现∠FDC=∠EDA,测得CD=12米,DB=6米,AB=12米,则FG= 8 米.【思路引导】过点G作GM⊥AE于G.GN⊥EF于N,过点D作DJ⊥l,过点F作FT⊥AE于T.利用相似三角形的性质证明DF=FG,再证明∠DEA=∠DEF,推出EN=EM=FN,证明△EGM≌△EGN (AAS),推出EM=EN,设AM=m,在Rt△ETF中,利用勾股定理求出方程求出m,即可解决问题.【完整解答】过点G作GM⊥AE于G.GN⊥EF于N,过点D作DJ⊥l,过点F作FT⊥AE于T.∵FC⊥l,BG⊥l,EA⊥l,∴∠FCD=∠EAD=90°,BG∥AE,∵∠FDC=∠EDA,∴△FCD∽△EAD,△GBD∽EAD,∴==2,==,∴DF=2DG,DE=3DG,∴EG=FG=2DG,∴FD=FG,∴∠FDG=∠FGD=∠GFE+∠GEF,∵GE=GF,∴∠GEF=∠GFE,∵∠FDJ+∠FDC=90°,∠EDJ+∠EDA=90°,∠FDC=∠EDA,∴∠FDJ=∠EDJ,∴2∠EDJ=2∠GEF,∴∠EDJ=∠DEF,∵DJ∥AE,∴∠EDJ=∠AED,∴∠DEA=∠DEF,∵GM⊥AE,GN⊥EF,∴∠EMG=∠ENG=90°,∵EG=EG,∴△EGM≌△EGN(AAS),∴EM=EN,∵GE=GF,GN⊥EF,∴FN=EN=EM,∵四边形ABGM,四边形CFTA都是矩形,∴AB=GM=CD=6(米),∵DF=EG,∠FCD=∠GME=90°,∴Rt△FCD≌Rt△EMG(HL),∴CF=EM,设AM=m米则AE=3m米,EM=CF=AT=FN=EN=2m米,∴ET=AE﹣AT=m(米),在Rt△EFT中,FT2+ET2=EF2,∴302+m2=(4m)2,∴m=2或﹣2(舍弃),∴FN=4(米),∵GN=GM=12米,∴FG===8(米),故答案为:8.17.(2021•道里区三模)△ABC中,AB=8,∠B=60°,AC=7,则∠BAC的余弦值为 或 .【思路引导】分两种情况进行解答,即当△ABC是锐角三角形和△ABC是钝角三角形,分别画出相应的图形,通过做高,利用直角三角形的边角过程求出相应的边长,再根据锐角三角函数的意义求出答案.【完整解答】(1)如图1,过点A作AD⊥BC,垂足为D,过点C作CE⊥AC,垂足为E,在Rt△ABD中,∠ABD=60°,AB=8,∴BD=AB=4,AD=AB=4,在Rt△ACD中,CD==1,由三角形的面积公式得,BC•AD=AC•BE,即(4+1)×4=7BE,∴BE=,在Rt△ABE中,AE==,∴cos∠BAC===;(2)如图2,过点A作AD⊥BC,垂足为D,过点C作CF⊥AB,垂足为F,由题意得,BC=4﹣1=3,在Rt△BCF中,∠FBC=60°,BC=3,∴BF=BC=,∴AF=AB﹣FB=8﹣=,在Rt△AFC中,cos∠BAC==;故答案为:或.18.(2021•新洲区模拟)如图,在Rt△ABC中,∠ACB=90°,AC=10,BC=5,M是射线AB上的一动点,以AM为斜边在△ABC外作Rt△AMN,且使tan∠MAN=,O是BM的中点,连接ON.则ON长的最小值为 2 .【思路引导】作NP⊥AB于点P,设AM长为x,用含x代数式表示出ON,然后通过配方求解.【完整解答】作NP⊥AB于点P,在Rt△ACB中,由勾股定理得:AB===5,设AM长为x,则BM=5﹣x,∵tan∠MAN==,∴AN=2MN,∴AM==MN,∴MN=AM=x,AN=2MN=x,同理,在Rt△ANP中可得NP==x,AP=2NP=x,∵O为BM中点,∴BO=BM=,∴AO=AB﹣BO=,∴OP=AO﹣AP=﹣x=,在Rt△ONP中,由勾股定理得ON2=OP2+NP2,即ON2=()2+(x)2=(25x2﹣150x+3125)=(x2﹣6x+125)=(x﹣3)2+20,∴当x=3时,ON2取最小值为20,∴ON最小值为2.故答案为:2.19.(2021•乐山)如图,已知点A(4,3),点B为直线y=﹣2上的一动点,点C(0,n),﹣2<n<3,AC⊥BC于点C,连接AB.若直线AB与x正半轴所夹的锐角为α,那么当sinα的值最大时,n的值为 .【思路引导】当sinα的值最大时,则tanα=值最大,即当BG最大时,sinα的值最大,设BG=y,由tan∠CAM=tan∠BCG,得到y=﹣(n﹣3)(n+2),进而求解.【完整解答】过点A作AM⊥y轴于点M,作AN⊥BN交于点N,∵直线y=﹣2∥x轴,故∠ABN=α,当sinα的值最大时,则tanα=值最大,故BN最小,即BG最大时,tanα最大,即当BG最大时,sinα的值最大,设BG=y,则AM=4,GC=n+2,CM=3﹣n,∵∠ACM+∠MAC=90°,∠ACM+∠BCG=90°,∴∠CAM=∠BCG,∴tan∠CAM=tan∠BCG,∴,即,∴y=﹣(n﹣3)(n+2),∵﹣<0,故当n=(3﹣2)=时,y取得最大值,故n=,故答案为:.三.解答题20.(2021•河池)如图,小明同学在民族广场A处放风筝,风筝位于B处,风筝线AB长为100m,从A处看风筝的仰角为30°,小明的父母从C处看风筝的仰角为50°.(1)风筝离地面多少m?(2)A、C相距多少m?(结果保留小数点后一位,参考数据:sin30°=0.5,cos30°≈0.8660,tan30°≈0.5774,sin50°≈0.7760,cos50°≈0.6428,tan50°≈1.1918)【思路引导】(1)过B作BD⊥AC于D,由含30°角的直角三角形的性质即可求解;(2)由锐角三角函数定义求出CD、AD的长,即可求解.【完整解答】(1)过B作BD⊥AC于D,如图所示:则∠ADB=∠CDB=90°,∵∠BAD=30°,∴BD=AB=50(m),即风筝离地面50m;(2)由(1)得:BD=50m,在Rt△BCD中,∠BCD=50°,∵tan∠BCD==tan50°≈1.1918,∴CD≈=≈41.95(m),在Rt△ABD中,∠BAD=30°,∵tan∠BAD==tan30°≈0.5774,∴AD≈≈86.60(m),∴AC=AD+CD≈41.95+86.60≈128.6(m),即A、C相距约128.6m.21.(2020秋•长沙期末)如图,A、B、D三点在同一水平线上,CD⊥AD,∠A=45°,∠CBD=75°,AB=60m.(1)求∠ACB的度数;(2)求线段CB的长度.【思路引导】(1)利用三角形的外角的性质求解即可.(2)如图,过点B作BH⊥AC于H,利用等腰直角三角形的性质求出BH,再根据BC=2BH,可得结论.【完整解答】(1)∵∠CBD=∠A+∠ACB,∠A=45°,∠CBD=75°,∠∠ACB=75°﹣45°=30°.(2)如图,过点B作BH⊥AC于H.∵∠BHA=90°,AB=60m,∠A=45°,∴BH=AB•sin45°=60(m),∵∠BCH=30°,∴BC=2BH=120(m).22.(2021•朝阳)一数学兴趣小组去测量一棵周围有围栏保护的古树的高,在G处放置一个小平面镜,当一位同学站在F点时,恰好在小平面镜内看到这棵古树的顶端A的像,此时测得FG=3m,这位同学向古树方向前进了9m后到达点D,在D处安置一高度为1m的测角仪CD,此时测得树顶A的仰角为30°,已知这位同学的眼睛与地面的距离EF=1.5m,点B,D,G,F在同一水平直线上,且AB,CD,EF均垂直于BF,求这棵古树AB的高.(小平面镜的大小和厚度忽略不计,结果保留根号)【思路引导】过点C作CH⊥AB于点H,则CH=BD,BH=CD=1m,由锐角三角函数定义求出BD=CH=AH,再证△EFG∽△ABG,得=,求出AH=(8+4)m,即可求解.【完整解答】如图,过点C作CH⊥AB于点H,则CH=BD,BH=CD=1m,由题意得:DF=9m,∴DG=DF﹣FG=6(m),在Rt△ACH中,∠ACH=30°,∵tan∠ACH==tan30°=,∴BD=CH=AH,∵EF⊥FB,AB⊥FB,∴∠EFG=∠ABG=90°.由反射角等于入射角得∠EGF=∠AGB,∴△EFG∽△ABG,∴=,即=,解得:AH=(8+4)m,∴AB=AH+BH=(9+4)m,即这棵古树的高AB为(9+4)m.23.(2021•锦州)如图,山坡上有一棵竖直的树AB,坡面上点D处放置高度为1.6m的测倾器CD,测倾器的顶部C与树底部B恰好在同一水平线上(即BC∥MN),此时测得树顶部A的仰角为50°.已知山坡的坡度i=1:3(即坡面上点B处的铅直高度BN与水平宽度MN的比),求树AB的高度(结果精确到0.1m.参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)【思路引导】先求出BC=4.8m,再由锐角三角函数定义即可求解.【完整解答】∵山坡BM的坡度i=1:3,∴i=1:3=tan M,∵BC∥MN,∴∠CBD=∠M,∴tan∠CBD==tan M=1:3,∴BC=3CD=4.8(m),在Rt△ABC中,tan∠ACB==tan50°≈1.19,∴AB≈1.19BC=1.19×4.8≈5.7(m),即树AB的高度约为5.7m.24.(2020秋•阜宁县期末)在Rt△ABC中,∠C=90°,∠A﹣∠B=30°,a﹣b=2﹣2,解这个直角三角形.【思路引导】利用三角形内角和定理构建方程组求出∠A,∠B的值,推出a=b,解方程组求出a,b,即可解决问题.【完整解答】∵,∴,∵,∴,由,解得,∵,∴c=2b=4.25.(2021•荆门)某海域有一小岛P,在以P为圆心,半径r为10(3+)海里的圆形海域内有暗礁.一海监船自西向东航行,它在A处测得小岛P位于北偏东60°的方向上,当海监船行驶20海里后到达B处,此时观测小岛P位于B处北偏东45°方向上.(1)求A,P之间的距离AP;(2)若海监船由B处继续向东航行是否有触礁危险?请说明理由.如果有触礁危险,那么海监船由B 处开始沿南偏东至多多少度的方向航行能安全通过这一海域?【思路引导】(1)通过作垂线构造直角三角形,求出小岛P到航线AB的最低距离PC,与暗礁的半径比较即可得出答案;(2)规划新航线BD,使小岛P到新航线的距离PE等于暗礁的半径,进而求出∠PBD,进而求出∠CBD,确定方向角.【完整解答】(1)过点P作PC⊥AB,交AB的延长线于点C,由题意得,∠PAC=30°,∠PBC=45°,AB=20,设PC=x,则BC=x,在Rt△PAC中,∵tan30°===,∴x=10+10,∴PA=2x=20+20,答:A,P之间的距离AP为(20+20)海里;(2)因为PC﹣10(3+)=10+10﹣30﹣10=10(+1)(﹣)<0,所以有触礁的危险;设海监船无触礁危险的新航线为射线BD,作PE⊥BD,垂足为E,当P到BD的距离PE=10(3+)海里时,有sin∠PBE===,∴∠PBD=60°,∴∠CBD=60°﹣45°=15°,90°﹣15°=75°即海监船由B处开始沿南偏东至多75°的方向航行能安全通过这一海域.26.(2021•天津)如图,一艘货船在灯塔C的正南方向,距离灯塔257海里的A处遇险,发出求救信号.一艘救生船位于灯塔C的南偏东40°方向上,同时位于A处的北偏东60°方向上的B处,救生船接到求救信号后,立即前往救援.求AB的长.(结果取整数)参考数据:tan40°≈0.84,取1.73.【思路引导】通过作垂线,构造直角三角形,利用锐角三角函数的意义列方程求解即可.【完整解答】如图,过点B作BH⊥AC,垂足为H,由题意得,∠BAC=60°,∠BCA=40°,AC=257海里,在Rt△ABH中,∵tan∠BAH=,cos∠BAH=,∴BH=AH•tan60°=AH,AB==2AH,在Rt△BCH中,∵tan∠BCH=,∴CH==(海里),又∵CA=CH+AH,∴257=+AH,所以AH=(海里),∴AB=≈=168(海里),答:AB的长约为168海里.27.(2021•资阳)资阳市为实现5G网络全覆盖,2020﹣2025年拟建设5G基站七千个.如图,在坡度为i=1:2.4的斜坡CB上有一建成的基站塔AB,小芮在坡脚C测得塔顶A的仰角为45°,然后她沿坡面CB 行走13米到达D处,在D处测得塔顶A的仰角为53°.(点A、B、C、D均在同一平面内)(参考数据:sin53°≈,cos53°≈,tan53°≈)(1)求D处的竖直高度;(2)求基站塔AB的高.【思路引导】(1)通过作垂线,利用斜坡CB的坡度为i=1:2.4,CD=13,由勾股定理可求出答案;(2)设出DE的长,根据坡度表示BE,进而表示出CF,由于△ACF是等腰直角三角形,可表示BE,在△ADE中由锐角三角函数可列方程求出DE,进而求出AB.【完整解答】(1)如图,过点C、D分别作AB的垂线,交AB的延长线于点E、F,过点D作DM⊥CF,垂足为M,∵斜坡CB的坡度为i=1:2.4,∴=,即=,设DM=5k米,则CM=12k米,在Rt△CDM中,CD=13米,由勾股定理得,CM2+DM2=CD2,即(5k)2+(12k)2=132,解得k=1,∴DM=5(米),CM=12(米),答:D处的竖直高度为5米;(2)斜坡CB的坡度为i=1:2.4,设DE=12a米,则BE=5a米,又∵∠ACF=45°,∴AF=CF=(12+12a)米,∴AE=AF﹣EF=12+12a﹣5=(7+12a)米,在Rt△ADE中,DE=12a米,AE=(7+12a)米,∵tan∠ADE=tan53°≈,∴=,解得a=,∴DE=12a=21(米),AE=7+12a=28(米),BE=5a=(米),∴AB=AE﹣BE=28﹣=(米),答:基站塔AB的高为米.28.(2021•莱芜区二模)如图,为加强对市内道路交通安全的监督,王警官利用无人机进行检测.某段限速道路AB=328米,当无人机在限速道路的正上方C处时,测得限速道路的起点A的俯角是37°,无人机继续向右水平飞行到达D处,此时又测得起点A的俯角是30°,同时测得限速道路终点B的俯角是45°.求无人机距离地面道路的高度和飞行距离各为多少米.(均精确到1米)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)【思路引导】通过作垂线构造直角三角形,在不同的直角三角形中,利用边角关系进行计算即可.【完整解答】(1)如图,由题意得:∠ECA=37°,∠CDA=30°,∠FDB=45°,CD∥AB,AB=328米,过点C作CM⊥AB于点M,过点D作DN⊥AB于点N,则四边形CDNM是矩形,∵∠ECA=37°,∠CDA=30°,∠FDB=45°,CD∥AB,∴∠CAM=∠ECA=37°,∠DAN=∠CDA=30°,∠B=∠FDB=45°,即无人机距离地面道路的高度为120米,∴,∴CD=MN=AN﹣AM=207.6﹣160≈48米,即无人机的飞行距离为48米.29.(2021•碑林区校级模拟)学校“科技创新小团队”设计的智能照明家居(如图①)的设计方案(如图②)所示:MN为台灯底座,支架AB与MN的夹角为60°.支架AB与BC的夹角可以调节的.试用后发现,当支架AB与BC的夹角为108°时,可以达到较好的照明效果.若AB=21cm,BC=28cm.此时点C离底座MN的距离为多少?(结果精确到0.1cm.参考数据:≈1.41;≈1.73;sin48°≈0.74;cos48°≈0.67;tan48°≈1.11)【思路引导】过点C作CE⊥MN于点M,过点B作BF⊥MN于点F,作BG⊥CE于点G,得矩形EGBF,根据锐角三角函数即可求出CG和BF的值,进而可得结果.【完整解答】如图,过点C作CE⊥MN于点M,过点B作BF⊥MN于点F,作BG⊥CE于点G,得矩形EGBF,在Rt△ABF中,∵∠BAF=60°,AB=21cm,∴∠ABF=30°,∴AF=AB=cm,∴BF=AF=≈18.165(cm),∴GE=BF≈18.165(cm),在Rt△CGB中,∵∠CBG=108°﹣60°=48°,BC=28cm.∴CG=BC×sin48°≈28×0.74≈20.72(cm),∴CE=CG+GE=20.72+18.165≈38.9(cm),答:此时点C离底座MN的距离为38.9cm.。
中考数学锐角三角函数综合题汇编附详细答案
->锐角三角函数真题与模拟题分类汇编(难题易错题)1.如图•从地而上的点A 看一山坡上的电线杆PQ,测得杆顶端点P 的仰角是45。
,向前 走6m 到达B 点,测得杆顶端点P 和杆底端点Q 的仰角分别是60。
和30。
.拐P(2)求该电线杆PQ 的高度(结果精确到lm ).备用数据:盯农1_7, 缶L4 【答案】(1) ZBPQ=30°;(2)该电线杆PQ 的髙度约为9m.【解析】试题分析:(1)延长PQ 交直线AB 于点E,根据直角三角形两锐角互余求得即可:(2)设PE=x 米,在直角AAPE 和直角ABPE 中,根据三角函数利用x 表示出AE 和BE,根 AB=AE-BE 即可列岀方程求得x 的值,再在直角ABQE 中利用三角函数求得QE 的长,则 PQ 的长度即可求解.试题解析:延长PQ 交直线AB 于点E,Z A 二45°,••• AB=AE -BE=6 米,在直角ABPE 中, BE 二迈PE 二』Ex米,33 A B(1) 求Z BPQ 的度数:(1) Z BPQ 二90°・60°二30°;(2) 设 PE 二x 米. 在直角△ APE 中, 则AE=PE=x 米: •・• ZPBE=60° ・・・Z BPE=30°贝I」x-^^-x=6t3解得:x=9+3jj・则BE= (3 JJ+3)米.在直角ABEQ 中,QE=JI B E=』](3J3+3) = (3+JJ )米.3 3PQ=PE-QE=9+3 73 -(3+^3)=6+2 ^3 =9 (米).答:电线杆PQ的髙度约9米.考点:解直角三角形的应用-仰角俯角问题.2.已知RtA ABC中,AB是00的弦,斜边AC交。
0于点D,且AD=DC,延长CB交00 Array(1)图1的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由:(2)如图2,过点E作OO的切线,交AC的延长线于点F.①若CF=CD时,求sinZ CAB的值;②若CF=aCD (a>0)时,试猜想sinZ CAB的值.(用含a的代数式表示,直接写岀结果)p3 ^/a^TZ【答案】(1) AE=CE;(2)①3;②a + 2.【解析】试题分析:(1)连接AE、DE,如图1,根据圆周角泄理可得Z ADE=Z ABE=90%由于AD=DC,根据垂直平分线的性质可得AE=CE;(2)连接AE、ED,如图2,由Z ABE=90°可得AE是。
中考数学:锐角三角函数试卷解析
中考数学:锐角三角函数试卷解析一、选择题1.(2021四川巴中,第8题3分)在Rt△ABC中,C=90,sinA=1/2,则t anB的值为()A.1B.3C.1/2D.2考点:锐角三角函数.分析:依照题意作出直角△ABC,然后依照sinA=,设一条直角边BC 为5x,斜边AB为13x,依照勾股定理求出另一条直角边AC的长度,然后依照三角函数的定义可求出tanB.解答:∵sinA=,设BC=5x,AB=13x,则AC==12x,故tanB==.故选D.点评:本题考查了互余两角三角函数的关系,属于基础题,解题的关键是把握三角函数的定义和勾股定理的运用.2.(2021山东威海,第8题3分)如图,在下列网格中,小正方形的边长均为1,点A、B、O都在格点上,则AOB的正弦值是()A.1B.1/2C.3/5D.2/3考点:锐角三角函数的定义;三角形的面积;勾股定理分析:作ACOB于点C,利用勾股定理求得AC和AB的长,依照正弦的定义即可求解.解答:解:作ACOB于点C.则AC=AB===2,则sinAOB===.故选D.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.(2021四川凉山州,第10题,4分)在△ABC中,若|cosA﹣|+(1﹣tanB)2=0,则C的度数是()A.45B.60C.75D.105考点:专门角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方;三角形内角和定理分析:依照非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,依照三角形的内角和定理可得出C的度数.解答:解:由题意,得cosA=,tanB=1,A=60,B=45,C=180﹣A﹣B=180﹣60﹣45=75.故选:C.点评:此题考查了专门角的三角形函数值及绝对值、偶次方的非负性,属于基础题,关键是熟记一些专门角的三角形函数值,也要注意运用三角形的内角和定理.4.(2021甘肃兰州,第5题4分)如图,在Rt△ABC中,C=90,BC=3,A C=4,那么cosA的值等于()A.1/2B.3/5C.2D.1/5考点:锐角三角函数的定义;勾股定理.分析:第一运用勾股定理求出斜边的长度,再利用锐角三角函数的定义求解.解答:解:∵在Rt△ABC中,C=90,AC=4,BC=3,AB=.cosA=,故选:D.点评:本题要紧考查了锐角三角函数的定义:在直角三角形中,锐角的余弦为邻边比斜边.5.(2021广州,第3题3分)如图1,在边长为1的小正方形组成的网格中,的三个顶点均在格点上,则().(A)(B)(C)(D)【考点】正切的定义.【分析】.【答案】D6.(2021浙江金华,第6题4分)如图,点A(t,3)在第一象限,OA与x 轴所夹的锐角为,则t的值是【】A.1B.1.5C.2D.3【答案】C.【解析】7.(2021滨州,第11题3分)在Rt△ACB中,C=90,AB=10,sinA=,c osA=,tanA=,则BC的长为()A.6B.7.5C.8D.12.5考点:解直角三角形分析:依照三角函数的定义来解决,由sinA==,得到BC==.解答:解:∵C=90AB=10,sinA=,BC=AB=10=6.故选A.点评:本题考查了解直角三角形和勾股定理的应用,注意:在Rt△AC B中,C=90,则sinA=,cosA=,tanA=.8.(2021扬州,第7题,3分)如图,已知AOB=60,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A.3B.4C.5D.6(第1题图)考点:含30度角的直角三角形;等腰三角形的性质分析:过P作PDOB,交OB于点D,在直角三角形POD中,利用锐角三角函数定义求出OD的长,再由PM=PN,利用三线合一得到D为MN 中点,依照MN求出MD的长,由OD﹣MD即可求出OM的长.解答:解:过P作PDOB,交OB于点D,在Rt△OPD中,cos60==,OP=12,OD=6,∵PM=PN,PDMN,MN=2,MD=ND=MN=1,OM=OD﹣MD=6﹣1=5.故选C.点评:此题考查了含30度直角三角形的性质,等腰三角形的性质,熟练把握直角三角形的性质是解本题的关键.9.(2021四川自贡,第10题4分)如图,在半径为1的⊙O中,AOB=4 5,则sinC的值为()A.1B.1/2C.2D.3考点:圆周角定理;勾股定理;锐角三角函数的定义专题:压轴题.分析:第一过点A作ADOB于点D,由在Rt△AOD中,AOB=45,可求得AD与OD的长,继而可得BD的长,然后由勾股定理求得AB的长,继而可求得sinC的值.解答:解:过点A作ADOB于点D,∵在Rt△AOD中,AOB=45,OD=AD=OAcos45=1=,BD=OB﹣OD=1﹣,AB==,∵AC是⊙O的直径,ABC=90,AC=2,sinC=.故选B.点评:此题考查了圆周角定理、三角函数以及勾股定理.此题难度适中,注意把握辅助线的作法,注意数形结合思想的应用.10.(2021浙江湖州,第6题3分)如图,已知Rt△ABC中,C=90,AC =4,tanA=,则BC的长是()A.2B.8C.2D.4分析:依照锐角三角函数定义得出tanA=,代入求出即可.解:∵tanA==,AC=4,BC=2,故选A.点评:本题考查了锐角三角函数定义的应用,注意:在Rt△ACB中,C=90,sinA=,cosA=,tanA=.11.(2021广西来宾,第17题3分)如图,Rt△ABC中,C=90,B=30,BC=6,则AB的长为4考点:解直角三角形.分析:依照cosB=及专门角的三角函数值解题.解答:解:∵cosB=,即cos30=,AB===4.故答案为:4.点评:本题考查了三角函数的定义及专门角的三角函数值,是基础知识,需要熟练把握.12.(2021年贵州安顺,第9题3分)如图,在Rt△ABC中,C=90,A= 30,E为AB上一点且AE:EB=4:1,EFAC于F,连接FB,则tanCFB的值等于()A.30B.45C.60D.15考点:锐角三角函数的定义..分析:tanCFB的值确实是直角△BCF中,BC与CF的比值,设BC=x,则BC与CF就能够用x表示出来.就能够求解.解答:解:依照题意:在Rt△ABC中,C=90,A=30,∵EFAC,EF∥BC,∵AE:EB=4:1,=5,设AB=2x,则BC=x,AC=x.在Rt△CFB中有CF=x,BC=x.则tanCFB==.故选C.点评:本题考查锐角三角函数的概念:在直角三角形中,正弦等于对比斜;余弦等于邻边比斜边;正切等于对边比邻边.13.(2021年广东汕尾,第7题4分)在Rt△ABC中,C=90,若sinA=,则cosB的值是()A.1B.3C.2D.-1分析:依照互余两角的三角函数关系进行解答.解:∵C=90,B=90,cosB=sinA,∵sinA=,cosB=.故选B.点评:本题考查了互余两角的三角函数关系,熟记关系式是解题的关键.14.(2021毕节地区,第15题3分)如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CDAB交AB于D.已知cosACD=,BC =4,则AC的长为()A.1B.4C.3D.2考点:圆周角定理;解直角三角形分析:由以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CDAB交AB于D.易得ACD=B,又由cosACD=,BC=4,即可求得答案.解答:解:∵AB为直径,ACB=90,ACD+BCD=90,∵CDAB,BCD+B=90,ACD,∵cosACD=,cosB=,tanB=,∵BC=4,tanB===,AC=.故选D.点评:此题考查了圆周角定理以及三角函数的性质.此题难度适中,注意把握数形结合思想的应用.15.(2021年天津市,第2题3分)cos60的值等于()A.1/2B.1C.3D.5点:专门角的三角函数值.分析:依照专门角的三角函数值解题即可.解答:解:cos60=.故选A.点评:本题考查专门角的三角函数值,准确把握专门角的函数值是解题关键.二、填空题1.(2021年贵州黔东南11.(4分))cos60=.考点:专门角的三角函数值.分析:依照专门角的三角函数值运算.解答:解:cos60=.点评:本题考查专门角三角函数值的运算,专门角三角函数值运算在中考中经常显现,要把握专门角度的三角函数值.2.(2021江苏苏州,第15题3分)如图,在△ABC中,AB=AC=5,BC=8.若BPC=BAC,则tanBPC=.考点:锐角三角函数的定义;等腰三角形的性质;勾股定理分析:先过点A作AEBC于点E,求得BAE=BAC,故BPC=BAE.再在Rt△BAE中,由勾股定理得AE的长,利用锐角三角函数的定义,求得tanBPC=tanBAE=.解答:解:过点A作AEBC于点E,∵AB=AC=5,BE=BC=8=4,BAE=BAC,∵BPC=BAC,BPC=BAE.在Rt△BAE中,由勾股定理得AE=,tanBPC=tanBAE=.故答案为:.点评:求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.3.(2021四川内江,第23题,6分)如图,AOB=30,OP平分AOB,P COB于点C.若OC=2,则PC的长是.考点:含30度角的直角三角形;勾股定理;矩形的判定与性质.专题:运算题.分析:延长CP,与OA交于点Q,过P作PDOA,利用角平分线定理得到PD=PC,在直角三角形OQC中,利用锐角三角函数定义求出QC的长,在直角三角形QDP中,利用锐角三角函数定义表示出PQ,由QP+PC=QC,求出PC的长即可.解答:解:延长CP,与OA交于点Q,过P作PDOA,∵OP平分AOB,PDOA,PCOB,PD=PC,在Rt△QOC中,AOB=30,OC=2,QC=OCtan30=2=,APD=30,在Rt△QPD中,cos30==,即PQ=DP=PC,QC=PQ+PC,即PC+PC=,解得:PC=.故答案为:点评:此题考查了含30度直角三角形的性质,锐角三角函数定义,熟练把握直角三角形的性质是解本题的关键.4.(2021四川宜宾,第16题,3分)规定:sin(﹣x)=﹣sinx,cos(﹣x)=co sx,sin(x+y)=sinxcosy+cosxsiny.据此判定下列等式成立的是②③④(写出所有正确的序号)①cos(﹣60②sin75③sin2x=2sinx④sin(x﹣y)=sinxcosy﹣cosxsiny.考点:锐角三角函数的定义;专门角的三角函数值.专题:新定义.分析:依照已知中的定义以及专门角的三角函数值即可判定.解答:解:①cos(﹣60)=cos60=,命题错误;②sin75=sin(30+45)=sin30cos45+cos30sin45=+=+=,命题正确;③sin2x=sinxcosx+cosxsinx═2sinxcosx,故命题正确;④sin(x﹣y)=sinxcos(﹣y)+cosxsin(﹣y)=sinxcosy﹣cosxsiny,命题正确.故答案是:②③④.点评:本题考查锐角三角函数以及专门角的三角函数值,正确明白得题目中的定义是关键.5.(2021甘肃白银、临夏,第15题4分)△ABC中,A、B差不多上锐角,若sinA=,cosB=,则C=.考点:专门角的三角函数值;三角形内角和定理.分析:先依照专门角的三角函数值求出A、B的度数,再依照三角形内角和定理求出C即可作出判定.解答:解:∵△ABC中,A、B差不多上锐角sinA=,cosB=,B=60.C=180﹣A﹣B=180﹣60﹣60=60.故答案为:60.点评:本题考查的是专门角的三角函数值及三角形内角和定理,比较简单.6.(2021广西贺州,第18题3分)网格中的每个小正方形的边长差不多上1,△ABC每个顶点都在网格的交点处,则sinA=.考点:锐角三角函数的定义;三角形的面积;勾股定理.分析:依照正弦是角的对边比斜边,可得答案.解答:解:如图,作ADBC于D,CEAB于E,由勾股定理得AB=AC=2,BC=2,AD=3,由BCAD=ABCE,观看内容的选择,我本着先静后动,由近及远的原则,有目的、有打算的先安排与幼儿生活接近的,能明白得的观看内容。
(专题精选)初中数学锐角三角函数的真题汇编附解析
(专题精选)初中数学锐角三角函数的真题汇编附解析一、选择题1.南洞庭大桥是南益高速公路上的重要桥梁,小芳同学在校外实践活动中对此开展测量活动.如图,在桥外一点A 测得大桥主架与水面的交汇点C 的俯角为α,大桥主架的顶端D 的仰角为β,已知测量点与大桥主架的水平距离AB =a ,则此时大桥主架顶端离水面的高CD 为( )A .asinα+asinβB .acosα+acosβC .atanα+atanβD .tan tan a a αβ+ 【答案】C 【解析】【分析】 在Rt △ABD 和Rt △ABC 中,由三角函数得出BC =atanα,BD =atanβ,得出CD =BC+BD =atanα+atanβ即可.【详解】在Rt △ABD 和Rt △ABC 中,AB =a ,tanα=BC AB ,tanβ=BD AB , ∴BC =atanα,BD =atanβ,∴CD =BC+BD =atanα+atanβ,故选C .【点睛】本题考查了解直角三角形﹣仰角俯角问题;由三角函数得出BC 和BD 是解题的关键.2.如图,在ABC ∆中,4AC =,60ABC ∠=︒,45C ∠=︒,AD BC ⊥,垂足为D ,ABC ∠的平分线交AD 于点E ,则AE 的长为( )A .22B .223C .23D .322【答案】C【解析】【分析】在Rt △ADC 中,利用等腰直角三角形的性质可求出AD 的长度,在Rt △ADB 中,由AD 的长度及∠ABD 的度数可求出BD 的长度,在Rt △EBD 中,由BD 的长度及∠EBD 的度数可求出DE 的长度,再利用AE=AD−DE 即可求出AE 的长度.【详解】∵AD ⊥BC∴∠ADC=∠ADB=90︒在Rt △ADC 中,AC=4,∠C=45︒∴AD=CD=在Rt △ADB 中,AD=ABD=60︒∴BD=3AD=3. ∵BE 平分∠ABC ,∴∠EBD=30°.在Rt △EBD 中,BD=3,∠EBD=30°∴∴AE=AD −DE=3=3 故选:C【点睛】本题考查了等腰直角三角形的性质,以及利用特殊角三角函数解直角三角形.3.在Rt △ABC 中,∠C=90°,如果AC=2,cosA=23,那么AB 的长是( )A .3B .43CD 【答案】A【解析】根据锐角三角函数的性质,可知cosA=AC AB =23,然后根据AC=2,解方程可求得AB=3. 故选A.点睛:此题主要考查了解直角三角形,解题关键是明确直角三角形中,余弦值cosA=A ∠的邻边斜边,然后带入数值即可求解.4.如图,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平,再一次折叠纸片,使点A 落在EF 上的点A′处,并使折痕经过点B ,得到折痕BM ,若矩形纸片的宽AB=4,则折痕BM 的长为( )A 83B 43C .8D .83【答案】A【解析】【分析】根据折叠性质可得BE=12AB ,A′B=AB=4,∠BA ′M=∠A=90°,∠ABM=∠MBA ′,可得∠EA ′B=30°,根据直角三角形两锐角互余可得∠EBA ′=60°,进而可得∠ABM=30°,在Rt △ABM 中,利用∠ABM 的余弦求出BM 的长即可.【详解】∵对折矩形纸片ABCD ,使AD 与BC 重合,AB=4,∴BE=12AB=2,∠BEF=90°, ∵把纸片展平,再一次折叠纸片,使点A 落在EF 上的点A’处,并使折痕经过点B , ∴A ′B=AB=4,∠BA ′M=∠A=90°,∠ABM=∠MBA ′,∴∠EA ′B=30°,∴∠EBA ′=60°,∴∠ABM=30°,∴在Rt △ABM 中,AB=BM ⋅cos ∠ABM ,即4=BM ⋅cos30°,解得:83, 故选A.【点睛】本题考查了折叠的性质及三角函数的定义,折叠前后,对应边相等,对应角相等;在直角三角形中,锐角的正弦是角的对边比斜边;余弦是角的邻边比斜边;正切是角的对边比邻边;余切是角的邻边比对边;熟练掌握相关知识是解题关键.5.如图,矩形纸片ABCD ,4AB =,3BC =,点P 在BC 边上,将CDP ∆沿DP 折叠,点C 落在点E 处,PE 、DE 分别交AB 于点O 、F ,且OP OF =,则cos ADF ∠的值为( )A .1113B .1315C .1517D .1719【答案】C【解析】【分析】根据折叠的性质可得出DC=DE 、CP=EP ,由∠EOF=∠BOP 、∠B=∠E 、OP= OF 可得出△OEF ≌AOBP(AAS)根据全等三角形的性质可得出0E=OB 、EF=BP ,设EF=x ,则BP=x 、DF=4-x 、BF=PC=3-x ,进而可得出AF=1+x ,在Rt △DAF 中,利用勾股定理可求出x 的值,再利用余弦的定义即可求出cos ∠ADF 的值.【详解】解:∵矩形纸片ABCD ,点P 在BC 边上,将CDP ∆沿DP 折叠,点C 落在点E 处, 根据折叠性质,可得:△DCP ≌△DEP ,∴.DC=DE=4, CP= EP ,在△OEF 和△OBP 中90 EOF BOP B E OP OF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△OEF ≌△OBP(AAS)∴ОE=OB , EF= ВР.设EF=x,则BP=x ,DF= DE-EF=4-X ,又∵ BF=OB+OF=OE+ OP=PE=PC, РС=ВC-BP=3-x,∴AF=AB-BF=1+x.在Rt △DAF 中,AF 2+AD 2= DF 2,即(1+x) 2+32= (4-x)2解得: x=35∴DF=4-x=175∴cos ∠ADF=1517AD DF = 故选: C.【点睛】本题考查了全等三角形的判定与性质、勾股定理以及解直角三角形,利用勾股定理结合AF=1+x ,求出AF 的长度是解题的关键.6.如图,已知圆O 的内接六边形ABCDEF 的边心距2OM =,则该圆的内接正三角形ACE 的面积为( )A .2B .4C .63D .43【答案】D【解析】【分析】 连接,OC OB ,过O 作ON CE ⊥于N ,证出COB ∆是等边三角形,根据锐角三角函数的定义求解即可.【详解】解:如图所示,连接,OC OB ,过O 作ON CE ⊥于N ,∵多边形ABCDEF 是正六边形,∴60COB ∠=o ,∵OC OB =,∴COB ∆是等边三角形,∴60OCM ∠=o ,∴sin OM OC OCM =•∠, ∴3()sin 603OM OC cm ︒==. ∵30OCN ∠=o , ∴123,223ON OC CN ===, ∴24CE CN ==,∴该圆的内接正三角形ACE的面积123344323=⨯⨯⨯=,故选:D.【点睛】本题考查的是正六边形的性质、等边三角形的判定与性质、三角函数;熟练掌握正六边形的性质,由三角函数求出OC是解决问题的关键.7.如图,菱形ABCD的两个顶点B、D在反比例函数y=的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是()A.﹣5 B.﹣4 C.﹣3 D.﹣2【答案】C【解析】分析:根据题意可以求得点B的坐标,从而可以求得k的值.详解:∵四边形ABCD是菱形,∴BA=BC,AC⊥BD,∵∠ABC=60°,∴△ABC是等边三角形,∵点A(1,1),∴OA=,∴BO=,∵直线AC的解析式为y=x,∴直线BD的解析式为y=-x,∵OB=,∴点B的坐标为(−,),∵点B在反比例函数y=的图象上,∴,解得,k=-3,故选C.点睛:本题考查反比例函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.8.某游乐场新推出了一个“极速飞车”的项目.项目有两条斜坡轨道以满足不同的难度需求,游客可以乘坐垂直升降电梯AB自由上下选择项目难度.其中斜坡轨道BC的坡度(或坡比)为i=1:2,BC=12米,CD=8米,∠D=36°,(其中点A、B、C、D均在同一平面内)则垂直升降电梯AB的高度约为()米.(精确到0.1米,参考数据:tan36°≈0.73,cos36°≈0.81,sin36°≈0.59)A.5.6 B.6.9 C.11.4 D.13.9【答案】C【解析】【分析】根据勾股定理,可得CE,BE的长,根据正切函数,可得AE的长,再根据线段的和差,可得答案.【详解】解:如图,延长DC、AB交于点E,,由斜坡轨道BC的坡度(或坡比)为i=1:2,得BE:CE=1:2.设BE=xm,CE=2xm.在Rt△BCE中,由勾股定理,得BE2+CE2=BC2,即x2+(2x)2=(12)2,解得x=12,BE=12m,CE=24m,DE=DC+CE=8+24=32m,由tan36°≈0.73,得=0.73,解得AB=0.73×32=23.36m.由线段的和差,得AB=AE﹣BE=23.36﹣12=11.36≈11.4m,故选:C.【点睛】本题考查解直角三角形的应用,利用勾股定理得出CE,BE的长是解题关键,又利用了正切函数,线段的和差.9.如图,4个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点,己知菱形的一个内角为60°,A、B、C都是格点,则tan ABC∠=()A.3B.3C.3D.3【答案】A【解析】【分析】直接利用菱形的对角线平分每组对角,结合锐角三角函数关系得出EF,的长,进而利用ECtan ABCBE∠=得出答案.【详解】解:连接DC,交AB于点E.由题意可得:∠AFC=30°, DC⊥AF,设EC=x,则EF=x3x tan30︒,∴BF AF2EF23x ===EC 3tan ABC BE 23x 3x 33====+∠, 故选:A 【点睛】 此题主要考查了菱形的性质以及解直角三角形,正确得出EF 的长是解题关键.10.如图,一张直角三角形纸片BEC 的斜边放在矩形ABCD 的BC 边上,恰好完全重合,边BE ,CE 分别交AD 于点F ,G ,已知8BC =,::4:3:1AF FG GD =,则CD 的长为()A .1B 2C 3D .2【答案】C【解析】【分析】 由ABCD 是矩形,得到AD=BC=8,且矩形的四个角是直角,根据::4:3:1AF FG GD =,可以求出DG 的长度,再根据余角的性质算出∠DCE 的大小,根据三角函数即可算出DC 的长度. 【详解】解:∵四边形ABCD 是矩形,∴AD=BC=8,∠DCB=90︒,又∵::4:3:1AF FG GD =∴1114318GD AD AD ===++, ∵∠ECB=60°,∴∠DCE=906030︒-︒=︒,又∵31tan 303GD CD CD ︒===, ∴3CD =故答案为C.【点睛】本题主要考查矩形、特殊直角三角形、余角的性质,运用线段的比例长算出其中各段的长度是解本题的关键,特殊角的三角函数也是重要知识点,应掌握.11.把Rt ABC ∆三边的长度都扩大为原来的3倍,则锐角A 的余弦值( )A .扩大为原来的3倍B .缩小为原来的13C .扩大为原来的9倍D .不变 【答案】D【解析】【分析】根据相似三角形的性质解答.【详解】三边的长度都扩大为原来的3倍,则所得的三角形与原三角形相似,∴锐角A 的大小不变,∴锐角A 的余弦值不变,故选:D .【点睛】 此题考查相似三角形的判定和性质、锐角三角函数的定义,掌握相似三角形的对应角相等是解题的关键.12.如图,在正方形ABCD 中,3AB =,点M 在CD 的边上,且1DM =,AEM ∆与ADM ∆关于AM 所在直线对称,将ADM ∆按顺时针方向绕点A 旋转90°得到ABF ∆,连接EF ,则cos EFC ∠的值是 ( )A .171365B .61365C .71525D .617【答案】A【解析】【分析】 过点E 作//HG AD ,交AB 于H ,交CD 于G ,作EN BC ⊥于N ,首先证明AEH EMG V :V ,则有13EH AE MG EM == ,设MG x =,则3EH x =,1DG AH x ==+, 在Rt AEH V 中利用勾股定理求出x 的值,进而可求,,,EH BN CG EN 的长度,进而可求FN ,再利用勾股定理求出EF 的长度,最后利用cos FN EFC EF∠=即可求解. 【详解】 过点E 作//HG AD ,交AB 于H ,交CD 于G ,作EN BC ⊥于N ,则90AHG MGE ∠=∠=︒,∵四边形ABCD 是正方形,∴3,90AD AB ABC C D ==∠=∠=∠=︒ ,∴四边形AHGD,BHEN,ENCG 都是矩形.由折叠可得,90,3,1AEM D AE AD DM EM ∠=∠=︒====,90AEH MEG EMG MEG ∴∠+∠=∠+∠=︒ ,AEH EMG ∴∠=∠,AEH EMG ∴V :V ,13EH AE MG EM ∴== . 设MG x =,则3EH x =,1DG AH x ==+在Rt AEH V 中,222AH EH AE +=Q ,222(1)(3)3x x ∴++= , 解得45x =或1x =-(舍去), 125EH BN ∴==,65CG CD DG EN =-== . 1BF DM ==Q 175FN BF BN ∴=+=. 在Rt EFN △ 中, 由勾股定理得,2213EF EN FN =+= ,17cos 1365FN EFC EF ∴∠== . 故选:A .【点睛】 本题主要考查正方形,矩形的性质,相似三角形的判定及性质,勾股定理,锐角三角函数,能够作出辅助线是解题的关键.13.已知圆锥的底面半径为5cm ,侧面积为60πcm 2,设圆锥的母线与高的夹角为θ,则sinθ的值为( )A .313B .513C .512D .1213【答案】C【解析】【分析】先求出圆锥底面周长可得到圆锥侧面展开图扇形的弧长,再利用扇形面积公式12S lr =可求出母线的长,最后利用三角函数即可求出答案.【详解】解:∵圆锥底面周长为2510ππ⨯=,且圆锥的侧面积为60π,∴圆锥的母线长为2601210ππ⨯=,∴sinθ=5 12.故选C.【点睛】本题考查了圆锥和三角函数的相关知识.利用所学知识求出圆锥母线的长是解题的关键.14.如图,抛物线y=ax2+bx+c(a>0)过原点O,与x轴另一交点为A,顶点为B,若△AOB为等边三角形,则b的值为()A3B.﹣3C.﹣3D.﹣3【答案】B【解析】【分析】根据已知求出B(﹣2,24b ba a-),由△AOB为等边三角形,得到2b4a=tan60°×(﹣2ba),即可求解;【详解】解:抛物线y=ax2+bx+c(a>0)过原点O,∴c=0,B(﹣2,24b ba a-),∵△AOB为等边三角形,∴2b4a=tan60°×(﹣2ba),∴b=﹣3故选B.【点睛】本题考查二次函数图象及性质,等边三角形性质;能够将抛物线上点的关系转化为等边三角形的边关系是解题的关键.15.如图,△ABC的顶点是正方形网格的格点,则cos A=()A.12B.22C.32D.55【答案】B【解析】【分析】构造全等三角形,证明△ABD是等腰直角三角形,进行作答.【详解】过A作AE⊥BE,连接BD,过D作DF⊥BF于F.∵AE=BF,∠AEB=∠DFB,BE=DF,∴△AEB≌△BFD,∴AB=DB.∠ABD=90°,∴△ABD是等腰直角三角形,∴cos∠DAB=2 2.答案选B.【点睛】本题考查了不规则图形求余弦函数的方法,熟练掌握不规则图形求余弦函数的方法是本题解题关键.16.如图,矩形ABCD 中,AB>AD,AB=a,AN 平分∠DAB,DM⊥AN 于点M,CN⊥AN于点N.则DM+CN 的值为(用含a 的代数式表示)( )A .aB .45 aC .2aD .2a 【答案】C【解析】【分析】 根据“AN 平分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N”得∠MDC=∠NCD=45°,cos45°=DM CN DE CE= ,所以DM+CN=CDcos45°;再根据矩形ABCD ,AB=CD=a ,DM+CN 的值即可求出.【详解】∵AN 平分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N ,∴∠ADM=∠MDC=∠NCD=45°, ∴00cos 4545D CNMcos +=CD ,在矩形ABCD 中,AB=CD=a ,∴DM+CN=acos45°=2a. 故选C.【点睛】此题考查矩形的性质,解直角三角形,解题关键在于得到cos45°=DM CN DE CE =17.已知在 Rt ABC 中, ∠C = 90°,AC = 8, BC = 15 ,那么下列等式正确的是( )A .8sin 17A =B .cosA=815C .tan A =817D .cot A=815 【答案】D【解析】【分析】 根据锐角三角函数的定义进行作答.【详解】 由勾股定理知,AB=17;A.15sin 17BC A AB == ,所以A 错误;B.8cos 17AC A AB ==,所以,B 错误;C.15tan 8BC A AC ==,所以,C 错误;D.cot AC A BC ==815,所以选D. 【点睛】 本题考查了锐角三角函数的定义,熟练掌握锐角三角函数的定义是本题解题关键.18.如图,一架飞机在点A 处测得水平地面上一个标志物P 的俯角为α,水平飞行m 千米后到达点B 处,又测得标志物P 的俯角为β,那么此时飞机离地面的高度为( )A .cot cot m αβ-千米B .cot cot m βα-千米C .tan tan m αβ-千米 D .tan tan m βα-千米【答案】A【解析】【分析】 根据锐角三角函数的概念进行作答.【详解】 在P 点做一条直线垂直于直线AB 且交于点O ,由锐角三角函数知,AO=PO cot α,BO=PO cot β,又AB=m=AO-BO= PO cot α- PO cot β=cot cot m αβ-. 所以答案选A. 【点睛】本题考查了锐角三角函数的概念,熟练掌握锐角三角函数是本题解题关键.19.如图,河堤横断面迎水坡AB 的坡比是,堤高BC=10m ,则坡面AB 的长度是( )A .15mB .C .20mD .【答案】C【解析】【分析】【详解】 解:∵Rt △ABC 中,BC=10m ,tanA=,∴AC===m . ∴AB=m .故选C .【点睛】 本题考查解直角三角形的应用(坡度坡角问题),锐角三角函数,特殊角的三角函数值及勾股定理,熟练掌握相关知识点正确计算是本题的解题关键.20.如图,ABC ∆是一张顶角是120︒的三角形纸片,,6AB AC BC ==现将ABC ∆折叠,使点B 与点A 重合,折痕DE ,则DE 的长为( )A .1B .2C .2D .3【答案】A【解析】【分析】 作AH ⊥BC 于H ,根据等腰三角形的性质求出BH ,根据翻折变换的性质求出BD ,根据正切的定义解答即可. 【详解】解:作AH ⊥BC 于H ,∵AB=AC ,AH ⊥BC ,BH=12BC=3, ∵∠BAC=120°,AB=AC ,∴∠B=30°,∴AB=30BH cos ︒3 由翻折变换的性质可知,3∴DE=BD •tan30°=1,故选:A .【点睛】此题考查翻折变换的性质、勾股定理的应用,解题关键在于掌握翻折变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.。
锐角三角函数习题+答案解析
锐角三角函数综合复习1. 在△ABC 中,∠C =90°,cosA =,则tan A 等于 ( ) A . B . C . D . 答案、D 解析,根据三角函数定义得tanA 的答案2.在Rt △ABC 中,∠C=90°,把∠A 的邻边与对边的比叫做∠A 的余切,记作cotA=.则下列关系式中不成立的是( )A .tanA•cotA=1B .sinA=tanA•cosAC .cosA=cotA•sinAD .tan 2A+cot 2A=1答案、D 解析3535453443ab第3题3.如图,在四边形ABCD中,E、F分別是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC 等于()A. B. C. D.答案、B4.如图所示,直角三角形纸片的两直角边长分别为6、8,现将△ABC如图那样折叠,使点A与点B重合,折痕为DE,则tan∠CBE的值是( )A.247BC.724D.133 4433545答案、C5.如图所示,已知∠α的终边OP ⊥AB ,直线AB 的方程为yx,则cos α等于 ( )A .B .CD答案、A 解析,根据函数可得α等于60°6.如图,一艘海轮位于灯塔P 的北偏东55°方向,距离灯塔2海里的点A 处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB 长是( )A .2海里B .2sin55°海里C .2cos55°海里D . 2tan55°海里 答案、 C 解析,∠PAB=55° AB=2cos55°7.设θ为锐角,且x 2+3x +2sin θ=0.则θ=( )A 45°B 30°C 60°D 15°122答案、B 解析8.如图,在矩形ABCD中,点E在AB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处,若AB=4,BC=5,则tan∠AFE的值为()3A 1B 2C 3 D4答案、D 解析9.已知△ABC 的外接圆O 的半径为3,AC=4,则sinB=( )第9题 A 32 B 1 C 21 D2 答案、A 解析10.当0°<α<90的值为( ) A Cos α B tan α C 2 D 1答案、D 解析,分子根据sina ²+cosa ²=1,化简得cosa 所以最后答案为111.如图,点E (0,4),O (0,0),C (5,0)在⊙A 上,BE 是⊙A 上的一条弦.则tan∠OBE =( )A 54B 1C 2D 3答案 、A 解析12.在△ABC 中,AB=12,AC=13,cos∠B=,则BC 边长为( )A 15B 16C 17D 18答案、C 解析∠B=45° 作BC 的垂线AD ,则BD=12 ,运用勾股定理,CD=5 所以BC=1713.如图,某仓储中心有一斜坡AB ,其坡度为i=1:2,顶部A 处的高AC 为4m ,B 、C 在同一水平地面上.求斜坡AB 的水平宽度BC ( )A 6B 7C 8D 9答案,C 解析14. 为缓解“停车难”的问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图,如图所示.按规定,地下停车库坡道1:3上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你根据该图计算CE(精确到0.1 m)(sin18°≈0.3090,cos18°≈0.9511,tan18°≈0.3249)()A 2.1B 1.7C 2.3D 3.1答案、C 解析15.如图所示,某中学九年级一班数学课外活动小组利用周末开展课外实践活动,他们要在某公园人工湖旁的小山AB上,测量湖中两个小岛C、D间的距离.从山顶A处测得湖中小岛C的俯角为60°,测得湖中小岛D的俯角为45°.已知小山AB的高为180米,求小岛C、D 间的距离.()A 60B 70C 703D 180-603答案、D 解析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锐角三角函数的真题汇编及答案解析一、选择题1.如图,在正方形ABCD 中,3AB =,点M 在CD 的边上,且1DM =,AEM ∆与ADM ∆关于AM 所在直线对称,将ADM ∆按顺时针方向绕点A 旋转90°得到ABF ∆,连接EF ,则cos EFC ∠的值是 ( )A 171365B 61365C 71525D .617【答案】A【解析】【分析】 过点E 作//HG AD ,交AB 于H ,交CD 于G ,作EN BC ⊥于N ,首先证明AEH EMG V :V ,则有13EH AE MG EM == ,设MG x =,则3EH x =,1DG AH x ==+, 在Rt AEH V 中利用勾股定理求出x 的值,进而可求,,,EH BN CG EN 的长度,进而可求FN ,再利用勾股定理求出EF 的长度,最后利用cos FN EFC EF∠=即可求解. 【详解】 过点E 作//HG AD ,交AB 于H ,交CD 于G ,作EN BC ⊥于N ,则90AHG MGE ∠=∠=︒,∵四边形ABCD 是正方形,∴3,90AD AB ABC C D ==∠=∠=∠=︒ ,∴四边形AHGD,BHEN,ENCG 都是矩形.由折叠可得,90,3,1AEM D AE AD DM EM ∠=∠=︒====,90AEH MEG EMG MEG ∴∠+∠=∠+∠=︒ ,AEH EMG ∴∠=∠,AEH EMG ∴V :V ,13EH AE MG EM ∴== . 设MG x =,则3EH x =,1DG AH x ==+在Rt AEH V 中,222AH EH AE +=Q ,222(1)(3)3x x ∴++= , 解得45x =或1x =-(舍去), 125EH BN ∴==,65CG CD DG EN =-== . 1BF DM ==Q 175FN BF BN ∴=+=. 在Rt EFN △ 中, 由勾股定理得,2213EF EN FN =+=,17cos 1365FN EFC EF ∴∠==. 故选:A .【点睛】本题主要考查正方形,矩形的性质,相似三角形的判定及性质,勾股定理,锐角三角函数,能够作出辅助线是解题的关键.2.如图,为了加快开凿隧道的施工进度,要在小山的两端同时施工.在AC 上找一点B ,取145ABD ∠=o ,500BD m =,55D ∠=o ,要使A ,C ,E 成一直线,那么开挖点E 离点D 的距离是( )A .500sin55m oB .500cos55m oC .500tan55m oD .500cos55m o 【答案】B【解析】【分析】根据已知利用∠D 的余弦函数表示即可.【详解】 在Rt △BDE 中,cosD=DE BD, ∴DE=BD •cosD=500cos55°.故选B .【点睛】 本题主要考查了解直角三角形的应用,正确记忆三角函数的定义是解决本题的关键.3.如图,在△ABC 中,AC ⊥BC ,∠ABC =30°,点D 是CB 延长线上的一点,且BD =BA ,则tan ∠DAC 的值为( )A .23B .3C .33D .3【答案】A【解析】【分析】【详解】 设AC=x ,在Rt △ABC 中,∠ABC=30°,即可得AB=2x ,3,所以BD=BA=2x ,即可得33)x ,在Rt△ACD中,tan∠DAC=(32)32 CD xAC x+==+,故选A.4.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且AB=BD,则tan D的值为()A.23B.33C.23+D.23-【答案】D【解析】【分析】设AC=m,解直角三角形求出AB,BC,BD即可解决问题.【详解】设AC=m,在Rt△ABC中,∵∠C=90°,∠ABC=30°,∴AB=2AC=2m,BC=3AC=3m,∴BD=AB=2m,DC=2m+3m,∴tan∠ADC=ACCD=23m m+=2﹣3.故选:D.【点睛】本题考查解直角三角形,直角三角形30度角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.如图,已知圆O的内接六边形ABCDEF的边心距2OM=,则该圆的内接正三角形ACE的面积为()A.2 B.4 C.63D.43【答案】D【解析】【分析】连接,OC OB ,过O 作ON CE ⊥于N ,证出COB ∆是等边三角形,根据锐角三角函数的定义求解即可.【详解】解:如图所示,连接,OC OB ,过O 作ON CE ⊥于N ,∵多边形ABCDEF 是正六边形,∴60COB ∠=o ,∵OC OB =,∴COB ∆是等边三角形,∴60OCM ∠=o ,∴sin OM OC OCM =•∠, ∴43()sin 603OM OC cm ︒==. ∵30OCN ∠=o , ∴123,22ON OC CN ===, ∴24CE CN ==, ∴该圆的内接正三角形ACE 的面积12334432=⨯⨯⨯=, 故选:D .【点睛】本题考查的是正六边形的性质、等边三角形的判定与性质、三角函数;熟练掌握正六边形的性质,由三角函数求出OC 是解决问题的关键.6.如图,在扇形OAB 中,120AOB ∠=︒,点P 是弧AB 上的一个动点(不与点A 、B 重合),C 、D 分别是弦AP ,BP 的中点.若33CD =AOB 的面积为( )A.12πB.2πC.4πD.24π【答案】A【解析】【分析】如图,作OH⊥AB于H.利用三角形中位线定理求出AB的长,解直角三角形求出OB即可解决问题.【详解】解:如图作OH⊥AB于H.∵C、D分别是弦AP、BP的中点.∴CD是△APB的中位线,∴AB=2CD=63∵OH⊥AB,∴BH=AH=33∵OA=OB,∠AOB=120°,∴∠AOH=∠BOH=60°,在Rt△AOH中,sin∠AOH=AH AO,∴AO=336 sin3AHAOH==∠,∴扇形AOB的面积为:2120612360ππ=g g,故选:A.【点睛】本题考查扇形面积公式,三角形的中位线定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.7.如图,正方形ABCD 中,点E 、F 分别在边CD ,AD 上,BE 与CF 交于点G .若4BC =,1DE AF ==,则GF 的长为( )A .135B .125C .195D .165【答案】A【解析】【分析】根据正方形的性质以及勾股定理求得5BE CF ==,证明BCE CDF ∆≅∆,根据全等三角形的性质可得CBE DCF ∠=∠,继而根据cos cos BC CG CBE ECG BE CE∠=∠==,可求得CG 的长,进而根据GF CF CG =-即可求得答案.【详解】∵四边形ABCD 是正方形,4BC =,∴4BC CD AD ===,90BCE CDF ∠=∠=︒,∵1AF DE ==,∴3DF CE ==, ∴22345BE CF =+=,在BCE ∆和CDF ∆中, BC CD BCE CDF CE DF =⎧⎪∠=∠⎨⎪=⎩,∴()BCE CDF SAS ∆≅∆,∴CBE DCF ∠=∠,∵90CBE CEB ECG CEB CGE ∠+∠=∠+∠=︒=∠,cos cos BC CG CBE ECG BE CE ∠=∠==, ∴453CG =,125CG =, ∴1213555GF CF CG =-=-=, 故选A.【点睛】本题考查了正方形的性质,勾股定理,全等三角形的判定与性质,三角函数等知识,综合性较强,熟练掌握和灵活运用相关知识是解题的关键.注意数形结合思想的运用.8.南洞庭大桥是南益高速公路上的重要桥梁,小芳同学在校外实践活动中对此开展测量活动.如图,在桥外一点A 测得大桥主架与水面的交汇点C 的俯角为α,大桥主架的顶端D 的仰角为β,已知测量点与大桥主架的水平距离AB =a ,则此时大桥主架顶端离水面的高CD 为( )A .asinα+asinβB .acosα+acosβC .atanα+atanβD .tan tan a a αβ+ 【答案】C【解析】【分析】 在Rt △ABD 和Rt △ABC 中,由三角函数得出BC =atanα,BD =atanβ,得出CD =BC+BD =a tanα+atanβ即可.【详解】在Rt △ABD 和Rt △ABC 中,AB =a ,tanα=BC AB ,tanβ=BD AB , ∴BC =atanα,BD =atanβ,∴CD =BC+BD =atanα+atanβ,故选C .【点睛】本题考查了解直角三角形﹣仰角俯角问题;由三角函数得出BC 和BD 是解题的关键.9.如图,4个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点,己知菱形的一个内角为60°,A 、B 、C 都是格点,则tan ABC ∠=( )A .39B .36C .33D .32 【答案】A【解析】【分析】 直接利用菱形的对角线平分每组对角,结合锐角三角函数关系得出EF,的长,进而利用EC tan ABC BE ∠=得出答案. 【详解】解:连接DC ,交AB 于点E .由题意可得:∠AFC=30°, DC ⊥AF,设EC=x,则EF=x =3x tan 30︒, ∴BF AF 2EF 23x === EC 3tan ABC BE 23x 3x 33====+∠, 故选:A【点睛】此题主要考查了菱形的性质以及解直角三角形,正确得出EF 的长是解题关键.10.如图,已知△A 1B 1C 1的顶点C 1与平面直角坐标系的原点O 重合,顶点A 1、B 1分别位于x 轴与y 轴上,且C 1A 1=1,∠C 1A 1B 1=60°,将△A 1B 1C 1沿着x 轴做翻转运动,依次可得到△A 2B 2C 2,△A 3B 3C 3等等,则C 2019的坐标为( )A .(30)B .(3,0)C .(4035233D .(30) 【答案】B【解析】【分析】根据题意可知三角形在x 轴上的位置每三次为一个循环,又因为20193673÷=,那么2019C 相当于第一个循环体的3673C 个即可算出.【详解】由题意知,111C A =,11160C A B ︒∠=,则11130C B A ︒∠=,11222A B A B ==,112233C B C B C B ===结合图形可知,三角形在x 轴上的位置每三次为一个循环,Q 20193673÷=,∴2019673(122019OC =+=+,∴2019C (2019+,故选B .【点睛】考查解直角三角形,平面直角坐标系中点的特征,结合找规律.理解题目中每三次是一个循环是解题关键.11.在Rt △ABC 中,∠C=90°,AC=3,BC=4,那么cosA 的值是( )A .45B .35C .43D .34【答案】B【解析】【分析】根据勾股定理,可得AB 的长,根据锐角的余弦等于邻边比斜边,可得答案.【详解】解:在Rt △ABC 中,∠C=90°,AC=3,BC=4,由勾股定理,得 cosA=AC AB =35故选:B .【点睛】 本题考查锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.12.如图,在Rt △ABC 中,∠ABC=90°,AB=BC=2,以AB 的中点为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为( )A.5342π-B.5342π+C.23π-D.432π-【答案】A【解析】【分析】连接OD,过点O作OH⊥AC,垂足为 H,则有AD=2AH,∠AHO=90°,在Rt△ABC中,利用∠A的正切值求出∠A=30°,继而可求得OH、AH长,根据圆周角定理可求得∠BOC =60°,然后根据S阴影=S△ABC-S△AOD-S扇形BOD进行计算即可.【详解】连接OD,过点O作OH⊥AC,垂足为 H,则有AD=2AH,∠AHO=90°,在Rt△ABC中,∠ABC=90°,AB=23,BC=2,tan∠A=323BCAB==,∴∠A=30°,∴OH=12OA=3,AH=AO•cos∠A=3332⨯=,∠BOC=2∠A=60°,∴AD=2AH=3,∴S阴影=S△ABC-S△AOD-S扇形BOD=()2603113232322360π⨯⨯⨯-⨯⨯-=532π-,故选A.【点睛】本题考查了垂径定理,圆周角定理,扇形面积,解直角三角形等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.13.已知圆锥的底面半径为5cm,侧面积为60πcm2,设圆锥的母线与高的夹角为θ,则sinθ的值为()A .313B .513C .512D .1213【答案】C 【解析】 【分析】先求出圆锥底面周长可得到圆锥侧面展开图扇形的弧长,再利用扇形面积公式12S lr =可求出母线的长,最后利用三角函数即可求出答案. 【详解】解:∵圆锥底面周长为2510ππ⨯=, 且圆锥的侧面积为60π, ∴圆锥的母线长为2601210ππ⨯=, ∴sin θ=512. 故选C. 【点睛】本题考查了圆锥和三角函数的相关知识.利用所学知识求出圆锥母线的长是解题的关键.14.如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得60BAC ∠=︒,70DAC ∠=︒,则竹竿AB 与AD 的长度之比为( ).A .2sin70︒B .2cos70︒C .2tan70︒D .2tan 70︒【答案】B 【解析】 【分析】直接利用锐角三角函数关系分别表示出AB ,AD 的长,即可得出答案.【详解】解:∵∠BAC=60°,∠DAC=70°,∴cos60°=12 ACAB=,则AB=2AC,∴cos70°=ACAD,∴AC=AD•cos70°,AD=cos70AC︒,∴2cos70ACACABAD=︒=2cos70°.故选:B.【点睛】此题主要考查了解直角三角形的应用,正确表示出各边长是解题关键.15.如图,矩形ABCD 中,AB>AD,AB=a,AN 平分∠DAB,DM⊥AN 于点M,CN⊥AN于点N.则DM+CN 的值为(用含a 的代数式表示)( )A.a B.45a C.22a D3【答案】C【解析】【分析】根据“AN平分∠DAB,DM⊥AN于点M,CN⊥AN于点N”得∠MDC=∠NCD=45°,cos45°=DM CNDE CE=,所以DM+CN=CDcos45°;再根据矩形ABCD,AB=CD=a,DM+CN的值即可求出.【详解】∵AN平分∠DAB,DM⊥AN于点M,CN⊥AN于点N,∴∠ADM=∠MDC=∠NCD=45°,∴00cos4545D CNMcos+=CD,在矩形ABCD 中,AB=CD=a , ∴DM+CN=acos45°=2a. 故选C. 【点睛】此题考查矩形的性质,解直角三角形,解题关键在于得到cos45°=DM CNDE CE=16.如图,AB 是⊙O 的直径,弦CD ⊥AB 于E 点,若AD =CD = 23.则»BC的长为( )A .3πB .23π C .33π D .33π【答案】B 【解析】 【分析】根据垂径定理得到3CE DE ==»»BCBD = ,∠A=30°,再利用三角函数求出OD=2,即可利用弧长公式计算解答. 【详解】 如图:连接OD ,∵AB 是⊙O 的直径,弦CD ⊥AB 于E 点,AD =CD = 23 ∴3CE DE ==»»BCBD = ,∠A=30°, ∴∠DOE=60°, ∴OD=2sin 60DE=o, ∴»BC的长=»BD 的长=60221803ππ⨯=, 故选:B.【点睛】此题考查垂径定理,三角函数,弧长公式,圆周角定理,是一道圆的综合题.17.如图,河坝横断面的迎水坡AB的坡比为3:4,BC=6m,则坡面AB的长为()A.6m B.8m C.10m D.12m【答案】C【解析】【分析】迎水坡AB的坡比为3:4得出3tan4BAC∠=,再根据BC=6m得出AC的值,再根据勾股定理求解即可.【详解】由题意得3 tan4BAC∠=∴468tan3BCAC mBAC==⨯=∠∴22228610AB AC BC m++=故选:C.【点睛】本题考查解直角三角形的应用,把坡比转化为三角函数值是关键.18.已知B港口位于A观测点北偏东45°方向,且其到A观测点正北风向的距离BM的长为2km,一艘货轮从B港口沿如图所示的BC方向航行7km到达C处,测得C处位于A观测点北偏东75°方向,则此时货轮与A观测点之间的距离AC的长为()km.A .83B .93C .63D .73【答案】A 【解析】 【分析】 【详解】解:∵∠MAB=45°,BM=102,∴AB=22BM MA +=22(102)(102)+=20km , 过点B 作BD ⊥AC ,交AC 的延长线于D ,在Rt △ADB 中,∠BAD=∠MAC ﹣∠MAB=75°﹣45°=30°, tan ∠BAD=BD AD =33, ∴AD=3BD ,BD 2+AD 2=AB 2,即BD 2+(3BD )2=202, ∴BD=10,∴AD=103,在Rt △BCD 中,BD 2+CD 2=BC 2,BC=43,∴CD=23, ∴AC=AD ﹣CD=103﹣23=83km ,答:此时货轮与A 观测点之间的距离AC 的长为83km . 故选A .【考点】解直角三角形的应用-方向角问题.19.如图1,在△ABC 中,∠B =90°,∠C =30°,动点P 从点B 开始沿边BA 、AC 向点C 以恒定的速度移动,动点Q 从点B 开始沿边BC 向点C 以恒定的速度移动,两点同时到达点C ,设△BPQ 的面积为y (cm 2).运动时间为x (s ),y 与x 之间关系如图2所示,当点P 恰好为AC 的中点时,PQ 的长为( )A.2 B.4 C.23D.43【答案】C【解析】【分析】点P、Q的速度比为3:3,根据x=2,y=63,确定P、Q运动的速度,即可求解.【详解】解:设AB=a,∠C=30°,则AC=2a,BC=3a,设P、Q同时到达的时间为T,则点P的速度为3aT,点Q的速度为3aT,故点P、Q的速度比为3:3,故设点P、Q的速度分别为:3v、3v,由图2知,当x=2时,y=63,此时点P到达点A的位置,即AB=2×3v=6v,BQ=2×3v=23v,y=12⨯AB×BQ=12⨯6v×23v=63,解得:v=1,故点P、Q的速度分别为:3,3,AB=6v=6=a,则AC=12,BC=63,如图当点P在AC的中点时,PC=6,此时点P运动的距离为AB+AP=12,需要的时间为12÷3=4,则BQ=3x=43,CQ=BC﹣BQ=63﹣43=23,过点P作PH⊥BC于点H,PC=6,则PH=PC sin C=6×12=3,同理CH=3,则HQ=CH﹣CQ=333,PQ22PH HQ+39+3,故选:C.【点睛】本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.20.如图,在平面直角坐标系中,四边形ABCD是菱形,点B的坐标是(0,4),点D的坐标是(83,4),点M和点N是两个动点,其中点M从点B出发,沿BA以每秒2个单位长度的速度做匀速运动,到点A后停止,同时点N从点B出发,沿折线BC→CD以每秒4个单位长度的速度做匀速运动,如果其中一个点停止运动,则另一点也停止运动,设M,N两点的运动时间为x,△BMN的面积为y,下列图象中能表示y与x的函数关系的图象大致是()A.B.C.D.【答案】D【解析】【分析】根据两个点的运动变化,写出点N在BC上运动时△BMN的面积,再写出当点N在CD上运动时△BMN的面积,即可得出本题的答案;【详解】解:当0<x⩽2时,如图1:连接BD,AC,交于点O′,连接NM,过点C作CP⊥AB垂足为点P,∴∠CPB=90°,∵四边形ABCD是菱形,其中点B的坐标是(0,4),点D的坐标是3,4),∴BO ′=43,CO′=4, ∴BC=AB=228O B O C+'=', ∵AC=8,∴△ABC 是等边三角形, ∴∠ABC=60°, ∴CP=BC×sin60°=8×3=43,BP=4, BN=4x ,BM=2x ,242BM x x BP ==,2BN xBC =, ∴=BM BNBP BC, 又∵∠NBM=∠CBP , ∴△NBM ∽△CBP , ∴∠NMB=∠CPB=90°, ∴114438322CBP S BP CP =⨯⨯=⨯⨯=V ; ∴2NBM CBP S BN S BC ⎛⎫= ⎪⎝⎭V V , 即y=22283=232NBMCBP BN x S S x BC ⎛⎫⎛⎫=⨯=⨯ ⎪ ⎪⎝⎭⎝⎭V V ,当2<x ⩽4时,作NE ⊥AB ,垂足为E ,∵四边形ABCD 是菱形, ∴AB ∥CD , ∴3 BM=2x ,∴y=11=2434322BM NE x x ⨯⨯=g g ; 故选D. 【点睛】本题主要考查了动点问题的函数图象,掌握动点问题的函数图象是解题的关键.。