【附加15套高考模拟试卷】山东省2020年高考仿真模拟冲刺卷(一)数学(理)试题含答案
2020年山东省高考理科数学仿真模拟试题一(附答案)
15. 已知圆锥的顶点为 S ,母线 SA, SB所成角的正弦值为
15 , SA与圆锥底面所成角为 45 , 8
若 SAB的面积为 5 15 ,则该圆锥的侧面积为 ______.
16. 在 ABC 中,角 A , B , C 的对边分别为 a , b , c ,其中最大的角等于另外两个角的和,当 最长边 c 1 时, ABC 周长的最大值为 _______.
因此,可以认为甲套设备生产的合格品的概率更高,且质量指标值更稳定,
所以甲套设备优于乙套设备.
20. 解:(Ⅰ)由题可知,线段
的垂直平分线交 于点 P,
所以
,则
,
所以 P 的轨迹是以
为焦点的椭圆,
设该椭圆方程为
,
则
,所以
,
可得动点 P 的轨迹 E 的方程为
.
(Ⅱ)由(Ⅰ)可得,过点 故可设 l 的方程为
BD .
又因为 BC PD , PD BD D , 且 BD , PD 平面 PBD ,所以 BC 平面 PBD ,
又因 D 平面 PBC,所以 平面 PBC 平面 PBD
( 2)由( 1)得平面 ABCD 平面 PBD ,
设 E 为 BD 的中点,连结 PE ,因为 PB PD 6 ,
所以 PE BD , PE 2, 又平面 ABCD 平面 PBD ,
n AB 0 2 y 0
由
得
,不妨取 n (2 ,0, 2) .
n AM 0 (2 )x (4 3 ) y 2 z 0
4
因为平面 PBD 与平面 ABM 所成的锐二面角为
,所以
3
2 2 42
(
1
,
2) 2 2
2
2024年高考数学仿真模拟(一)含解析(题型同九省联考,共 19 个题)
2024年高考仿真模拟数试题(一) 试卷+答案(题型同九省联考,共19个题)注意事项:].答卷前,考生务必将自己的考生号、姓名、考点学校、考场号及座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若一组数据1,1,,4,5,5,6,7a 的75百分位数是6,则=a ( )3.设等差数列{}n a 的前n 项和为n S ,若789101120a a a a a ++++=,则17S =( ) A .150B .120C .75D .68A .672B .864C .936D .1056说法正确的是( )( )二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.10.已知复数1z ,2z ,则下列命题成立的有( )11.已知函数()f x 满足:①对任意,x y ∈R ,()()()()()2f x y f x f y f x f y +++=⋅+;②若x y ≠,则A .()0f 的值为2B .()()4f x f x +−≥C .若()13f =,则()39f =D .若()410f =,则()24f −=三、填空题:本题共3小题,每小题5分,共15分.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.2024年高考仿真模拟数试题(一)带答案(题型同九省联考,共19个题)注意事项:].答卷前,考生务必将自己的考生号、姓名、考点学校、考场号及座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若一组数据1,1,,4,5,5,6,7a 的75百分位数是6,则=a ( ) A .4 B .5C .6D .7A .150B .120C .75D .68此时α与β可能平行或相交,故C 错误;对D 选项:若//l β,则必存在直线p β⊂,使//l p , 又l α⊥,则p α⊥,又p β⊂,则αβ⊥,故D 正确.故选D.5.有7个人站成两排,前排3人,后排4人,其中甲乙两人必须挨着,甲丙必须分开站,则一共有( )种站排方式. A .672 B .864 C .936 D .1056A .P 的轨迹为圆B .P 到原点最短距离为1C .P 点轨迹是一个菱形D .点P 的轨迹所围成的图形面积为4二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.A .()0f 的值为2B .()()4f x f x +−≥C .若()13f =,则()39f =D .若()410f =,则()24f −=答案 ABC解析 对于A ,令0x y ==,得()()23002f f =+ ,解得()01f =或()02f =, 若()01f =,令0y =,得()()212f x f x +=+,即()1f x ≡,三、填空题:本题共3小题,每小题5分,共15分.O O 当外接球的球心O在线段12 =OO h四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)。
2020年高考数学金榜冲刺卷(山东专用)(一)含答案
2020年高考金榜冲刺卷(一)数学(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回. 4.测试范围:高中全部内容.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求. 1.复数21i+(i 为虚数单位)的共轭复数是( ) A .i 1-+B .1i -C .1i +D .i 1--2.已知集合{}|110,P x N x =∈≤≤{}2|60,Q x R x x =∈+-=则P Q ⋂等于( )A .{}1,2,3B .{}2,3C .{}1,2D .{}23.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( ) A .13B .12C .23D .344.曲线ln y x x =⋅在点(1,0)处的切线的方程为( )A .2+10x y -=B .210x y --=C .+10x y -=D .10x y --=5.圆2240x y +-=与圆2244120x y x y +-+-=的公共弦长为( )ABC .D .6.已知ABC ∆是边长为()20a a >的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+u u u r u u u r u u u r的最小值是( )A .22a -B .232a -C .243a -D .2a -7.(2019·江西南昌十中高三期中(文))已知奇函数()f x ,且()()g x xf x =在[0,)+∞上是增函数.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则,,a b c 的大小关系为( )A .a b c <<B .c b a <<C .b a c <<D .b c a <<8.点,,,A B C D 在同一个球的球面上,AB BC AC ===,若四面体ABCD 这个球的表面积为( ) A .28916πB .8πC .16916πD .2516π二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.下表是某电器销售公司2019年度各类电器营业收入占比和净利润占比统计表:则下列判断中正确的是( )A .该公司2019年度冰箱类电器销售亏损B .该公司2019年度小家电类电器营业收入和净利润相同C .该公司2019年度净利润主要由空调类电器销售提供D .剔除冰箱类电器销售数据后,该公司2019年度空调类电器销售净利润占比将会降低 10.下列叙述中不正确的是( )A .“1a <”是“方程20x x a ++=有一个正根和一个负根”的必要不充分条件B .若,,a b c ∈R ,则“22ab cb >”的充要条件是“a c >”C .“1a >”是“11a<”的充分不必要条件 D .若,,a b c ∈R ,则“20ax bx c ++≥”的充要条件是“240b ac -≤”11.已知函数()sin f x a x x =的一条对称轴为56x π=,函数()f x 在区间()12,x x 上具有单调性,且()()12f x f x =-,则下述四个结论正确的是( ) A .实数a 的值为1B .()()11,x f x 和()()22,x f x 两点关于函数()f x 图象的一条对称轴对称 C .21x x -的最大值为π D .12x x +的最小值为23π 12.如图,等边三角形ABC 的中线AF 与中位线DE 相交于G ,已知A ED '∆是ADE ∆绕DE 旋转过程中的一个图形,下列命题中,正确的是( )A .动点A '在平面ABC 上的射影在线段AF 上B .恒有平面AGF '⊥平面BCDEC .三棱锥A EFD '-的体积有最大值D .旋转过程中二面角A DE C '--的平面角始终为A GF '∠ 三、填空题:本题共4小题,每小题5分,共20分.13.若双曲线221y x k-=的焦点到渐近线的距离为,则实数k 的值为_________.14.若4()(2)ax y x y -+的展开式中23x y 的系数为8,则a =_________.15.已知数列{}n a 的通项公式21021n a n n =-+-,前n 项和为n S ,若>n m ,则n m S S -的最大值是_________.16.已知函数[]()11,2,0()2(2),0,x x f x f x x ⎧-+∈-⎪=⎨-∈+∞⎪⎩,则()3f =;若方程()f x x a =+在区间[]2,4-有三个不等实根,实数a 的取值范围为_________.(本题第一空2分,第二空3分)四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知ABC ∆内接于单位圆,且()()1tan 1tan 2A B ++=, (1)求角C ;(2)求ABC ∆面积的最大值.18.(12分)已知等差数列{}n a 的前n 项和为n S ,{}n b 是各项均为正数的等比数列,14a b =,,28b =,1334b b -=,是否存在正整数k ,使得数列1{}nS 的前k 项和1516k T >,若存在,求出k 的最小值;若不存在,说明理由. 从①420S =,②332S a =,③3423a a b -=这三个条件中任选一个,补充到上面问题中并作答.(注:如果选择多个条件分别解答,按第一个解答计分.)19.(12分)如图,四棱锥P ABCD -中,底面ABCD 为菱形,PA ⊥底面ABCD ,AC =2PA =,E 是PC 上的一点,2PE EC =.(1)证明PC ⊥平面BED ;(2)设二面角A PB C --为90︒,求PD 与平面PBC 所成角的大小.20.(12分)某土特产超市为预估2020年元旦期间游客购买土特产的情况,对2019年元旦期间的90位游客购买情况进行统计,得到如下人数分布表.(1)根据以上数据完成22⨯列联表,并判断是否有95%的把握认为购买金额是否少于60元与性别有关.(2)为吸引游客,该超市推出一种优惠方案,购买金额不少于60元可抽奖3次,每次中奖概率为p (每次抽奖互不影响,且p 的值等于人数分布表中购买金额不少于60元的频率),中奖1次减5元,中奖2次减10元,中奖3次减15元.若游客甲计划购买80元的土特产,请列出实际付款数X (元)的分布列并求其数学期望.附:参考公式和数据:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.附表:21.(12分)已知椭圆()2222:10x y C a b a b +=>>的离心率为2,其右顶点为A ,下顶点为B ,定点()0,2C ,ABC ∆的面积为3,过点C 作与y 轴不重合的直线l 交椭圆C 于,P Q 两点,直线,BP BQ 分别与x 轴交于,M N 两点.(1)求椭圆C 的方程;(2)试探究,M N 的横坐标的乘积是否为定值,说明理由.22.(12分)已知函数2()ln (21)(1)f x x ax a x a =+-+++.(1)若12a =,分析()f x 的单调性. (2)若对1x ∀>,都有()0f x >恒成立,求a 的取值范围;(3)证明:2222222212n n n k n nn n n n++++⋅⋅⋯⋅⋅⋯⋅>对任意正整数n 均成立,其中e 为自然对数的底数.参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1. C 2. D 3. C 4. D 5. C 6. B 7. C 8. A二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合要求.全部选对的得5分,部分选对的得3分,有选错的得0分. 9. ACD 10. AB 11. ACD 12. ABCD三、填空题:本题共4小题,每小题5分,共20分. 13. 8 14. 1 15. 1016. 4{}()12,0⋃-四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(1)()()112tanA tanB ++=Q ,1tanA tanB tanA tanB ∴+=-⋅,()11tanA tanB tanC tan A B tanAtanB +∴=-+=-=--,()3C 0,4C ππ∈∴=Q .(2)ABC ∆的外接圆为单位圆,∴其半径1R =,由正弦定理可得2c RsinC ==2222c a b abcosC =+-,代入数据可得222a b =+(22ab ab ≥=,当且仅当a=b时,“=”成立,ab ∴≤ABC V ∴的面积11222S absinC =≤=,ABC ∆面积的最大值为12. 18.设等比数列{}n b 的公比为q (0q >),则18b q =,38b q =,于是8384q q-⨯=,即2620q q +-=,解得12q =,23q =-(舍去). 若选①:则142a b ==,41434202S a d ⨯=+=,解得2d =,所以2(1)222n n n S n n n -=+⨯=+, 1111(1)1n S n n n n ==-++,于是12111111111+(1)()()122311k k T S S S k k k =++=-+-++-=-++L L 令1151116k ->+,解得15k >,因为k 为正整数,所以k 的最小值为16. 若选②:则142a b ==,113232(2)2a d a d ⨯+=+,解得12a d ==. 下同①.若选③:则142a b ==,113(2)(3)8a d a d +-+=,解得43d =. 于是2(1)42422333n n n S n n n -=+⨯=+, 131311()2(2)42n S n n n n =⨯=-++, 于是31111111[(1)()()()]4324112k T k k k k =-+-++-+--++L 3111(1)4212k k =+--++ 9311()8412k k =-+++,令1516k T >,得111124k k +<++, 注意到k 为正整数,解得7k ≥,所以k 的最小值为7.19.(1)以A 为坐标原点,建立如图空间直角坐标系A xyz -,设),0Db ,则()0C ,,()002P ,,,23E ⎫⎪⎪⎝⎭,)0B b -,,∴()2PC =-u u u r ,,2 ,3BE b ⎫=⎪⎪⎝⎭u u u r,2 3DE b ⎫=-⎪⎪⎝⎭u u u r ,,∴44 033PC BE ⋅=-=u u u r u u u r ,0PC DE ⋅=u u u r u u u r ,∴PC BE ⊥,PC DE ⊥,BE DE E ⋂=,∴PC ⊥平面BED .(2)() 002AP =u u u r,,,),0AB b =-u u u r ,设平面PAB 的法向量为() ,,x y z m =u r ,则20m AP z m AB by ⎧⋅==⎪⎨⋅=-=⎪⎩u u u v v u u u vv ,取()b m =u r ,设平面PBC 的法向量为() ,,p n q r =r,则202023n PC r n BE p bq r ⎧⋅=-=⎪⎨⋅=++=⎪⎩u u u v v u u u v v ,取 1,b n ⎛=- ⎝r ,∵平面PAB ⊥平面PBC ,∴ 20m n b b =-=⋅u r r,故b =∴( 1,n =-r,()DP =u u u r ,∴1cos ,2n DP DP n n DP ⋅==⋅r u u u ru u u r r r u u u r ,设PD 与平面PBC 所成角为θ,02⎡⎤∈⎢⎥⎣⎦,πθ,则1sin 2θ=,∴30θ=︒, ∴PD 与平面PBC 所成角的大小为30°.20.(1)22⨯列联表如下:()22901220401814405 3.84130605238247K ⨯⨯-⨯==>>⨯⨯⨯,因此有95%的把握认为购买金额是否少于60元与性别有关. (2)X 可能取值为65,70,75,80,且10201903p +==. ()3331165327P X C ⎛⎫=== ⎪⎝⎭,()22312270339P X C ⎛⎫==⨯= ⎪⎝⎭, ()21312475339P X C ⎛⎫==⨯⨯= ⎪⎝⎭,()3032880327P X C ⎛⎫=== ⎪⎝⎭, 所以X 的分布列为:6570758075279927EX =⨯+⨯+⨯+⨯=. 21.(1)由已知,A B 的坐标分别是()(),0,0,A a B b -由于ABC ∆的面积为3,1(2)32b a ∴+=,又由e =得2a b =,解得:=1b ,或=3b -(舍去),2,=1a b ∴=,∴椭圆方程为2214xy +=.(2)设直线PQ 的方程为2y kx =+,,P Q 的坐标分别为()()1122,,,P x y Q x y , 则直线BP 的方程为1111y y x x +=-,令0y =,得点M 的横坐标111M xx y =+, 直线BQ 的方程为2211y y x x +=-,令0y =,得点N 的横坐标221N xx y =+, 1212(1)(1)M N x x x x y y ∴⋅=++1212(3)(3)x x kx kx =++12212123()9x x k x x k x x =+++,把直线2y kx =+代入椭圆2214x y +=得22(14)16120k x kx +++=,由韦达定理得1221214x x k =+,1221614k x x k +=-+,∴222221214124891414M N k x x k k k k +==-+++22212412489363k k k =-++,是定值.22. (1)12a =,213()ln 222f x x x x =+-+,2(1)()x f x x-'=,(0,)x ∈+∞, 故()0f x '>在(0,)+∞上恒成立,所以()f x 的单调增区间为(0,)+∞,无减区间. (2)1()2(21)f x ax a x '=+-+22(21)1(21)(1)ax a x ax x x x -++--==. ∵1x >,∴10x ->,故:①当0a ≤时,()0f x '≤,()f x 在(1,)+∞上单调递减,而(1)0f =,∴()0f x <,不符合题意;②当12a ≥时,即112a≤,()f x 在(1,)+∞上单调递增,而()(1)0f x f >=,∴符合题意; ③当102a <<时,11,2x a ⎛⎫∈ ⎪⎝⎭,()0f x '<,()f x 在11,2a ⎛⎫ ⎪⎝⎭上单调递减,而(1)0f =,∴此时()0f x <,不符合题意;综上所述,a 的取值范围为1,2⎡⎫+∞⎪⎢⎣⎭.(3)证明:要证明2222222212n n n k n n n n n n++++⋅⋅⋯⋅⋅⋯⋅>, 等价于证明22222222121ln ln ln ln 2n n n k n n n n n n ++++++⋅⋅⋅++⋅⋅⋅+>, 由(1)可得1ln (1)1(1)2x x x ⎡⎤>---⎢⎥⎣⎦在(1,)+∞恒成立, 令21k x n =+,1,2,3,,k n =⋅⋅⋅,则221k n ≤,∴2224221ln 122k k k k n n nn n ⎛⎫+>-≥- ⎪⎝⎭, ∴2222222212ln ln ln ln n n n k n n n n n n ++++++⋅⋅⋅++⋅⋅⋅+22121122n n n n ++⋅⋅⋅+>-⨯= ∴22222222121ln ln ln ln 2n n n k n n n n n n ++++++⋅⋅⋅++⋅⋅⋅+>成立,∴()()()()22222123n n n n n n n +⋅+⋅+⋅⋯⋅+>成立.。
山东省实验中学2020届高三第一次模拟考试数学(理)试卷含解析
山东省实验中学2020届高三第一次模拟考试数学(理)试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在直角坐标平面内,已知A(-2,0),3(2,0)以及动点。
是AABC的三个顶点,且sin Asin B-2cosC=0,则动点C的轨迹曲线「的离心率是()\/2a/3A.2B.2 c.扬 D.右2.若函数f(x)=l+\x\+x\贝0/(lg2)+/flg|k/(lg5)+/flg^=()A.2b.4 C.6 D.83.在AA3C中,CA_CA AB.则sinA:sin3:sinC=()543A.9:7:8b.c.6:8:7D何.3:由4.如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案共有()种A.120B.260C.340D.4205.已知直线y=kx-1与抛物线J=8y相切,则双曲线x2-k2y2=l的离心率为()73A.打B.右C.D.26.已知数列{%}的前〃项和S"满足S"+a"=2n(nwN*),则%=()1_127321385A.3b.64 c.32d.64x+y>l,7.设x,y满足约束条件\x-y>-l,若目标函数z=ax+3y仅在点(1,0)处取得最小值,则。
的取值范围2x-y<2,为()A.(—6,3)B.(-6,-3)C.(。
,3)D.(-6,0]8.已知集合M=(x|y=log2(-4x-x2)},2V=(x|(-)x>4},则肱N=()A.d-2]b.[-2,0) c.(-4,2]D(-co,-4)9.如图,已知等腰梯形A3CD中,AB=2DC=4,AD=BC=^5,E是OC的中点,P是线段BC±的动点,则的最小值是()_9_4A.5B.0C.5D.110.已知^A={x\a-l<x<a+2},B=(x|3<x<5},则能使A^B成立的实数。
2020年2020届山东省高三高考模拟考试数学试卷及解析
2020年2020届山东省高三高考模拟考试数学试卷★祝考试顺利★ (解析版)一、单项选择题:1.已知集合{1,2}A =-,{|1}B x ax ==,若B A ⊆,则由实数a 的所有可能的取值组成的集合为( )A. 11,2⎧⎫⎨⎬⎩⎭B. 11,2⎧⎫-⎨⎬⎩⎭C. 10,1,2⎧⎫⎨⎬⎩⎭D. 11,0,2⎧⎫-⎨⎬⎩⎭【答案】D 【解析】分B 为空集和B 不为空集两种情况讨论,分别求出a 的范围,即可得出结果. 【详解】因为集合{1,2}A =-,{|1}B x ax ==,B A ⊆, 若B 为空集,则方程1ax =无解,解得0a =; 若B 不为空集,则0a ≠;由1ax =解得1x a=,所以11a =-或12a =,解得1a =-或12a =,综上,由实数a 的所有可能的取值组成的集合为11,0,2⎧⎫-⎨⎬⎩⎭.故选D2.若1iz i =-+(其中i 是虚数单位),则复数z 的共轭复数在复平面内对应的点位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限【答案】D分析:变形1iz i =-+,利用复数代数形式的乘除运算化简,求出z 的坐标即可得结论. 详解:由i 1i z =-+, 得()()21i i 1i 1i i iz -+--+===+-,1z i =- ∴复数z 的共轭复数在复平面内对应的点的坐标为()1,1-,位于第四象限,故选D.3.函数()()22ln x xf x x -=+的图象大致为( )A. B.C. D.【答案】B 【解析】根据函数奇偶性的判断可知函数为偶函数,图象关于y 轴对称,排除D ;根据()0,1x ∈时,()0f x <,排除,A C ,从而得到正确选项. 【详解】()f x 定义域为{}0x x ≠,且()()()()22ln 22ln x x x x f x x x f x ---=+-=+=()f x ∴为偶函数,关于y 轴对称,排除D ;当()0,1x ∈时,220x x -+>,ln 0x <,可知()0f x <,排除,A C . 本题正确选项:B4.《九章算术⋅衰分》中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱.欲以钱数多少衰出之,问各几何?”翻译为“今有甲持钱560,乙持钱350,丙持钱180,甲、乙、丙三个人一起出关,关税共计100钱,要按个人带钱多少的比例交税,问三人各应付多少税?”则下列说法中错误的是( ) A. 甲付的税钱最多 B. 乙、丙两人付的税钱超过甲 C. 乙应出的税钱约为32 D. 丙付的税钱最少【答案】B 【解析】通过阅读可以知道,A D 说法的正确性,通过计算可以知道,B C 说法的正确性.【详解】甲付的税钱最多、丙付的税钱最少,可知,A D 正确:乙、丙两人付的税钱占总税钱的3511002<不超过甲。
山东省2020年高考模拟考试数学试题 Word版含答案
山东省2020年普通高等院校统一招生模拟考试高三教学质量检测数学试题2020.02本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,将第I 卷选择题的正确答案选项填涂在答题卡相应位置上,考试结束,将答题卡交回.考试时间120分钟,满分150分. 注意事项:1.答卷前,考生务必将姓名、座号、准考证号填写在答题卡规定的位置上. 2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案不能答在试题卷上.3.第Ⅱ卷答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第I 卷(选择题 共60分)一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数2,i z z 在复平面内对应的点分别为()()11221,1,0,1z Z Z z =,则 A .1i +B .1i -+C .1i --D .1i -2.设a R ∈,则“sin cos αα=”是“sin 21α=”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件3.向量a b r r ,满足()()1,2a b a b a b ==+⊥-u u r u u r r r r r,则向量a b r r 与的夹角为 A .45oB .60oC .90oD .120o4.已知数列{}n a 中,372,1a a ==.若1n a ⎧⎫⎨⎬⎩⎭为等差数列,则5a = A .23B .32C .43D .345.已知点()2,4M 在抛物线()2:20C y px p =>上,点M 到抛物线C 的焦点的距离是A .4B .3C .2D .16.在ABC ∆中,2,20AB AC AD AE DE EB x AB y AC +=+==+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,若,则 A .2y x =B .2y x =-C .2x y =D .2x y =-7.已知双曲线()2222:1,0,0x y C a b a b-=>>的左、右焦点分别为12,F F O ,为坐标原点,P是双曲线在第一象限上的点,()21212=2=2,0,PF PF m m PF PF m >⋅=u u u u r u u u u r u u u r u u u u r ,则双曲线C 的渐近线方程为 A .12y x =±B .22y x =±C .y x =±D .2y x =±8.已知奇函数()f x 是R 上增函数,()()g x xf x =则A. 233231log 224g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C. 23323122log 4g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D. 23323122log 4g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭二、多项选择题:本题共4小题,每小题5分,共20分。
【附15套精选模拟试卷】山东省潍坊市2020届高三下学期第一次模拟考试数学(理)试卷含解析
山东省潍坊市2020届高三下学期第一次模拟考试数学(理)试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数f (x )=x 2-ln|x|,则函数y=f (x )的大致图象是( )A .B .C .D .2.等比数列{}n a 中12a =,公比2q =-,记12n na aa L =⨯⨯⨯∏(即n∏表示数列{}na 的前n 项之积),则891011,,,∏∏∏∏中值最大的是( )A .8∏B .9∏C .10∏D .11∏3.函数23420182019()(1...)cos 223420182019x x x x x f x x x =+-+-+-+在区间[3,4]-上零点的个数为( )A .4B .5C .6D .84.函数在定义域内可导,的图象如图所示,则导函数可能为( )A .B .C .D .5.如图,网格纸上的小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为( )A .23 B .1 C .43 D .2236.若函数()()2ln 1f x x ax x =++-的图象不经过第四象限,则正实数a 的取值范围为( )A .[)1,+∞B .1,e 2⎡⎤⎢⎥⎣⎦ C .1,2⎡⎫+∞⎪⎢⎣⎭ D .1,1e ⎡⎤⎢⎥⎣⎦ 7.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,60A =︒,3a =4b =,则B =( )A .30B =︒或150B =︒ B .150B =︒C .30B =︒D .60B =︒8.过双曲线2213y x -=的右支上一点P 分别向圆1C :22(2)4x y ++=和圆2C :22(2)1x y -+=作切线,切点分别为,M N ,则22||||PM PN -的最小值为( )A .5B .4C .3D .29.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)...(2018)f f f f ++++=( )A .50B .2C .0D .-201810.若变量x ,y 满足约束条件3123x y x y x y +⎧⎪-≥-⎨⎪-≤⎩…,则yz x =的最大值为( )A .4B .2C .12D .5411.已知直线a ,b 和平面α,若a α⊂,b α⊄,则“a b ⊥rr”是“b α⊥”的( ). A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件12. “函数2()2(1)3f x x a x =--++在区间(,2]-∞上单调递增”是“4a ≤-”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。
山东省2020年高考数学模拟考试题与答案
山东省2020年高考数学模拟考试试题及答案按珈密级苇项管理*启用前2020年普通高等学校招生全国统一考试(模拟卷)数学asw 项:1. 答卷前,考生务必将口己的姓名、考生号等填遞在答题卡和试卷指定位匿匕工回答选择题时,选岀每小题答案屁用铅抠把答题R上对应题冃的答案折号涂熾如磁动,用橡皮掠干净后,再选涂苴他答案标号*回答非选择题时,将答案写在答题卡上。
另在本试卷上无效,生考试结束存*将本试卷和答題卡…井交回。
—、单项选择题:本趣共$小舐每小題§分・共豹分。
在每小题给出的四个选琐中,只有一项是符合髒目要求的“1, 迎集合/訂(工』)ix+?=2}, 则*n七A. {(ij)}氐{(一签4)} C HM)J-2f4)}6 02. 已知◎牛bi⑷b左R)是上二的共扳复数・则a^b =1 +1A- -1 B.-丄C- ;D・ 12 23* Bt向fi4-(.1,1)t A = c»(2,!)> 且(■-几血)丄―则丄“A. 3 氐2 G -2-34. 幵式中『抽系数足xA.-210B. -12QC. 120D. 2105+已知三按锥$_仙C中,ZSAB = ZABC= y * 5^-4• SC = 1J\3. XB = 2,5C = 6, 则三棱锥S 亠ABC的体积是A. 4B. 6 G 4巧D+ M6. 己知点丄为曲纯y二工+毀工:>0)上前动点,月为圆2F +/=!上的动点’则皿鋼X的最小值是九3 B•斗G迈 D. 4^27, 设命題戸所有正方形都是平行叫边母*则「卩为d所宿疋方形罰不長平行四边形B-有的平行四边底不是正方舷C”有的iE方形不是平行四边形 D.不是正方形的四边彫不是平行四边形数学试题第1页:(共5贡)数学试題第2页(共5页〉数学试題第2页(共5页〉8. 若>1 且 MC F ・则4. log 」、1隅疋、teg 評 C. log f c> lo£fl 5> lo 空 a二、多項远择题*本题共4」卜駆•毎小题5^-共20分・存毎小额给岀的选项中、右 多项精合倾目蓉求,全部选对的得5分,部分选对的得3分,有选措的得0分“ 9. 下国为茱地桜2006年〜2018年地方財政预算内收入、城乡居民储齧年未余额折线2财政预篇内收入*城乡居民储蓄年朮余额肉呈増怅趋势 R.财政预算内收入、城乡居民储蓄年末余额的逐年增长速度相同C. 赃政预畀内收入年平均增长虽局于城乡居民储蔷年末余额年平均增机帚 D, 城乡居艮储蓄年末余鈿与财政预算内收入的差報逐年增大w.已知艰曲线<?过点Q 品且渐近钱为丿=±¥厂则下列结论正确的是A, C 的方程为■- / -I B ・0的离心翠为J5 C ・曲线经过C 的一于焦点 D.直线"逅厂1“与C 有两个公共点11正方陣」肌也GO 的梭长为1・E , F 、(?分别为5C, CC 「1?鸟的中点•则扎直线与直线曲垂直 B.直^Afi 与平面*防平行C 平面/EF 截正方体所得的載画面积为? D.点C?与点石到平而*EF 曲聊离相諄B- log"〉k 唱』a lug/ D, log/A 】0£ 占 > log/城乡尿民储雷叶朿 ♦余额C 百亿元】 亠地方财政预算内 收入f 百亿元)根据该折线I ]可Sb 该地区2006年-2018年\2.函数/(巧的定义域为K, fi7(^ + 1) f(x^2)都为奇函数,则A. 奇函数氐/V)为周期雷数C /(x + 3)为奇函数 D. /(I +4)X J®^I数三填空駆本题共4小题、每小题3分,共20分。
【附加15套高考模拟试卷】山东省济宁市2020届高三第一次模拟考试数学(理)试题含答案
山东省济宁市2020届高三第一次模拟考试数学(理)试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()ln 2f x x x x a =-+,若函数()y f x =与()()y ff x =有相同的值域,则a 的取值范围是( ) A .1,12⎛⎤ ⎥⎝⎦ B .(],1-∞ C .31,2⎡⎫⎪⎢⎣⎭ D .[)1,+∞ 2.已知幂函数()a f x x =的图象过点13,3⎛⎫ ⎪⎝⎭,则函数()()()21g x x f x =-在区间1,22⎡⎤⎢⎥⎣⎦上的最小值是( )A .1-B .0C .2-D .323.已知点()mod N n m ≡表示N 除以m 余n ,例如()71mod6≡,()133mod5≡,则如图所示的程序框图的功能是( )A .求被5除余1且被7除余3的最小正整数B .求被7除余1且被5除余3的最小正整数C .求被5除余1且被7除余3的最小正奇数D .求被7除余1且被5除余3的最小正奇数4.已知各项均为正数的等差数列{}n a 的公差为2,等比数列{}n b 的公比为-2,则( )A .14n n a a b b --=B .14n n a a b b -=C .14n n a a b b --=-D .14nn a a b b -=- 5.设函数()322ln f x x ex mx x =-+-,记()()f xg x x =,若函数()g x 至少存在一个零点,则实数m 的取值范围是( )A .21,e e ⎛⎤-∞+ ⎥⎝⎦ B .210,e e ⎛⎤+ ⎥⎝⎦C .21e ,e ⎛⎫++∞ ⎪⎝⎭ D .2211e ,e e e ⎛⎤--+ ⎥⎝⎦ 6.已知x ∈R,sin 3cos x x -=tan2x =( )A .43B .34C .34-D .43-7.设[]x 表示不超过x 的最大整数(如5[2]2,[]14==),对于给定的*n N ∈,定义(1)([]1)(1)([]1)x n n n n x C x x x x -⋅⋅⋅-+=-⋅⋅⋅-+,[1,)x ∈+∞,则当3[,3)2x ∈时,函数8x C 的值域是( ) A .16[,28]3 B .16[,56)3 C .28(4,)[28,56)3⋃ D .1628(4,](,28]33⋃8.若直线y=2x 上存在点(x ,y )满足约束条件30230x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩,则实数m 的最大值为A .-1B .1C .32 D .29.将函数()2sin 6f x x π⎛⎫=- ⎪⎝⎭的图象上各点的纵坐标保持不变,横坐标扩大到原来的2倍,再把所得函数图象向右平移4π个单位,得到函数()g x 的图象,则函数()g x 图象的一条对称轴的方程为( ) A .4x π= B .1912x π= C .1312x π= D .6x π= 10.若正数,m n 满足21m n +=,则11m n +的最小值为 A.3+B.3C.2+ D .311.等比数列{a n }中,11,28aq ==,则4a 与8a 的等比中项是( ) A .±4 B .4 C .14±D .14 12.如图,四棱锥P ABCD -的底面为矩形,矩形的四个顶点A ,B ,C ,D 在球O 的同一个大圆上,且球的表面积为16π,点P 在球面上,则四棱锥P ABCD -体积的最大值为( )A .8B .83C .16D .163二、填空题:本题共4小题,每小题5分,共20分。
2020年山东省高考数学模拟试卷(理科)含答案解析
2020年山东省高考数学模拟试卷(理科)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z=(a﹣1)+3i(a∈R)在复平面内对应的点在直线y=x+2上,则a的值等于()A.1B.2C.5D.62.已知集合,则集合A的真子集的个数为()A.3B.4C.1D.23.已知函数f(x)=,若f(﹣1)=2f(a),则a的值等于()A.或﹣B.C.﹣D.±4.将800个个体编号为001~800,然后利用系统抽样的方法从中抽取20个个体作为样本,则在编号为121~400的个体中应抽取的个体数为()A.10B.9C.8D.75.“数列{a n}成等比数列”是“数列{lga n+1}成等差数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知直线l的方程为ax+2y﹣3=0,且a∈[﹣5,4],则直线l的斜率不小于1的概率为()A.B.C.D.7.一个空间几何体的三视图如图,其中主视图是腰长为3的等腰三角形,俯视图是边长分别为1,2的矩形,则该几何体的体积等于()A.2B.C.D.8.已知向量,若向量的夹角为φ,则有()A.φ=θB.φ=π﹣θC.φ=θ﹣πD.φ=θ﹣2π9.已知不等式2x+m+>0对一切x∈(1,+∞)恒成立,则实数m的取值范围是()A.m>﹣10B.m<﹣10C.m>﹣8D.m<﹣810.在三角形ABC中,角A、B、C的对边分别为a,b,c,且满足==,则=()A.﹣B.C.﹣D.﹣二、填空题(每题5分,满分25分,将答案填在答题纸上)11.阅读如图所示的程序框图,运行相应的程序,输出的结果是.12.从0,2,4中选两个数字,从1,3中选一个数字,组成无重复数字的三位数,其中偶数的个数为.13.若不等式|2x+a|<b的解集为{x|1<x<4},则ab等于.14.若函数f(x)=a x+2﹣(a>0,a≠1)的图象经过定点P(m,n),则函数g(x)=log n (x2﹣mx+4)的最大值等于.15.已知双曲线=1(a>0,b>0)的一条渐近线与抛物线y2=2px(p>0)的准线的交点坐标为,且双曲线与抛物线的一个公共点M的坐标(x0,4),则双曲线的方程为.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.已知函数f(x)=cosx[sin(x+)﹣sin(x+)]+.(1)若f(+)=,0<θ<,求tanθ的值;(2)求函数f(x)的最小正周期和单调递增区间.17.在2020年8月世界杯女排比赛中,中国女排以11战10胜1负的骄人战绩获得冠军.世界杯女排比赛,采取5局3胜制,即每场比赛中,最先获胜3局的队该场比赛获胜,比赛结束,每场比赛最多进行5局比赛.比赛的积分规则是:3﹣0或者3﹣1取胜的球队积3分,负队积0分;3﹣2取胜的球队积2分,负队积1分.在本届世界杯中,中国队与美国队在第三轮相遇,根据以往数据统计分析,中国队与美国队的每局比赛中,中国队获胜的概率为.(1)在中国队先输一局的情况下,中国队本场比赛获胜的概率是多少?(2)试求中国队与美国队比赛中,中国队获得积分的分布列与期望.18.如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF且BE<CF,∠BCF=,AD=,EF=2.(1)求证:AE∥平面DCF;(2)若,且=λ,当λ取何值时,直线AE与BF所成角的大小为600?19.已知数列{a n}的前n项和S n=a n+.(1)求数列{a n}的通项公式;(2)若b n=,且数列{b n}的前n项和为T n,求T2n.20.已知椭圆=1(a>b>0)经过点,且离心率等于.(1)求椭圆的方程;(2)若直线l:y=x+m与椭圆交于A,B两点,与圆x2+y2=2交于C,D两点.①当|CD|=2时,求直线l的方程;②若λ=,试求λ的取值范围.21.已知函数f(x)=ln()+(a∈R).(1)若函数f(x)在定义域上是单调递增函数,求实数a的取值范围;(2)若函数在定义域上有两个极值点x1,x2,试问:是否存在实数a,使得f(x1)+f(x2)=3?2020年山东省高考数学模拟试卷(理科)参考答案与试题解析一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z=(a﹣1)+3i(a∈R)在复平面内对应的点在直线y=x+2上,则a的值等于()A.1B.2C.5D.6【考点】复数的代数表示法及其几何意义.【分析】求出对应点的坐标,代入直线方程,然后求解a的值.【解答】解:复数z=(a﹣1)+3i(a∈R)在复平面内对应的点在直线y=x+2上,可得3=a﹣1+2,解得a=2.故选:B.2.已知集合,则集合A的真子集的个数为()A.3B.4C.1D.2【考点】子集与真子集.【分析】先求出集合A,由此能求出集合A的子集的个数.【解答】解:∵集合={2},∴集合A的真子集只有一个为∅.故选:C.3.已知函数f(x)=,若f(﹣1)=2f(a),则a的值等于()A.或﹣B.C.﹣D.±【考点】分段函数的应用.【分析】利用分段函数的表达式建立方程关系进行求解即可.【解答】解:f(﹣1)=(﹣1)2=1,则由f(﹣1)=2f(a),得1=2f(a),即f(a)=,若a>0,由f(a)=得log3a=,得a=,若a<0,由f(a)=得a2=,得a=﹣或(舍),综上a的值等于或﹣,故选:A.4.将800个个体编号为001~800,然后利用系统抽样的方法从中抽取20个个体作为样本,则在编号为121~400的个体中应抽取的个体数为()A.10B.9C.8D.7【考点】系统抽样方法.【分析】根据题意,求出系统抽样的分组组距,再求编号为121~400的个体中应抽取的个体数即可.【解答】解:把这800个个体编上001~800的号码,分成20组,则组距为=40;所以编号为121~400的个体中应抽取的个体数为=7.故选:D.5.“数列{a n}成等比数列”是“数列{lga n+1}成等差数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】等差关系的确定.【分析】数列{a n}成等比数列,公比为q.若a1<0时,则lga n+1没有意义.由数列{lga n+1}成等差数列,则(lga n+1+1)﹣(lga n+1)=为常数,则为非0常数.即可判断出结论.【解答】解:∵数列{a n}成等比数列,公比为q.∴a n=.若a1<0时,则lga n+1没有意义.由数列{lga n+1}成等差数列,则(lga n+1+1)﹣(lga n+1)=为常数,则为非0常数.∴“数列{a n}成等比数列”是“数列{lga n+1}成等差数列”的必要不充分条件.故选:B.6.已知直线l的方程为ax+2y﹣3=0,且a∈[﹣5,4],则直线l的斜率不小于1的概率为()A.B.C.D.【考点】直线的斜率.【分析】先求出直线的斜率的范围,再根据几何概型的概率公式计算即可.【解答】解:由ax+2y﹣3=0得到y=﹣x+,故直线的斜率为﹣,∵直线l的斜率不小于1,∴﹣≥1,即a≤﹣2,∵且a∈[﹣5,4],∴﹣5≤a≤﹣2,∴直线l的斜率不小于1的概率为=,故选:C.7.一个空间几何体的三视图如图,其中主视图是腰长为3的等腰三角形,俯视图是边长分别为1,2的矩形,则该几何体的体积等于()A.2B.C.D.【考点】由三视图求面积、体积.【分析】由三视图易得这个几何体是一个四棱锥,四棱锥的底面是一个边长是1、2的长方形,顶点在底面的射影是长边的中点,短侧棱长为:3,求出棱锥的高,即可求解四棱锥的体积.【解答】解:由三视图知,这是一个四棱锥,四棱锥的底面是一个边长是1、2的长方形,顶点在底面的射影是长边的中点,短侧棱长为3,棱锥的高:=2,∴四棱锥的体积是:×1×2×2=.故选:D.8.已知向量,若向量的夹角为φ,则有()A.φ=θB.φ=π﹣θC.φ=θ﹣πD.φ=θ﹣2π【考点】平面向量数量积的运算.【分析】根据向量的夹角公式和两角和的余弦公式以及诱导公式,再根据向量的夹角的范围即可求出.【解答】解:∵向量,∴||==1,||=1,=﹣cosθcos2θ﹣sinθsin2θ=﹣cosθ=cos(π﹣θ),∴cosφ==cos(π﹣θ)=cos(θ﹣π),∵θ∈(π,2π),∴θ﹣π∈(0,π),∴φ=θ﹣π,故选:C.9.已知不等式2x+m+>0对一切x∈(1,+∞)恒成立,则实数m的取值范围是()A.m>﹣10B.m<﹣10C.m>﹣8D.m<﹣8【考点】基本不等式.【分析】不等式2x+m+>0化为:2(x﹣1)+>﹣m﹣2,利用基本不等式的性质可得2(x﹣1)+的最小值,即可得出.【解答】解:不等式2x+m+>0化为:2(x﹣1)+>﹣m﹣2,∵x>1,∴2(x﹣1)+≥2×=8,当且仅当x=3时取等号.∵不等式2x+m+>0对一切x∈(1,+∞)恒成立,∴﹣m﹣2<8,解得m>﹣10,故选:A.10.在三角形ABC中,角A、B、C的对边分别为a,b,c,且满足==,则=()A.﹣B.C.﹣D.﹣【考点】正弦定理;余弦定理.【分析】由题意设===k,可得a=6k,b=4k,c=3k,由余弦定理可得cosA,再由正弦定理可得=,代值化简可得.【解答】解:由题意设===k,(k>0),则a=6k,b=4k,c=3k,∴由余弦定理可得cosA===﹣,∴由正弦定理可得====﹣,故选:A.二、填空题(每题5分,满分25分,将答案填在答题纸上)11.阅读如图所示的程序框图,运行相应的程序,输出的结果是11.【考点】循环结构.【分析】按照循环结构的流程,列举出每个循环的变量的取值,与循环条件对比即可得结果【解答】解:依此程序框图,变量a的变化依次为1,12+2=3,32+2=11不满足循环条件a <10,故输出11故答案为1112.从0,2,4中选两个数字,从1,3中选一个数字,组成无重复数字的三位数,其中偶数的个数为20.【考点】计数原理的应用.【分析】根据0的特点,分三类进行,当0在个为和十位时,当没有0参与时,根据分类计数原理可得.【解答】解:若三位数的个位为0,则有2×2×A22=8个;若十位为0,则有C21•C21=4个;若这个三位数没有0,则有C21•C21A22=8个.综上,要求的三位偶数的个数为8+8+4=20个,故答案为:20.13.若不等式|2x+a|<b的解集为{x|1<x<4},则ab等于﹣15.【考点】绝对值不等式的解法.【分析】解出不等式|2x+a|<b,得到关于a,b的不等式组,求出a,b的值,从而求出ab 即可.【解答】解:∵|2x+a|<b,∴﹣b<2x+a<b,∴﹣a﹣b<2x<b﹣a,∴﹣<x<,由不等式的解集为{x|1<x<4},则,解得:a=﹣5,b=3则ab=﹣15,故答案为:﹣15.14.若函数f(x)=a x+2﹣(a>0,a≠1)的图象经过定点P(m,n),则函数g(x)=log n(x2﹣mx+4)的最大值等于﹣1.【考点】函数与方程的综合运用;函数的最值及其几何意义.【分析】求出m、n,然后利用对数函数的性质,以及二次函数的性质求解函数的最值.【解答】解:函数f(x)=a x+2﹣(a>0,a≠1)的图象经过定点P(m,n),可知m=﹣2,n=,函数g(x)=log n(x2﹣mx+4)=log(x2+2x+4)=log[(x+1)2+3]≤﹣1.函数g(x)=log n(x2﹣mx+4)的最大值:﹣1.故答案为:﹣1.15.已知双曲线=1(a>0,b>0)的一条渐近线与抛物线y2=2px(p>0)的准线的交点坐标为,且双曲线与抛物线的一个公共点M的坐标(x0,4),则双曲线的方程为\frac{{x}^{2}}{5}﹣\frac{{y}^{2}}{20}=1.【考点】双曲线的简单性质.【分析】求得双曲线的渐近线方程和抛物线的准线方程,由题意可得p=,=2,求得M (3,4)代入双曲线的方程,解方程可得a,b,进而得到双曲线的方程.【解答】解:双曲线=1的渐近线方程为y=±x,抛物线y2=2px的准线方程为x=﹣,由题意可得=,即p=,=2,即b=2a①又M的坐标(x0,4),可得16=2px0=x0,解得x0=3,将M(3,4)代入双曲线的方程可得﹣=1②由①②解得a=,b=2,即有双曲线的方程为﹣=1.故答案为:﹣=1.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.已知函数f(x)=cosx[sin(x+)﹣sin(x+)]+.(1)若f(+)=,0<θ<,求tanθ的值;(2)求函数f(x)的最小正周期和单调递增区间.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)由三角函数中的恒等变换应用化简函数解析式可得f(x)=sin(2x﹣),由f(+)=,可解得cosθ,又0<θ<,可由同角三角函数关系式即可求sinθ,tanθ的值.(2)由f(x)=sin(2x﹣),根据周期公式可求T,由2kπ﹣≤2x﹣≤2kπ+,k∈Z 可解得单调递增区间.【解答】解:(1)∵f(x)=cosx[sin(x+)﹣sin(x+)]+=cosx(sinx﹣cosx)+=sin2x﹣cos2x=sin(2x﹣),∵f(+)=,故有:sin[2(+)﹣]=sin(θ+﹣)=sin (θ+)=cosθ=,∴可解得:cosθ=,∵0<θ<,sinθ==,∴tanθ===.(2)∵f(x)=sin(2x﹣),∴T==π.∴由2kπ﹣≤2x﹣≤2kπ+,k∈Z可解得:x∈[kπ﹣,kπ+],k∈Z∴函数f(x)的最小正周期是π,单调递增区间是:x∈[kπ﹣,kπ+],k∈Z.17.在2020年8月世界杯女排比赛中,中国女排以11战10胜1负的骄人战绩获得冠军.世界杯女排比赛,采取5局3胜制,即每场比赛中,最先获胜3局的队该场比赛获胜,比赛结束,每场比赛最多进行5局比赛.比赛的积分规则是:3﹣0或者3﹣1取胜的球队积3分,负队积0分;3﹣2取胜的球队积2分,负队积1分.在本届世界杯中,中国队与美国队在第三轮相遇,根据以往数据统计分析,中国队与美国队的每局比赛中,中国队获胜的概率为.(1)在中国队先输一局的情况下,中国队本场比赛获胜的概率是多少?(2)试求中国队与美国队比赛中,中国队获得积分的分布列与期望.【考点】离散型随机变量的期望与方差;互斥事件的概率加法公式;离散型随机变量及其分布列.【分析】(1)在中国队先输一局的情况下,中国队本场比赛获胜的可能性有两种:连胜3局或前3局两胜1负,第五局胜,由此能求出在中国队先输一局的情况下,中国队本场比赛获胜的概率.(2)中国队与美国队比赛中,中国队获得积分X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出中国队获得积分X的分布列和数学期望EX.【解答】解:(1)∵根据以往数据统计分析,中国队与美国队的每局比赛中,中国队获胜的概率为,∴在中国队先输一局的情况下,中国队本场比赛获胜的概率:p=+=.(2)中国队与美国队比赛中,中国队获得积分X的可能取值为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)=()=,∴中国队获得积分X的分布列为:X 0 1 2 3PEX==.18.如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF且BE<CF,∠BCF=,AD=,EF=2.(1)求证:AE∥平面DCF;(2)若,且=λ,当λ取何值时,直线AE与BF所成角的大小为600?【考点】异面直线及其所成的角;直线与平面平行的判定.【分析】(1)推导出面ABE∥面CDF,由此能证明AE∥面CDF.(2)以C为坐标原点,以CB,CD,CF分别为x,y,z轴建系,利用向量法能求出当λ取1时,直线AE与BF所成角的大小为60°.【解答】证明:(1)∵BE∥CF,AB∥CD,且BE∩AB=B,FC∩CD=C,∴面ABE∥面CDF,又AE⊂面ABE,∴AE∥面CDF.解:(2)∵∠BCF=,且面ABCD⊥面BEFC,∴FC⊥面ABCD以C为坐标原点,以CB,CD,CF分别为x,y,z轴建系,∵,且=λ,∴AB=()λ,∴A(,()λ,0),E(,0,),F(0,0,),B(,0,0),=(0,(1﹣)λ,),=(﹣,0,),∵直线AE与BF所成角的大小为60°,∴cos60°==,由λ>0,解得λ=1,∴当λ取1时,直线AE与BF所成角的大小为60°.19.已知数列{a n }的前n 项和S n =a n +.(1)求数列{a n }的通项公式; (2)若b n =,且数列{b n }的前n 项和为T n ,求T 2n .【考点】数列的求和;数列递推式. 【分析】(1)由于数列{a n }的前n 项和S n =a n +,可得a 1+a 2=a 2+﹣2,解得a 1.当n ≥2时,S n ﹣1=a n ﹣1+﹣2,可得:a n =a n ﹣a n ﹣1+n ﹣2﹣[﹣2],化简整理即可得出.(2)b n =,可得b 2n ﹣1==.b 2n =.即可得出.【解答】解:(1)∵数列{a n }的前n 项和S n =a n +,∴a 1+a 2=a 2+﹣2,解得a 1=3.当n ≥2时,S n ﹣1=a n ﹣1+﹣2,可得:a n =a n ﹣a n ﹣1+n ﹣2﹣[﹣2],解得a n ﹣1=n+1.∴a n =n+2,当n=1时也成立.∴a n=n+2.=(2)b n=,∴b2n﹣1==.b2n==.∴数列{b n}的前2n项和T2n=+=﹣﹣.20.已知椭圆=1(a>b>0)经过点,且离心率等于.(1)求椭圆的方程;(2)若直线l:y=x+m与椭圆交于A,B两点,与圆x2+y2=2交于C,D两点.①当|CD|=2时,求直线l的方程;②若λ=,试求λ的取值范围.【考点】椭圆的简单性质.【分析】(1)运用椭圆的离心率公式和点M满足椭圆方程,结合a,b,c的关系,解方程可得a,b,进而得到椭圆方程;(2)①求出O到直线的距离,由圆的弦长公式可得2,解方程可得m的值,进而得到直线的方程;②将直线y=x+m代入椭圆方程,运用判别式大于0,运用韦达定理和弦长公式,再由直线和圆相交的条件和弦长公式,化简整理,即可得到所求范围.【解答】解:(1)由题意可得e==,a2﹣b2=c2,将M的坐标代入椭圆方程,可得+=1,解得a=2,b=c=2,即有椭圆的方程为+=1;(2)①O到直线y=x+m的距离为d=,由弦长公式可得2=2,解得m=±,可得直线的方程为y=x±;②由y=x+m代入椭圆方程x2+2y2=8,可得3x2+4mx+2m2﹣8=0,由判别式为△=16m2﹣12(2m2﹣8)>0,化简可得m2<12,由直线和圆相交的条件可得d<r,即有<,即为m2<4,综上可得m的范围是(﹣2,2).设A(x1,y1),B(x2,y2),可得x1+x2=﹣,x1x2=,即有弦长|AB|=•=•=•,|CD|=2=,即有λ==•=•,由0<4﹣m2≤4,可得≥2,即有λ≥.则λ的取值范围是[,+∞).21.已知函数f(x)=ln()+(a∈R).(1)若函数f(x)在定义域上是单调递增函数,求实数a的取值范围;(2)若函数在定义域上有两个极值点x1,x2,试问:是否存在实数a,使得f(x1)+f(x2)=3?【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(1)求得函数的定义域和导函数f′(x),依题意可知f′(x)≥0,在(0,+∞)上恒成立,即a≤在(0,+∞)上恒成立,构造辅助函数,g(x)=,求导,利用导数法求得g(x)的单调区间及最小值,即可求得a的取值范围;(2)由题意可知:函数在定义域上有两个极值点x1,x2,即方程f′(x)=0在(1,+∞)上由两个不同的实根,根据二次函数性质求得a的取值范围,利用韦达定理,求得x1+x2和x1•x2表达式,写出f(x1)+f(x2),根据对数的运算性质求得a的值,判断是否满足a的取值范围.【解答】解:(1)由函数f(x)的定义域为(0,+∞),f′(x)=﹣,依题意可知:f′(x)≥0,在(0,+∞)上恒成立,即a≤在(0,+∞)上恒成立,令g(x)=,g′(x)==,令g′(x)=0,解得x=4,且1<x<4时,g′(x)<0,当x>4时,g′(x)>0,所以g(x)在x=4时取极小值,也为最小值,g(4)=12,故实数a的取值范围是a≤12;(2)f′(x)=﹣=,函数在定义域上有两个极值点x1,x2,即方程f′(x)=0在(1,+∞)上由两个不同的实根,即方程x2+(4﹣a)x+(4+a)=0,在(1,+∞)上由两个不同的实根,∴解得:a≥12,由韦达定理:x1+x2=a﹣4,x1•x2=a+4,于是,f(x1)+f(x2)=ln()++ln()+,=ln[]+a[],=ln[]+a[],=ln()+a(),=,=3,解得a=9,但不满足a>12,所以不存在实数a,使得f(x1)+f(x2)=3.2020年7月18日。
山东省2020年高考数学模拟考试试题及答案
山东省2020年高考数学模拟考试试题及答案参考答案一、单项选择题1. 一看就是两个交点,所以需要算吗?C2. 分母实数化,别忘了“共轭”,D3. 简单的向量坐标运算,A4. 球盒模型(考点闯关班里有讲),37分配,B5. 在一个长方体中画图即可(出题人就是从长方体出发凑的题,其实就是一个鳖臑bie nao )C6. 画个图,一目了然,A7. 关键是把“所有”翻译成“任取”,C8. 用6、4、2特值即可(更高级的,可以用极限特值8-、4、2,绝招班里有讲),B二、多项选择题9. 这个,主要考语文,AD10. 注意相同渐近线的双曲线设法,2222x y a bλ-=,D 选项可用头哥口诀(直线平方……)AC11. B 选项构造二面平行,C 选项注意把面补全为AEFD1(也可通过排除法选出),D 选项CG中点明显不在面上,BC12. 利用函数平移的思想找对称中心,ABC三、填空题13. 确定不是小学题?3614. 竟然考和差化积,头哥告诉过你们记不住公式怎么办,不过这题直接展开也可以,45- 15. 利用焦半径公式,或者更快的用特殊位置,或者更更快用极限特殊位置(绝招班有讲),2,116. 根据对称之美原则(绝招班有讲),8(老实讲,选择填空所有题都可以不动笔直接口算出来的呀~~~)四、解答题17. 故弄玄虚,都是等差等比的基本运算,选①,先算等比的通项()13n n b -=--,再算等差的通项316n a n =-,4k =,同理②不存在,③ m.cksdu 牛逼 4k =18. (1)根据三角形面积很容易得出两边之比,再用正弦定理即可,60°(2)设AC=4x (想想为什么不直接设为x ?),将三角形CFB 三边表示出来,再用余弦19. (1)取SB 中点M ,易知AM//EF ,且MAB=45°,可得AS=AB ,易证AM ⊥面SBC ,进一步得证(2)可设AB=AS=a ,,建系求解即可,20. (1)正相关(2)公式都给了,怕啥,但是需要把公式自己化简一下,ˆ121.867.89yx =+ (3)两侧分布均匀,且最大差距控制在1%左右,拟合效果较好21. (1)没啥可说的,2214x y +=,(2214x y -+= (2)单一关参模型,条件转化为AB=CD=1(绝招班里有讲),剩下就是计算了,无解,所以不存在22. (1)送分的(求导可用头哥口诀),7(2)考求导,没啥意思,注意定义域,单增()0,+∞(3)有点意思,详细点写由递推公式易知1n a ≥由(11711n n n n n a a a a a +-+-==++知若n a,则1n a +;若n a >,则1n a +<又11a =<,所以n为奇数时n a <,n为偶数时n a >1)n为奇数时,n a <,1n a +>,由(2)的单增可知 ()2221n n n n a a a f a +=<=可知22111ln ln 0ln 277n n n n a a a a ++<<⇒>>⇒>2)n为偶数时,n a >,1n a +<2)的单增可知()2221n n n n a a a f a +=>=2211771ln 02ln n n a a ++>>⇒>>⇒>由1)212<所以111117ln ln22lnn nna---⎛⎫⎛⎫=≤<⎪⎪⎝⎭⎝⎭所以222ln ln71nna-⋅-<证毕注:奉劝大家千万不要求通项公式,当然利用不动点也能求出来)(((117711nn na--⎛⎫-⎝⎭=-,只是接下来你就要崩溃了吧~~~。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时,
.若
,
,
,
则 的大小关系是( )
A.
B.
C.
D.
10.函数 的导函数 满足
在 上恒成立,且
,则下列判断一定正确的是( )
A.
B.
C.
D.
11.已知函数
f
(x)
log 1 2
(x
1), 1
x
0
,若关于
x
的方程
f
(x)
m(m R) 恰有三个不同的实数根
x2 2x, x 0
a,b,c,则 a b c 的取值范围是( )
山东省 2020 年高考仿真模拟冲刺卷(一)数学(理)试题
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题目
要求的。
1.在等差数列 {an } 中,
a9
1 2
a12
6
,则 {an } 的前 11项和
S11
(
)
A.132 B. 66 C. 48 D. 24
2.记
设
,则( )
A.存在
B.存在
C.存在 D.存在
3.已知数列
an
满足递推关系: an1
an an
1
,
a1
1 2
,则 a2020
(
)
1
1
1
1
A. 2019 B. 2020 C. 2021 D. 2022
4.在直角坐标系 xOy 中,抛物线 C : y2 4x 的焦点为 F ,准线为 l ,P 为 C 上一点,PQ 垂直 l 于点 Q ,
二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
13.设曲线 y xn1(n N ) 在点 (1,1) 处的切线与 x 轴的交点的横坐标为 xn ,则
log2018 x1 log2018 x2 log2018 x3 log2018 x2017 的值为__________.
14.某市政府决定派遣 8 名干部(5 男 3 女)分成两个小组,到该市甲、乙两个县去检查扶贫工作,若要 求每组至少 3 人,且女干部不能单独成组,则不同的派遣方案共有_________种.(用数字作答)
19.(12 分)动点 M (x, y) 满足 (x 2 2)2 y2 (x 2 2)2 y2 6 .求 M 点的轨迹并给出标准方 程;已知 D(2 2, 0) ,直线 l : y kx 2 2k 交 M 点的轨迹于 A ,B 两点,设 AD DB 且1 2,
求 k 的取值范围.
M , N 分别为 PQ , PF 的中点,直线 MN 与 x 轴交于点 R ,若 NFR 60 ,则 NR ( )
A.2 B. 3 C. 2 3 D.3
5.已知 Sn 为等差数列{an}的前 n 项和,a1=1,公差为 d,则“﹣1<d<0”是“S22+S52<26”的( )
A.充分不必要条件
20.(12 分)选修 4-4:坐标系与参数方程
x cos,
在直角坐标系
xOy
中,直线
l
的方程为
kx
y
2k
0
,曲线
C1
:
y
sin
( 为参数,0 ),
在以原点 O 为极点, x 轴正半轴为极轴的极坐标系中,曲线 C2 : (sin cos ) 1 0 .求曲线 C1 的普
通方程和曲线 C2 的直角坐标方程;若直线 l 与曲线 C1 有公共点,且直线 l 与曲线 C2 的交点 P 恰好在曲线 C1 与 x 轴围成的区域(不含边界)内,求 k 的取值范围.
2OC OA OC OB 0 ,则对任意 t 0 的实数和任意满足条件的向量 OC ,
OC
1 4
t
OA
1 2
ln
t
1
OB
的最小值__________.
三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。
17.(12 分)已知{an}为等差数列,且 a2 3 ,{an}前 4 项的和为 16,数列{bn}满足 b1 4 , b4 88 ,
(1 ,1)
( 3 ,1)
( 3 , 2)
( 3 , 2)
A. 2
B. 4
C. 4
D. 2
12.某几何体的正视图和侧视图如图 1 所示,它的俯视图的直观图是 A' B 'C ' D' ,如图 2 所示.其中
A'B' 2A'D' 4 ,则该几何体的表面积为( )
A.16 12 B.16 8 C.16 10 D. 8
22.(10 分)如图,在几何体 ACD A1B1C1D1 中,四边形 ADD1A1,CDD1C1 为矩形,平面 ADD1A1 平
B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
6.运行如图所示框图的相应程序,若输入 的值分别为 和 D.
7.已知集合 A={x | y=
1 1
2x
}
,
B
{x
|
y
log 2 x
1),则
A
B=(
)
A.(0,+)
B.(-,0)(2, )
C.(- ,0)(0,+ )D. R
15.已知函数 f (x) 是奇函数,定义域为 R ,且 x 0 时, f (x) lg x ,则满足 x 1 f x 0 的实数 x 的
取值范围是 __________.
16.在平面直角坐标系 Oxy 中, O 为坐标原点,点 A4,0, B0, 2 ,平面向量 OA,OB,OC 满足:
21.(12 分)在平面直角坐标系 xOy 中,圆 O 的方程为 x2 y2 4 ,以坐标原点为极点,x 轴的正
半轴为极轴建立极坐标系,曲线 C 的极坐标方程是 2cos2 1.
1 求圆 O 的参数方程和曲线 C 的直角坐标方程; 2 已知 M,N 是曲线 C 与 x 轴的两个交点,点 P 为圆 O 上的任意一点,证明: PM |2 PN |2 为定值.
8.某产品在某零售摊位的零售价 x (单位:元)与每天的销售量 y (单位:个)的统计资料如下表所示,
由表可得回归直线方程 yˆ bˆx aˆ 中的 bˆ 4 ,据此模型预测零售价为 20 元时,每天的销售量为( )
A.26 个B.27 个C.28 个D.29 个
9.定义在 上的函数 满足
,且
且数列{bn an} 为等比数列.求数列{an} 和{bn an} 的通项公式;求数列{bn}的前 n 项和 Sn .
18.(12
分)已知数列{an}的前 n
项和为
Sn
, a1
2
, an
0
,且
a2 n1
2an1
an
3an2
0
.求数列 {an }
的通项公式;设 bn log3(1 Sn ) ,求数列 an bn 的前 n 项和 Tn .