二次根式经典中考试题及答案解析
初三数学二次根式试题答案及解析
初三数学二次根式试题答案及解析1.计算:=.【答案】【解析】=2﹣=.【考点】二次根式的加减法.2.下列实数是无理数的是()A.B.C.D.【答案】A.【解析】理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项:A、是无理数,选项正确;B、C、D、都是整数,是有理数,选项错误. 故选A.【考点】无理数.3.若式子有意义,则实数x的取值范围是【答案】x≥1.【解析】根据二次根式的性质可以得到x-1是非负数,由此即可求解.试题解析:依题意得x-1≥0,∴x≥1.【考点】二次根式有意义的条件.4.方程的解为 .【答案】x=1【解析】方程两边平方,得:2-x=1,解得:x=1.经检验:x=1是方程的解.故答案是:x=1.【考点】无理方程.5.函数y中,自变量x的取值范围是【答案】x≥.【解析】根据二次根式的意义,2x﹣1≥0,解得x≥.故答案是x≥.【考点】函数自变量的取值范围.6.计算:-12003+()-2-|3-|+3tan60°。
【答案】6【解析】首先计算乘方,化简二次根式,去掉绝对值符号,然后进行乘法,加减即可.本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式的化简,正确记忆特殊角的三角函数值.解:原式=﹣1+4﹣3+3+3×,=﹣1+4+3,=6.7.计算:·-=________.【答案】2【解析】原式=-=3-=2.8.使二次根式有意义的x的取值范围是 .【答案】x≤2.【解析】根据二次根式的性质,被开方数大于等于0,即:2﹣x≥0,解得:x≤2.故答案是x≤2.【考点】二次根式的性质.9.与的大小关系是()A.>B.<C.=D.不能比较【答案】A.【解析】∵,∴,∴.故选A.【考点】实数大小比较.10.计算:.【答案】.【解析】先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.试题解析:==.【考点】二次根式的化简.11.【答案】.【解析】根据分母有理化、二次根式、非零数的零次幂的意义进行计算即可得出答案.试题解析:考点: 实数的混合运算.12.计算: .【答案】.【解析】把括号展开即可求值.试题解析:故答案为:.考点: 二次根式的运算.13.下列计算中,正确的是()A.B.C.D.【答案】D.【解析】A.已经是最简的,故本选项错误;B. ,故本选项错误;C. ,故本选项错误;D. ,故本选项正确.故选D.【考点】二次根式化简.14.实数范围内有意义,则x的取值范围是()A.x>1B.x≥l C.x<1D.x≤1【答案】B.【解析】根据根式有意义的条件,根号下面的数或者式子要大于等于0,即解得:x≥l.【考点】根式有意义的条件.15.计算:【答案】.【解析】根据二次根式的混合运算顺序和运算法则计算即可.试题解析:【考点】二次根式的混合运算.16.是整数,则正整数n的最小值是()A.4B.5C.6D.7【答案】C.【解析】∵,∴当时,,∴原式=,∴n的最小值为6.故选C.考点: 二次根式的化简.17.实数4的平方根是.【答案】±2.【解析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的一个平方根:∵(±2)2=4,∴16的平方根是±2.【考点】平方根.18.要使式子在实数范围内有意义,字母a的取值必须满足()A.a≥2B.a≤2C.a≠2D.a≠0【答案】A【解析】使式子在实数范围内有意义,必须有a-2≥0,解得a≥2,故选A【考点】二次根式成立的条件.19.下列运算正确的是()A.B.C.D.【答案】D.【解析】A.和不是同类二次根式,不能合并,此选项错误;B.3和不是同类二次根式,不能合并,此选项错误;C.,此选项错误;D.,此选项正确.故选D.【考点】二次根式的混合运算.20.若,,求.的值【答案】4【解析】本题考查的是二次根式的混合运算,同时考查了因式分解,把a2b+ab2的因式分解为ab(a-b),再代入计算即求解为4.试题解析:解:∵,∴∴【考点】1、二次根式的混合运算.2、因式分解.21.下列运算正确的是()A.B.C.D.【答案】D【解析】二次根式的性质:当时,,当时,.A、,B、,C、,均错误;D、,本选项正确.【考点】二次根式的混合运算22.要使式子有意义,则x的取值范围是 .【答案】【解析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须。
初一数学二次根式试题答案及解析
初一数学二次根式试题答案及解析1.一个数的算术平方根是,则这个数是_____ _____.【答案】2.【解析】∵一个数的算术平方根是,∴这个数为()2=2.故答案是2.【考点】算术平方根.2. 9的平方根是()A.3B.±3C.D.81【答案】B【解析】根据平方根的定义可判断.【考点】平方根3. 49的算术平方根是.【答案】7【解析】根据算术平方根的意义可求.【考点】算术平方根4.的平方根为()A.B.C.3D.【答案】B.【解析】由于=3,故其平方根是.故选B.【考点】平方根.5.在3.14,中,无理数有()个A.1个B.2个C.3个D.4个【答案】B.【解析】有限小数、整数、分数都属于有理数,故3.14,,==2都是有理数,开不尽方的平方根,圆周率都是无限不循环小数,所以是无理数.故选B.【考点】实数的分类.6.下列说法中正确的是()A.立方根是它本身的数只有1和0B.算术平方根是它本身的数只有1和0C.平方根是它本身的数只有1和0D.绝对值是它本身的数只有1和0【答案】B.【解析】A.立方根是它本身的数除去1和0外,还有-1,故该选项错误;B.算术平方根是它本身的数只有1和0,故该选项正确;C.平方根是它本身的数只有1和0,故该选项错误;D.绝对值是它本身的数只有正数和0,故该选项错误.故选B.【考点】1.立方根;2.平方根;3.算术平方根;4.绝对值.7.下列各式正确的是()A.B.C.D.【答案】A.【解析】A选项正确,B、C、D选项错误.故选A.【考点】二次根式的化简.8.大于小于的所有整数的和是 .【答案】-4.【解析】求出和的范围,求出范围内的整数解,最后相加即可.∵-5<<-4,3<<4,∴大于小于的所有整数为-4,±3,±2,±1,0,∴-4-3-2-1+0+1+2+3=-4,【考点】估算无理数的大小.9.下列计算正确的是()A.B.C.D.【答案】D【解析】A.,故本选项错误;B.,故本选项错误;C.,表示25的算术平方根是5,故本选项错误;D.,故本选项正确,故选D.10.下列说法正确的是()A.一个数的立方根有两个,它们互为相反数B.一个数的立方根与这个数同号C.如果一个数有立方根,那么它一定有平方根D.一个数的立方根是非负数【答案】B【解析】一个数的立方根只有一个,A错误;一个数有立方根,但这个数不一定有平方根,如,C错误;一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0,所以D是错误的,故选B.11.已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求a+2b的值.【答案】9【解析】解:因为2a-1的平方根是±3,所以2a-1=9,解得因为3a+b-1的算术平方根是4,所以3a+b-1=16.又所以故a+2b=9.12.在-4,,0,π,1,,这些数中,是无理数的是.【答案】π.【解析】无理数有:π.故答案为:π.【考点】无理数.13.如图,长方形内有两个相邻的正方形,面积分别为4和9,那么图中阴影部分的面积为()A.1B.2C.3D.4【答案】B【解析】设两个正方形的边长是x、y(x<y),得出方程x2=4,y2=9,求出x=2,y=3,代入阴影部分的面积是(y﹣x)x求出即可.解:设两个正方形的边长是x、y(x<y),则x2=4,y2=9,x=2,y=3,则阴影部分的面积是(y﹣x)x=(3﹣2)×2=2,故选B.点评:本题考查了算术平方根性质的应用,主要考查学生的计算能力.14.若(x-1)=64,则x=______。
初中数学二次根式精选试题(含答案和解析)
初中数学二次根式精选试题一.选择题1. (2018·湖南怀化·4分)使有意义的x的取值范围是()A.x≤3B.x<3 C.x≥3D.x>3【分析】先根据二次根式有意义的条件列出关于x的不等式.求出x 的取值范围即可.【解答】解:∵式子有意义.∴x﹣3≥0.解得x≥3.故选:C.【点评】本题考查的是二次根式有意义的条件.熟知二次根式具有非负性是解答此题的关键.2.(2018•江苏宿迁•3分)若实数m、n满足.且m、n恰好是等腰△ABC的两条边的边长.则△ABC的周长是()A. 12B. 10C. 8D. 6【答案】B【分析】根据绝对值和二次根式的非负性得m、n的值.再分情况讨论:①若腰为2.底为4.由三角形两边之和大于第三边.舍去;②若腰为4.底为2.再由三角形周长公式计算即可.【详解】由题意得:m-2=0.n-4=0.∴m=2.n=4.又∵m、n恰好是等腰△ABC的两条边的边长.①若腰为2.底为4.此时不能构成三角形.舍去.②若腰为4.底为2.则周长为:4+4+2=10.故选B.【点睛】本题考查了非负数的性质以及等腰三角形的性质.根据非负数的性质求出m、n的值是解题的关键.3.(2018•江苏无锡•3分)下列等式正确的是()A.()2=3 B.=﹣3 C.=3 D.(﹣)2=﹣3【分析】根据二次根式的性质把各个二次根式化简.判断即可.【解答】解:()2=3.A正确;=3.B错误;==3.C错误;(﹣)2=3.D错误;故选:A.【点评】本题考查的是二次根式的化简.掌握二次根式的性质:=|a|是解题的关键.4.(2018•江苏苏州•3分)若在实数范围内有意义.则x的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据二次根式有意义的条件列出不等式.解不等式.把解集在数轴上表示即可.【解答】解:由题意得x+2≥0.解得x≥﹣2.故选:D.【点评】本题考查的是二次根式有意义的条件.掌握二次根式中的被开方数是非负数是解题的关键.5.(2018•山东聊城市•3分)下列计算正确的是()A.3﹣2=B.•(÷)=C.(﹣)÷=2D.﹣3=【分析】根据二次根式的加减乘除运算法则逐一计算可得.【解答】解:A.3与﹣2不是同类二次根式.不能合并.此选项错误;B.•(÷)=•==.此选项正确;C.(﹣)÷=(5﹣)÷=5﹣.此选项错误;D.﹣3=﹣2=﹣.此选项错误;故选:B.【点评】本题主要考查二次根式的混合运算.解题的关键是掌握二次根式混合运算顺序和运算法则.6.(2018•上海•4分)下列计算﹣的结果是()A.4 B.3 C.2D.【分析】先化简.再合并同类项即可求解.【解答】解:﹣=3﹣=2.故选:C.【点评】考查了二次根式的加减法.关键是熟练掌握二次根式的加减法法则:二次根式相加减.先把各个二次根式化成最简二次根式.再把被开方数相同的二次根式进行合并.合并方法为系数相加减.根式不变.7. (2018•达州•3分)二次根式中的x的取值范围是()A.x<﹣2 B.x≤﹣2 C.x>﹣2 D.x≥﹣2【分析】根据被开方数是非负数.可得答案.【解答】解:由题意.得2x+4≥0.解得x≥﹣2.故选:D.【点评】本题考查了二次根式有意义的条件.利用被开方数是非负数得出不等式是解题关键.8. (2018•杭州•3分)下列计算正确的是()A.B.C.D.【答案】A【考点】二次根式的性质与化简【解析】【解答】解:AB.∵.因此A符合题意;B不符合题意;CD.∵.因此C.D不符合题意;故答案为:A【分析】根据二次根式的性质.对各选项逐一判断即可。
二次根式中考真题及详解
二次根式知识梳理知识点1.二次根式重点:掌握二次根式的概念 难点:二次根式有意义的条件 式子a (a ≥0)叫做二次根式. 例1下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+, 其中是二次根式的是_________(填序号).解题思路:运用二次根式的概念,式子a (a ≥0)叫做二次根式.答案:1)、3)、4)、5)、7)例2若式子13x -有意义,则x 的取值范围是_______. 解题思路:运用二次根式的概念,式子a (a ≥0)注意被开方数的范围,同时注意分母不能为0 答案:3x >例3若y=5-x +x -5+2009,则x+y=解题思路:式子a (a ≥0),50,50x x -≥⎧⎨-≥⎩5x =,y=2009,则x+y=2014练习1使代数式43--x x 有意义的x 的取值范围是( ) A 、x>3B 、x ≥3C 、 x>4D 、x ≥3且x ≠42、若11x x ---2()x y =+,则x -y 的值为( )A .-1B .1C .2D .3答案:1. D 2. C知识点 2.最简二次根式 重点:掌握最简二次根式的条件 难点:正确分清是否为最简二次根式同时满足:①被开方数的因数是整数,因式是整式(分母中不含根号);②被开方数中含能开得尽方的因数或因式.这样的二次根式叫做最简二次根式.例1.在根式1) 222;2);3);4)275xa b x xy abc +-,最简二次根式是( ) A .1) 2) B .3) 4) C .1) 3) D .1) 4)解题思路:掌握最简二次根式的条件,答案:C 练习.下列根式中,不是..最简二次根式的是( ) A .7B .3C .12D .2答案:C知识点3.同类二次根式 重点:掌握同类二次根式的概念 难点:正确分清是否为同类二次根式几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫同类二次根式. 例在下列各组根式中,是同类二次根式的是( )A .3和18B .3和13C .22.11a b ab D a a +-和和解题思路:∵18=32,∴3与18不是同类二次根式,A 错.13=33, ∴3与13是同类二次根,∴B 正确.∵22||,ab b a a b ==│a │b , ∴C 错,而显然,D 错,∴选B .练习已知最简二次根式322b a b b a --+和是同类二次根式,则a=______,b=_______. 答案:a=0 ,b=2知识点4.二次根式的性质 重点:掌握二次根式的性质难点:理解和熟练运用二次根式的性质①(a )2=a (a ≥0);0(0)a a ≥≥ ②2a =│a │=(0)0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩;例1、若()22340a b c -+-+-=,则=+-c b a .解题思路:2|2|0,30,(4)0a b c -≥-≥-≥,非负数之和为0,则它们分别都为0,则2,3,4a b c ===,=+-c b a 3oba例2、化简:21(3)a a -+-的结果为( )A 、4—2aB 、0C 、2a —4D 、4解题思路:由条件则30,3a a -≥≥,运用(a )2=a (a ≥0)则2(3)3a a -=- 答案:C例3.如果表示a ,b 两个实数的点在数轴上的位置如图所示,那么化简│a -b │+2()a b + 的结果等于( )A .-2bB .2bC .-2aD .2a解题思路:运用2a =│a │=(0)0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩;由数轴则0a b -> , 0a b +<,则原式=a b a b ---=-2b 选A练习1.已知a<0,那么│2a -2a │可化简为( )A .-aB .aC .-3aD .3a2.如图所示,实数a ,b 在数轴上的位置,化简222()a b a b ---.3.若y x -+-324=0,则2xy= 。
初二数学二次根式试题答案及解析
初二数学二次根式试题答案及解析1.(6分)化简:(+)-(+6)÷.【答案】.【解析】分别利用二次根式的乘除运算法则化简,进而合并得出即可.试题解析:(+)-(+6)÷=2+3﹣3﹣=.【考点】二次根式的混合运算.2.规定用符号[m]表示一个实数m的整数部分. 例如:[]="0" ,[3.14]="3" ,按此规定[]的值为_________ .【答案】4.【解析】∵9<10<16,∴. ∴.试题解析:【考点】1.新定义;2.估计无理数的大小.3.当时,二次根式的值为【答案】5.【解析】当时,.【考点】二次根式求值.4.下列变形中,正确的是………()A.(2)2=2×3=6B.C.D.【答案】D.【解析】A、(2)2=4×3=12,故本选项错误;B、,故本选项错误;C、,故本选项错误;D、,正确.故选D.【考点】二次根式的化简与计算.5.计算:【答案】3【解析】先进行乘方、分母有理化及负整数指数幂,最后合并同类二次根式即可求解.原式=【考点】实数的混合运算.6.若,则。
A.B.C.0D.2【答案】A.【解析】∵∴x+y=2,x-y=2∴原式=(x+y)(x-y)=2×2=4.故选A.考点: 二次根式的化简求值.7.若,则的取值范围是。
【答案】x≥0.【解析】根据(a≥0),可得答案.试题解析:解;∵,∴2x≥0,∴x≥0.考点: 二次根式的性质与化简.8.计算()(+++…+)【答案】2013.【解析】根据分母有理化的计算,把括号内各项分母有理化,计算后再利用平方差公式进行计算即可得解.试题解析:()(+++…+)=()(-1+-+-+…+-)=()()=2014-1=2013.考点: 分母有理化.9.已知+,那么 .【答案】8【解析】由+,得,所以.10.已知、b为两个连续的整数,且,则= .【答案】11【解析】∵,、b为两个连续的整数,又<<,∴ =6,b=5,∴.11.的平方根是.【答案】±2.【解析】的算术平方根是4,4的平方根是±2.【考点】1.算术平方根;2. 平方根.12.下列说法正确的是……()A.0的平方根是0B.1的平方根是1C.-1的平方根是-1D.的平方根是-1【答案】A.【解析】根据平方根的定义即可判定A.0的平方根是0,故说法正确;B.1的平方根是±1,故说法错误;C.-1的平方根是-1,负数没有平方根,故说法错误;D.(-1)2=1,1的平方根为±1,故说法错误【考点】平方根.13.设S=+++…+,则不大于S的最大整数[S]等于()A.98B.99C.100D.101【答案】B.【解析】,,…,所以所以不大于S的最大整数[S]等于99.【考点】规律型.14.计算:【答案】5【解析】解:原式【考点】实数运算点评:本题难度较低,主要考查学生对实数运算知识点的额掌握,为中考常考题型,要求学生牢固掌握。
初二数学二次根式试题答案及解析
初二数学二次根式试题答案及解析1.要使代数式有意义,则x的取值范围是( )A.x≥2B.x≥-2C.x≤-2D.x≤2【答案】A.【解析】根据题意,得x-2≥0,解得,x≥2;故选A.【考点】二次根式有意义的条件.2.下列计算正确的是()A.B.C.D.【答案】B.【解析】A. 不能计算,故A选项错误;B. ,故B选项正确;C. ,故C选项错误;D. ,故D选项错误.故选B.【考点】二次根式的混合运算.3.下列各式是最简二次根式的是()A.B.C.D.【答案】B.【解析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件:(1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式是否同时满足,同时满足的就是最简二次根式,否则就不是.因此,A、=3,不是最简二次根式,故A选项错误;B、是最简二次根式,符合题意,故B选项正确;C、,不是最简二次根式,故C选项错误;D、,不是最简二次根式,故D选项错误;故选B.【考点】最简二次根式.4.化简的结果是()A.-3B.3C.±3D.【答案】B.【解析】.故选B.【考点】二次根式化简.5.下列说法正确的是()A.带根号的数都是无理数B.无理数都是无限小数C.是无理数D.无限小数都是无理数【答案】B.【解析】A、如,是有理数不是无理数,故本选项错误;B、无理数都是无限小数,故本选项正确;C、是有理数,故本选项错误;D、无限不循环小数是无理数,故本选项错误.故选B.考点: 无理数.6.(1)计算: (2)解方程组:【答案】(1);(2)方程组的解为:.【解析】(1)根据二次根式混合运算的运算顺序计算即可;(2)先用加减消元法求出x的值,再用代入消元法求出y的值即可.试题解析:(1);(2)②-①×3得x=5,把x=5代入①得,10﹣y=5,解得y=5,故此方程组的解为:.【考点】1.二次根式的运算,2.解方程组.7.已知实数满足,则代数式的值为()A.B.C.D.【答案】B【解析】由,知所以8.有一个数值转换器,原理如图所示:当输入的=64时,输出的y等于()A.2B.8C.3D.2【答案】D【解析】由图表得,64的算术平方根是8,8的算术平方根是2.故选D.9.下列计算中,正确的有()①=±2 ②=2 ③=±25 ④a=-A.0个B.1个C.2个D.3个【答案】C.【解析】A、任何数的立方根只有一个;B、负数的奇次幂是负数,负数的立方根也是负数;C、非负数的平方根有两个,且互为相反数;D、二次根式的意义可知a<0,再根据二次根式的性质求解据此作答,进行判断.A、=2,此选项错误;B、=-2,此选项错误;C、=±25,此选项正确;D、a=-故选C.【考点】1.立方根;2.平方根;3.算术平方根.10.若,则的值为()A.6B.2C.-2D.8【答案】B【解析】由题,得(x-2)2="0," =0,x=2,y=4,故==2,选B.非负数和等于零,要求每一项都要等于零,由题,得(x-2)2="0," =0,x=2,y=4,故==2,选B.【考点】非负数和等于零.11.计算:(1);(2)sin30°+cos30°•tan60°.【答案】(1);(2)2【解析】(1)根据二次根式的乘除法法则计算即可;(2)根据特殊角的锐角三角函数值计算即可.解:(1)原式;(2)原式.【考点】实数的运算点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.12.若x、y为正实数,且x+y=12那么的最小值为 .【答案】13【解析】若x、y为正实数,且x+y=12,那么y=12-x;因此=;设S=,则==;所以S【考点】最值点评:本题考查最值,解答本题的关键是掌握求代数式最值的方法,本题难度较大,计算量比较13.计算:3÷的结果是()A.B.C.D.【答案】A【解析】,选A【考点】实数运算点评:本题难度较低,主要考查学生对实数运算知识点的掌握。
初三数学二次根式试题答案及解析
初三数学二次根式试题答案及解析1.在0.1,﹣3,和这四个实数中,无理数是()A.0.1B.﹣3C.D.【答案】C【解析】在0.1,﹣3,和这四个实数中,无理数有:【考点】无理数2.读取表格中的信息,解决问题.a=b+2c b=c+2a c=a+2b满足的n可以取得的最小整数是.【答案】7.【解析】由,,,….∵,∴.∴.∵36<2014<37,∴n最小整数是7.【考点】1.探索规律题(数字的变化类);2.二次根式化简;3.不等式的应用.3.计算sin245°+cos30°•tan60°,其结果是()A.2B.1C.D.【答案】A【解析】原式=()2+×=+=2.故选:A.【考点】1、特殊角的三角函数值;2、实数的计算4.若式子在实数范围内有意义,则x的取值范围是()A.x<2B.x≤2C.x>2D.x≥2【答案】D【解析】根据题意得:x﹣2≥0,解得:x≥2.故选D.【考点】二次根式有意义的条件5.在下列实数中,无理数是()A.2B.3.14C.D.【答案】D.【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项:A、是整数,是有理数,选项错误;B、是小数,是有理数,选项错误;C、是分数,是有理数,选项错误;D、是无理数,选项正确析.故选D.【考点】无理数.6.二次根式在实数范围内有意义,则x的取值范围是()A.x<1B.x≥1C.x≤-1D.x<-1【答案】B.【解析】根据题意得:x-1≥0,解得:x≥1.故选B.考点: 二次根式有意义的条件.7.下列计算正确的是 ()A.-=B.=-=1C.÷(-)=-1D.=3【答案】A【解析】∵-=2-=∴A对.∵==∴B错.∵÷(-)===+1∴C错∵===3-1∴D错.选A.8.计算:·-=________.【答案】2【解析】原式=-=3-=2.9.下列各式中,正确的是 ()A.=-3B.-=-3C.=±3D.=±3【答案】B【解析】因为-=-=-3,所以选B.10. 9的算术平方根是( )A.3B.±3C.81D.±81【答案】A.【解析】9的算术平方根是.故选A.考点: 算术平方根.11.已知则.【答案】【解析】因为所以所以,故.12.下列运算正确的是()A.B.C.D.【答案】B.【解析】A.与不是同类二次根式,不能合并,故本选项错误;B.,故本选项正确;C.3与不是同类二次根式,不能合并,故本选项错误;D. ,,故本选项错误.故选B.考点: 二次根式的运算与化简.13.的值等于()A.4B.-4C.±4D.【答案】A.【解析】根据42=16,可得.故选A.【考点】算术平方根.14.的算术平方根是()A.4B.C.2D.【答案】C.【解析】根据算术平方根的定义解答即可.∵∴4的算术平方根是2.故选C.考点:算术平方根.15.观察分析下列数据,按规律填空:(第n个数).【答案】.【解析】寻找规律:可写为.【考点】探索规律题(数字的变化类).16.下列计算正确的是()A.B.C.D.【答案】D【解析】A、与不是同类二次根式,无法合并,B、,C、,均错误;D、,本选项正确.【考点】二次根式的混合运算17.下列计算,正确的是A.B.C.D.【答案】C.【解析】A、与不是同类二次根式,不能合并,故A错误;B、与不是同类二次根式,不能合并,故B错误;C、,该选项正确;D、,故本选项错误.故选C.考点: 二次根式的混合运算.18.计算【答案】.【解析】先化简二次根式,再合并同类二次根式,最后算除法即可求出答案.试题解析:考点: 二次根式的混合运算.19.计算:=.【答案】7.【解析】直接根据二次根式的性质与化简进行计算即可..故填7.【考点】二次根式的性质与化简.20.已知:a.b.c满足,求:(1)a,b,c的值;(2)试问以a,b,c为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.【答案】(1)a=2,b=5,c=3;(2)能构成三角形,周长=.【解析】(1)几个非负数的和为零,要求每一项为零,由题,a-2=0,b-5=0,c-3=0,a=2 ,b=5,c=3;(2)能构成三角形的条件是两边之和大于第三边,由题,,而,所以能构成三角形,周长=. 试题解析:(1)由题,∴a-2=0,b-5=0,c-3=0,∴a=2,b=5,c=3;(2)∵,,∴能构成三角形,三角形的周长=.【考点】1.非负数的性质;2.三角形三边的关系.21.下列二次根式中,取值范围是的是()A.B.C.D.【答案】C.【解析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须;要使在实数范围内有意义,必须;要使在实数范围内有意义,必须;要使在实数范围内有意义,必须,因此,取值范围是的是. 故选C.【考点】二次根式和分式有意义的条件.22.若,,求.的值【答案】4【解析】本题考查的是二次根式的混合运算,同时考查了因式分解,把a2b+ab2的因式分解为ab(a-b),再代入计算即求解为4.试题解析:解:∵,∴∴【考点】1、二次根式的混合运算.2、因式分解.23.如果,那么= .【答案】-2【解析】根据题意,可得=0,∣b-2∣=0,从而得到a+1=0,a=-1,b-2=0,b=2,ab=-2.因为二次根式为非负数,一个数的绝对值为非负数,由几个非负数的和为零,要求每一项都为零,即=0,∣b-2∣=0,而零的二次根式为0,0的绝对值为0,从而得到a+1=0,b-2=0,解得a=-1,b=2,ab=-2.【考点】几个非负数的和为零,要求每一项都为零.24.若平行四边形的一边长为2,面积为,则此边上的高介于A.3与4之间B.4与5之间C.5与6之间D.6与7之间【答案】B【解析】先根据四边形的面积公式列出算式,求出高的值,再估算出无理数,即可得出答案:根据四边形的面积公式可得:此边上的高=。
二次根式50题上 参考答案与试题解析
二次根式50题上参考答案与试题解析一.解答题(共50小题)1.【解答】解:(1)原式=2+2×2=+4=5;(2)原式=+6﹣=2+6﹣4=2+2.2.【解答】解:(1)原式=3×5÷=15=15;(2)原式=5﹣3=2;(3)原式=2﹣﹣﹣=﹣;(4)原式=3×1﹣(﹣)﹣1=3﹣2+﹣1=.3.【解答】解:(1)原式=7﹣25=﹣18;(2)原式==.4.【解答】解:(1)原式=4+3﹣2=5;(2)原式=[(﹣2)(+2)]2019•(+2)﹣2(1﹣)﹣1=﹣(+2)﹣2(1﹣)﹣1=﹣﹣2﹣2+﹣1=﹣5.5.【解答】解:(I)(+)+(﹣)=2+2+﹣=3+;(II)2×÷5=4×÷5=3×=.6.【解答】解:(1)原式=4÷﹣3÷=4﹣3;(2)原式=×2﹣×=2﹣=4﹣5=﹣1.7.【解答】解:(1)原式=3﹣8+3=﹣2;(2)原式=﹣2=﹣2=﹣.8.【解答】解:(1)﹣﹣+原式=2﹣4﹣2+5=3﹣2;(2)÷(3﹣2)=2÷(﹣)=﹣2.9.【解答】解:(1)原式=﹣|2﹣|=+2﹣=2;(2)原式=2(1+)(1﹣)=2×(1﹣3)=﹣4.10.【解答】解:(1)原式=+﹣4=2+3﹣4=1;(2)原式=+4﹣4+3=3+4﹣4+3=7﹣.11.【解答】解:原式=2+1﹣+8=+9.12.【解答】解:原式=+4=3+4=7.13.【解答】解:(1)﹣+=2﹣3+5=4;(2)()﹣2﹣(π﹣3)0+|﹣2|+6×=4﹣1+2﹣+3=5+2.14.【解答】解:(1)原式=(2+7﹣)•=27﹣.(2)原式=(5﹣3)﹣(2+2+6)=2﹣(8+4)=2﹣8﹣4=﹣6﹣4.(3)原式=÷==.15.【解答】解:原式=2﹣+(3+9﹣6)÷=+(12﹣6)÷=+4﹣6=5﹣6.16.【解答】解:(1)原式=×4﹣1+4++1=2﹣1+4++1=7;(2)原式=(6﹣+4)÷2=÷2=.17.【解答】解:原式=(6﹣)÷2=×=.18.【解答】解:(1)原式=(3)2﹣62=18﹣36=﹣18;(2)原式=3+﹣1+1=4.19.【解答】解:(1)原式=[x2﹣4xy+4y2﹣(4y2﹣x2)]÷2x =[x2﹣4xy+4y2﹣4y2+x2]÷2x=(2x2﹣4xy)÷2x=x﹣2y;(2)原式=1+﹣1+3﹣=3.20.【解答】解:原式=1﹣3﹣+﹣2=﹣4.21.【解答】解:(1)原式=﹣3=2﹣3=﹣;(2)原式=()2﹣()2=8﹣=.22.【解答】解:×﹣()﹣1﹣|2﹣|=﹣﹣|2﹣3|=﹣﹣1=﹣﹣.23.【解答】解:(3﹣)2+=18﹣6+6+4=18﹣12+6+4=24﹣8.24.【解答】解:原式=4+﹣2+﹣1=4+﹣2+﹣1=3.25.【解答】解:(1)原式=2+1+2﹣2+4=7;(2)原式=4÷(8﹣﹣3)=1.26.【解答】解:(1)原式=3﹣2﹣3﹣1=﹣2﹣1;(2)原式=3+4﹣4﹣6=1﹣4.27.【解答】解:(1)(3﹣)2++4=9﹣6+2+4+2=11;(2)|﹣1|﹣•+(+1)2﹣()2=﹣1﹣2+3+2+1﹣3=;(3)÷+(﹣1)0﹣1=×+1﹣1=5+1﹣1=5;(4)+×﹣=3+﹣=3;(5)()2(5+2)+5=(3﹣2+2)×(5+2)+5=(5﹣2)×(5+2)+5=25﹣24+5=6;(6)÷﹣|2﹣3|+(﹣)﹣1=﹣(3﹣2)+(﹣2)=﹣3+2+(﹣2)=﹣5+.28.【解答】解:(1)原式=+3﹣4=0;(2)原式=2××=;(3)原式=12﹣6=6.29.【解答】解:(1)原式=4+3﹣2+4=7+2;(2)原式=3﹣4+4+2+2=7.30.【解答】解:(1)原式=2+3﹣2﹣6=﹣4+;(2)原式=+﹣﹣=﹣=.31.【解答】解:(1)原式=﹣2+4=4﹣4+4=4;(2)原式=4﹣3+=+3.32.【解答】解:原式=﹣2+4×=3﹣6+=3﹣5.33.【解答】解:(1)原式=4×÷=3÷=;(2)原式=3﹣﹣(8﹣4+1)=3﹣﹣(9﹣4)=3﹣﹣9+4=7﹣﹣9.34.【解答】解:(1)原式=(×3+2×﹣2)×2=(+﹣2)×2=(﹣)×2=6﹣8;(2)原式=3﹣4+12﹣4+1=12﹣4.35.【解答】解:(1)﹣4÷+3=2﹣4+=﹣.(2)(﹣2)(+2)﹣(﹣)+|1﹣|=3﹣4+2+﹣1=﹣2+3.36.【解答】解:(1)=3﹣2+(3﹣1)=3﹣2+2=+2;(2)(﹣)×(﹣)+|﹣1|+(5﹣2π)0=3+﹣1+1=4.37.【解答】解:(1)=+1+3﹣3+2=4;(2)=2b•(﹣a)•=﹣9a2b.38.【解答】解:(1)﹣=2﹣=;(2)﹣×=2﹣=;(3)(+﹣×)÷=(5+4﹣3)÷2=6÷2=3.39.【解答】解:原式=﹣(×2﹣×2)+()2﹣()2=﹣+3+2﹣3=3﹣1.40.【解答】解:原式=4﹣3+﹣1+﹣2=6﹣6.41.【解答】解:原式=(2)2﹣12=12﹣1=11.42.【解答】解:(1)原式=3﹣2+3=+3;(2)原式=(4﹣2+6)÷=8÷=8.43.【解答】解:(1)(+)﹣(﹣)=2+﹣+=3+;(2)()2﹣()=5+2+2﹣﹣=7+2﹣﹣.44.【解答】解:(﹣2)2++6﹣|1﹣|=3﹣4+4+2+2﹣(﹣1)=3﹣4+4+2+2﹣+1=8﹣.45.【解答】解:(1)=2﹣﹣+=;(2)=+1﹣1=3+1﹣1=3.46.【解答】解:=3﹣﹣3=3﹣2﹣3=﹣3.47.【解答】解:原式=2+1﹣﹣2﹣=﹣1.48.【解答】解:原式=+2﹣=2+2﹣=3.49.【解答】解:(1)原式=2×2÷4=8÷4=2;(2)原式=2+3﹣2=3.50.【解答】解:(1)原式=•=;(2)原式=4×﹣(5﹣1)=12﹣4=8.。
初二数学二次根式试题答案及解析
初二数学二次根式试题答案及解析1.与﹣2的乘积是有理数的是()A.﹣2B.C.2﹣D.+2【答案】D.【解析】∵-2的有理化因式为+2,∴与-2的乘积是有理数的是+2,故选D.【考点】分母有理化.2.式子在实数范围内有意义,则x的取值范围是()A.x<1B.x≥1C.x≤﹣1D.x>1【答案】B.【解析】根据二次根式的性质,被开方数大于等于0,所以x﹣1≥0,即x≥1时,二次根式有意义.故选B.【考点】二次根式有意义的条件.3.下列计算中正确的是()A.B.C.D.【答案】C.【解析】根据二次根式的性质化简即可:A.,计算错误;B.,计算错误;C.,计算正确;D.,计算错误.故选C.【考点】二次根式化简.4.当时,二次根式的值为【答案】5.【解析】当时,.【考点】二次根式求值.5.计算:(1);(2)【答案】(1)4;(2).【解析】(1)根据二次根式的性质化简计算.(2)根据分配律和完全平方公式展开后合并同类根式即可.(1)原式=.(2)原式=【考点】二次根式的计算.6.化简的结果 .【答案】【解析】写成分式的形式,然后分子、分母都乘以(1+),化简整理即可..【考点】分母有理化.7.方程的解是 .【答案】1【解析】先进行分母有理化,把所给方程化为一元一次方程,求出方程的解即可.分母有理化得:去分母整理得:;解得x=1.【考点】解一元一次方程.8.是整数,则最小的正整数a的值是。
【答案】5.【解析】由于45a=5×3×3×a,要使其为整数,则必能被开得尽方,所以满足条件的最小正整数a 为5.试题解析:45a=5×3×3×a,若为整数,则必能被开方,所以满足条件的最小正整数a为5.考点: 二次根式的定义.9.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2B.8C.D.【答案】D.【解析】由图表得,64的算术平方根是8,8的算术平方根是.故选D.【考点】算术平方根.10.比较下列各组数的大小:(1)与; (2)与.【答案】(1)>(2)小于【解析】解:(1)因为,,所以.(2)因为,,所以.11.计算:______.【答案】13【解析】12.已知正数的两个平方根是和,则=【答案】49.【解析】∵正数x的两个平方根是m+3和2m-15,∴m+3+2m-15=0,∴3m=12,m=4,∴m+3=7,即x=72=49.【考点】平方根.13. 9的平方根是()A.3B.C.D.【答案】B.【解析】此题主要考查了平方根的定义,易错点正确区别算术平方根与平方根的定义.根据平方根的定义:若一个数的平方等于a,那么这个数就是数a的平方根.∵(±3)2=9,∴±3是9的平方根.故选B.【考点】平方根的定义.14.以下说法正确的是()A.B.C.16的算术平方根是±4D.平方根等于本身的数是1.【答案】A.【解析】A.,正确;B.,故本选项错误;C.16的算术平方根是4,故本选项错误;D.平方根等于本身的数是1和0,故本选项错误.故选A.【考点】1.平方根;2.算术平方根.15.若,则的值为()A.6B.2C.-2D.8【答案】B【解析】由题,得(x-2)2="0," =0,x=2,y=4,故==2,选B.非负数和等于零,要求每一项都要等于零,由题,得(x-2)2="0," =0,x=2,y=4,故==2,选B.【考点】非负数和等于零.16.如图所示,数轴上表示2,的对应点分别为C、B,点C是AB的中点,则点A表示的数是()A. B. C. D.【答案】C.【解析】因为表示2,的对应点分别为C,B,所以CB=,因为点C是AB的中点,则设点A的坐标是x,则,所以点A表示的数是.故选C.【考点】实数与数轴.17.已知是实数,且,则()A.31B.21C.13D.13或21或31【答案】C【解析】由可得,再结合二次根式有意义的条件即可求得x的值,最后代入代数式计算即可.∵∴解得∵即∴∴故选C.【考点】解一元二次方程,二次根式有意义的条件,代数式求值点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.18.(1)计算: ①;②÷(2)解方程:①;②【答案】(1)①;②;(2)①;②【解析】(1)先根据二次根式的性质化简,再合并同类二次根式即可;(2)①先移项,方程两边同加一次项系数一半的平方,再根据完全平方公式分解因式,最后根据直接开平方法求解即可;②先去括号,再移项、合并同类项,最后选择恰当的方法解方程即可. (1)①;②;(2)①解得;②解得.【考点】实数的运算,解一元二次方程点评:点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分. 19.下列实数:,3.14,,,,,,无理数有( )A.2个B.3个C.4个D.5个【答案】B【解析】无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有的数.∵∴无理数有,,共3个,故选B.【考点】无理数的定义点评:本题属于基础应用题,只需学生熟练掌握无理数的三种形式,即可完成.20.请写出一个介于1与2之间的无理数: .【答案】【解析】此题答案不唯一,,,即此无理数只要存在于和之间即可【考点】无理数的定义点评:答案不唯一,此题考查学生对无理数概念的掌握,无理数,即无限不循环小数,且不能化成整数之比21.观察下面的等式:=7,=67,=667,则=6667。
中考数学经典题——二次根式(含答案)
二次根式要点一:二次根式的定义及性质 一、选择题1、(2010·聊城中考)无理数-3的相反数是( )A .- 3B . 3C .13D .-13【解析】选B,数a 的相反数为-a ,有-(-3)=3。
2、(2010·巴中中考)下列各数:21303003.072260cos 32.0902-︒,,,,,,, π中,无理数的个数是( )A 2个B 3个C 4个D 5个【解析】选B ,无限不循环小数是无理数,其中21303003.02-,, π三个是无理数,其他是有理数。
3、 (2009·宁波中考)x 的取值范围是( ).A .2x ≠B .2x >C .2x ≤D .2x ≥ 答案:D4、(2009·天津中考)若x y ,为实数,且20x +,则2009x y ⎛⎫ ⎪⎝⎭的值为( )A .1B .1-C .2D .2- 答案:B5.(2009·济宁中考)已知aA. aB. a -C. - 1D. 0 答案:D.6.(20092()x y =+,则x -y 的值为( )A .-1B .1C .2D .3【解析】选C.本题考查二次根式的意义,由题意可知1x =,1y =-,∴x -y =2,故选C .7、(20081a -,则a 的取值范围是( )A .1a >B .1a ≥C .1a <D .1a ≤【解析】选D.由二次根式的非负性知10. 1.a a -≥≤即 8、(2007·内江中考)已知ABC △的三边a b c ,,满足2|2|1022a b a ++=+,则ABC △为( )(A )等腰三角形 (B )正三角形 (C )直角三角形 (D )等腰直角三角形【解析】选B.∵2|2|1022a b a ++=+.∴21025412|0a a b -++--+=即2251)2|0a -++=()∴a=5,b=5,c=5. 二、填空题9、(2010·常德中考)函数y =x 的取值范围是_________.【解析】由二次根式的意义可以得出2x-6≥0,因而得出x ≥3。
中考数学二次根式(讲义及答案)及解析
一、选择题1.下列二次根式中是最简二次根式的为( ) A .12B .30C .8D .122.若 3x - 有意义,则 x 的取值范围是 ( ) A .3x >B .3x ≥C .3x ≤D .x 是非负数3.已知m 、n 是正整数,若2m +5n是整数,则满足条件的有序数对(m ,n )为( ) A .(2,5) B .(8,20)C .(2,5),(8,20)D .以上都不是4.设S=2222222211111111111112233499100++++++++++++,则不大于S 的最大整数[S]等于( ) A .98B .99C .100D .1015.下列计算或判断:(1)±3是27的立方根;(2)33a =a ;(3)64的平方根是2;(4)22(8)±=±8;(5)65- =65+,其中正确的有( ) A .1个B .2个C .3个D .4个6.如果2a a 2a 1+-+=1,那么a 的取值范围是( ) A .a 0= B .a 1=C .a 1≤D .a=0a=1或7.若a 、b 、c 为有理数,且等式成立,则2a +999b +1001c 的值是( )A .1999B .2000C .2001D .不能确定 8.下列运算中错误的是( ) A 235=B 236=C 822÷=D .2 (3)3-=9.已知0xy <,化简二次根式2yx - ) A y B y -C .y -D .y --10.下列计算正确的是( ) A 235=B .332-= C .222= D 393=二、填空题11.化简并计算:()()()()()()()...112231920xx x x x x x x +=+++++++________.(结果中分母不含根式)12.定义:对非负实数x “四舍五入”到个位的值记为()f x z , 即:当n 为非负整数时,如果1122n x n -<+≤,则()f x n =z .如:(0)(0.48)0f f ==z z ,(0.64)(1.49)1f f ==z z ,(4)(3.68)4f f ==z z ,试解决下列问题:①f =z __________;②f =z __________;+=__________.13.已知,-1,则x 2+xy +y 2=_____.14.÷=________________ .15.已知:可用含x =_____.16..17.计算:2015·2016=________.18.===据上述各等式反映的规律,请写出第5个等式:___________________________.19.化简:=_____. 20.x 的取值范围是_____. 三、解答题21.阅读下面的解答过程,然后作答:m 和n ,使m 2+n 2=a 且,则a 可变为m 2+n 2+2mn ,即变成(m +n )2例如:∵=)2+)2=)2∴请你仿照上例将下列各式化简(12【答案】(1)2-【分析】参照范例中的方法进行解答即可. 【详解】解:(1)∵22241(1+=+=,1=(2)∵2227-=-=,∴==22.小明在解决问题:已知2a 2﹣8a+1的值,他是这样分析与解的:∵=2 ∴a ﹣2=∴(a ﹣2)2=3,a 2﹣4a+4=3 ∴a 2﹣4a=﹣1∴2a 2﹣8a+1=2(a 2﹣4a )+1=2×(﹣1)+1=﹣1 请你根据小明的分析过程,解决如下问题:(1(2)若,求4a 2﹣8a+1的值. 【答案】(1)9;(2)5. 【解析】 试题分析:(1)此式必须在把分母有理化后才能实现化简,即各分式分子分母同乘以一个因式,使得1===.(2)先对a 1 ,若就接着代入求解,计算量偏大.模仿小明做法,可先计算2(1)a - 的值,就能较为简单地算出结果;也可对这个二次三项式进行配方,再代入求值.后两种方法都比直接代入计算量小很多.解:(1)原式=1)+++⋯(2)∵1a ===,解法一:∵22(1)11)2a -=-= , ∴2212a a -+= ,即221a a -=∴原式=24(2)14115a a -+=⨯+= 解法二∴ 原式=24(211)1a a -+-+24(1)3a =--211)3=--4235=⨯-=点睛:(1得22=-=-a b ,去掉根号,实现分母有理化.(2)当已知量为根式时,求这类二次三项式的值,直接代入求值,计算量偏大,若能巧妙利用完全平方公式或者配方法,计算要简便得多.23.先化简再求值:4y x ⎛- ⎝,其中30x -=.【答案】(2x - 【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x ,y 的值,继而将x 、y 的值代入计算可得答案. 【详解】解:4y x ⎛- ⎝ ((=-(2x =-∵ 30x - ∴ 3,4x y == 当3,4x y ==时原式(23=-==【点睛】本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.24.先化简再求值:(a ﹣22ab b a -)÷22a b a-,其中,b=1.【答案】原式=a ba b-=+【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可. 【详解】原式=()()222a ab b aa ab a b -+⨯+-=()()()2·a b a aa b a b -+- =a ba b-+, 当,b=1时, 原式【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.25.一样的式子,其实我3==3==,1===;以上这种化简的步骤叫做分母有理化还可以用以下方法化简:221111===-=(12)化简:2n +++【答案】(1-2. 【解析】试题分析:(12看出5-3,根据平方差公式分解因式,最后进进约分即可.(2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.试题解析:(1)===== (2)原式2n +++=12. 考点:分母有理化.26.计算:(1;(2+2)2+2).【答案】(1-2)【分析】(1)直接化简二次根式进而合并得出答案; (2)直接利用乘法公式计算得出答案. 【详解】解:(1)原式=-(2)原式=3434++-=6+. 【点睛】本题考查了二次根式的运算,在进行二次根式运算时,可以运用乘法公式,运算率简化运算.27.计算:(1 (2)()()2221-【答案】2)1443 【分析】(1)先化成最简二次根式,然后再进行加减运算即可; (2)套用平方差公式和完全平方式进行运算即可. 【详解】解:(1)原式=23223323,(2)原式(34)(12431)1124311443,故答案为:1443.【点睛】本题考查二次根式的四则运算,熟练掌握二次根式的四则运算是解决本题的关键.28.计算:(1)()22131)()2---+(2【答案】(1)12;(2) 【分析】(1)按照负整数指数幂、0指数幂、乘方的运算法则计算即可; (2)根据二次根式的加减乘除运算法则计算即可. 【详解】(1)解:原式= 9-1+4=12(2) 【点睛】本题考查负整数指数幂、0指数幂、乘方以及二次根式的运算法则,熟练掌握二次根式的化简是关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用最简二次根式定义判断即可. 【详解】解:A =不是最简二次根式,本选项错误;BC =不是最简二次根式,本选项错误;D 2=故选:B . 【点睛】本题考查了最简二次根式,熟练掌握最简二次根式定义是解题的关键.2.B解析:B 【分析】直接利用二次根式有意义的条件进而分析得出答案. 【详解】有意义的x 的取值范围是:x ≥3. 故选:B . 【点睛】本题考查二次根式有意义的条件,解题关键是正确掌握定义和二次根式有意义的条件.3.C解析:C 【分析】根据二次根式的性质分析即可得出答案. 【详解】解:∵m 、n 是正整数, ∴m=2,n=5或m=8,n=20, 当m=2,n=5时,原式=2是整数; 当m=8,n=20时,原式=1是整数;即满足条件的有序数对(m ,n )为(2,5)或(8,20), 故选:C . 【点睛】本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,题目比较好,有一定的难度.4.B解析:B 【分析】1111n n =+-+,代入数值,求出=99+1-1100,由此能求出不大于S 的最大整数为99. 【详解】∵==()211n n n n ++=+ =111+1n n -+,∴=1111111+11122399100-++-+++- =199+1100- =100-1100,∴不大于S 的最大整数为99. 故选B. 【点睛】1111n n =+-+是解答本题的基础.5.B解析:B 【解析】根据立方根的意义,可知27的立方根是3,故(1a =正确,故(2)正=8,可知其平方根为±,故(3)不正确;根据算术平方根的意义,可知8=,故(4=,故(5)正确. 故选B.6.C解析:C 【解析】试题解析:∵a1, a ∴1-a ≥0, a ≤1,故选C .7.B解析:B 【解析】因=,所以a =0,b =1,c =1,即可得2a +999b +1001c =999+1001=2000,故选B.点睛:本题考查了二次根式的性质与化简,将复合二次根式根据完全平方公式化简并比较系数是解题的关键.8.A解析:A 【分析】根据合并同类二次根式的法则对A 进行判断;根据二次根式的乘法法则对B 进行判断;根据二次根式的除法法则对C 进行判断;根据二次根式的性质对D 进行判断. 【详解】23 23236=⨯=828242÷÷===,故此项正确,不符合要求;D. 2 (3)3-=,故此项正确,不符合要求; 故选A . 【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.9.B解析:B 【分析】先根据xy <0,考虑有两种情况,再根据所给二次根式可确定x 、y 的取值,最后再化简即可. 【详解】 解:0xy <,0x ∴>,0y <或0x <,0y >,又2yx x -有意义, 0y ∴<,0x ∴>,0y <,当0x >,0y <时,2yx y x -- 故选B . 【点睛】本题考查了二次根式的性质与化简.解题的关键是能根据已知条件以及所跟二次根式来确定x、y的取值.10.C解析:C【分析】根据立方根、二次根式的加减乘除运算法则计算.【详解】A、非同类二次根式,不能合并,故错误;B、=C、22=,正确;D故选C.【点睛】本题考查二次根式、立方根的运算法则,熟练掌握基本法则是关键.二、填空题11.【分析】根据=,将原式进行拆分,然后合并可得出答案.【详解】解:原式==.故答案为.【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观【分析】-,将原式进行拆分,然后合并可得出答案.【详解】解:原式====220400xx x-.【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观察.12.3 【解析】 1、;2、根据题意,先推导出等于什么, (1)∵, ∴,(2)再比较与的大小关系, ①当n=0时,; ②当为正整数时,∵, ∴, ∴,综合(1)、(2)可得:,解析:3 20172018【解析】1、(1.732)2z z f f ==;2、根据题意,先推导出f 等于什么, (1)∵2221142n n n n n ⎛⎫+<++=+ ⎪⎝⎭,12n <+, (2)12n -的大小关系,①当n=012n >-; ②当n 为正整数时,∵2212n n n ⎛⎫+-- ⎪⎝⎭1204n =->,∴2212n n n ⎛⎫+>- ⎪⎝⎭,12n>-,综合(1)、(2)可得:1122n n-<+,∴f n=z,∴3f=z.3、∵f n=z,∴(2017zf+111112233420172018=++++⨯⨯-⨯111111112233420172018=-+-+-++-112018=-20172018=.故答案为(1)2;(2)3;(3)20172018.点睛:(1)解第②小题的关键是应用“完全平方公式”和“作差的方法”分别证明到当n为非负整数时,1122n n-<+,从而得到f n=z;(2)解题③的要点是:当n为正整数时,111(1)1n n n n=-++.13.10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2)2﹣(+1)(﹣1)= 12﹣2=10.故答案为10.解析:10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2﹣1)=12﹣2=10.故答案为10.14.【解析】=,故答案为.解析:【解析】÷====-,故答案为15.【解析】 ∵=, ∴== = -==﹣x3+x , 故答案为:﹣x3+x.解析:211166x x -+【解析】∵x =-3==123=146+= -21116⎡⎤-⎢⎥⎣⎦=311166-+=﹣16x 3+116x ,故答案为:﹣16x3+116x. 16.【解析】 【详解】根据二次根式的性质和二次根式的化简,可知==. 故答案为. 【点睛】此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可. 解析:2【解析】 【详解】22.故答案为2. 【点睛】此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.17.【解析】 原式=. 故答案为.【解析】原式=20152015=18.【解析】上述各式反映的规律是 (n ⩾1的整数),得到第5个等式为: (n ⩾1的整数). 故答案是: (n ⩾1的整数).点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;=【解析】上述各式反映的规律是=n ⩾1的整数),得到第5==n ⩾1的整数).=n ⩾1的整数). 点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;第二步,找规律,分别比较等式中各部分与序号之间的关系,把其蕴含的规律用含序数的代数式表示出来;第三步,根据找出的规律得出第n 个等式.19.【分析】直接合并同类二次根式即可.【详解】解:.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.解析:【分析】直接合并同类二次根式即可.【详解】解:=.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.20.x>4【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,x﹣4>0,解得,x>4,故答案为:x>4.【点睛】本题主要考查的是二次根解析:x>4【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,x﹣4>0,解得,x>4,故答案为:x>4.【点睛】本题主要考查的是二次根式有意义的条件、分式有意义的条件,掌握二次根式的被开方数是非负数、分式分母不为0是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
中考数学专题03 二次根式-三年(2019-2021)中考真题数学分项汇编(全国通用)(解析版)
专题03.二次根式一、单选题1.(2021·取1.442 )A .-100B .-144.2C .144.2D .-0.01442【答案】B【分析】类比二次根式的计算,提取公因数,代入求值即可.【详解】33 1.442= 33333(13-=--=-144.2=- 故选B .【点睛】本题考查了根式的加减运算,类比二次根式的计算,提取系数,正确的计算是解题的关键.2.(2021· ).A .321-+B .321+-C .321++D .321--【答案】A【分析】根据有理数运算和二次根式的性质计算,即可得到答案.2==∵3212-+=,且选项B 、C 、D 的运算结果分别为:4、6、0故选:A .【点睛】本题考查了二次根式、有理数运算的知识;解题的关键是熟练掌握二次根式、含乘方的有理数混合运算的性质,即可得到答案.3.(2021·湖北恩施土家族苗族自治州·,,这三个实数中任选两数相乘,所有积中小于2的有( )个.A .0B .1C .2D .3 【答案】C【分析】根据题意分别求出这三个实数中任意两数的积,进而问题可求解.【详解】解:由题意得:(2,==-=∴所有积中小于2的有2-两个;故选C .【点睛】本题主要考查二次根式的乘法运算,熟练掌握二次根式的乘法运算是解题的关键.4.(2021·湖南常德市·中考真题)计算:11122⎛⎫+-⋅= ⎪⎝⎭( )A .0B .1C .2D 【答案】B 【分析】先将括号内的式子进行通分计算,最后再进行乘法运算即可得到答案.【详解】解:11122⎛⎫-⋅ ⎪ ⎪⎝⎭=1122⋅=415-=1.故选:B . 【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则以及乘法公式是解答此题的关键. 5.(2021·湖南衡阳市·中考真题)下列计算正确的是( )A 4=±B .()021-=C =D 3=【答案】B【分析】利用算术平方根,零指数幂,同类二次根式,立方根逐项判断即可选择.4=,故A 选项错误,不符合题意;0(2)1-=,故B 选项正确,符合题意;C 选项错误,不符合题意;D 选项错误,不符合题意;故选B .【点睛】本题考查算术平方根,零指数幂,同类二次根式,立方根.掌握各知识点和运算法则是解答本题的关键.6.(2021·浙江杭州市·中考真题)下列计算正确的是( )A 2=B 2=-C 2=±D 2=± 【答案】A 【分析】由二次根式的性质,分别进行判断,即可得到答案.2==,故A 正确,C 2,故B 、D 错误;故选:A . 【点睛】本题考查了二次根式的性质,解题的关键是掌握性质进行判断.7.(2021·上海中考真题)下列实数中,有理数是( )A B C D 【答案】C【分析】先化简二次根式,再根据有理数的定义选择即可【详解】A 2;B 3C 12为有理数;D 故选:C 【点睛】本题考查二次根式的化简、无理数的定义、有理数的定义、熟练掌握有理数的定义是关键8.(2021·江苏苏州市·中考真题)计算2的结果是( )A B .3 C .D .9【答案】B【分析】直接根据二次根式的性质求解即可.【详解】解:2=3,故选B .【点睛】此题主要考查了二次根式的性质,熟练掌握2(0)a a =≥是解答此题的关键.9.(2021·甘肃武威市·中考真题)下列运算正确的是( )A 3=B .4=C =D 4=【答案】C【分析】直接根据二次根式的运算法则计算即可得到答案.=A 错;=B 错;=C 2=,故D 错.故选:C .【点睛】此题考查的是二次根式的运算和化简,掌握其运算法则是解决此题关键.10.(2021· )A.7 B .C .D .【答案】B【分析】根据二次根式的运算法则,先算乘法再算减法即可得到答案;===B .【点睛】本题主要考查了二次根式的混合运算,掌握二次根式的运算法则是解题的关键.11.(2021·浙江嘉兴市·中考真题)能说明命题“若x 为无理数,则x 2也是无理数”是假命题的反例是()A .1x =B .1x =C .x =D .x =【答案】C【分析】根据反例满足条件,但不能得到结论,所以利用此特征可对各选项进行判断.【详解】解:A 、)221=3x =-B 、)221x =C 、(22=18x =,是有理数,符合题意;D 、22=5x =-,是无理数,不符合题意;故选:C .【点睛】本题考查了无理数的概念以及二次根式的运算,熟练掌握运算法则和定义是解题的关键. 12.(2021·重庆中考真题)下列计算中,正确的是( )A .21=B .2=C =D 3=【答案】C【分析】根据二次根式运算法则逐项进行计算即可.【详解】解:A. =,原选项错误,不符合题意;B. 2不是同类二次根式,不能合并,原选项错误,不符合题意;C. =D. =C .【点睛】本题考查了二次根式的运算,解题关键是熟练运用二次根式运算法则,进行准确计算.13.(2020·是同类二次根式的是( )AB C D 【答案】C【分析】先把每个二次根式进行化简,化成最简二次根式,后比较被开方数即可.【详解】的被开方数不相同,故不是同类二次根式;3==被开方数相同,故是同类二次根式;=被开方数不同,故不是同类二次根式.故选:C .【点睛】本题考查了二次根式的化简,同类二次根式,熟练掌握根式化简的基本方法,灵活运用同类二次根式的定义判断解题是求解的关键.14.(2020·内蒙古赤峰市·中考真题)估计( ( ) A .4和5之间B .5和6之间C .6和7之间D .7和8之间 【答案】A 【分析】根据二次根式的混合运算法则进行计算,再估算无理数的大小.【详解】(,∵4<6<9,∵<3,∴<5,故选:A.【点睛】此题考查了二次根式的混合运算,无理数的估算,正确掌握二次根式的运算法则、会进行无理数的大小估算是解题的关键.15.(2020·辽宁朝阳市· )A .0B C .D .12【答案】B 【分析】根据二次根式的性质化简第一项,根据二次根式的乘法化简第二项,然后合并即可.【详解】解:原式= =B . 【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解答本题的关键.16.(2020·辽宁丹东市·中考真题)在函数y =x 的取值范围是( ) A .3x ≤B .3x <C .3x ≥D .3x > 【答案】A【分析】根据二次根式有意义,列不等式9-3x≥0,求出x 的取值范围即可.【详解】解:根据二次根式有意义,所以,9-3x≥0,解得,x≤3.故选:A .【点睛】本题主要考查函数自变量的取值范围的知识点,二次根式中的被开方数必须是非负数,否则二次根式无意义.17.(2020·湖北宜昌市·其运算结果能成为有理数的是( ).A .BC .3D .0【答案】D 【分析】分别计算出各选项的结果再进行判断即可.【详解】A .B =C .3D .00=,是有理数,正确.故选:D .【点睛】此题主要考查了二次根式的运算,辨别运算结果,区分运算结果是否是有理数是解题的关键.18.(2020·山东菏泽市·中考真题)函数5y x =-的自变量x 的取值范围是( ) A .5x ≠B .2x >且5x ≠C .2x ≥D .2x ≥且5x ≠【答案】D【分析】由分式与二次根式有意义的条件得函数自变量的取值范围. 【详解】解:由题意得:20,50x x -≥⎧⎨-≠⎩解得:2x ≥且 5.x ≠ 故选D . 【点睛】本题考查的是函数自变量的取值范围,掌握分式与二次根式有意义的条件是解题的关键. 19.(2020·黑龙江绥化市·中考真题)下列等式成立的是( )A 4=±B 2=C .-=D .8=- 【答案】D【分析】根据算术平方根、立方根、二次根式的化简等概念分别判断.【详解】解:A. 4=,本选项不成立;B. 2=-,本选项不成立;C. a a a-=-= D. 8=-,本选项成立.故选:D. 【点睛】本题考查了二次根式的化简与性质,正确理解二次根式有意义的条件、算术平方根的计算等知识点是解答问题的关键.20.(2020·山东济宁市·中考真题)下列各式是最简二次根式的是( )A B C D 【答案】A 【分析】根据最简二次根式的定义即可求出答案.【详解】解:A B =C a =,不是最简二次根式,故选项错误;D = A. 【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型. 21.(2020·江苏泰州市·中考真题)下列等式成立的是( )A .3+=B =C= D 3= 【答案】D【分析】根据二次根式的运算法则即可逐一判断.【详解】解:A 、3和不能合并,故A 错误;B =B 错误;C===,故C 错误;D 3=,正确;故选:D . 【点睛】本题考查了二次根式的运算,解题的关键是掌握基本的运算法则.22.(2019·湖北恩施土家族苗族自治州·中考真题)函数11=-+y x 中,自变量x 的取值范围是( ) A .23x ≤ B .23x ≥ C .23x <且1x ≠- D .23x ≤且1x ≠- 【答案】D【分析】根据分式及二次根式有意义的条件解答即可.【详解】∵11=+y x x+1≠0,2-3x≥0,解得:23x ≤且1x ≠-,故选D. 【点睛】本题考查分式及二次根式有意义的条件,要使分式有意义,分母不为0;要使二次根式有意义,被开方数大于等于0.23.(2019·湖北宜昌市·中考真题)古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b c p ++=,那么三角形的面积为S =ABC ∆中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若5a =,6b =,7c =,则ABC ∆的面积为( )A .B .C .18D .192【答案】A 【分析】利用阅读材料,先计算出p 的值,然后根据海伦公式计算ABC ∆的面积;【详解】7a =,5b =,6c =.∴56792p ++==,∴ABC ∆的面积S ==A .【点睛】考查了二次根式的应用,解题的关键是代入后正确的运算,难度不大.24.(2019·湖北中考真题)“分母有理化”是我们常用的一种化简的方法,如:7==+除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:设x =,>,故0x >,由22332x ==+=,解得x =,即=)A .5+B .5C .5D .5-【答案】D进行化简,然后再进行合并即可.【详解】设x =<0x <,∴266x =-+,∴212236x =-⨯=,∴x =5=-,∴原式5=--5=-D . 【点睛】本题考查了二次根式的混合运算,涉及了分母有理化等方法,弄清题意,理解和掌握题中介绍的方法是解题的关键.25.(2019·山东聊城市·中考真题)下列各式不成立的是( )A= B =C 5== D = 【答案】C【分析】根据二次根式的性质、二次根式的加法法则、除法法则计算,判断即可.33-==,A 选项成立,不符合题意;==B 选项成立,不符合题意;==,C 选项不成立,符合题意;==D 选项成立,不符合题意; 故选C . 【点睛】本题考查的是二次根式的混合运算,掌握二次根式的性质、二次根式的混合运算法则是解题的关键.26.(2019·江苏常州市·中考真题)下列各数中与2+ )A .2+B .2CD .2 【答案】D【分析】利用平方差公式可知与2+2;【详解】(22431=-=;故选D .【点睛】本题考查分母有理化;熟练掌握利用平方差公式求无理数的无理化因子是解题的关键.27.(2021· )A .4B .4±C .D .±【答案】C()0,0,a b a b=≥≥直接化简即可得到答案.==故选:.C【点睛】本题考查的是二次根式的化简,掌握积的算术平方根的含义是解题的关键.28.(2020·重庆中考真题)下列计算中,正确的是()A=B.2+=C=D.2【答案】C【分析】根据同类二次根式的概念与二次根式的乘法逐一判断可得答案.【详解】解:AB.2C==D.2不是同类二次根式,不能合并,此选项错误;故选:C.【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的乘法法则与同类二次根式的概念.29.(2020·山东聊城市·).A.1B.53C.5D.9【答案】A【分析】利用二次根式的乘除法则计算即可得到结果.=÷=1=,故选:A.【点睛】本题主要考查了二次根式的乘除法,熟练掌握运算法则是解题的关键.30.(2020·内蒙古鄂尔多斯市·中考真题)中,x的取值范围在数轴上表示正确的是()A.B.C.D.【答案】D【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x 的范围. 【详解】解:根据题意得3+x ≥0,解得:x ≥﹣3, 故x 的取值范围在数轴上表示正确的是.故选D .【点睛】本题考查了二次根式的性质,二次根式中的被开方数必须是非负数,否则二次根式无意义. 二、填空题目31.(2021·天津中考真题)计算1)的结果等于_____. 【答案】9【分析】根据二次根式的混合运算法则结合平方差公式计算即可.【详解】21)19=-=.故答案为9.【点睛】本题考查二次根式的混合运算.掌握二次根式的混合运算法则是解答本题你的关键.32.(2021·湖北武汉市·_______________________.【答案】5【分析】根据二次根式的性质进行求解即可.5=5,故答案为5.【点睛】本题考查了二次根式的性质,熟练掌握二次根式的性质是解题的关键.33.(2021·浙江丽水市·有意义,则x 可取的一个数是__________. 【答案】如4等(答案不唯一,3x ≥)【分析】根据二次根式的开方数是非负数求解即可.有意义,∴x ﹣3≥0,∴x ≥3,∴x 可取x ≥3的任意一个数,故答案为:如4等(答案不唯一,3x ≥.【点睛】本题考查二次根式、解一元一次不等式,理解二次根式的开方数是非负数是解答的关键.34.(2021·四川广安市·中考真题)在函数y =x 的取值范围是___.【答案】1x 2≥【详解】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负12x 10x 2-≥⇒≥.35.(2021·湖北黄冈市·这个数叫做黄金分割数,著名数学家华罗庚优选法中的0.618法就应用了黄金分割数.设a =12b +=,则1ab =,记11111S a b =+++,2221111S a b =+++,…,1010101111S a b=+++.则1210S S S +++=____.【答案】10【分析】先根据1ab =求出1111n n nS a b=+++(n 为正整数)的值,从而可得1210,,,S S S 的值,再求和即可得.【详解】解:1ab =,111111()1nn n n n n n a S a b a a b ∴=+=+++++(n 为正整数), 11()n n n n a a a ab =+++,111nnna a a =+++,1=, 12101S S S ===∴=,则121010S S S +++=,故答案为:10.【点睛】本题考查了二次根式的运算、分式的运算,正确发现一般规律是解题关键.36.(2021·湖南岳阳市·中考真题)已知1x x +=,则代数式1x x+=______. 【答案】0【分析】把1x x+=直接代入所求的代数式中,即可求得结果的值.【详解】10x x+==故答案为:0. 【点睛】本题考查了求代数式的值,涉及二次根式的减法运算,整体代入法是解决本题的关键.37.(2021·四川眉山市·中考真题)观察下列等式:1311212x ===+⨯;2711623x ===+⨯;313111234x ===+⨯;…… 根据以上规律,计算12320202021x x x x ++++-=______.【答案】12021-【解答】解:13111212x =+==+⨯;2711623x ==+⨯;313111234x ===+⨯; ⋯12320201111111111112021111120212020120211223342020202122334202020212021x x x x ∴+++⋯+-=++++++⋯++-=+-+-+-+⋯+--=-⨯⨯⨯⨯, 故答案为:12021-. 【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算.38.(2021·x 的取值范围是________. 【答案】0x >【分析】根据分式及二次根式有意义的条件可直接进行求解. 【详解】解:由题意得:0x ≠且20x≥,∴0x >;故答案为0x >. 【点睛】本题主要考查二次根式及分式有意义的条件,熟练掌握二次根式及分式有意义的条件是解题的关键.39.(2020·山东青岛市·中考真题)计算:-⨯=______. 【答案】4【分析】根据二次根式的混合法则运算计算即可.【详解】解:原式3⎫⎛=⎪ ⎪⎝⎭3=⨯4=,故答案为:4. 【点睛】本题考查二次根式的混合运算,熟练掌握运算顺序和运算法则是解题关键.40.(2020·山西中考真题)计算:2-=_____________.【答案】5【分析】先利用完全平方公式、二次根式的性质进行化简,然后合并同类项,即可得到答案.【详解】解:223=+-5=;故答案为:5.【点睛】本题考查了二次根式的性质,完全平方公式,解题的关键是熟练掌握运算法则进行化简.41.(2020·江苏南通市·中考真题)若m <<m +1,且m 为整数,则m =_____. 【答案】5【分析】利用二次根式的估值方法进行计算即可.【详解】解:=<<5<6,又∵m <m +1,∴m =5,故答案为:5.【点睛】本题考查了二次根式的估值求参数值的问题,熟练掌握二次根式的估值计算是解题的关键.42.(2020·湖南益阳市·中考真题)m 的结果为正整数,则无理数m 的值可以是__________.(写出一个符合条件的即可)【分析】根据2为12,即可得到一个无理数m 的值.【详解】解:∵212=,∴12m 时m (答案不唯一).【点睛】本题考查了二次根式,注意2a =是解题的关键.43.(2020·内蒙古中考真题)计算:2+=______.【分析】先将乘方展开,然后用平方差公式计算即可.【详解】解:2-==22⎡⎤-⎢⎥⎣⎦-.【点睛】本题考查了二次根式的混合运算以及平方差公式的应用,掌握二次根式混合运算的运算法则和平方差公式是解答本题的关键.44.(2020·湖南邵阳市·中考真题)在如图方格中,若要使横、竖、斜对角的3个实数相乘都得到同样的结果,则2个空格的实数之积为________.【答案】【分析】先将表格中最上一行的3个数相乘得到,然后中间一行的三个数相乘以及最后一行的三个数相等都是【详解】解:由题意可知,第一行三个数的乘积为:2=设第二行中间数为x ,则16⨯⨯=x x =设第三行第一个数为y ,则3⨯=y y =∴2个空格的实数之积为xy ==.【点睛】本题考查了二次根数的乘法运算法则,熟练掌握二次根式的加减乘除运算法则是解决此类题的关键.45.(2020·==,则ab =_________. 【答案】6【分析】根据二次根式的运算法则即可求解.【详解】∵-==∴a=3,b=2∴ab =6故答案为:6.【点睛】此题主要考查二次根式的运算,解题的关键是熟知其运算法则.46.(2020·甘肃金昌市·中考真题)已知5y x =+,当分别取1,2,3,……,2020时,所对应y 值的总和是__________.【答案】2032【分析】先化简二次根式求出y 的表达式,再将x 的取值依次代入,然后求和即可得.【详解】545y x x x =+=--+当4x <时,4592y x x x =--+=- 当4x ≥时,451y x x =--+= 则所求的总和为(921)(922)(923)111-⨯+-⨯+-⨯++++75312017=+++⨯2032=故答案为:2032.【点睛】本题考查了二次根式的化简求值、绝对值运算等知识点,掌握二次根式的化简方法是解题关键.47.(2020·江苏南京市·的结果是__________.【答案】1 3【分析】先化成最简二次根式,再根据二次根式的加减法法则计算出分母,最后约分即可.==13=,故答案为:13.【点睛】本题考查了二次根式的混合运算,掌握二次根式的加减法法则是解题的关键.48.(2020·黑龙江绥化市·中考真题)在函数15yx=+-中,自变量x的取值范围是_________.【答案】3x≥且5x≠【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【详解】根据题意得:301050xxx-≥⎧⎪+>⎨⎪-≠⎩,解得:3x≥且5x≠.故答案为:3x≥且5x≠.【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.49.(2020·青海中考真题)对于任意不相等的两个实数a,b(a > b )定义一种新运算a※,如3※,那么12※4=______【分析】按照规定的运算顺序与计算方法化为二次根式的混合运算计算即可.【详解】解:12※4==【点睛】此题考查二次根式的化简求值,理解规定的运算顺序与计算方法是解决问题的关键.50.(2019·四川绵阳市·中考真题)单项式1ax y--与2是同类项,则b a=______.【答案】1【分析】先根据同类项的定义列出方程,再结合二次根式的性质求出a ,b 的值,然后代入代数式计算即可.【详解】解:由题意知1a --=,即1a -, ∴10,10a b ,1a =,1b =,则()111b a ==,故答案为1.【点睛】此题考查了同类项的定义和二次根式的性质,属于基础题,解答本题的关键是掌握同类项的定义,难度一般.51.(2019·辽宁营口市·中考真题)和则这个长方形的面积为________.【答案】【分析】长方形的面积计算公式为长乘以宽,和按照二次根式乘法的运算法则计算,并化简成最简单二次根式即可.和==【点睛】本题考查了二次根式在长方形面积计算中的应用,明确二次根式乘法运算法则及如何化为最简二次根式是解题的关键.52.(2019·四川内江市·中考真题)若1001a a -=,则21001a -=_____. 【答案】1002.【分析】根据绝对值的性质和二次根式的性质,即可解答【详解】∵10020a -≥,∴1002a ≥.由1001a a -=,得1001a a -++=,1001=,∴210021001a -=.∴210011002a -=.故答案是:1002. 【点睛】此题考查绝对值的非负性,二次根式的性质,解题关键在于掌握运算法则 53.(2019·山东枣庄市·中考真题)观察下列各式:11111122⎛⎫=+=+- ⎪⨯⎝⎭,111112323⎛⎫=+=+- ⎪⨯⎝⎭,111113434⎛⎫=+=+- ⎪⨯⎝⎭,请利用你发现的规律,计算:____. 【答案】201820182019. 【分析】根据题意找出规律,根据二次根式的性质计算即可.12018++11111111122320182019⎛⎫⎛⎫⎛⎫=+-++-+++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1111111201812233420182019=+-+-+-++-201820182019=,故答案为201820182019. 【点睛】本题考查的是二次根式的化简、数字的变化规律,掌握二次根式的性质是解题 的关键.54.(2019·山东菏泽市·中考真题)已知x =,那么2x -的值是_____.【答案】4【分析】将所给等式变形为x -=【详解】∵x =,∴x =(22x =,∴226x -+=,∴24x -=,故答案为:4【点睛】本题考查了二次根式的运算,解题的关键是熟练运用二次根式的运算以及完全平方公式.注意正确的变形可以使得运算简便.55.(2019·湖南益阳市·中考真题)观察下列等式:①3﹣=﹣1)2,②5﹣=)2,③7﹣=﹣2,…请你根据以上规律,写出第6个等式____________.【答案】213-=【分析】第n 个等式左边的第1个数为2n+1,根号下的数为n(n+1),利用完全平方公式得到第n 个等式右边的式子为)2(n≥1的整数).【详解】∵①3﹣﹣1)2,②5﹣=)2,③7﹣=2,…,∴第n 个等式为:(2n+1)-)2,∴第6个等式为:213-=,故答案为213-=.【点睛】本题考查了规律题,涉及了二次根式的混合运算,通过所给等式发现等式左边与右边的变化规律是解题的关键.56.(2019·山东滨州市·中考真题)计算:21|2|2-⎛⎫--= ⎪⎝⎭_________.【答案】2+【分析】根据根式的计算法则计算即可.【详解】解:原式422=-=+2+.【点睛】本题主要考查根式的计算,注意绝对值的计算,这是同学们往往容易计算错误的,应当引起重视.57.(2019·山东青岛市·0-=___________.【答案】1【分析】根据二次根式混合运算的法则计算即可.0211=-=.故答案为. 【点睛】本题考查了二次根式的混合运算,熟记法则是解题的关键.58.(2020·辽宁营口市·中考真题)()()=_____. 【答案】12【分析】直接利用平方差公式计算得出答案.【详解】解:原式=()2)2=18﹣6=12.故答案为:12. 【点睛】本题考查了二次根式的混合运算,正确运用乘法公式是解题关键. 三、解答题59.(2021·湖南长沙市·中考真题)计算:(02sin 451-++°【答案】5.【分析】先化简绝对值、特殊角的正弦值、零指数幂、二次根式的乘法,再计算实数的混合运算即可得.【详解】解:原式212=⨯+14=+5=. 【点睛】本题考查了化简绝对值、特殊角的正弦值、零指数幂、二次根式的乘法等知识点,熟练掌握各运算法则是解题关键.60.(2021·山东临沂市·中考真题)计算221122⎫⎫+-⎪⎪⎭⎭.【答案】【分析】化简绝对值,同时利用平方差公式计算,最后合并.【详解】解:221122⎫⎫+-⎪⎪⎭⎭11112222⎡⎤⎡⎤⎫⎫⎫⎫+-⎪⎪⎪⎪⎢⎥⎢⎥⎭⎭⎭⎭⎣⎦⎣⎦【点睛】本题考查了二次根式的混合运算,解题的关键是合理运用平方差公式进行计算.61.(2021·四川遂宁市·中考真题)计算:()101tan 60232-⎛⎫-+︒-+- ⎪⎝⎭π【答案】-3【分析】分别利用负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的性质化简,再进行计算即可.【详解】解:()101tan 60232-⎛⎫-+︒-+- ⎪⎝⎭π(=2-=221--=3-【点睛】本题考查了负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的化简等知识点,熟悉相关性质是解题的关键.62.(2020·广西玉林市·()23.141π--+【答案】10.【分析】先计算零指数幂、绝对值运算、算术平方根,再计算二次根式的乘法、去括号、有理数的乘方,然后计算二次根式的加减法即可得.【详解】原式211)3=-+19=++10=.【点睛】本题考查了零指数幂、绝对值运算、算术平方根、二次根式的加减法与乘法等知识点,熟记各运算法则是解题关键.63.(2020·上海中考真题)计算:1327(12)﹣2+|3. 【答案】0.【分析】利用分数的指数幂的意义,分母有理化,负指数幂的意义,绝对值的性质计算后合并即可.【详解】原式=133(3)+ 2﹣4+32﹣4+3.【点睛】本题考查了分数指数幂的运算,负指数幂的运算,绝对值的意义以及分母有理化运算,熟练掌握实数的运算法则是解题的关键.64.(2019·2318- 【答案】-3.【分析】首先进行二次根式的化简、去绝对值符号以及二次根式的乘法,然后再合并同类二次根式即可.2318-124-+=-3. 【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.65.(2019·辽宁大连市·中考真题)计算:22)+【答案】7【分析】直接利用完全平方公式以及结合二次根式的性质化简进而得出答案.【详解】解:原式346=+-34=+-7=. 【点睛】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.祝你考试成功!祝你考试成功!。
初三数学二次根式试题答案及解析
初三数学二次根式试题答案及解析1.若在实数范围内有意义,则x的取值范围是【答案】x≤。
【解析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围。
根据题意得:1﹣3x≥0,解得:x≤。
【考点】二次根式有意义的条件。
2.函数中,自变量x的取值范围是.【答案】.【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.【考点】1.函数自变量的取值范围;2.二次根式有意义的条件.3.若a<<b,且a,b为连续正整数,则b2﹣a2=.【答案】7【解析】∵32<13<42,∴3<<4,即a=3,b=4,所以a+b=7.【考点】估算4.二次根式有意义,则实数x的取值范围是()A.x≥﹣2B.x>﹣2C.x<2D.x≤2【答案】B.【解析】根据被开方数大于等于0,得﹣2x+4≥0,解得x≤2.故选B.【考点】二次根式有意义的条件.5.使有意义的的取值范围是()A.B.C.D.【答案】C.【解析】∵有意义∴3x-1≥0解得:.故选C.【考点】二次根式有意义的条件.6.在函数中,自变量a的取值范围是.【答案】a≥2.【解析】根据二次根式的性质,被开方数大于等于0,列不等式求解.根据题意得:a-2≥0,解得a≥2,则自变量a的取值范围是a≥2.【考点】1.函数自变量的取值范围; 2.二次根式有意义的条件.7.将1、、、按右侧方式排列.若规定(m,n)表示第m排从左向右第n个数,则(7,3)所表示的数是;(5,2)与(20,17)表示的两数之积是.【答案】;3【解析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m﹣1排有(m﹣1)个数,从第一排到(m﹣1)排共有:1+2+3+4+…+(m﹣1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算.解:(7,3)表示第7排从左向右第3个数,可以看出奇数排最中间的一个数都是1,第7排是奇数排,最中间的也就是这排的第4个数是1,那么第3个就是:;从图示中知道,(5,2)所表示的数是;∵第19排最后一个数的序号是:1+2+3+4+…+19=190,则(20,17)表示的是第190+17=207个数,207÷4=51…3,∴(20,17)表示的数是.∴(5,2)与(20,17)表示的两数之积是:×=3.故答案为:;3.8.已知实数a在数轴上的对应点,如图所示,则化简所得结果为【答案】2a+1.【解析】:由数轴表示数的方法得到a>0,然后利用二次根式的性质得到原式=|a|+|a+1|=a+a+1,再合并即可.试题解析:∵a>0,∴原式=|a|+|a+1|=a+a+1=2a+1.考点: 1.二次根式的性质与化简;2.实数与数轴.9.当1<x<3时,|1-x|+等于_________________【答案】2【解析】=|a|=当1<x<3时,1-x<0,x-3<0.∴原式=(x-1)+(3-x)=2.10.已知长方形的长是cm,宽是cm,求与此长方形面积相等的圆的半径.【答案】r=.【解析】利用面积公式列出方程·=πr2,解得r=.11.已知0<x<1,化简:-.【答案】2x.【解析】-=-=- ,因为0<x<1,所以原式=x+-(-x)=x+-+x=2x.12.计算:【答案】14.【解析】根据有理数的乘方、绝对值、零次幂、立方根、负整数指数幂的意义进行计算即可求出代数式的值.试题解析:.考点: 实数的混合运算.13.下列各式中计算正确的是()。
中考数学总复习《二次根式》专项测试卷有答案
中考数学总复习《二次根式》专项测试卷有答案学校:___________班级:___________姓名:___________考号:___________A 层·基础过关1.如果二次根式√a 有意义,那么a 的值可以是( ) A .-3 B .-2.5 C .-1 D .12.(2024·广东)完全相同的4个正方形面积之和是100,则正方形的边长是( ) A .2 B .5 C .10 D .203.计算√92−62所得结果是( ) A .3 B .√6C .3√5D .±3√54.估计√6的值在( )A .1和2之间B .2和3之间C .3和4之间D .4和5之间5.(2024·呼伦贝尔)实数a ,b 在数轴上的对应位置如图所示,则√(a −b)2-(b -a -2)的化简结果是( )A .2B .2a -2C .2-2bD .-26.(2024·雅安)使式子√x −1有意义的x 的取值范围是 .7.计算:√18-√8= √2 .8.计算:(√6+√3)(√6-√3)的结果为 .9.(2024·广东)计算:20×|-13|+√4-3-1.10.(2024·雅安)计算:√9-12-1+(-5)×|-15|.B层·能力提升=( )11.若a=√2,b=√7,则√14a2b2A.2B.4C.√7D.√212.估计√2(√8+√10)的值应在( )A.7和8之间B.8和9之间C.9和10之间D.10和11之间13.(2024·滨州)写出一个比√3大且比√10小的整数.14.(2024·上海)已知√2x−1=1,则.15.(2024·深圳)如图所示,四边形ABCD,DEFG,GHIJ均为正方形,且S正方形=10,S正方形GHIJ=1,则正方形DEFG的边长可以是.(写出一个答案即可) ABCD16.阅读材料:希腊几何学家海伦和我国南宋数学家秦九韶曾提出利用三角形的三边求面积的公式,称为海伦—秦九韶公式:如果一个三角形的三边长分别是,那么三角形的面积为S=√p(p−a)(p−b)(p−c).如图,在△ABC a,b,c,记p=a+b+c2中,a=7,b=5,c=6,则BC边上的高为.17.(2024·赤峰)计算:√9+(π+1)0+2sin 60°+|2-√3|.18.(2024·广元)先化简,再求值;(3x+yx2−y2+2xy2−x2)÷2x2y−xy2,其中x=√3+1,y=√3.C层·挑战冲A+19.阅读下面材料:将边长分别为a,a+√b,a+2√b,a+3√b的正方形面积分别记为S1,S2,S3,S4.则S2-S1=(a+√b)2-a2=[(a+√b)+a]·[(a+√b)-a]=(2a+√b)·√b=b+2a√b.例如:当a=1,b=3时,S2-S1=3+2√3.根据以上材料解答下列问题:(1)当a=1,b=3时,S3-S2=,S4-S3=;(2)当a=1,b=3时,把边长为a+n√b的正方形面积记作S n+1,其中n是正整数,从(1)中的计算结果,你能猜出S n+1-S n等于多少吗?并证明你的猜想.参考答案A层·基础过关1.(2024·南宁模拟)如果二次根式√a有意义,那么a的值可以是(D)A.-3B.-2.5C.-1D.12.(2024·广东)完全相同的4个正方形面积之和是100,则正方形的边长是(B) A .2 B .5 C .10 D .203.(2024·包头)计算√92−62所得结果是(C) A .3 B .√6C .3√5D .±3√54.估计√6的值在(B)A .1和2之间B .2和3之间C .3和4之间D .4和5之间5.(2024·呼伦贝尔)实数a ,b 在数轴上的对应位置如图所示,则√(a −b)2-(b -a -2)的化简结果是(A)A .2B .2a -2C .2-2bD .-26.(2024·雅安)使式子√x −1有意义的x 的取值范围是 x ≥1 .7.计算:√18-√8= √2 .8.计算:(√6+√3)(√6-√3)的结果为 3 . 9.(2024·广东)计算:20×|-13|+√4-3-1.【解析】原式=20×13+2-4=203-2=143.10.(2024·雅安)计算:√9-12-1+(-5)×|-15|.【解析】原式=3-32+(-5)×15=3-32-1=12.B 层·能力提升11.若a =√2,b =√7,则√14a 2b 2=(A)A.2B.4C.√7D.√212.估计√2(√8+√10)的值应在(B)A.7和8之间B.8和9之间C.9和10之间D.10和11之间13.(2024·滨州)写出一个比√3大且比√10小的整数2(或3).14.(2024·上海)已知√2x−1=1,则x=1.15.(2024·深圳)如图所示,四边形ABCD,DEFG,GHIJ均为正方形,且S正方形ABCD=10,S正方形GHIJ=1,则正方形DEFG的边长可以是2(答案不唯一).(写出一个答案即可)16.阅读材料:希腊几何学家海伦和我国南宋数学家秦九韶曾提出利用三角形的三边求面积的公式,称为海伦—秦九韶公式:如果一个三角形的三边长分别是a,b,c,记p=a+b+c2,那么三角形的面积为S=√p(p−a)(p−b)(p−c).如图,在△ABC中,a=7,b=5,c=6,则BC边上的高为12√67.17.(2024·赤峰)计算:√9+(π+1)0+2sin 60°+|2-√3|.【解析】原式=3+1+2×√32+2-√3=4+√3+2-√3=6.18.(2024·广元)先化简,再求值;(3x+yx2−y2+2xy2−x2)÷2x2y−xy2,其中x=√3+1,y=√3.【解析】原式=(3x+yx 2−y 2-2xx 2−y 2)÷2x 2y−xy 2=3x+y−2x (x−y)(x+y)·xy(x−y)2 =x+y (x−y)(x+y)·xy(x−y)2=xy 2当x =√3+1,y =√3时 原式=√3(√3+1)2=3+√32. C 层·挑战冲A +19.阅读下面材料:将边长分别为a ,a +√b ,a +2√b ,a +3√b 的正方形面积分别记为S 1,S 2,S 3,S 4. 则S 2-S 1=(a +√b )2-a 2 =[(a +√b )+a ]·[(a +√b )-a ] =(2a +√b )·√b =b +2a √b .例如:当a =1,b =3时,S 2-S 1=3+2√3. 根据以上材料解答下列问题:(1)当a =1,b =3时,S 3-S 2= 9+2√3 ,S 4-S 3= 15+2√3 ; 【解析】(1)S 3-S 2=(a +2√b )2-(a +√b )2 =a 2+4a √b +4b -a 2-2a √b -b =2a √b +3b当a =1,b =3时,S 3-S 2=9+2√3;S 4-S 3=(a +3√b )2-(a +2√b )2=a 2+6a √b +9b -a 2-4a √b -4b =2a √b +5b当a=1,b=3时,S4-S3=15+2√3.(2)当a=1,b=3时,把边长为a+n√b的正方形面积记作S n+1,其中n是正整数,从(1)中的计算结果,你能猜出S n+1-S n等于多少吗?并证明你的猜想.【解析】(2)S n+1-S n=6n-3+2√3;证明:S n+1-S n=(1+√3n)2-[1+(n-1)√3]2=[2+(2n-1)√3]×√3=3(2n-1)+2√3=6n-3+2√3.。
2022中考真题分类5——二次根式(参考答案)
2022中考真题分类——二次根式(参考答案)1.(2010·四川眉山()A.3B.−3C.±3D.92.(2022·辽宁大连)下列计算正确的是()A2= =B3=−C.=D.21)33.(2022·四川雅安)有意义的x的取值范围在数轴上表示为()A.B.C .D . 【答案】B 【分析】根据二次根式有意义的条件可得20x −≥,求出不等式的解集,然后进行判断即可. 【详解】解:由题意知,20x −≥,解得2x ≥,∴解集在数轴上表示如图,故选B .【点睛】本题考查了二次根式有意义的条件以及在数轴上表示解集.解题的关键在于熟练掌握二次根式有意义的条件.4.(2022·湖北黄石)函数11y x =+−的自变量x 的取值范围是( ) A .3x ≠−且1x ≠B .3x >−且1x ≠C .3x >−D .3x ≥−且1x ≠【答案】B【分析】直接利用二次根式有意义的条件、分式有意义的条件分析得出答案. 【详解】解:依题意,3010x x +>⎧⎨−≠⎩ ∴3x >−且1x ≠故选B【点睛】此题主要考查了函数自变量的取值范围,正确掌握二次根式与分式有意义的条件是解题关键.5.(2022·辽宁丹东)在函数y x 的取值范围是( ) A .x ≥3B .x ≥−3C .x ≥3且x ≠0D .x ≥−3且x ≠0 【答案】D【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式组,解不等式组即可得到答案.【详解】解:由题意得:x +3≥0且x ≠0,解得:x ≥−3且x ≠0,故选:D .【点睛】本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.6.(2022·广东广州)x 应满足的条件为( ) A .1x ≠−B .1x >−C .1x <−D .x ≤−1 【答案】B【分析】根据分式分母不为0及二次根式中被开方数大于等于0即可求解.【详解】解:由题意可知:10x +>,∴1x >−,故选:B .【点睛】本题考查了分式及二次根式有意义的条件,属于基础题.7.(2022·湖北恩施)函数y =的自变量x 的取值范围是( ) A .3x ≠B .3x ≥C .1x ≥−且3x ≠D .1x ≥−8.(2022·黑龙江绥化)2x −在实数范围内有意义,则x 的取值范围是( ) A .1x >−B .1x −C .1x −且0x ≠D .1x −且0x ≠ 【答案】C【分析】根据二次根式被开方数不能为负数,负整数指数幂的底数不等于0,计算求值即可;【详解】解:由题意得:x +1≥0且x ≠0,∴x ≥−1且x ≠0,故选: C .【点睛】本题考查了二次根式的定义,负整数指数幂的定义,掌握其定义是解题关键.9.(2022·内蒙古)实数a 1|1|a +−的化简结果是( )A .1B .2C .2aD .1−2a10.(2022·四川遂宁)实数a ,b 在数轴上的位置如图所示,化简1a +=______.11.(2022·四川广安)若(a−3)2,则以a、b为边长的等腰三角形的周长为________.+=__________.12.(2022·广西贺州)若实数m,n满足50∣∣,则3m n−−=m n13.(2022·贵州黔东南)若()2250x y+−=,则x y−的值是________.14.(2022·内蒙古·)已知x,y是实数,且满足y18的值是______.15.(2022·四川眉山)2,…,2,,4;…若2的位置记为(1,2)的位置记为(2,3),则________.32故答案为:(4,2)【点睛】本题考查了类比点的坐标解决实际问题的能力和阅读理解能力.被开方数全部统一是关键.。
中考真题精选《1.5二次根式》练习含答案解析
第一章 数与式第5课时 二次根式命题点1 二次根式有意义的条件 1.在实数范围内有意义,则x 的取值范围是( )A. x ≥12B. x ≥-12C. x >12D. x =122. 若式子x +x -1在实数范围内有意义,则x 的取值范围是________. 命题点2 最简二次根式 下列式子为最简二次根式的是( ) A. 3 B. 4 C. 8 D. 12命题点3 二次根式的运算4. )计算(-3)2的结果是( ) A. -3 B. 3 C. -9 D. 9 5. 下列运算中错误..的是( ) A. 2+3= 5 B. 2×3= 6 C. 8÷2=2 D. (-3)2=3 6. 计算:5×153的结果是________. 7. 计算:18-212等于________. 8. )计算:2(2-3)+6的值是________. 9. )读取表格中的信息,解决问题.满足a n +b n +c n3+2≥2014×(3-2+1)的n 可以取得的最小正整数是________.10. 题4分)计算:(3-7)(3+7)+2(2-2).命题点4 二次根式的估值11. 下列无理数中,在-2与1之间的是( )A. - 5B. - 3C. 3D. 5 12. 若m =22×(-2),则有( ) A. 0<m <1 B. -1<m <0 C. -2<m <-1 D. -3<m <-2 13. 估计5-12介于( ) A. 0.4与0.5之间 B. 0.5与0.6之间 C. 0.6与0.7之间 D. 0.7与0.8之间14. 如图,数轴上A 、B 两点表示的数分别为2和5.1,则A 、B 两点之间表示整数的点共有( )A. 6个B. 5个C. 4个D. 3个第14题图 第15题图15. )如图,M 、N 、P 、Q 是数轴上的四个点,这四个点中最适合表示7的点是________. 命题点5 非负性4年镇江15题)16. 实数a 、b 4a 2+4a b +b 2=0,则b a的值为( )A. 2B. 12C. -2D. -12答案1. C 【解析】由题意得,2x -1>0,解得x >12.2. x ≥1 【解析】根据题意得x -1≥0,解得x ≥1.3. A 【解析】逐项分析如下:4. B 【解析】(-3)2=9=3.5. A 【解析】A. 2+3无法合并同类项,故此选项符合题意;B. 2×3=6,正确,不合题意;C. 8÷2=2,正确,不合题意;D. (-3)2=3,正确,不合题意.6. 5 【解析】5×153=5×3×53=5. 7. 2 2 【解析】18-212=32-2×22=2 2. 8. 2 【解析】原式=2-6+6=2.9. 7 【解析】本题主要考查规律的探究,另外还考查了二次根式的运算等知识.由表格中数据可以得到:a 1+b 1+c 1=2+23+3+2+1+22=33+32+3=3(3+2+1),a 2+b 2+c 2=b 1+2c 1+c 1+2a 1+a 1+2b 1=3(a 1+b 1+c 1)=32(3+2+1),a 3+b 3+c 3=b 2+2c 2+c 2+2a 2+a 2+2b 2=3(a 2+b 2+c 2)=33(3+2+1),…,a n +b n +c n =3n (3+2+1),∵a n +b n +c n3+2≥2014×(3-2+1),∴a n +b n +c n ≥2014×(3-2+1)×(3+2)=2014×(3+2+1),∴3n(3+2+1)≥2014×(3+2+1),即3n≥2014,∵36≤2014≤37,∴n 可以取得的最小整数是7.10. 解:原式=9-7+22-2=2 2. 11. B 【解析】12. C 1.13. C 【解析】由 4.84<5< 5.76,得到2.2<5<2.4,即得 0.6<5-12<0.7.14. C 【解析】∵1<2<2,5<5.1<6,∴A、B两点之间表示整数的点有2,3,4,5,共有4个.15. P 【解析】∵4<7<9,∴2<7<3,∴7在2与3之间,且更靠近3,故答案为P.16. B +4a2+4ab+b2=0+(2a+b)2=0.由非负数的性质可得:1020a,a b+=⎧⎨+=⎩∴12ab=-⎧⎨=⎩,∴b a=2-1=12.。
数学中考试题二次根式200题(含解析)
-(cos30°)0115.已知x= +1,求x2-2x-3的值.
116. 先化简,再求值 ,其中a=,b=.
117.计算: .
118.计算: .
119. 计算:
120.计算: .
121. 计算:.
122.计算:(2-)(2+)+(-1)2010 .
25.已知实数x、y、a满足: ,
试问长度分别为x、y、a的三条线段能否组成一个三角形?如果能,请求出该三角形的面积;如果丌能,请说明理由.
26. 我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:
…①(其中 a、b、c 为三角形的三边长,s
163.计算:-(-3)=;如图所示,化简 =.
164.实数a在数轴上的位置如图所示,则化简|a-2|+ 的结果为.
165.已知a<2,则 =.
166.当x>2时,化简=.
167.计算: +| -2|+(2-π)0
168.计算: .
169.计算:-(-2009)0+( )-1+|-1|.
170.计算:
154.计算:(-1)(+1)-(sin35°- )0+(-1)2008-(-2)-2
155.计算:( +3)(3- )
156.阅读下列材料,然后回答问题.
在迚行二次根式的化简不运算时,我们有时会碰上如 一样的式子, 其实我们还可以将其迚一步化简:
=
=
= (三)
以上这种化简的步骤叫做分母有理化. 还可以用以下方法化简:
初三数学二次根式试题答案及解析
初三数学二次根式试题答案及解析1. 2的算术平方根是.【答案】【解析】∵2的平方根是±,∴2的算术平方根是.故答案为:.【考点】算术平方根2.请写出一个比小的整数【答案】答案不唯一,小于或等于2的整数均可,如:2,1等【解析】首先找到所求的无理数在哪两个和它接近的整数之间,然后即可判断出所求的整数的范围.试题解析:∵2<<3,∴所有小于或等于2的整数都可以,包括任意负整数答案不唯一,小于或等于2的整数均可,如:2,1等【考点】估算无理数的大小.3.按如图所示的程序计算,若开始输入的n值为,则最后输出的结果是()A.14B.16C.8+5D.14+【答案】C.【解析】当n=时,n(n+1)=(+1)=2+<15;当n=2+时,n(n+1)=(2+)(3+)=6+5+2=8+5>15,则输出结果为8+5.故选C.【考点】实数的运算.4.在,0,3,这四个数中,最大的数是()A.B.C.D.【答案】C.【解析】根据实数的大小比较法则,正数大于0,0大于负数,两个负数相比,绝对值大的反而小. 因此,∵,∴四个数中,最大的数是3.故选C.【考点】实数的大小比较.5.使二次根式有意义的x的取值范围是.【答案】x≥﹣3【解析】由二次根式的定义可知被开方数为非负数,则有x+3≥0所以x≥﹣3.【考点】二次根式有意义的条件6.计算:.【答案】-6【解析】先计算乘方和开方运算,再根据特殊角的三角函数值和平方差公式得到原式=,然后进行乘除运算后合并即可.原式==-6.【考点】二次根式的混合运算;特殊角的三角函数值.7.把下图折成正方体后,如果相对面所对应的值相等,那么x的平方根与y的算术平方根之积为.【答案】±【解析】由于x﹣y的相对面是1,x+y的相对面是3,所以x﹣y=1,x+y=3,由此即可解得x和y的值,然后即可求出x的平方根与y的算术平方根之积.解:依题意得x﹣y的相对面是1,x+y的相对面是3,∴x﹣y=1,x+y=3,∴x=2,y=1,∴x的平方根与y的算术平方根之积为±.故答案为:±.8.若a、b均为正整数,且a>,b<,则a+b的最小值是 ()A.3B.4C.5D.6【答案】B【解析】a、b均为正整数,且a>,b<,∴a的最小值是3,b的最小值是:1,则a+b 的最小值是4.9.使有意义的x的取值范围是()A.x>2B.x<-2C.x≤2D.x≥2【答案】D.【解析】依题意,得x-2≥0,解得,x≥2.故选:D.考点: 二次根式有意义的条件.10.下列二次根式是最简二次根式的是A.B.C.D.【答案】C.【解析】根据最简二次根式的定义对各选项分析判断后利用排除法求解.A、被开方数中含有分母,不是最简二次根式,故本选项错误;B、被开方数中含有小数,不是最简二次根式,故本选项错误;C、是最简二次根式,故本选项正确;D、被开方数中含有能开得尽方的因数,不是最简二次根式,故本选项错误;故选C.考点: 最简二次根式.11.已知为等腰三角形的两条边长,且满足,求此三角形的周长.【答案】10或11【解析】解:由题意可得即所以,.当腰长为3时,三角形的三边长为,周长为10;当腰长为4时,三角形的三边长为,周长为11.12.下列计算中,正确的是()A.B.C.=±2D.【答案】D.【解析】试题分析:A.,故本选项错误;B.,故本选项错误;C.,故本选项错误;D.,故本选项正确.故选D.考点:二次根式的混合运算.13.若式子在实数范围内有意义,则x的取值范围是()A.x>1B.x<1C.x≥1D.x≤1【答案】C.【解析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须. 故选C.【考点】二次根式有意义的条件.14.计算:(1)+-2012+();(2)(1-)—【答案】(1);(2).【解析】(1)根据二次根式、绝对值、零次幂及负整数指数幂的意义进行计算即可求出答案;(2)根据完全平方公式及二次根式的除法进行计算即可.试题解析:(1)(2)考点: 实数的混合运算.15.计算:【答案】.【解析】根据二次根式及非零数的零次幂的意义进行计算即可得出答案.试题解析:原式=考点: 1.二次根式的混合运算;2.非零数的零次幂.16.计算:= 。
初二数学二次根式试题答案及解析
初二数学二次根式试题答案及解析1.计算:(1)(2)【答案】(1)原式=﹣6;(2)原式=2x﹣x.【解析】(1)根据二次根式的乘法法则运算;(2)先把各二次根式化为最简二次根式,然后合并即可试题解析:(1)原式==﹣6;(2)原式=2+2x﹣x﹣2=2x﹣x.【考点】二次根式的混合运算2.下列式子中,是最简二次根式的是()A.B.C.D.【答案】B.【解析】A、=3,故A选项错误;B、是最简二次根式,故B选项正确;C、=2,不是最简二次根式,故C选项错误;D、=,不是最简二次根式,故D选项错误.故选B.【考点】最简二次根式.3.化简后的结果是()A.B.C.D.【答案】B.【解析】.故选B.【考点】二次根式的化简.4.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2B.8C.D.【答案】D.【解析】由图表得,64的算术平方根是8,8的算术平方根是.故选D.【考点】算术平方根.5.计算:______.【答案】13【解析】6.在实数,,,,中,无理数有()A.1个B.2个C.3个D.4个【答案】A【解析】因为所以在实数,0,,,中,有理数有,0,,,只有是无理数.7.阅读下面问题:;.试求:(1)的值;(2)(为正整数)的值.(3)的值.【答案】(1)(2)(3)9【解析】解:(1)=.(2).(3)8.在3.14、、、、、0.2020020002这六个数中,无理数有()A.1个B.2个C.3个D.4个【答案】B.【解析】无理数即无限不循环小数,显然3.14、、0.2020020002这三个数是有限小数,不是无理数;而是无理数,所以也是,毫无疑问是无理数,的结果是一个无限循环小数,所以不是无理数,因此无理数有2个,即:故选B.【考点】无理数的定义.9.(1)已知:(x+5)2=16,求x;(2)计算:【答案】(1),;(2).【解析】本题考查了平方根、立方根的定义及性质和绝对值的性质.(1)根据平方根的定义,先得出:,再分别计算出的值;(2)先利用平方根、立方根的性质及绝对值的性质分别计算出每个式子的值,最后相加.试题解析:解:(1)∵∴∴,原式【考点】1、平方根的定义及性质;2、立方根的定义及性质;3、绝对值的性质.10.在数轴上与表示的点距离最近的整数点所表示的数是 .【答案】2【解析】本题主要考查了实数与数轴的对应关系,解题应看这个无理数的被开方数在哪两个能开得尽方的数的被开方数之间,比较无理数的被开方数和这两个能开得尽方的数的被开方数的距离,进而求解.先利用估算法找到与的点两边的两个最近整数点,再比较这两个点与的大小即可解决问题.因为,所以左右两边的整数点是1和2,又因为3与4的距离最近,所以与的点的距离最近的整数点所表示的数是2,故填2.【考点】实数与数轴.11.若(x-3)2+=0,则x-y= .【答案】5.【解析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可求解.解:根据题意得,x-3=0,y+2=0,解得x=3,y=-2,x-y=3-(-2)=3+2=5.故答案为:5.【考点】1.非负数的性质:2.算术平方根;3.偶次方.12.估算的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间【答案】C.【解析】因为5<<6,所以3<<4.故选C.【考点】估算无理数的大小.13.若x、y为正实数,且x+y=12那么的最小值为 .【答案】13【解析】若x、y为正实数,且x+y=12,那么y=12-x;因此=;设S=,则==;所以S【考点】最值点评:本题考查最值,解答本题的关键是掌握求代数式最值的方法,本题难度较大,计算量比较大14.观察各数:,,,.其中最小数与最大数的和为(结论化简);【答案】【解析】依题意:;;;,易知最大数为,最小数为。
初三数学二次根式试题答案及解析
初三数学二次根式试题答案及解析1.下列各数中是无理数的是()A.B.﹣2C.0D.【答案】A【解析】A、正确;B、是整数,是有理数,故B错误;C、是整数,是有理数,故C错误;D、是分数,是有理数,故D错误.故选A.【考点】无理数2. a满足以下说法:①a是无理数;②2<a<3;③a2是整数.那么a可能是()A.B.C.2.5D.【答案】A.【解析】由a是无理数可知C、D是有理数,不合题意;由a2是整数可知A、B符合题意;再由2<a<3,只有A.故选A.【考点】1.估算无理数的大小;2.无理数;3.实数的运算.3. 16的平方根是()A.B.4C.-4D.【答案】A.【解析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的一个平方根:∵(±4)2=16,∴16的平方根是±4.故选A.【考点】平方根.4.计算:= .【答案】2.【解析】.【考点】二次根式计算.5.=.【答案】﹣【解析】分别进行分母有理化、二次根式的化简及零指数幂的运算,然后合并即可得出答案.解:原式=﹣1﹣2+1=﹣.故答案为:﹣.6.计算:-=________.【答案】3【解析】原式=4-=3.7.已知长方形的长是cm,宽是cm,求与此长方形面积相等的圆的半径.【答案】r=.【解析】利用面积公式列出方程·=πr2,解得r=.8.下面计算正确的是()A.4+=4B.÷=3C.·=D.=±2【答案】B.【解析】A.4+=4,本选项错误;B.,本选项正确;C.,故本选项错误;D.,故本选项错误.故选B.考点: 二次根式的混合运算.9.的值为()A.B.4C.D.2【答案】B.【解析】∵故选B.考点: 算术平方根.10.计算:.【答案】.【解析】先化成最简二次根式,再合并同类二次根式即可得出答案.试题解析:.考点: 二次根式的加减法.11.式子成立的条件是()A.≥3B.≤1C.1≤≤3D.1<≤3【答案】D【解析】根据二次根式的定义,式子成立的条件为,-1,即1<.12.若一个式子与之积不含二次根式,则这个式子可以是.(填写出一个即可)【答案】.【解析】本题实际是求的有理化因式,一般二次根式的有理化因式是符合平方差公式的特点的式子.与的积不含二次根式的式子是.故答案是.【考点】分母有理化.13.二次根式的值是()A.﹣3B.3或﹣3C.9D.3【答案】D.【解析】. 故选D.【考点】二次根式化简.14.下列计算正确的是()A.B.C.D.【答案】C.【解析】 A.,故本选项错误;B.和不是同类二次根式,不能合并,故本选项错误;C.,故本选项正确;D.,故本选项错误.故选C.【考点】二次根式的乘除法.15.若,,且ab<0,则a﹣b=.【答案】-7.【解析】先根据算术平方根的定义,求出、的值,然后根据确定、的值,最后代入中求值即可.试题解析:∵,,∴a=±3,b=4;∵,∴,;∴.考点: (1)算术平方根;(2)代数式求值.16.下列二次根式中,取值范围是的是()A.B.C.D.【答案】C.【解析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须;要使在实数范围内有意义,必须;要使在实数范围内有意义,必须;要使在实数范围内有意义,必须,因此,取值范围是的是. 故选C.【考点】二次根式和分式有意义的条件.17.下列式子中,是最简二次根式的是()A.B.C.D.【答案】B【解析】最简二次根式满足:1.被开方数中不能含有分母;2. 被开方数中不能有开得尽方的因数或因式.只有B符合条件; 选项A,C,D都不符合条件, 故选B.【考点】最简二次根式.【考点】最简二次根式18.化简:=_______________.【答案】【解析】根据二次根号下的数为非负数,可得,解得所以.【考点】二次根式的性质19.计算与化简(1)(2)【答案】(1);(2).【解析】(1)将前两项化为最简二次根式,第三项根据0指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1).(2).【考点】1.二次根式化简;2.0指数幂;3.完全平方公式和平方差公式.20.计算:(1)(2)(3)【答案】(1);(2);(3).【解析】(1)将各根式化为最简单二次根式后合并同类根式即可;(2)括号内化最简单二次根式后合并同类根式,除式变为乘式计算即可;(3)应用完全平方公式和平方差公式展开后合并同类根式即可.试题解析:(1).(2).(3).【考点】二次根式化简.21.计算:。