量程自选的数字频率计

合集下载

基于AT98C51单片机数字频率计

基于AT98C51单片机数字频率计

摘要51系列单片机是国内目前应用最广泛的一种8位单片机之一,随着嵌入式系统、片上系统等概念的提出和接受及应用,51系列单片机还会在继后很长一段时间占据嵌入式低端市场。

重要的。

,因此,作为新世纪的大学生,在信息产业高速发展的今天,掌握单片机的基本结构、原理和使用时非常重要的。

随着电子技术的发展,当前数字系统的设计正朝着速度快、容量大、体积小、重量轻的方向发展。

在电子技术中,频率是最基本的参数之一,并且与许测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。

本设计所要介绍的是以单片机AT89C51为核心设计了一种量程自选的数字频率计。

在本文的设计采用单片机内部的定时器/计数器对脉宽的机器周期数进行计数,从而求得被测信号的频率值, 最后通过静态显示电路显示数值由于单片机内部振荡频率很高, 所以一个机器周期的量化误差相当小, 可以有效地提高低频信号的测量准确性。

关键字:单片机,AT98C51,量程自选频率计目录摘要 (1)一、设计目的 (3)二、设计要求及指标 (3)三、单元电路分析 (3)1、上拉电路 (3)2、信号输入电路 (6)3、显示电路 (7)四、系统框图 (9)五、仿真图 (10)六、仿真结果 (10)七、软件介绍 (12)八、心得体会 (13)九、参考文献 (13)附录源程序 (14)一设计目的1.掌握量程自选数字频率计的设计、组装与调试方法。

2.熟悉集成元器件的选择和集成电路芯片的逻辑功能及使用方法。

3.熟悉仿真软件的使用。

二设计要求及指标1.输入信号的频率量程可以自动选择。

2.测试结果用6位数码管显示。

三单元电路分析1、上拉电路AT89S52是一种低功耗、高性能CMOS8位微控制器,具有8K 在系统可编程Flash 存储器。

使用Atmel 公司高密度非易失性存储器技术制造,与工业80C51 产品指令和引脚完全兼容。

片上Flash允许程序存储器在系统可编程,亦适于常规编程器。

自动量程数字频率计实验报告

自动量程数字频率计实验报告

自动量程数字频率计实验要求一、任务设计制作一个自动量程数字频率计。

二、要求1.显示位数:四位,最大显示数为9999。

2.闸门时间:分10ms、100ms、1s三种,根据被测频率F的大小自动切换。

3.测量量程:第一档:100Hz~999.9kHz (闸门时间为10ms)第二档:10Hz~99.99kHz (闸门时间为100ms)第三档:1Hz~9.999kHz (闸门时间为1s)。

要求具有小数点指示的闸门切换。

4.自动量程要求:当计数器数值大于9999时(溢出),量程自动升高一档,当计数值小于0800时,量程自动降低一档。

5.输入被测信号:10Hz~1MHz方波或正弦波,幅度为3mV~3V(有效值)。

6.显示器件:采用七段数码管。

实验报告一、前言频率和周期是电信号在时域内重要的特征。

测量信号的频率和周期也是认识一个信号的重要手段。

以测频和测周期原理实现的频率计的设计方案很多。

传统的设计中多使用分立元件,这种方案成本低,并且具有一定的可靠性。

本实验报告介绍了使用分立元件设计自动量程数字频率计的具体实现原理和方案,并给出了实验结果和误差分析。

二、设计原理和方案1.直接测频法原理频率测量可采用直接测频方法,先对输入信号整形,变换为数字信号的电平,然后对其进行测量。

测量时,采用一个脉宽为T的闸门信号控制被测信号作为计数器的输入如图1所示,计数值为n,则被测信号频率为:F=n/T若采用T为单位时间,则可直接将计数结果转换为BCD码并显示。

图1 直接测频法在被测信号频率较高时通常采用直接测频法,这种方法的计数值会产生±1个字的误差。

很明显,被测信号频率一定时,采用闸门时间T越大,相应的误差越小。

当闸门时间与被测信号的周期比值较大时,这种方法有较好的效果。

2.自动换档技术当被测信号的频率范围变化较大时,若采用单一门限时间的闸门信号,对于高频被测信号,得到计数值n过大,会造成计数器溢出,并且测量时间过长;对于低频被测信号,得到计数值n过小,会造成较大误差。

贵州大学自动量程数字频率计

贵州大学自动量程数字频率计

贵州大学自动量程数字频率计(评分细则)基本内容及要求:显示位数:四位,最大显示数9999。

闸门时间:三种:10ms,100ms,1s,根据被测频率f x的大小自动切换。

量程:第一种,100Hz~999.9KHz,闸门时间10m;第二种,10Hz~99.99KHz,闸门时间100ms;第三种,1Hz~9.999KHz,闸门时间1s。

自动量程要求:计数器计数大于9999时(溢出)量程自动升高一挡(闸门时间缩短十分之一),当计数值小于0800时量程自动降低一挡(闸门时间增大十倍)。

输入被测信号:10Hz~1MHz方波或正弦波,幅度为10mv~3v(有效值)。

附加说明:(1)工具,不论采用哪种EDA软件;(2)器件,不论应用标准IC、MCU等;(3)显示,不论用LED、LCD。

评分标准:总分150分。

其中演示操作基本要求100分;功能扩展、性能发挥20分;设计报告30分。

1、基本要求评分:(1)数据显示4位;(2)输入信号频率为10Hz~1MHz、幅度10mV~3V(有效值)正弦波或方波时,启动测试,能够自动显示相应信号的“频率值”(不通过任何手动切换)。

满足以上要求得分 100其它情况说明:(1)功能完整,测试范围在1kHz~500kHz,显示准确,得分85;(2)功能完整,TTL电平测试10 Hz~1MHz,显示正确,得分75;(3)功能完整,测量范围200kHz以下,显示正确,得分70;(4)功能完整,TTL电平测试200kHz以下,显示正确,得分65。

注:以上标准是在使用实用器件的前提下评分,如果采用虚拟器件,则在上述得分基础上相应降15分计算(即最高得分85)。

比如,前级小信号放大器采用“虚拟运放”,即为虚拟器件;若采用OP07、CA741等则为实用器件。

在学生操作熟练的情况下,可以现场更换器件,但每个小组的表达时间不超过10分钟(含专家提问总时间不超过15分钟)2、功能扩展、性能发挥评分(1)本设计可作其它参数测试,原理正确、转换方便、测试准确,有现实应用前景;比如:可以测试信号频率,简单转换可做波形测试(数字示波器)等。

频率计的使用教程

频率计的使用教程

频率计的使用教程频率计是一种常见的电子测量仪器,它主要用来测量电波的频率。

在电子领域中,频率是一个关键的参数,对于各种电子设备和电路的设计、调试以及故障排除都起到非常重要的作用。

本文将介绍频率计的基本原理和使用方法,以帮助读者更好地使用这一仪器。

1. 频率计的原理频率计基于时间测量的原理工作。

它通过计时器测量电波的一个周期所需要的时间,并将其转化为频率。

主要有两种类型的频率计:直接计数频率计和间接计数频率计。

直接计数频率计通过计算固定时间内电波周期数的方式来测量频率。

它具有精确度高的优点,但需要较长的测量时间。

间接计数频率计则通过测量时间基准中的计数周期数来估算电波的频率。

它具有测量速度快的优点,但精确度相对较低。

2. 频率计的使用步骤使用频率计之前,我们需要确保仪器正常工作,并将其连接到要测量的电路或设备上。

第一步是设置测量范围,一般频率计会提供多个测量范围可供选择。

我们需要根据待测电波的频率范围选择合适的测量范围,以保证测量结果的准确性。

第二步是调整频率计的灵敏度,也称为量程档位。

灵敏度设置过高会导致测量结果不准确,而设置过低则可能无法检测到待测信号。

通常,我们可以根据实际情况进行适当的灵敏度调整。

第三步是连接待测信号源到频率计的输入端。

我们需要确保信号源的输出与频率计的输入匹配,并使用合适的连接线杜绝信号干扰或衰减。

第四步是启动频率计,并等待一段时间以达到稳定状态。

这个时间可以根据仪器的规格和信号源的稳定性来确定。

第五步是开始测量,根据仪器的操作界面,可以选择不同的测量模式进行频率测量。

一般来说,频率计会提供多种显示方式,如数字显示和图形显示等。

3. 注意事项在使用频率计时,我们需要注意以下几点:首先,要保持仪器的环境干燥、清洁,并避免剧烈震动或碰撞,以确保仪器正常工作。

其次,需要根据仪器的规格和测量要求选择合适的频率计。

不同的频率计有不同的测量范围、精确度和测量速度。

此外,还需要注意待测信号的特性,如频率范围、幅值、稳定性等。

自动转换量程频率计控制器

自动转换量程频率计控制器

百度文库- 让每个人平等地提升自我江西科技师范学院毕业设计(论文)题目:自动转换量程频率计控制器设计系院:通信与电子学院专业:电子信息工程学生姓名:陈浩学号:指导老师:陈亮亮封面格式不对,封面格式电子档已放入群共享量程自动转换的数字式频率计的设计数字频率计是一种基本的测量仪器。

它被广泛应用与航天、电子、测控等领域。

它的基本测量原理是,首先让被测信号与标准信号一起通过一个闸门,然后用计数器计数信号脉冲的个数,把标准时间内的计数的结果,用锁存器锁存起来,最后用显示译码器,把锁存的结果用LED数码管显示出来。

根据数字频率计的基本原理,本文设计方案的基本思想是分为四个模块来实现其功能,即整个数字频率计系统分为分频模块、计数并自动换挡模块、锁存器模块和译码器模块,并且分别用VHDL对其进行编程,实现了闸门控制信号、计数电路、锁存电路、显示电路等。

本设计方案还要求,被测输入信号的频率范围自动切换量程,控制小数点显示位置,并以十进制形式显示。

整个频率计设计在一块CPLD芯片上,与用其他方法做成的频率计相比,体积更小,性能更可靠。

频率计的测频范围:0~10MHz。

该设计方案通过了Max+plusⅡ软件仿真、硬件调试和软硬件综合测试。

关键词:数字频率计;电子设计自动化;CPLD;格式不对,而且你怎么会用到CPLD?目录第一章引言 (1)1.1 研究背景 (1)1.2 频率计的发展情况 (3)第二章设计所用工具与环境介绍 (5)2.1 BTYG-EDA实验开发系统简介 (5)2.1.1 系统特点 (5)2.1.2 系统资源介绍 (5)2.2 CPLD简介 (6)2.2.1 CPLD器件结构简介 (6)2.2.2 典型CPLD器件简述 (9)2.2.3 CPLD在新技术中的应用 (12)2.3 VHDL语言简介 (13)2.3.1 VHDL的发展情况与特点 (13)2.3.2 VHDL语言结构 (15)第三章频率计的设计方案 (19)3.1 传统方法 (19)3.2 现代方法 (19)3.2.1 自顶向下的设计方法 (19)3.2.2 与传统的设计方法相比EDA的特点 (20)3.3 本设计的方法 (22)第四章数字频率计的设计 (24)4.1 频率计的设计要求与原理 (24)4.1.1 设计要求 (24)4.1.2 频率测量方法及原理 (24)4.2 频率计的硬件设计 (26)4.2.1 电子设计的发展情况 (26)4.3 频率计的软件设计及其仿真 (27)4.3.1 软件设计的实现 (27)4.3.2 功能模块的实现 (28)4.3.3 各模块基于VHDL的设计与仿真 (29)4.4 下载验证 (38)4.4.1 管脚分配 (38)4.4.2 硬件调试 (40)4.4.3 软件调试 (41)4.4.4 数据下载与验证 (41)第五章实验测试与误差分析 (44)5.1 实验测试的方法 (44)5.2 系统的验证 (44)5.3 频率测量精度分析 (45)5.4 测量误差分析 (46)总结语 (48)参考文献 (49)Abstract (50)附录 (51)第一章引言1.1 研究背景近年来信息技术、电子技术获得了飞速的发展,在其推动下,现代电子产品几乎渗透了社会的各个领域,有力地推动了社会生产力的发展和社会信息化程度的大大提高。

数字频率计

数字频率计

数字频率计数字频率计是一种用十进制数字显示被测信号频率的数字测量仪器,它的基本功能是测量正弦信号、方波信号、尖脉冲信号的频率及其他各种单位时间内变化的物理量,因此,它的用途十分广泛。

一、设计目的掌握数字频率计的设计二、设计内容技术要求:测量频率范围 0-9999 Hz和1Hz-100 KHz。

测量信号方波峰--峰值为3-5V(与TTL兼容)。

闸门时间 10ms,0.1s,1s和10s,脉冲波峰—峰值为3-5V。

三、数字频率计的基本原理数字频率计的原理框图如图所示:它由4个基本单元组成:1.带衰减器的放大整形系统包括从被测信号到衰减放大整形系统此部分。

其中衰减放大整形系统包括衰减器、跟随器、放大器、施密特触发器。

它将正弦波输入信号Vx整形成同频率方波Vo,测试信号通过衰减开关选择输入衰减倍数,衰减器有分压器构成幅值过大的被测信号经过分压器的分压送入后级放大器,以避免波形失真。

由运算放大器构成的射极跟随器起阻抗变换作用,使输入阻抗提高。

系统的整形电路由施密特触发器组成,整形后的方波送到闸门以便计数。

2.石英晶体振荡器及多级分频系统石英晶体振荡器如图振荡频率为4MHz,经过÷4(用74LS47芯片),÷10(用74LS90芯片)等分频器的分频作用,使输出频率的周期范围1us~10s。

根据被测信号的频率大小,通过闸门时基选择开关选择时基。

时基信号经过门控电路得到方波,其正脉宽时间T控制闸门的开放时间。

3.闸门电路闸门电路由与门组成,其开通与否受门控信号的控制,当门控信号为高电平“1”时,闸门开启,为“0”时,闸门关闭。

显然,只有在闸门开启时间内,其产生的脉冲信号送到计数器,计数器开始计数,直到门控信号结束,闸门关闭4.可控制的计数锁存、译码显示系统本系统由计数器、锁存器、译码器、显示器、单稳态触发器组成。

其中计数器按十进制计数。

如果在系统中不接锁存器,则显示器上的数字就会随计数器的状态不停地变化,只有在计数器停止计数时,显示器上的显示数字才能稳定,所以,在计数器后边必须接锁存器。

数字式频率计设计

数字式频率计设计

数字式频率计的设计摘要在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量显得更为重要。

数字频率计是近代电子技术领域的重要测量工具之一,同时也是其他许多领域广泛应用的测量仪器。

数字频率计是在规定的基准时间内把测量的脉冲数记录下来,换算成频率并以数字形式显示出来。

数字频率计用于测量信号(方波,正弦波或其他周期信号)的频率,并用十进制数字显示,它具有精度高,测量速度快,读数直观,使用方便等优点。

测量频率的方法有多种,其中电子计数器测量频率具有精度高、使用方便、测量迅速,以及便于实现测量过程自动化等优点。

本次设计的数字频率计以555为核心,采用直接测频法测频,能够测量正弦波、三角波、锯齿波、矩形波等。

根据显示的频率范围,用4片10进制的计数器构成1000进制对输入的被测脉冲进行计数;根据输入信号的幅值要求,所以要经过衰减与放大电路进行检查被测脉冲的幅值;由于被测的波形是各种不同的波,而后面的闸门或计数电路要求被测的信号必须是矩形波,所以还需要波形整形电路,通过这些整体要求,由显示部分,计数部分,逻辑控制部分,时基电路部分,构成简易的频率计的设计。

目录一.设计任务和要求 (3)1.设计任务 (3)2.设计要求 (3)二.系统设计 (4)1.系统要求 (4)2. 方案设计 (5)3.系统工作原理 (6)三.单元电路设计 (8)1.时基电路部分 (8)2.计数显示部分电路 (11)3.控制电路设计如下 (14)四.电路仿真分析 (15)五.元器件的选择及参数确定 (17)1.电路调试 (17)2系统功能及性能测试 (18)3.电路安装 (20)4.调试 (21)参考文献 (25)总结及体会 (26)附录 (28)一.设计任务和要求1.设计任务设计一个数字式频率计。

2.设计要求1、能够测量正弦波、三角波、锯齿波、矩形波等周期性信号的频率;2、能直接用十进制数字显示测得的频率;3、频率测量范围:1HZ—10KHZ且量程能自动切换;4、输入信号幅度范围为0.5—5V,要求仪器自动适应5、测量时间:t≼1.5s6、电源:220V/50HZ的工频交流电供电;(注:直流电源部分仅完成设计即可,不需制作,用实验室提供的稳压电源调试,但要求设计的直流电源能够满足电路要求)7、按照以上技术要求设计电路,绘制电路图,对设计的电路用Multisim或OrCAD/PspiceAD9.2进行仿真,用万用板焊接元器件,制作电路,完成调试、测试,撰写设计报告。

量程自动转换数字式频率计的设计

量程自动转换数字式频率计的设计

EDA课程设计(量程自动转换数字式频率的设计)题目:数字频率计的设计学院:班级:学号:姓名:指导老师:提交时间:目录一.设计要求二.设计方案1,频率计的工作原理2,频率计的系统框图三.详细设计1, 4位十进制计数模块(1)十进制计数器元件cnt10v的设计(2)计数器的顶层设计(3)分频模块的设计2. 闸门控制模的设计3.可自动换挡基准时钟模块的设计4.锁存模块的设计5.译码显示模块的设计与实现七段数码显示译码管的VHDL设计6.频率计电路顶层原理图的设计7.实验数据和误差分析四.总结五.参考文献数字频率计的设计摘要:数字频率计是一种能够测量被测信号频率的数字测量仪器。

它被广泛应用于航天、航空、电子、自动化测量、测控等领域。

本文利用测频原理,设计一个量程自动转换数字式频率计,主要硬件电路由Altera公司生产的复杂可编程逻辑(CPLD)EPM7128构成。

复杂可编程逻辑器件CPLD芯片EPM7128SLC84-15完成各种时序逻辑控制、计数功能。

在QUARTUS II平台上,用VHDL语言编程完成了CPLD的软件设计、编译、调试、仿真和下载。

由于本系统采用了先进的EDA 技术,不但大大缩短了开发研制周期,而且使本系统具有结构紧凑、体积小,可靠性高,测频范围宽、精度高等优点。

关键词:频率计;可编程逻辑器件;VHDL一、设计要求1. 频率计的测量范围为1MHz ,量程分10KHz 、100KHz 和1000KHz 三档(最大读数分别为9.99KHz 、99.9KHz 、999KHz )。

2. 要求量程可根据被测量的大小自动转换。

即当计数器溢出时,产生一个换档信号,让整个计数时间减少为原来的1/10,从而实现换档功能。

3. 要求实现溢出报警功能。

即当频率高于999KHz 时,产生一报警信号,点亮LED 灯,从而实现溢出报警功能。

二、设计方案1、频率计的工作原理常用的测量频率的方法有两种,一个是测周期法,一个是测频率法。

简易数字频率计

简易数字频率计

简易数字频率计引言数字频率计是一种用来测量信号频率的仪器。

在电子工程、通信工程和音频工程等领域中都有广泛的应用。

本文将介绍一个简易的数字频率计,它基于微控制器和计数器电路,能够精准地测量输入信号的频率。

设计原理该简易数字频率计的设计原理主要包括三个部分:输入电路、计数器电路和显示电路。

输入电路输入电路用于接收待测量的信号,并将其转换为微控制器可以处理的数字信号。

一般使用一个信号放大器将输入信号放大,并通过一个阻抗匹配电路将信号阻抗与测量电路相匹配。

计数器电路计数器电路是本频率计的核心部分。

它通过计数器器件来测量输入信号的周期时间,并计算出频率值。

常见的计数器器件有74HCxx系列、CD40xx系列等。

在该设计中,我们选择了74HC160 4位可编程同步二进制计数器。

显示电路显示电路用于将测量得到的频率值以可读性良好的方式展示出来。

一般使用数码管进行数字显示。

本设计中使用了共阴极的4位7段数码管,通过串口通信将测量到的频率值发送给数码管进行显示。

硬件设计硬件设计主要包括信号放大电路、计数器电路和显示电路。

信号放大电路设计信号放大电路使用了一个运放进行信号放大,具体的放大倍数可以根据实际需求进行调整。

为了防止输入信号的干扰,还可以添加一个低通滤波器来滤除高频噪声。

计数器电路设计74HC160计数器电路的设计如下: - 连接74HC160的CLK 引脚到信号输入引脚,即可通过输入信号的上升沿触发计数器的计数。

- 使用74HC160的O0~O3输出引脚接到后续的显码驱动电路。

显示电路设计数码管的控制可以使用74HC595移位寄存器进行。

通过接口电路和微控制器进行通信,将测量到的频率值发送给74HC595,然后74HC595控制数码管进行数字显示。

软件设计软件设计主要包括信号处理和数据显示。

信号处理软件部分主要是通过计数器来测量输入信号的周期时间并计算出频率值。

通过编写的程序,将计数器的数值传输给微控制器,并进行运算得到频率值。

简易数字频率计

简易数字频率计

频率计算:通过测量信号的周期或 频率,计算出数字频率值
添加标题
添加标题
添加标题
添加标题
信号处理:通过数字滤波器对采集 到的信号进行滤波,以消除噪声和 干扰
数据输出:将计算出的频率值通过 串口或其他方式输出到计算机或其 他设备
计数器和计时器的编程实现
使用计时器对计数器进行计 时,计算信号的周期
将计数器和计时器的结果通 过软件进行显示和控制
能源监测:简易数字频率计可实现对新能源发电设备的实时监测,提高能源利用效率。 环保监测:简易数字频率计可用于监测环保设备的运行状态,确保污染物排放达标。 智能电网:简易数字频率计可应用于智能电网中,实现电网的智能化管理和优化。 节能减排:简易数字频率计可帮助企业实现节能减排,降低生产成本。
简易数字频率计的技术挑战和发展方向
分析仪等。
科学实验领域: 用于各种与频率 相关的实验,如 电磁波的发射与 接收、无线电通
信等。
工业生产领域: 用于生产过程中 的各种频率测量 和控制,如电机 转速的测量和控 制、生产线上各 种设备的状态监
测等。
简易数字频率计在生物医学工程领域的应用
监测生理信号:简易数字频率计可 以用于监测人体的心电图、脑电图 等生理信号,辅助医生进行疾病诊 断和治疗。
添加标题
添加标题
添加标题
添加标题
频谱分析:对信号进行频谱分析, 了解信号的成分和特性
音频处理:用于音频信号的频率测 量和处理,如音频压缩、降噪等
简易数字频率计在通信和电子测量领域的应用
通信领域:用于 信号频率的测量, 如调频信号、调
相信号等。
电子测量领域: 用于测量电子设 备的频率特性, 如示波器、频谱
界面优化:根据实际需求对显示和控制界面进行优化,提高用户体验和操作便捷性

数字频率计说明书

数字频率计说明书

课程设计说明书学生:XX 学号:学院: xx学院班级: XX班题目: 数字频率计指导教师:职称:2012年1月6日容摘要在数字电路中,数字频率计属于时序电路,它主要由具有记忆功能的触发器构成。

在计算机及各种数字仪表中,都得到了广泛的应用。

在CMOS电路系列产品中,数字频率计使用量最大、品种最多产品,是计算机、通讯设备等科研领域不可缺少的测量仪器,频率是最最基本的参数之一,并且与许多电参量的测量方案、测量结果都是有十分密切的关系,因此频率的测量就显得更为重要。

测量频率的方法有多种,其中电子技术器测量频率具有精度高、使用方便、测量迅速,以及便于实现测量过程自动化的优点,是频率测量手段之一。

常用的测量方法有测频法、测周法、侧周期/频率。

本文阐述了用测频法构成的数字频率计。

关键字:频率数字频率计单稳态1 课程设计题目数字频率计设计2 课程设计任务与要求2.1 数字频率计的基本原理数字频率计的主要功能是测量周期信号的频率。

频率是单位时间(1s)信号发生周期变化的次数。

如果我们能在给定的1s时间对信号波形计数,并将计数结果显示出来,就能读取被测信号的频率。

数字频率计首先必须获得相对稳定与准确的时间,同时将被测信号转换成幅度与波形均能被数字电路是别的脉冲信号,然后通过计数器计算这一段时间间隔的脉冲个数,将其换算后显示出来。

2.2 技术指标如下:(1).数字显示功能:用数码管显示测量信号(2).测量围: 10Hz~100kHz(3).测量精度:误差不超过1%(4).显示方式: 6位LED数码(5).系统框图3 方案选择与论证频率计是用来测量正弦信号、矩形信号、三角形信号等波形工作频率的,根据频率的概念是单位时间里脉冲的个数,要测被测波形的频率,则需要测被测波形在1s里有多少个脉冲,所以,如果用一个定时是1S控制一个闸门电路,在1S闸门打开,让被测信号通过而进入计数器电路,即是被测信号的频率。

任务要求分析:频率计的测量围要10Hz~100kHz,且精度为10Hz,所以要用6片10进制计数器构成100000进制对输入的被测脉冲进行计数;要求输入信号的幅值为20mv~5v,所以要经过衰减与放大电路进行检查被测脉冲的幅值;由于被测的波形是各种不同的波,而后面闸门或计数电路要求被侧的信号必须是矩形波,所以还需要波形整形电路;频率计的输出显示要经过锁存器进行稳定在通过6位LED数码管进行显示。

什么是数字频率计它在测量仪器中的应用有哪些

什么是数字频率计它在测量仪器中的应用有哪些

什么是数字频率计它在测量仪器中的应用有哪些数字频率计是一种用于测量信号频率的仪器,它可以精确地测量各种周期性信号的频率,并且在不同领域有广泛的应用。

本文将介绍数字频率计的原理和测量方法,并探讨它在不同测量仪器中的应用。

一、数字频率计的原理数字频率计是基于现代计算机和数字信号处理技术的一种测量仪器。

它通过对输入信号进行数字化处理,获得信号的周期或脉冲宽度,并由此计算出信号的频率。

数字频率计的工作原理可以简化为以下几个步骤:首先,将输入信号通过模数转换器(ADC)转换成数字信号;然后,通过计数器对数字信号进行计数,以获得信号的周期或脉冲宽度;最后,根据信号的周期或脉冲宽度计算出信号的频率,并显示在数字频率计的显示屏上。

二、数字频率计的测量方法数字频率计可以使用不同的测量方法获得准确的频率值,其中常见的方法包括时间测量法、周期测量法和脉冲宽度测量法。

1. 时间测量法时间测量法是最常用的数字频率计测量方法之一。

它通过测量信号周期内的时间来计算频率。

该方法适用于周期性信号,如正弦波、方波等。

时间测量法的基本原理是:首先,将输入信号信号与参考时间间隔进行比较,以判断信号周期的整数倍;然后,使用高精度时钟计数器测量信号周期内的时间,最后根据测得的时间计算出信号的频率。

2. 周期测量法周期测量法适用于脉冲信号或周期性信号。

它通过测量脉冲宽度或信号的占空比来计算频率。

周期测量法的基本原理是:首先,测量脉冲信号或周期性信号的周期或脉冲宽度;然后,根据测得的周期或脉冲宽度计算信号的频率。

3. 脉冲宽度测量法脉冲宽度测量法适用于脉冲信号。

它通过测量脉冲信号的宽度来计算频率。

脉冲宽度测量的基本原理是:首先,检测脉冲信号的上升沿和下降沿;然后,测量脉冲信号上升沿和下降沿之间的时间差,即脉冲信号的宽度;最后,根据脉冲信号的宽度计算信号的频率。

三、数字频率计在测量仪器中的应用数字频率计在各个领域的测量仪器中有广泛的应用,下面将介绍几个主要的应用领域。

频率计的主要技术指标

频率计的主要技术指标

频率计的主要技术指标
1.频率测量
精 度:±1计数值±基准时间误差×频率 B通道量程:100MHz~1GHz 分辨率:100Hz、1KHz、10kHz 闸门时间:0.01s、0.1s、1s任选
精度:±1计数值±基准时间误差×频率
频率计的主要技术指标
2.周期测量
输入:A通道 量程:10Hz~10MHz 分辨率:10-7s、10-8s、10-9s任选 精度:±1计数值±基准时间误差×周期
5.时基 时基频率:10MHz 短期稳定度:±3×10-9/秒 长期稳定度: ±2×10-5/月
频率计的主要技术指标
ห้องสมุดไป่ตู้
20mVrms
30mVrms
频率计的主要技术指标
4.输入特性 衰减:×1、×20固定 滤波:低通,100KHz,-3dB 输入阻抗:约1MΩ(少于35pF)
最大安全电压:250V(DC+ACrms) (ATT置×20)
B通道 输入灵敏度:20mVrms 输入阻抗:约50Ω 最大安全电压:3V
频率计的主要技术指标
频率计的主要技术指标
天津市武清区职业中等专业学校
李尚男
频率计的主要技术指标
1.频率测量
A通道量程:10Hz~10MHz直接计数 10MHz~100MHz按比例计数 分辨率 直接计数:1Hz、10Hz、100Hz任选
按比例计数:10Hz、100Hz、1000Hz任选
闸门时间:0.01s、0.1s、1s任选
频率计的主要技术指标
3.累计测量
输入:A通道 量程:10Hz~10MHz 分辨率:±1输入计数值
频率计的主要技术指标
4.输入特性
A通道 输入灵敏度: 10MHz量程:10HZ-8MHZ 8MHZ-10MHZ 20mVrms 30mVrms

可变量程数字频率计(1)资料

可变量程数字频率计(1)资料

现代电子学实验报告实验题目:可变量程数字频率计姓名:年级:2012级指导教师:完成日期:2015年7月14日原创性声明本人声明本实验报告涉及的电路图、程序代码均为自己设计,没有抄袭他人的成果。

特此声明!声明人:目录1、实验目的............................................................................................... - 1 -2、实验要求............................................................................................. - 1 -3、实验原理及内容 .................................................................................. - 1 - 3.1 实验的总体结构.................................................................................................. - 1 - 3.2 实验的理论基础和原理...................................................................................... - 2 -3.3 实验需要解决的关键问题.................................................................................. - 3 -4、实验设计与测试 .................................................................................. - 3 - 4.1 硬件设计.............................................................................................................. - 3 - 4.2 硬件测试.............................................................................................................. - 5 - 4.3 软件设计.............................................................................................................. - 8 - 4.4 软件测试............................................................................................................ - 19 -4.5 总体测试............................................................................................................ - 20 -5 实验结论与测试 ................................................................................................. - 21 - 参考文献...................................................................................................................... - 1 -1、实验目的掌握现代大规模集成数字逻辑电路的应用设计方法,以及掌握利用计算机进行电子设计自动化(EDA)的基本方法。

数字频率计

数字频率计

数字频率计数字频率计是采纳数字电路制做成的能实现对周期性变化信号频率测量的仪器。

频率计重要用于测量正弦波、矩形波、三角波和尖脉冲等周期信号的频率值。

其扩展功能可以测量信号的周期和脉冲宽度。

通常说的,数字频率计是指电子计数式频率计。

目录优点用途重要构成基本原理优点用途在电子技术领域,频率是一个最基本的参数。

数字频率计作为一种最基本的测量仪器以其测量精度高、速度快、操作简便、数字显示等特点被广泛应用。

很多物理量,例如温度、压力、流量、液位、PH值、振动、位移、速度等通过传感器转换成信号频率,可用数字频率计来测量。

尤其是将数字频率计与微处理器相结合,可实现测量仪器的多功能化、程控化和智能化.随着现代科技的进展,基于数字式频率计构成的各种测量仪器、掌控设备、实时监测系统已应用到国际民生的各个方面。

重要构成频率计重要由四个部分构成:输入电路、时基(T)电路、计数显示电路以及掌控电路。

输入电路:由于输入的信号可以是正弦波,三角波。

而后面的闸门或计数电路要求被测信号为矩形波,所以需要设计一个整形电路则在测量的时候,首先通过整形电路将正弦波或者三角波转化成矩形波。

在整形之前由于不清楚被测信号的强弱的情况。

所以在通过整形之前通过放大衰减处理。

当输入信号电压幅度较大时,通过输入衰减电路将电压幅度降低。

当输入信号电压幅度较小时,若前级输入衰减为零时不能驱动后面的整形电路,则调整输入放大的增益,被测信号得以放大。

时基和闸门电路:闸门电路是掌控计数器计数的标按时间信号,被测信号的脉冲通过闸门进入计数器的个数就是由闸门信号决议的,闸门信号的精度很大程度上决议了频率计的频率测测量精度。

当要求频率测量精度高时,应使用晶体振荡器通过分频获得。

时基信号可由555定时器构成一个较稳定的多谐振荡器,经整形分频后,产生一个标准的时基信号,作为闸门开通的基按时间。

被测信号通过闸门,作为计数器的时钟信号。

计数显示电路:在闸门电路导通的情况下,开始计数被测信号中有多少个上升沿。

EDA技术(课程设计题目)

EDA技术(课程设计题目)

设计题6—洗衣机控制电路
转60s→待机5s→反 转60s→,并用3个LED灯和7段显示器分别表示其工作状 态和显示相应工作状态下的时间。
2、可自行设定洗衣机的循环次数,这里设置最大的 循环次数为15次。
3、具有紧急情况的处理功能。当发生紧急情况时, 立即转入待机状态,紧急情况解除后,继续执行后续步 骤;
显示方式如下: 1、采用记忆显示方式,即计数过程中不显示数据,待 计数过程结束以后,显示计数结果,并将此显示结果保 持到下一次计数结束,显示时间不小于1s; 2、小数点位置随量程变更自动移位;
待测信号为符合TTL要求的方波信号。
设计题2—游戏电路的设计(模拟掷骰子)
设计要求
本游戏电路是模拟掷骰子,可供两人游戏。游戏者 每按动一次按键可得到1~6范围内的两个数,并按下列 规则决定胜负。 1、第一场比赛,游戏者每人各按一次按键,所得两 数之和为7和11者胜;若无人取胜,则进行第二场比赛; 2、第二场比赛,游戏者每人各按一次按键,所得两数 之和与第一场比赛相同者获胜,所得两数之和为7或11 者负,若无人获胜或负,则重复进行,直至出现胜者 或负者为止;
设计题4—自动售邮票机
设计要求
机器有一个投币口,每次只能投入一枚硬币,但可以连续投入 数枚硬币。机器能自动识别硬币金额,最大为1元,最小为1角, 购票者可选择的邮票面值有1元和5角两种,每次只能售出一枚邮 票。
购票时先选择邮票面值后投币,当投入的硬币总金额达到或超 过邮票面值时,机器应发出指示并拒收继续投入的硬币。
设计题5—万年历的设计
设计要求
设计万年历显示模块,应具备如下功能:
1、能显示年、月、日,时、分、秒两种显示方式; 2、有一个按键能选择不同的显示方式; 3、时间显示可以有按键选择24、12进制显示; 4、能由调时、分的按键,能进行时间的设定。 附加功能: 1、能有星期显示;2、能进行润年的计算; 3、能有秒表、倒计时等功能(自主设定)

基于量程自动转换的频率计设计

基于量程自动转换的频率计设计

第9 卷
2 7第9 0年 月 0 9期
遂铄雾
Vl N. o o | 9 9
Sp 07 e .2 0
图 l 系 统 总 体 结 构 框 图
自顶 向下 的设 计思 路 。便 可编 写 各模 块 的V r o ei g l
o t i 23 u 3= n ; o t =i 2 u 4 n 4; o t =i 2 ; u 5 n 5
0 引言
相对 于传 统 的系统 电路 设 计 方法 ,E A 术 D 技
可采 用硬件 描 述语 言来 描述 电路 系统 ,而V ro ei g l HD 语 言 则 具 有 多 层 次 描 述 系统 硬 件 功 能 的 能 L
度 ,而测 周法 对低 频信 号的 测量精 度 较高 。而 本 频 率 测 量 系统 采 用 测 频 法 和 测 周 法 相 结合 的 方 法 ,可使 两者 的测 量带宽 得 到互补 。此 外 ,系统 还具 有 自动测 频和 测周转 换量 程功 能 ,每 个数 量 级 为一个 量程 ,每 个量 程保 留_ 有 效数 字 ,用 二位
但实 际 的硬 件设 计用 到 的器件较 多 ,连线 比较复
杂 ,而且会 产 生 比较 大 的延时 ,从 而造成 测 量误 差 和可靠 性都 比较差 。而随着 复杂 可编 程逻 辑 器
件 的广泛应 用 ,以E A 术进 行开 发并运 用V r D 技 e—
内对进 来 的s n l i a ̄行 计 数 .ck g l的第 一 个上 升 沿 用 来清 零 ,之后 的一 个下 降沿 到下个 周期 的下 降 沿 这段 时 间用来计 数 ,再在 之后 的半 个周 期用 以 输 出使 能 ,所 以整 个 计 算 过 程需 要 2 c 周 期 。 个 l k

自适应数字频率计

自适应数字频率计

[电子技术综合设计]总结报告题目:自适应数字频率计专业:班级:姓名:指导教师:评分:目录1 项目计划 (1)1.1 方案可行性分析 (1)1.1.1 市场分析 (1)1.1.2 项目分析 (1)1.2 项目执行计划 (2)2 设计说明 (3)2.1 系统整体方案设计 (3)2.2 各个单元模块设计原理 (4)2.2.1 分频模块 (4)2.2.2 选择模块 (6)2.2.3 控制模块 (7)2.2.4 引脚功能 (8)2.2.5 显示模块 (10)2.3 各个单元模块软件设计及部分源程序 (11)2.3.1 通道选择模块 (12)2.3.2 数码管显示模块 (13)3 调试说明 (15)3.1 调试方法及步骤 (15)3.2 调试数据 (15)4 总结 (17)5 附录 (18)1项目计划1.1方案可行性分析1.1.1市场分析频率测量是电子学测量中最为基本的测量之一。

由于频率信号抗干扰性强,易于传输,因此可以获得较高的测量精度。

随着数字电子技术的发展,频率测量成为一项越来越普遍的工作,测频原理和测频方法的研究正受到越来越多的关注。

在我国,单片机已不是一个陌生的名词,它的出现是近代计算机技术的里程碑事件。

单片机作为最为典型的嵌入式系统,它的成功应用推动了嵌入式系统的发展。

单片机已成为电子系统的中最普遍的应用。

单片机作为微型计算机的一个重要分支,其应用范围很广,发展也很快,它已成为在现代电子技术、计算机应用、网络、通信、自动控制与计量测试、数据采集与信号处理等技术中日益普及的一项新兴技术,应用范围十分广泛。

其中以AT89S52为内核的单片机系列目前在世界上生产量最大,派生产品最多,基本可以满足大多数用户的需要。

1.1.2项目分析数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。

它是一种用十进制数字显示被测信号频率的数字测量仪器。

它的基本功能是测量正弦信号、方波信号及其他各种单位时间内变化的物理量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等精度量程自选数字频率计摘要51系列单片机是国内目前应用最广泛的一种8位单片机之一,随着嵌入式系统、片上系统等概念的提出和接受及应用,51系列单片机还会在继后很唱一段时间占据嵌入式系统产品的低端市场,因此,作为新世纪的大学生,在信息产业高速发展的今天,掌握单片机的基本结构、原理和使用时非常重要的。

随着电子技术的发展,当前数字系统的设计正朝着速度快、容量大、体积小、重量轻的方向发展。

频率测量是电子学测量中最为基本的测量之一。

本次课设使用单片机At89C52为核心,使用等精度测频原理,设计量程自选的数字频率计。

采用C语言编写程序,测量范围0.01Hz~400KHz,测量精度能达到0.01。

测量结果在1602液晶上显示。

关键字:AT89C52单片机,量程自选数字频率计,等精度测频Summary51 series is the currently the most widely used one 8-bit microcontrollers with embedded systems, the concept of on-chip systems, and applications made and whips acceptable, 51 series will be singing in the subsequent period of time is occupied low-end embedded system products market, therefore, as the new century, college students, high-speed development in the information industry today, the master microcontroller's basic structure, principles and use is very important.With the development of electronic technology, the current design of digital systems is moving fast, large capacity, small size, light weight and direction.Frequency measurement is the measurement electronics, one of the most basic measurements. The class is located using the microcontroller At89C52 core, use of precision frequency measurement principle, the design range of optional digital frequency meter. Using C language program, measuring range 0.01Hz ~ 400KHz, measurement accuracy can reach 0.001. Measurements in 1602 Displayed on the LCD.Keywords: AT89C52 microcontroller, range-demand digital frequency meter, and other precision frequency measurement目录1.方案论证5 1.1单片机芯片的选择方案和论证 (5)1.2显示模块选择方案和论证 (5)1.3测频方案论证: (6)1.4电路设计最终方案决定 (7)2系统的硬件设计与实现7 2.1电路设计框图 (7)2.2系统硬件概述 (7)2.3单片机主控制模块的设计 (8)2.4 阀门控制模块的设计 (10)2.5电路原理及说明 (13)2.6单片机控制过程 (16)2.7显示模块的设计 (17)3系统的软件设计18 3.1程序流程框图 (18)3.2主程序: (19)4Proteus软件仿真20 4.1 Proteus ISIS简介 (20)4.2 Proteus运行流程 (21)4.3 Proteus功能仿真 (22)5 测试与结果分析24 5.1硬件测试 (24)5.2软件测试 (26)5.3测试结果分析与结论 (26)5.3.1测试结果分析 (26)5.3.2测试结论 (27)6课程设计总结与体会27参考文献29附录30附录一:proteuse仿真图 (30)附录二:总体接线图 (31)附录三:PCB制版布线 (32)附录四:程序清单 (33)1.方案论证1.1单片机芯片的选择方案和论证方案一:采用89C51芯片作为硬件核心,采用Flash ROM,内部具有4KB ROM 存储空间,能于3V的超低压工作,而且与MCS-51系列单片机完全兼容,但是运用于电路设计中时由于不具备ISP在线编程技术, 当在对电路进行调试时,由于程序的错误修改或对程序的新增功能需要烧入程序时,对芯片的多次拔插会对芯片造成一定的损坏。

方案二:采用AT89S52,片内ROM全都采用Flash ROM;能以3V的超底压工作;同时也与MCS-51系列单片机完全该芯片内部存储器为8KB ROM 存储空间,同样具有89C51的功能,且具有在线编程可擦除技术,当在对电路进行调试时,由于程序的错误修改或对程序的新增功能需要烧入程序时,不需要对芯片多次拔插,所以不会对芯片造成损坏,所以选择采用AT89S52作为主控制系统。

1.2显示模块选择方案和论证方案一:采用LED数码管动态扫描,LED数码管价格适中,对于显示数字合适,采用动态扫描法与单片机连接时,占用的单片机口线多,连线还需要花费一点时间,所以也不用此种作为显示。

方案二:采用点阵式数码管显示,点阵式数码管是由八行八列的发光二极管组成,对于显示文字比较适合,如采用在显示数字显得太浪费,且价格也相对较高,所以也不用此种作为显示。

方案三:采用LCD液晶显示屏,液晶显示屏的显示功能强大,可显示大量信息,显示多样,清晰可见。

所以在此设计中采用LCD1602液晶显示屏.1.3测频方案论证:方案一:传统的测频方法有直接测频法和测周法,在一定的闸门时间内计数。

门控信号和被测信号不同步。

计数值会产生一个脉冲的误差。

方案二:等精度测频法采用门控信号和被测信号同步.消除对被测信号计数产生的一个脉冲的误差。

等精度频率测量方法消除了量化误差,可以在整个测试频段内保持高精度不变。

其精度不会因被测信号频率的高低而发生变化。

采用单片机作为控制核心的等精度频率计,可以分利用单片机软件编程技术实现等精度测频。

通过单片机对同步门的控制。

使被测信号和标准信号在闸门时问内同步测量,为了提高精度。

将电子计数功能转为测周期,采用多周期同步测量技术。

实现等精度测量。

测量时进行量程自选。

传统的频率计测量误差较大,等精度频率计以其测量准确、精度高、方便等优势将得到广泛的应用。

1.4电路设计最终方案决定综上各方案所述,对此次课设的方案选定: 采用AT89S52作为主控制系统; 等精度测频方案,测量时进行量程自选;在LCD1602液晶显示屏作为显示。

2系统的硬件设计与实现2.1电路设计框图电路设计框图如图1所示:图1系统总体原理图2.2系统硬件概述系统组成由AT89C52单片机,1602液晶模块,7474D触发器,电容电阻等。

AT89S52片内集成256字节程序运行空间、8K字节Flash存储空间,支持最大64K外部存储扩展。

根据不同的运行速度和功耗的要求,时钟频率可以设置在0-33M之间。

片内资源有4组I/O 控制端口、3个定时器、8个中断、软件设置低能耗模式、看门狗和断电保护。

可以在4V到5.5V宽电压范围内正常工作。

不断发展的半导体工艺也让该单片机的功耗不断降低。

同时,该单片机支持计算机并口下载,简单的数字芯片就可以制成下载线,仅仅几块钱的价格让该型号单片机畅销10年不衰。

本频率计的设计以AT89C51单片机为核心,利用它内部的两个定时/计数器完成待测信号周期/频率的测量。

在使用计数方法实现频率测量时,这时外部的待测信号为定时/计数器的计数源,利用软件延时程序实现计数闸门。

首先定时/计数器的计数寄存器清0,运行控制位TR置1,通过7474 D 触发器,启动定时/计数器;然后运行软件延时程序。

同时定时/计数器对外部的待测信号进行计数,延时结束时TR清0,停止计数;最后从计数寄存器读出测量数据,完成数据处理后,由1602液晶显示测量结果。

主要单元电路的设计2.3单片机主控制模块的设计AT89S52单片机为40引脚双列直插芯片,有四个I/O口P0,P1,P2,P3, MCS-51单片机共有4个8位的I/O口(P0、P1、P2、P3),每一条I/O线都能独立地作输出或输入。

图2单片机引脚图单片机AT89C51内部具有2个16位定时/计数器,定时/计数器的工作可以由变成来实现定时、计数和产生计数溢出中断要求的功能。

在构成为定时器时,每隔几期周期加1(使用12MHz 时钟时,每1us加1)这样以及其周期为基准可以用来测量时间间隔[6]。

在构成计数器时,在相应的外部引脚发生从1到0的的跳变时计数器加1,这样在计数闸门的控制下可以用来测量待测信号的频率。

外部输入每隔及其周期被采样一次,这样检测一次从1到0的跳变至少需要2个机器周期(24个震荡周期),所以最大计数速率为时钟频率的1/24(使用12MHz时钟时,最大计数速率为500KHz)。

定时/计数器的工作由相应的运行控制位TR 控制,当TR置1,定时/计数器开始计数;当TR清0,停止计数。

单片机的最小系统如图2所示,18引脚和19引脚接时钟电路,XTAL1接外部晶振和微调电容的一端,在片内它是振荡器倒相放大器的输入,XTAL2接外部晶振和微调电容的另一端,在片内它是振荡器倒相放大器的输出。

第9引脚为复位输入端,接上电容,电阻及开关后够上电复位电路,20引脚为接地端,40引脚为电源端。

图3 主控制系统2.4 阀门控制模块的设计基于传统测频原理的频率计的测量精度将随被测信号频率的变化而变化。

传统的直接测频法其测量精度将随被测信号频率的降低而降低。

测周法的测量精度将随被测信号频率的升高而降低,在实用中有较大的局限性,而等精度频率计不但具有较高的测量精度,而且在整个频率区域能保持恒定的测试精度。

等精度频率的测量原理图2所示At89c52fx图4等精度频率的测量原理频率为fx 的被测信号输入到同步门控制电路和主门1f 闸门),晶体振荡器的输出信号作为标准信号f 时基信号)输入到主门2。

相关文档
最新文档