超声波换能器选用说明及其原理介绍

合集下载

简单了解超声波换能器的作用

简单了解超声波换能器的作用

简单了解超声波换能器的作⽤超声波换能器是⼀种能把⾼频电能转化为机械能的装置,材料的压电效应将电信号转换为机械振动。

超声波换能器是⼀种能量转换器件,它的功能是将输⼊的电功率转换成机械功率(即超声波)再传递出去,⽽⾃⾝消耗很少的⼀部分功率。

⼀、超声波换能器的⼯作原理:在总结超声波焊接机换能器的种类之前,我们先来了解⼀下超声波换能器的⼯作原理:超声波换能器是由锆钛酸铅压电陶瓷材料制造的夹芯式构件组成,通常在超声波焊接头处就会有⼀组超声波换能器。

超声波换能器主要功能是实现声能、电能、机械能的能量转换。

⼆、超声波换能器的作⽤:超声波换能器的作⽤主要表现在能量转化上,主要通过超声波换能器把超声波能量集中,然后转化到超声波模具及焊接头上。

三、超声波换能器的种类:超声波换能器的分类⽅式有多种多样,常见的有:1.按照换能器的振动模式,可分为剪切振动换能器、扭转振动换能器、纵向振动换能器、弯曲振动换能器等。

2.按照换能器的⼯作状态,可分为接收型超声换能器、发射型超声换能器和收发两⽤型超声换能器。

3.按照换能器的⼯作介质,可分为液体换能器、固体换能器以及⽓介超声换能器等。

4.按照换能器的输⼊功率和⼯作信号,可分为检测超声换能器、脉冲信号换能器、功率超声换能器、连续波信号换能器、调制信号换能器等。

5.按照换能器的形状,可分为圆柱型换能器、棒状换能器、圆盘型换能器、复合型超声换能器及球形换能器等。

6.按照能量转换的机理和所⽤的换能材料,可分为电磁声换能器、静电换能器、机械型超声换能器、磁致伸缩换能器、压电换能器等。

德召尼克(常州)焊接科技有限公司是⼀家在江苏常州注册的企业,以超声波焊接,振动摩擦焊接,激光塑料焊接应⽤为核⼼,⾮标⾃动化设备研发设计为依托的⾼科技企业。

⽬前公司主要业务领域涉⾜:电声⾏业,汽车⾏业、医疗⾏业,净⽔⾏业等不同领域。

公司秉承以科技为先导、以品质和效益为中⼼、以技术创新为推动⼒,致⼒于为客户提供先进的超声波,振动摩擦,激光等焊接领域的技术开发与研究,主要涉及产品包括:超声波塑料焊接、超声波⾦属焊接、振动摩擦焊接,激光塑料焊接系统、以及相应焊头、模具的设计和制造,⾮标⾃动化系统设备集成。

超声波换能器工作原理

超声波换能器工作原理

2、超声波换能器的工作原理(1)超声波换能器:一种能把高频电能转化为机械能的一种装置,一般有磁致伸缩式和压电陶瓷式。

电源输出到超声波发生器,再到超声波换能器,一般还要经过超声波导出、接收装置就可以产生超声波了。

(2) 超声波换能器的组成:包括外壳、匹配层即声窗、压电陶瓷圆盘换能器、背衬、引出电缆,其特征在于它还包括阵列接收器,它由引出电缆、换能器、金属圆环、橡胶垫圈组成。

(3)超声波换能器的原理与作用:超声波换能器即是谐振于超声频率的压电陶瓷,由材料的压电效应将电信号转换为机械振动.超声波换能器是一种能量转换器件,它的功能是将输入的电功率转换成机械功率(即超声波)再传递出去,面它自身消耗很少的一部分功率。

超声波换能器的种类:可分为压电换能器、夹心换能器、柱型换能器、倒喇叭型换能器等等。

40kHZ超声波发射/接收电路综述40kHZ超声波发射电路(1)40kHZ超声波发射电路之一,由F1~F3三门振荡器在F3的输出为40kHZ方波,工作频率主要由C1、R1和RP决定,用RP可调电阻来调节频率。

F3的输出激励换能器T40-16的一端和反向器F4,F4输出激励换能器T40-16的另一端,因此,加入F4使激励电压提高了一倍。

电容C3、C2平衡F3和F4的输出,使波形稳定。

电路中反向器F1~F4用CC4069六反向器中的四个反向器,剩余两个不用(输入端应接地)。

电源用9V叠层电池。

测量F3输出频率应为40kHZ±2kHZ,否则应调节RP。

发射超声波信号大于8m。

40kHZ超声波发射电路(2)40kHZ超声波发射电路之二,电路中晶体管VT1、VT2组成强反馈稳频振荡器,振荡频率等于超声波换能器T40-16的共振频率。

T40-16是反馈耦合元件,对于电路来说又是输出换能器。

T40-16两端的振荡波形近似于方波,电压振幅接近电源电压。

S是电源开关,按一下S,便能驱动T40-16发射出一串40kHZ超声波信号。

超声波换能器原理知识大普及

超声波换能器原理知识大普及

超声波换能器原理知识大普及在对超声波焊接机、超声波清洗机等设备的了解过程中,都会看到超声波换能器的身影,那么超声波换能器究竟是个什么设备呢?它主要完成哪些功能呢?又是利用什么原理来完成的呢?接下来就让小编带您一探究竟!一、超声波换能器简介超声波换能器,英文名称为Ultrasonictransducer,是一种将高频电能转换为机械能的能量转换器件。

其常被用于超声波清洗机、超声波焊接机、三氯机、气相机等设备中,在农业、工业、生活、交通运输、军事、医疗等领域内都得到了广泛的应用。

超声波换能器二、超声波换能器结构超声波换能器主要包括外壳、声窗(匹配层)、压电陶瓷圆盘换能器、背衬、引出电缆、Cymbal阵列接收器等几大部分构成。

其中,压电陶瓷圆盘换能器起到的作用和一般的换能器相同,主要用于发射并接受超声波;而在压电陶瓷圆盘换能器的上面是Cymbal阵列接收器,主要由引出电缆、Cymbal换能器、金属圆环和橡胶垫圈组成,用作超声波接收器,接受压电陶瓷圆盘换能器频带外产生的多普勒回拨信号。

超声波换能器结构三、超声波换能器原理超声波换能器,其实就是频率与其谐振频率相同的压电陶瓷,利用的是材料的压电效应将电能转换为机械振动。

一般情况下,先由超声波发生器产生超声波,经超声波换能器将其转换为机械振动,再经超声波导出装置、超声波接收装置便可产生超声波。

超声波换能器原理四、超声波换能器应用(1)超声波清洗机利用超声波在清洗液中不断地进行传播来清洗物体上的污垢,其超声波振动频率便是由超声波换能器决定的,可根据清洗物来设定不同的频率以达到清洗的目的。

(2)超声波焊接机利用超声波换能器产生超声波振动,振动产生摩擦使得焊区局部熔化进而接合在一起。

(3)超声波马达中并不含有超声波换能器,只是将其定子近似为换能器,利用逆压电效应产生超声波振动,通过定子与转子的摩擦进而带动转子转动。

(4)超声波减肥利用超声波换能器产生机械振动,将脂肪细胞振碎并排出体外,进而达到减肥的效果。

超声波换能器选用说明及其原理

超声波换能器选用说明及其原理

超声波换能器选用说明及其原理超声波换能器是一种能量转换器件,它的功能是将输入的电功率转换成机械功率(即超声波)再传递出去,而它自身消耗掉很少的一部分功率(小于10%)。

所以,使用超声波换能器最应考虑的问题就是与输入输出端的匹配,其次是机械安装和配合尺寸。

市面上超声波机械种类繁多,客户必须提供准确可靠的指标,才能保证公司提供的换能器产品能与贵公司的机器良好匹配,发挥最佳性能。

①谐振频率:f,单位:KHz该频率是指用频率发生器,毫伏表等通过传输线路法测得的频率,或用阻抗特性分析仪等类似仪器测得的频率。

一般通称小信号频率。

与它相对的是上机频率,即客户将换能器通过电缆连到驱动电源上,通电后空载或有载时测得的实际工作频率。

因客户的匹配电路各不相同,同样的换能器配不同的驱动电源表现出来的频率是不同的,这样的频率不能作为订货依据。

②换能器电容量:CT,单位:PF即换能器自由电容,一般可用电容电桥在400Hz-1000Hz的频率下测得,也可用阻抗特性分析仪类似仪器。

再简单点,用一般的便携式电容表测量也可满足要求。

③换能器工作方式因加工方式和要求不同,换能器的工作方式大致可分为连续工作(花边机,CD套机,拉链机,金属焊接等)和脉冲式工作(如塑焊机),不同的工作方式对换能器的要求是不同的。

一般而言,连续式工作几乎没有停顿时间,但工作电流不是很大,脉冲工作是间歇式的,有停顿,但瞬间电流很大。

平均而言,两种状态的功率都很大的。

④换能器型式和最大功率整机厂家可能对于不同用途和目的的机器的标称功率有不同的规定,换句话说,同样的换能器用在不同的机器上标称功率可能是不同的。

为避免产生岐义,客户应详细说明换能器的结构型式,如柱型、倒喇叭型等,及压电陶瓷晶片的直径和片数。

⑤安装和配合尺寸主要有变幅杆材质,表面处理方式,形状。

换能器与变幅杆连接螺纹,变幅杆与模具连接螺纹,变幅杆法兰盘处直径、厚度、缺口或螺孔数量和位置。

超声波换能器工作原理

超声波换能器工作原理

超声波换能器工作原理(总5页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除2、超声波换能器的工作原理(1)超声波换能器:一种能把高频电能转化为机械能的一种装置,一般有磁致伸缩式和压电陶瓷式。

电源输出到超声波发生器,再到超声波换能器,一般还要经过超声波导出、接收装置就可以产生超声波了。

(2) 超声波换能器的组成:包括外壳、匹配层即声窗、压电陶瓷圆盘换能器、背衬、引出电缆,其特征在于它还包括阵列接收器,它由引出电缆、换能器、金属圆环、橡胶垫圈组成。

(3)超声波换能器的原理与作用:超声波换能器即是谐振于超声频率的压电陶瓷,由材料的压电效应将电信号转换为机械振动.超声波换能器是一种能量转换器件,它的功能是将输入的电功率转换成机械功率(即超声波)再传递出去,面它自身消耗很少的一部分功率。

超声波换能器的种类:可分为压电换能器、夹心换能器、柱型换能器、倒喇叭型换能器等等。

40kHZ超声波发射/接收电路综述40kHZ超声波发射电路(1)40kHZ超声波发射电路之一,由F1~F3三门振荡器在F3的输出为40kHZ方波,工作频率主要由C1、R1和RP决定,用RP可调电阻来调节频率。

F3的输出激励换能器T40-16的一端和反向器F4,F4输出激励换能器T40-16的另一端,因此,加入F4使激励电压提高了一倍。

电容C3、C2平衡F3和F4的输出,使波形稳定。

电路中反向器F1~F4用CC4069六反向器中的四个反向器,剩余两个不用(输入端应接地)。

电源用9V叠层电池。

测量F3输出频率应为40kHZ±2kHZ,否则应调节RP。

发射超声波信号大于8m。

40kHZ超声波发射电路(2)40kHZ超声波发射电路之二,电路中晶体管VT1、VT2组成强反馈稳频振荡器,振荡频率等于超声波换能器T40-16的共振频率。

T40-16是反馈耦合元件,对于电路来说又是输出换能器。

超声波聚能换能器-概述说明以及解释

超声波聚能换能器-概述说明以及解释

超声波聚能换能器-概述说明以及解释1.引言1.1 概述概述:超声波聚能换能器作为一种新型的能量转换器,在现代科技领域具有广泛的应用。

通过将电能转化为超声波能量,实现了高效能量传输和聚焦功效。

本文将详细介绍超声波聚能换能器的原理、应用领域、优势和特点,以期为读者提供全面的了解和参考。

超声波聚能换能器的发展前景十分广阔,将在未来的科技领域有着巨大的应用潜力。

文章结构部分的内容应该包括对整篇文章的章节安排和内容概述,以便读者能够清晰地了解全文结构和主要内容。

在本文中,文章结构部分的内容可以按照以下方式编写:文章结构部分:本文分为引言、正文和结论三个部分。

1. 引言部分:1.1 概述: 回顾超声波聚能换能器的基本概念和发展现状。

1.2 文章结构: 简要介绍文章的结构和各部分内容安排,引导读者对整篇文章有一个整体的认识。

1.3 目的: 阐明本文撰写的目的和意义。

2. 正文部分:2.1 超声波聚能换能器原理: 详细介绍超声波聚能换能器的工作原理和技术特点。

2.2 应用领域: 探讨超声波聚能换能器在不同领域的应用情况,并分析其作用和效果。

2.3 优势和特点: 分析超声波聚能换能器相对于传统设备的优势和特点,以及可能存在的局限性。

3. 结论部分:3.1 总结: 总结本文的主要内容和结论,概括超声波聚能换能器的特点和应用前景。

3.2 发展前景: 展望超声波聚能换能器未来的发展方向和趋势。

3.3 结语: 结束全文,表达作者对超声波聚能换能器的看法和期待。

通过上述章节安排,读者可以清晰地了解本文的内容结构和主要议题,帮助他们更好地阅读和理解全文内容。

1.3 目的本文旨在深入探讨超声波聚能换能器的原理、应用领域、优势和特点,并总结其在工程和医疗领域的重要性和发展前景。

通过对超声波聚能换能器的全面分析,旨在为读者提供更深入的了解,促进该技术在不同领域的应用和推广,推动相关领域的科研和技术进步。

希望本文能够为相关研究人员和工程师提供一定的参考和指导,促进超声波聚能换能器技术的创新和发展。

超声波清洗机的换能器原理

超声波清洗机的换能器原理

超声波清洗机的换能器原理超声波清洗机是一种利用超声波技术进行清洗的设备,其核心部件是换能器。

换能器是将电能转化为机械振动能的装置,它在超声波清洗机中起到了至关重要的作用。

换能器的原理是基于压电效应。

压电效应是指某些晶体在受到机械应力作用时,会产生电荷分离,从而形成电压。

根据这个原理,换能器利用压电材料的特性,将电能转化为机械振动能。

换能器一般由压电陶瓷材料和金属材料组成。

压电陶瓷材料具有良好的压电效应,而金属材料则用于支撑和导电。

在换能器中,压电陶瓷材料被夹在两个金属片之间,形成一个夹层结构。

当外加交流电源施加在夹层结构上时,电场的变化会导致压电陶瓷材料的体积发生微小的变化。

由于夹层结构的限制,这种微小的变化只能以机械振动的形式传递出来。

换能器的振动频率与外加交流电源的频率相同,一般为20kHz至100kHz。

在超声波清洗机中,换能器的振动能够产生超声波。

当交流电源施加在换能器上时,压电陶瓷材料的振动会传导到清洗液中,产生一系列的压力波。

这些压力波会在清洗液中形成高频振动,产生微小的气泡。

这些微小气泡在清洗液中迅速生长和破裂,产生大量的冲击波和涡流。

这些冲击波和涡流能够将污垢和污染物从清洗物体的表面剥离,并将其悬浮在清洗液中。

同时,超声波的震荡作用还可以通过物理和化学效应去除污垢和杀灭微生物。

超声波清洗机的换能器原理使其具有很多优点。

首先,超声波清洗机可以在不使用化学溶剂的情况下实现高效的清洗效果。

其次,超声波可以穿透到微小孔隙和角落,清洗效果更加全面。

此外,超声波清洗机可以在不损坏清洗物体的情况下去除顽固的污垢和油脂。

然而,超声波清洗机的换能器原理也存在一些限制。

首先,超声波的传播距离有限,因此清洗物体的尺寸和形状需要适应清洗机的规格。

其次,超声波的能量密度较高,对某些材料可能会产生损伤。

此外,超声波的清洗效果也受到清洗液的影响,不同的清洗液对不同的污染物有不同的清洗效果。

超声波清洗机的换能器原理是利用压电效应将电能转化为机械振动能,从而产生超声波进行清洗。

超声波换能器工作原理

超声波换能器工作原理

2、超声波换能器的工作原理(1)超声波换能器:一种能把高频电能转化为机械能的一种装置,一般有磁致伸缩式和压电陶瓷式。

电源输出到超声波发生器,再到超声波换能器,一般还要经过超声波导出、接收装置就可以产生超声波了。

(2) 超声波换能器的组成:包括外壳、匹配层即声窗、压电陶瓷圆盘换能器、背衬、引出电缆,其特征在于它还包括阵列接收器,它由引出电缆、换能器、金属圆环、橡胶垫圈组成。

(3)超声波换能器的原理与作用:超声波换能器即是谐振于超声频率的压电陶瓷,由材料的压电效应将电信号转换为机械振动.超声波换能器是一种能量转换器件,它的功能是将输入的电功率转换成机械功率(即超声波)再传递出去,面它自身消耗很少的一部分功率。

超声波换能器的种类:可分为压电换能器、夹心换能器、柱型换能器、倒喇叭型换能器等等。

40kHZ超声波发射/接收电路综述40kHZ超声波发射电路(1)40kHZ超声波发射电路之一,由F1~F3三门振荡器在F3的输出为40kHZ方波,工作频率主要由C1、R1和RP决定,用RP可调电阻来调节频率。

F3的输出激励换能器T40-16的一端和反向器F4,F4输出激励换能器T40-16的另一端,因此,加入F4使激励电压提高了一倍。

电容C3、C2平衡F3和F4的输出,使波形稳定。

电路中反向器F1~F4用CC4069六反向器中的四个反向器,剩余两个不用(输入端应接地)。

电源用9V叠层电池。

测量F3输出频率应为40kHZ±2kHZ,否则应调节RP。

发射超声波信号大于8m。

40kHZ超声波发射电路(2)40kHZ超声波发射电路之二,电路中晶体管VT1、VT2组成强反馈稳频振荡器,振荡频率等于超声波换能器T40-16的共振频率。

T40-16是反馈耦合元件,对于电路来说又是输出换能器。

T40-16两端的振荡波形近似于方波,电压振幅接近电源电压。

S是电源开关,按一下S,便能驱动T40-16发射出一串40kHZ超声波信号。

医用超声波发生器的换能器原理

医用超声波发生器的换能器原理

医用超声波发生器的换能器原理医用超声波发生器的换能器原理是将外加的能量转换为超声波。

它是一种物理装置,能够将电能或其他形式的能量转换为高频声波能量。

这些高频声波能够通过特定的介质传播,并在目标物体上产生特定的作用。

换能器的作用有:将电能转换为超声能量;使超声能量具有高的放射性能;可以控制超声波的频率和幅度。

换能器的工作原理是将电能转换成超声能量。

具体来说,换能器是通过一个封装好的密封桶中的传感器把电信号转换成机械振动,然后产生超声波。

传感器可以是压电式、磁式或电磁式,但最常用的是压电式传感器。

压电式传感器内部有一个压电片,当外界施加电压时,压电片就会发生振动,这些振动就可以产生超声波。

换能器的结构一般有三部分:壳体、换能器元件和支撑结构。

壳体是外壳,用来封装换能器元件和支撑结构,一般是金属或塑料制成。

换能器元件包括传感器、振子、悬挂结构和线圈等,它们负责将电能转换成机械振动,从而产生超声波。

支撑结构用来支撑换能器元件,它一般是金属或塑料制成的,也可以是水环或空气环。

换能器的放射性是决定超声治疗效果的关键因素之一。

一般来说,换能器的放射性越高,超声治疗效果越显著。

换能器的放射性取决于换能器元件的材料、结构、尺寸及悬挂结构等。

放射性良好的换能器能够有效地将外加的能量转换成超声能量,使超声波在目标物体上产生有效的作用。

换能器还可以控制超声波的频率和幅度。

频率决定了超声波的波形,幅度决定了超声波的强度,换能器可以控制这两个参数,从而控制超声波在目标物体上的作用。

总之,医用超声波发生器的换能器原理是通过将电能转换成超声能量,并控制超声波的频率和幅度来实现的。

它是医疗超声治疗的关键部件,可以大大提高超声治疗的效果。

超声波换能器工作原理

超声波换能器工作原理

超声波换能器工作原理超声波换能器是一种将电能转换为超声波能的装置,它在医疗、清洗、焊接等领域都有着广泛的应用。

其工作原理主要涉及到压电效应和超声波传播两个方面。

首先,压电效应是超声波换能器能够将电能转换为超声波能的基础。

压电效应是指某些晶体在受到外力作用时会发生电荷分布不均,从而产生电压的现象。

这种晶体被称为压电晶体,它们在外加电压的作用下会产生形变,并且在形变的同时会发出超声波。

这种现象被称为压电效应,利用这种效应可以将电能转换为超声波能。

其次,超声波传播是超声波换能器工作的另一个重要原理。

一旦压电晶体产生超声波,这些超声波会通过传导介质(如水、空气等)传播出去。

超声波是一种机械波,它的传播是通过介质分子之间的振动传递能量。

当超声波传播到需要作用的对象上时,它会产生一系列的物理效应,比如在清洗领域可以产生高效的清洗效果,在医疗领域可以产生热效应用于治疗等。

总的来说,超声波换能器的工作原理是通过压电效应将电能转换为超声波能,然后通过超声波传播将超声波能传递到需要作用的对象上。

这种原理使得超声波换能器在多个领域都有着广泛的应用,其工作原理的深入理解也为超声波技术的发展提供了重要的理论基础。

在实际应用中,超声波换能器的工作原理还涉及到频率、功率、声压等参数的控制,以及超声波在传播过程中的衰减、反射、折射等现象。

对于超声波换能器的设计、优化和应用都需要对其工作原理有着深入的理解和研究。

总之,超声波换能器是一种将电能转换为超声波能的装置,其工作原理涉及到压电效应和超声波传播两个方面。

通过对其工作原理的深入理解,可以更好地应用超声波技术,并且为其在医疗、清洗、焊接等领域的进一步发展提供理论支持。

超声波换能器的原理和使用

超声波换能器的原理和使用

超声波换能器是一种能量转换器件,它的功能是将输入的电功率转换成机械功率(即超声波)再传递出去,而它自身消耗很少一部分功率(小于10%)。

所以,使用超声波换能器最主要考虑的问题就是与输入输出端的匹配,其次是机械安装和配合尺寸。

超声波换能器分类:1、柱型2、倒喇叭型3、钢后盖型4、中间夹铝片型主要适用于超声波塑料焊接机、超声波切割刀、超声波金属焊接机,超声波清洗机,超声波声化学设备等。

超声波换能器在合适的电场激励下能发生有规律的振动,其振幅一般10μm左右,这样的振幅要直接完成焊接和加工工序是不够的。

连上通过合理设计的变幅杆后,超声波的振幅可以在很大的范围内变化,只要材料强度足够,振幅可以超过100μm。

因加工方式和要求不同,换能器的工作方式大致可分为连续工作(如花边机,CD机,清洗机,拉链机)和脉冲工作(如塑料焊机),不同的工作方式对换能器的要求是不同的。

一般而言,连续式工作几乎没有停顿时间,但工作电流不是很大,脉冲工作是间歇的,有停顿,但瞬间电流很大。

平均而言,二种状态的功率都是很大的。

使用超声波换能器最主要考虑的问题就是与输入输出端的匹配,其次是机械安装和配合尺寸。

换能器的频率相对而言还比较直观些。

该频率是指用频率(函数)发生器,毫伏表,示波器等通过传输线路法测得的频率,或用网络阻抗分析仪等类似仪表测得的频率。

一般通称小信号频率。

与它相对应的是上机频率,即客户将换能器通过电缆连到机箱上,通电后空载或有载时测得的实际工作频率。

因客户匹配电路各不相同,同样的换能器在不同的驱动电源(电箱)表现出来的频率是不同的,这样的频率不能作为交流讨论的依据。

让换能器和驱动电源、模具良好配合以形成一台完整的超声波设备可以简称为匹配。

由于匹配对整机性能的影响是决定性的,无论怎样强调匹配的重要性都不为过。

匹配最主要考虑的因素是换能器的电容量,其次是换能器的频率。

换能器与驱动电源的匹配主要有4个方面,即阻抗匹配、频率匹配、功率匹配、容抗匹配。

超声波换能器工作原理

超声波换能器工作原理

超声波换能器工作原理
超声波换能器是一种常用的换能器,它可以将电能转换为超声波能,从而实现液体或气体的流量、压力或位移的测量和控制。

它的工作原理是:当超声波换能器的电源供应至换能器的振荡器上,振荡器就会产生高频的超声波,超声波传播到换能器的发射头上,然后穿过介质,如液体或气体,到达换能器的接收头,接收头将超声波反射回发射头,发射头接收到反射超声波,随后将反射超声波转换为电能,电能被发送到计算机,计算机计算出流量、压力或位移的参数,进行测量和控制。

超声波换能器具有许多优点,如安装简单、可靠性高、使用寿命长、抗干扰能力强、反应速度快等,可以实现精确的测量和控制,大大提高了生产效率。

然而,由于超声波波长较短,受介质的影响较大,因此超声波换能器的测量范围有限,不适合所有类型的介质,而且它的使用介质必须是清洁的,否则可能影响测量精度。

总之,超声波换能器是一种非常有效的换能器,它可以将电能转换为超声波能,从而实现液体或气体的流量、压力或位移的测量和控制,常用于实验室和工业生产中的测量和控制。

它具有安装简单、可靠性高、抗干扰能力强、反应速度快等优点,可大大提高生产效率。

但由于超声波波长较短,受介质的影响较大,因此超声波换能器的测量范围有限,不适合所有类型的介质,而且它的使用介质必
须是清洁的,否则可能影响测量精度。

超声换能器的工作原理

超声换能器的工作原理

超声换能器的工作原理一、超声换能器概述超声换能器是一种将电能转化为机械振动能的装置,其主要作用是将电信号转化为超声波信号,从而实现超声成像、测量、清洗等应用。

超声换能器广泛应用于医疗、工业、军事等领域。

二、超声换能器的构成超声换能器主要由压电陶瓷和金属壳体组成。

其中,压电陶瓷是超声换能器的核心部件,它可以将电信号转化为机械振动,并且可以将机械振动转化为电信号。

金属壳体则起到保护和固定压电陶瓷的作用。

三、压电效应原理压电效应是指在某些晶体中,当施加外力时会引起晶体内部产生极化现象,从而产生外场。

当施加外场时,则会引起晶体内部的形变或者位移。

这种现象被称为压电效应。

四、压电陶瓷的工作原理1. 压电陶瓷材料的选择目前常用的压电材料主要有PZT(铅酸钛)、PZN(铅锆酸钠)和PMN(铅镁酸钠)等。

其中,PZT是应用最广泛的一种材料。

2. 压电陶瓷的制备压电陶瓷的制备主要包括原料的选择、混合、成型、烧结等过程。

其中,PZT的制备需要严格控制其成分比例和烧结温度等参数。

3. 压电陶瓷的性能压电陶瓷具有良好的压电效应和介电性能,可以将高频电信号转化为机械振动,并且可以将机械振动转化为电信号。

此外,压电陶瓷还具有高稳定性、高灵敏度和高可靠性等特点。

五、超声换能器的工作原理1. 发射模式当超声换能器接收到高频电信号时,压电陶瓷会产生机械振动,并且把这些振动传递到金属壳体上。

随着振动频率的增加,金属壳体就会发出超声波信号。

2. 接收模式当超声波信号经过物体后返回到超声换能器时,金属壳体会将超声波信号转化为机械振动,并且将这些振动传递到压电陶瓷上。

压电陶瓷则会将这些机械振动转化为电信号,从而实现超声波信号的接收。

六、超声换能器的特点1. 高频率超声换能器可以发射和接收高频率的超声波信号,其工作频率一般在1MHz以上。

2. 高灵敏度由于压电陶瓷具有高灵敏度和高稳定性等特点,因此超声换能器具有较高的灵敏度和可靠性。

3. 宽频带超声换能器的工作频带一般比较宽,可以覆盖多种不同的应用场景。

超声波换能器原理

超声波换能器原理

超声波换能器原理什么是超声波换能器超声波换能器是一种能够将电能转换为超声波能量的设备。

它由压电陶瓷材料制成,通过压电效应将电能转化为机械振动,并进一步将机械振动转化为超声波能量。

超声波换能器通常由振动片和负载组成,振动片在电场作用下发生机械振动,进而产生超声波。

超声波产生的原理超声波的产生基于压电效应和共振效应。

在超声波换能器中,压电陶瓷材料是关键组件之一。

当施加电场到压电陶瓷上时,它会发生压电效应,导致陶瓷材料发生机械振动。

这种机械振动会在换能器中传播并产生超声波。

换能器中的压电陶瓷材料通常是由铅酸锆(PZT)陶瓷制成的。

当施加电场到PZT陶瓷上时,陶瓷中的极化方向会发生变化,从而引起陶瓷的压缩和膨胀。

这种压缩和膨胀的变化会导致陶瓷材料振动,产生机械波。

超声波换能器的结构超声波换能器通常由振动片和负载组成。

振动片是压电陶瓷材料制成的,并具有特定的形状和尺寸。

振动片的一端固定在换能器的壳体上,另一端可以自由振动。

当施加电场到振动片上时,振动片会发生弯曲和扭转,并产生超声波能量。

负载是振动片传递超声波能量的媒介。

它通常是与换能器相邻的介质,如液体或气体。

当超声波通过负载传播时,振动片的机械振动会在负载中引起压力变化,从而产生超声波波动。

超声波换能器的工作原理超声波换能器工作的关键原理是压电效应和共振效应。

当施加电场到压电陶瓷上时,压电陶瓷发生机械振动,并产生超声波能量。

这种超声波能量通过负载传播,并在负载中引起压力变化。

负载的表面传感器可以检测到这些压力变化,并将其转化为电信号,实现超声波的接收和检测。

超声波换能器的工作频率与振动片的尺寸、形状和振动模态有关。

通过调整这些参数,可以实现不同频率范围内的超声波产生和检测。

超声波换能器的应用超声波换能器在诸多领域中得到广泛应用。

以下是一些常见的应用领域:1.医学应用:超声波换能器被广泛用于医学成像、超声治疗和药物输送等领域。

它可以通过超声波成像技术实现对人体内部器官和组织的无创检测和诊断。

超声波换能器使用说明书

超声波换能器使用说明书

超声波换能器使用说明书一、概述超声波筛分系统是一种简单实用、可靠的筛分系统,是当前网孔堵塞的最有效的解决方法。

可广泛应用于制药、冶金、化工、选矿、食品等要求精细筛分过滤的行业,筛分过滤精度高,有效解决因团聚、静电、强吸附性卡堵网孔等筛分难题,是国内筛分行业的一项重大突破。

二、结构超声波震动筛电源:38KHz高频大功率超声波电源。

内置微电脑芯片,可根据物料的不同状态进行全程数字频率自动跟踪,无需人工调整,操作简单方便。

长时间工作振荡器发热量低,工作状态稳定。

●HF链接电缆线:超声波换能与超声波振动筛电源之间采用电缆链接。

●连接器:航空链接插件。

●换能器:高性能超声波转换器件。

●超声波网架:由外网架于共振器组成。

●筛网:适用于10目~635目。

三、工作原理超声波筛分系统由超声波振动筛电源、HF链接电缆、换能器、共振器组成。

超声波振动筛电源产生的高频电通过换能器转换成高频正弦形式的纵向振荡波,这些震荡波传到共振器上使共振器产生共振,然后由共振器将振动均匀传输至筛面。

筛网上的物料在做低频三次元振动的同时,叠加上超声波振动,即可防止网孔堵塞,又可提高筛分产量和精度。

四、技术参数超声波振动筛电源:电源输入整机电流高频电流工作频率工作模式环境温度AC220V±10%≤0.6A ≤0.4A 38KHz 连续、脉冲-10~35℃50~60Hz五、使用说明1、首先将换能器锁定在贴好网的网架上(锁定力度为40~50kg),然后将超声波网架装入振动筛。

2、超声波振动筛电源与旋振筛分别供电,旋振筛为三相供电,超声波振动筛电源为单相供电,两者均需可靠接地。

3、超声波振动筛电源后面板OUT为超声波输出,请把超声波HF连接线插入锁紧,并检查链接可靠。

HF链接电缆的航空插头另一端与换能器链接,并保证密封固定牢固。

4、接好超声波振动筛电源的电源及超声波HF链接电缆,检查无误后打开超声波电源开关。

随着“滴”的声响,超声波振动筛电源启动,显示窗口显示“振动幅度XXXμm”,并进入自检状态。

超声波换能器

超声波换能器

超声波换能器超声波换能器,是一种将电能转换为超声波能量的设备。

它广泛应用于医学、工业、军事和科学研究等领域,具有非常重要的作用。

本文将从超声波换能器的工作原理、应用领域以及发展趋势等方面进行探讨。

一、超声波换能器的工作原理超声波换能器是由压电陶瓷材料和金属材料组成的复合材料制成的。

当施加电场或机械应力时,压电材料会发生形变,并将电能转换为机械能;反之,施加机械应力时,压电材料会发生电场变化,将机械能转换为电能。

超声波换能器利用压电效应的双重转换特性,将电能转换为机械能,再由机械能转换为超声波能量。

二、超声波换能器的应用领域1. 医学领域:超声波换能器是超声医学成像的核心部件之一。

它可以发送超声波信号并接收回波信号,实现对人体组织的成像。

同时,它还可以用于超声诊断和超声治疗等领域。

2. 工业领域:超声波换能器被广泛应用于工业的检测与测量领域。

例如,利用超声波换能器可以检测材料的厚度、密度和缺陷等信息。

此外,它还可以应用于超声焊接、超声清洗和超声切割等工艺中。

3. 军事领域:超声波换能器在军事领域有着重要的应用。

例如,在水下声呐系统中,超声波换能器可以将电能转换为水下的声波信号,实现潜艇的探测和定位。

4. 科学研究领域:超声波换能器在科学研究领域的应用非常广泛。

例如,它可以用于实验室的材料分析、流体力学研究和声学研究等领域。

三、超声波换能器的发展趋势1. 小型化:随着科技的不断进步,超声波换能器正向着小型化的方向发展。

体积小、重量轻的超声波换能器可以更为方便地集成到各种设备中,提高其应用的灵活性和便捷性。

2. 多功能化:超声波换能器的功能越来越多样化。

除了传统的超声成像和检测功能外,目前还发展出了超声药物输送、超声治疗和超声定向传输等新功能。

这些新功能的出现,不仅可以提高医学诊疗效果,还有助于拓展其他领域的应用。

3. 高频化:随着超声波换能器技术的发展,高频超声波换能器正逐渐取代传统低频超声波换能器。

超声波换能器原理

超声波换能器原理
§1.1 换能器的用途和基本原理 一.换能器的广义概念 用于实现不同形式的能量相互转换的仪器或器件可以通称为换能器。例如: 把音频电信号转换成可闻声,或者把可闻声转换成音频电信号,实现电能与声能相互转换的电声换能器,如扬声器(喇叭)、耳机、话筒等; 实现电能与磁能相互转换的电磁换能器,如通以电流而可以产生磁场力的电磁铁,又如录音磁头可以把音频电信号转换成磁信号而记录到磁带上,或者把磁带 上的磁信号转换成音频电信号,然后经放大处理,再由电声换能器转换成可闻声。 实现电能与机械能相互转换的机电换能器,如电动机是输入电流产生磁场力,然后推动电枢转动,而发电机则因电枢转动并通过磁场作用而产生电流。又如电 唱机的拾音头,唱针沿唱片沟纹槽移动而产生音频机械振动并转换输出音频电信号,经放大处理后再由电声换能器转换成可闻声。 实现电能与光能相互转换的光电换能器如白炽灯泡、太阳能蓄电池(光电池)、光电二极管等电激发光器件。 此外,还有实现电能与化学能相互转换的器件,如蓄电池放电时是把化学能转变为电能,而它在充电时则又将电能转换为化学能。实现电能与热能相互转换的 器件就更多了,如电炉、电烤箱、电饭煲、电炒锅、电热杯、电热毯、电热梳、电烙铁、电熨斗等是由电能单向转换为热能的器件,而热电偶则是由热能转换 为电能的器件,家用电器中新兴的电磁灶,是由电能激励的磁场作用在金属器皿上形成涡电流而使金属器皿发热,微波炉是由电能激发出微波(电磁能)再进 一步使食物发热... 总而言之,能够起到转换能量形式的器件种类繁多并且还会不断有新的类型出现,从广义上讲,可以笼统地把它们都称为换能器。但是,在检测技术中所讲的 换能器是有着特定的定义的,也就是本教材所要阐述的换能器。 二.换能器的标准定义 在工程检测技术中所讲的换能器,是特指能够从一个系统接收信号而向另一系统输出信号,接收信号与输出信号属于不同的能量形式,但输出信号能表现输入 信号某些特征的器件。因此,作为一个换能器系统,通常需要包含一个储能元件,在它工作时,储能元件将一种形式的能量储存起来并转换成另一种形式的能 量输出。在实际应用中,要求换能器能把某种不容易或不便测试与处理的能量转换成另一种容易进一步处理或便于测试的能量,从而有可能对原来的输入能量 进行评定或分析研究。例如测定环境噪声用的声级计,它可以把一定程度的环境噪声转换成一定大小的电信号,从而可以进一步定量地显示出环境噪声的强度 大小。又如利用漏磁特性的无损检测技术中应用的换能器(探头),可以把被充磁工件上有缺陷存在处的漏磁通转换成电信号,经处理后可以显示缺陷的存在 和评定缺陷的大小。在利用涡流特性的无损检测技术中,由仪器产生的交变电流激励探头产生交变磁场,从而在导电工件上感生涡电流(涡流),工件上有缺 陷存在处的涡流大小会发生变化,使反作用于探头的磁场发生变化,由于该磁场的变化将引起探头中检测线圈的感应电流变化,从而可以根据这种变化判断缺 陷的存在与大小。 在工程检测技术中应用的换能器种类很多,下面仅就最常用的几种电声换能器的基本原理做一简单介绍。 三.常用电声换能器的基本原理 1.压电式换能器:压电式换能器利用了某些单晶材料的压电效应和某些多晶材料的电致伸缩效应。 [1]压电效应 某些单晶材料的结构具有非对称特性,当这些材料受到外加应力作用而产生应变时,其内部晶格结构的变化(形变)会破坏原来宏观表现为电中性的状态,产 生极化电场(电极化),所产生的电场(电极化强度)与应变的大小成正比。这种现象称为正压电效应,它是由居里兄弟于1880年发现的。随后,在1881年又 进一步发现这类单晶材料还具有逆压电效应,即具有正压电效应的材料在受到外加电场作用时,会有应力和应变产生,其应变与外电场的大小成正比。 压电效应是晶体结构的一个特性,它与晶体结构的非对称性有关,而压电效应的大小及性质则与施加的应力或电场对晶体结晶轴的相对方向有关。

无损检测技术中的超声换能器选择与使用指南

无损检测技术中的超声换能器选择与使用指南

无损检测技术中的超声换能器选择与使用指南超声换能器是无损检测领域中常用的一种设备,通过将电能转化为超声波能量,用于检测材料内部的缺陷或评估其性能。

在超声无损检测中,选择适当的超声换能器至关重要,它将直接影响检测结果的准确性和可靠性。

本文将就超声换能器的选择与使用提供一些指南。

1. 了解超声换能器的工作原理和类型超声换能器通过电磁或压电效应将电能转化为机械振动,产生超声波。

根据工作原理和振动方式的不同,超声换能器可分为电磁式和压电式两种类型。

电磁式超声换能器适用于低频检测,通常用于对较大尺寸和较厚材料的检测;压电式超声换能器适用于高频检测,通常用于对较小尺寸和较薄材料的检测。

2. 根据检测需求选择适当的超声换能器在选择超声换能器时,需要考虑以下几个因素:- 检测材料的类型和厚度:不同材料对超声波的传播和反射特性不同,因此需要选择适合材料类型和厚度的超声换能器。

- 缺陷的类型和大小:不同类型和大小的缺陷对超声波的传播和散射也会产生不同的影响,选择合适的超声换能器可以提高检测缺陷的准确性。

- 检测的深度和灵敏度:根据检测的深度需求和所需的灵敏度,选择适当频率的超声换能器。

- 工作环境的要求:有些超声换能器具有防水、防腐蚀等特性,适用于复杂的工作环境。

3. 正确使用超声换能器正确使用超声换能器可以提高检测效果和延长设备寿命。

- 确保超声换能器与被检测材料之间的良好接触,使用适当的耦合剂或传感器。

- 保持超声换能器的清洁和保养,避免尖锐物品或化学物质对其造成损害。

- 使用合适的检测技术和仪器参数,根据需要调整超声换能器的工作频率和敏感度。

- 定期检查和校准超声换能器,确保其性能达到预期的标准。

4. 注意超声换能器的限制和注意事项超声换能器虽然在无损检测中具有重要的作用,但仍有一些限制和注意事项需要注意:- 超声波在不同材料中的传播速度和衰减特性不同,这可能会影响检测结果的准确性,需要针对具体材料进行校准和修正。

医学超声原理 第八讲 超声换能器

医学超声原理 第八讲 超声换能器

三、医学超声换能器结构
Function of the backing material
器处于发射状态时,将电能转换成机械能,再转 换成声能。
用来接收声波的换能器称为接收器。当换 能器处于接收状态时,将声能变成机械能,再转 换成电能。
有些情况下,换能器既可以用作发射器,又 可以用作接收器,即所谓的收发两用型换能器。
一、超声换能器介绍
工作原理:
通常换能器都有一个电的储能元件和一个机械振动 系统。当换能器用作发射器时,从激励电源的输出级送 来的电振荡信号将引起换能器中电储能元件中电场或磁 场的变化,这种电场或磁场的变化通过某种效应对换能 器的机械振动系统产生一个推动力,推动与换能器机械 振动系统相接触的介质发生振动,向介质中辐射声波。
二、医学超声换能器种类
单元换能器
1.按振子单元数分
多元换能器
线 阵 相控阵 方 阵
凸 阵
2.按声束特性分
聚焦换能器
一维聚焦 二维聚焦
电子聚焦 声学聚焦 电子聚焦 声学聚焦
非聚焦换能器
二、医学超声换能器种类
发射型换能器 3.按收发方式分 接收型换能器
收发兼用型换能器
圆Hale Waihona Puke 换能器环形换能器第八讲 超声换能器
第八讲 医学超声换能器
本章主要内容
一.超声换能器介绍 二.医学超声换能器种类 三.医学超声换能器结构 四.医学超声换能器特性 五.超声发射激励电路 六.超声换能器的匹配技术
一、超声换能器介绍
超声换能器简介(transducer; energy changer ) 用来发射声波的换能器称为发射器。当换能
临床上常用的超声换能器
眼科A(Amplitude )超探头
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超声波换能器选用说明及其原理介绍
超声波换能器是一种能量转换器件,它的功能是将输入的电功率转换成机械功率(即超声波)再传递出去,而它自身消耗掉很少的一部分功率(小于10%)。

所以,使用超声波换能器最应考虑的问题就是与输入输出端的,其次是机械安装和配合尺寸。

市面上超声波机械种类繁多,客户必须提供准确可靠的指标,才能保证公司提供的换能器产品能与贵公司的机器良好,发挥最佳性能。

因换能器品种繁多,本文只提供了部分换能器参数。

①谐振频率: f, 单位: KHz
该频率是指用频率发生器,毫伏表等通过传输线路法测得的频率,或用阻抗特性分析仪等类似仪器测得的频率。

一般通称小信号频率。

与它相对的是上机频率,即客户将换能器通过电缆连到驱动电源上,通电后空载或有载时测得的实际工作频率。

因客户的电路各不相同,同样的换能器配不同的驱动电源表现出来的频率是不同的,这样的频率不能作为订货依据。

②换能器电容量: CT ,单位:PF
即换能器自由电容,一般可用电容电桥在400Hz-1000Hz的频率下测得,也可用阻抗特性分析仪类似仪器。

再简单点,用一般的便携式电容表测量也可满足要求。

③换能器工作方式
因加工方式和要求不同,换能器的工作方式大致可分为连续工作(花边机,CD套机,拉链机,金属焊接等)和脉冲式工作(如塑焊机),
不同的工作方式对换能器的要求是不同的。

一般而言,连续式工作几乎没有停顿时间,但工作电流不是很大,脉冲工作是间歇式的,有停顿,但瞬间电流很大。

平均而言,两种状态的功率都很大的。

④换能器型式和最大功率
整机厂家可能对于不同用途和目的的机器的标称功率有不同的规定,换句话说,同样的换能器用在不同的机器上标称功率可能是不同的。

为避免产生岐义,客户应详细说明换能器的结构型式,如柱型、倒喇叭型等,及压电陶瓷晶片的直径和片数。

⑤安装和配合尺寸
主要有变幅杆材质,表面处理方式,形状。

换能器与变幅杆连接螺纹,变幅杆与模具连接螺纹,变幅杆法兰盘处直径、厚度、缺口或螺孔数量和位置。

相关文档
最新文档