2017初三下册数学知识点总结苏教版
苏教版九年级下数学知识点
苏教版九年级下数学知识点在苏教版九年级下的数学课程中,学生将学习到一系列重要的数学知识点。
以下是对这些知识点的详细介绍:1. 初中数学基础回顾在九年级下学期的数学课程中,学生将回顾初中数学的基础知识,包括整数、分数、小数、百分数等各种数的计算、数的比较和顺序、数轴等内容。
2. 代数方程九年级下学期的数学课程中,学生将学习代数方程的相关知识。
这包括一元一次方程、一元一次方程的解法、方程的应用题等内容。
3. 几何图形在几何部分,学生将学习到各种几何图形的性质和计算方法。
这包括平面图形(三角形、四边形等)的性质,以及立体图形(长方体、圆柱体等)的计算方法。
4. 数据统计在数据统计部分,学生将学习如何处理和分析数据。
他们将学习到收集数据的方法,如何绘制统计图,以及如何通过统计图来解读数据等内容。
5. 概率在概率部分,学生将学习概率的概念和计算方法。
他们将了解到概率的定义,如何计算事件发生的概率,并应用到实际问题中。
6. 三角函数在三角函数的学习中,学生将了解到三角函数的基本概念、正弦定理、余弦定理、解三角形问题等内容。
7. 相似与全等三角形在相似与全等三角形的学习中,学生将学习相似三角形的性质和判定条件,以及全等三角形的性质和判定条件,应用于解决相关的几何问题。
8. 平行线与比例在平行线与比例的学习中,学生将了解到平行线的性质,如何通过已知条件证明平行线,以及比例的相关知识和应用。
9. 数列数列是数学中非常重要的概念之一,在九年级下的数学课程中,学生将学习数列的定义、分类及其求和公式等内容,以及如何应用数列解决实际问题。
10. 函数与图像在函数与图像部分,学生将学习函数的基本概念、函数的表示方法以及如何通过给定的函数绘制函数图像。
以上是苏教版九年级下学期数学课程的主要知识点介绍。
通过学习这些知识点,学生将建立起扎实的数学基础,为高中数学的学习打下坚实的基础。
希望每个学生都能够努力学习,掌握这些数学知识,取得优异的成绩!。
(完整版)苏教版九年级数学全册知识点汇总
第一章教学内容:证明(二)重点:直角三角形,线段垂直平分线与角平分线的证明难点:证明逆命题的真假,角平分线的证明及其对逆命题的理解易错点:线段的垂直平分线和角平分线的定理及逆定理的判别第二章教学内容:一元一次方程重点:用配方法,公式法,分解因式法解一元一次方程难点:黄金分割点的理解,用配方法解方程易错点:利用因式分解法和公式法解方程第三章教学内容:证明(三)重点:特殊的平行四边形的性质与判定,平行四边形的性质与判定难点:特殊的平行四边形的证明易错点:各定理之间的判别第四章教学内容:视图与投影重点:某物体的三视图与投影难点:理解平行投影与中心投影的区别易错点:三视图的理解,中心投影与平行投影的区别第五章教学内容:反比例函数重点:反比例函数的表达式,反比例函数的图像的概念与性质难点:反比例函数的运用,猜想,证明与拓展易错点:主要区别反比例函数与 x轴和与y轴无限靠近第六章教学内容:频率与概率定义和命题:频率与概率的概念难点:理解用频率去估计概率易错点:频率是样本中才出现的,概率是整体中出项的苏教版九年级数学上知识点汇总第一章图形与证明(二)1.1 等腰三角形的性质定理:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称“三线合一”)。
等腰三角形的两底角相等(简称“等边对等角”)。
等腰三角形的判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称“等角对等边”)。
1.2 直角三角形全等的判定定理:斜边和一条直角边对应相等的两个直角三角形全等(简称“HL”)。
角平分线的性质:角平分线上的点到这个角的两边的距离相等。
角平分线的判定:角的内部到角的两边距离相等的点,在这个角的平分线上。
直角三角形中,30°的角所对的直角边事斜边的一半。
1.3 平行四边形的性质与判定:定义:两组对边分别平行的四边形是平行四边形。
定理1:平行四边形的对边相等。
定理2:平行四边形的对角相等。
定理3:平行四边形的对角线互相平分。
九年级数学(苏教版)知识点总结
第一章图形与证明(二)定理等腰三角形的两个底角相等(简称“等边对等角”)定理等腰三角形的顶角平分线、底边上的中线,底边上的高互相重合定理如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称“等角对等边”) 证明:两角及其中一角的对边对应相等的两个三角形全等(简写为“AAS ”) 等边三角形的每个内角都等于60o线段垂直平分线上的点到线段两端的距离相等 三个角都相等的三角形是等边三角形到线段两个端点距离相等的点在这条线段的垂直平分线上定理斜边和一条直角边对应相等的两个直角三角形全等。
(简写为“HL ”) 定理角平分线上的点到这个角的两边的距离相等定理角的内部到角的两边距离相等的点,在这个角的平分线上 定理平行四边形的对边相等 定理平行四边形的对角相等 定理平行四边形的对角线互相平分 定理矩形的4个角都是直角 定理矩形的对角线相等定理直角三角形斜边上的中线等于斜边的一半 定理菱形的4条边都相等定理菱形的对角线互相垂直,并且每一条对角线平分一组对角 定理一组对边平行且相等的四边形是平行四边形 定理对角线互相平分的四边形是平行四边形 不是从已知条件出发直接证明命题的结论成立,而是先提出与结论相反的假设,然后由这个“假设”出发推导出了矛盾的结果,从而证明了命题的结论一定成立。
这种证明的方法称为反证法。
证明:两组对边分别相等的四边形是平行四边形。
定理对角线相等的平行四边形是矩形 定理有3个角是直角的四边形是矩形 定理对角线互相垂直的平行四边形是菱形 定理四边都相等的四边形是菱形 证明:有一组邻边相等的矩形是正方形 有一个角是直角的菱形是正方形定理在同一底上的两个角相等的梯形是等腰梯形 定理等腰梯形同一底上的两底角相等 定理等腰梯形的两条对角线相等定理三角形的中位线平行于第三边,并且等于第三边的一半第二章数据的离散程度一组数据中最大值与最小值的差,能反映这组数据的变化范围,我们就把这样的差叫做极差(range )。
苏教版九年级数学下册知识点总结(苏科版)
知识点总结第五章二次函数一、二次函数概念:1.二次函数的概念:一般地,形如的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数,而可以为零.二次函数的定义域是全体实数.2. 二次函数的结构特征:⑴等号左边是函数,右边是关于自变量的二次式,的最高次数是2.⑵是常数,是二次项系数,是一次项系数,是常数项.二、二次函数的基本形式1. 二次函数基本形式:的性质:a 的绝对值越大,抛物线的开口越小。
的符号开口方向顶点坐标对称轴性质向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值.向下轴时,随的增大而减小;时,随的增大而增大;时,有最大值.2. 的性质:上加下减。
的符号开口方向顶点坐标对称轴性质向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值.3. 的性质:左加右减。
1. 平移步骤:方法一:⑴将抛物线解析式转化成顶点式,确定其顶点坐标;⑵保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:2. 平移规律在原有函数的基础上“值正右移,负左移;值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二:⑴沿轴平移:向上(下)平移个单位,变成(或)⑵沿轴平移:向左(右)平移个单位,变成(或)四、二次函数与的比较从解析式上看,与是两种不同的表达形式,后者通过配方可以得到前者,即,其中.五、二次函数图象的画法五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点、与轴的交点,(若与轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.六、二次函数的性质1. 当时,抛物线开口向上,对称轴为,顶点坐标为.当时,随的增大而减小;当时,随的增大而增大;当时,有最小值.2. 当时,抛物线开口向下,对称轴为,顶点坐标为.当时,随的增大而增大;当时,随的增大而减小;当时,有最大值.七、二次函数解析式的表示方法1. 一般式:(,,为常数,);2. 顶点式:(,,为常数,);3. 两根式:(,,是抛物线与轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数二次函数中,作为二次项系数,显然.⑴当时,抛物线开口向上,的值越大,开口越小,反之的值越小,开口越大;⑵当时,抛物线开口向下,的值越小,开口越小,反之的值越大,开口越大.总结起来,决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决定开口的大小.2. 一次项系数在二次项系数确定的前提下,决定了抛物线的对称轴.⑴在的前提下,当时,,即抛物线的对称轴在轴左侧;当时,,即抛物线的对称轴就是轴;当时,,即抛物线对称轴在轴的右侧.⑵在的前提下,结论刚好与上述相反,即当时,,即抛物线的对称轴在轴右侧;当时,,即抛物线的对称轴就是轴;当时,,即抛物线对称轴在轴的左侧.总结起来,在确定的前提下,决定了抛物线对称轴的位置.的符号的判定:对称轴在轴左边则,在轴的右侧则,概括的说就是“左同右异”总结:3. 常数项⑴当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正;⑵当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为;⑶当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为负.总结起来,决定了抛物线与轴交点的位置.总之,只要都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于轴对称关于轴对称后,得到的解析式是;关于轴对称后,得到的解析式是;2. 关于轴对称关于轴对称后,得到的解析式是;关于轴对称后,得到的解析式是;3. 关于原点对称关于原点对称后,得到的解析式是;关于原点对称后,得到的解析式是;4. 关于顶点对称(即:抛物线绕顶点旋转180°)关于顶点对称后,得到的解析式是;关于顶点对称后,得到的解析式是.5. 关于点对称关于点对称后,得到的解析式是根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与轴交点情况):一元二次方程是二次函数当函数值时的特殊情况.图象与轴的交点个数:①当时,图象与轴交于两点,其中的是一元二次方程的两根.这两点间的距离.②当时,图象与轴只有一个交点;③当时,图象与轴没有交点.当时,图象落在轴的上方,无论为任何实数,都有;当时,图象落在轴的下方,无论为任何实数,都有.2. 抛物线的图象与轴一定相交,交点坐标为,;3. 二次函数常用解题方法总结:⑴求二次函数的图象与轴的交点坐标,需转化为一元二次方程;⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶根据图象的位置判断二次函数中,,的符号,或由二次函数中,,的符号判断图象的位置,要数形结合;⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸与二次函数有关的还有二次三项式,二次三项式本身就是所含字母的二次函数;下面以时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数图像参考:十一、函数的应用二次函数应用十二、二次函数考查重点与常见题型1.考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以为自变量的二次函数的图像经过原点,则的值是2.综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数的图像在第一、二、三象限内,那么函数的图像大致是()y yy y110 x o-1 x 0 x 0 -1 xA BC D3.考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为,求这条抛物线的解析式。
苏教版九年级数学全册知识点总结
2.直角三角形全等的判定:HL三角形的中位线 梯形的中位线。
等边三角形的性质和判定 等腰三角形的性质和判定 线段的垂直平分线的性质和判定 角的平分线的性质和判定平行四边形的性质和判定:4个判定定理 矩形的性质和判定菱形的性质和判定:3个判定定理 正方形的性质和判定:2个判定定理注意:〔1〕解决梯形问题的基本思路:通过分割和拼接转化成三角形和平行四边形进行解决。
即需要掌握常作的辅助线。
〔2〕梯形的面积公式:()lh h b a S =+=21〔l -中位线长〕 九年级数学全册知识点总结上册 第一章、图形与证明〔二〕〔一〕、知识框架(二)知识详解2.1、等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等〔等边对等角〕判定:有两个角相等的三角形是等腰三角形〔等角对等边〕推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合〔即“三线合一”〕2.2、等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60度;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴。
判定定理:有一个角是60度的等腰三角形是等边三角形。
或者三个角都相等的三角形是等边三角2.3、线段的垂直平分线形。
〔1〕线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等。
判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。
〔2〕三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
〔3〕如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A、B为圆心,以大于AB的一半长为半径作弧,两弧交于点M、N;作直线MN,则直线MN 就是线段AB的垂直平分线。
2.4、角平分线〔1〕角平分线的性质及判定定理性质:角平分线上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上。
苏教版九年级数学知识点归纳总结
苏教版九年级数学知识点归纳总结九年级下册数学知识点归纳一、平行线分线段成比例定理及其推论:1.定理:三条平行线截两条直线,所得的对应线段成比例。
2.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条线段平行于三角形的第三边。
二、相似预备定理:平行于三角形的一边,并且和其他两边相交的直线,截得的三角形的三边与原三角形三边对应成比例。
三、相似三角形:1.定义:对应角相等,对应边成比例的三角形叫做相似三角形。
2.性质:(1)相似三角形的对应角相等;(2)相似三角形的对应线段(边、高、中线、角平分线)成比例;(3)相似三角形的周长比等于相似比,面积比等于相似比的平方。
说明:①等高三角形的面积比等于底之比,等底三角形的面积比等于高之比;②要注意两个图形元素的对应。
3.判定定理:(1)两角对应相等,两三角形相似;(2)两边对应成比例,且夹角相等,两三角形相似;(3)三边对应成比例,两三角形相似;(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角对应成比例,那么这两个直角三角形相似。
初三数学复习资料因式分解的方法1.十字相乘法(1)把二次项系数和常数项分别分解因数;(2)尝试十字图,使经过十字交叉线相乘后所得的数的和为一次项系数;(3)确定合适的十字图并写出因式分解的结果;(4)检验。
2.提公因式法(1)找出公因式;(2)提公因式并确定另一个因式;①找公因式可按照确定公因式的方法先确定系数再确定字母;②提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同。
3.待定系数法(1)确定所求问题含待定系数的一般解析式;(2)根据恒等条件,列出一组含待定系数的方程;(3)解方程或消去待定系数,从而使问题得到解决。
江苏数学九年级下初中知识点归纳
江苏数学九年级下初中知识点归纳数学作为一门理科学科,是我们学习过程中非常重要的一部分。
在初中九年级下学期,江苏省的数学课程内容主要分为代数、几何和统计学三个部分。
下面就对这些知识点进行归纳和总结,以便于同学们更好地复习和理解。
一、代数部分1. 二次函数在代数部分中,最重要的知识点之一是二次函数。
同学们需要掌握二次函数的定义、性质、图像以及与实际问题的应用。
需要重点掌握二次函数的顶点、轴对称和对称轴的方程等内容。
2. 线性方程组线性方程组是一个很常见的数学问题,同学们需要学会解线性方程组的方法,包括代入法、消元法和图解法。
此外,还需要进一步学习线性方程组的应用,如解决实际问题、计算消费和利润等等。
3. 番形函数在代数部分中,还有一个重要的知识点是番形函数。
同学们需要熟悉番形函数的定义、性质和图像,并能够应用番形函数解决实际问题,如分析成本和收入之间的关系等。
二、几何部分1. 三角形几何部分的核心知识点之一是三角形。
同学们需要掌握三角形的定义、性质、分类和判定方法,并能够使用余弦定理和正弦定理计算三角形的边长和角度。
2. 圆圆是几何学中另一个重要的概念。
同学们需要了解圆的定义、性质和相关定理,如切线定理和弦中弦定理。
此外,还需要掌握圆的面积和周长的计算方法,并能够应用到实际问题中。
3. 空间几何空间几何是初中数学最后一个重要的内容。
同学们需要学会空间几何中的概念和性质,如立体图形的种类、视角的转化等等。
此外,还需要熟练掌握空间几何中的计算方法,如体积、表面积和三视图的绘制等。
三、统计学部分1. 概率统计学是数学中的一个重要分支,最关键的知识点是概率。
同学们需要深入理解概率的概念、公式以及计算方法,包括排列组合、事件的可能性等。
此外,还需要学会应用概率解决实际问题,如掷硬币和抽球问题等。
2. 平均数另一个重要的统计学知识点是平均数。
同学们需要学会计算一组数据的平均数,包括算术平均数、加权平均数和集合中的平均数等。
苏教版九年级数学全册知识点总结
2.直角三角形全等的判定:HL4.等腰梯形的性质和判定5.中位线 三角形的中位线梯形的中位线。
1.等腰三角形 等边三角形的性质和判定 等腰三角形的性质和判定 线段的垂直平分线的性质和判定 角的平分线的性质和判定3.平行四边形平行四边形的性质和判定:4个判定定理 矩形的性质和判定 菱形的性质和判定:3个判定定理正方形的性质和判定:2个判定定理注意:(1)解决梯形问题的基本思路:通过分割和拼接转化成三角形和平行四边形进行解决。
即需要掌握常作的辅助线。
(2)梯形的面积公式:()lh h b a S =+=21(l -中位线长) 九年级数学全册知识点总结上册 第一章、图形与证明(二)(一)、知识框架(二)知识详解2.1、等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)2.2、等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60度;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴。
判定定理:有一个角是60度的等腰三角形是等边三角形。
或者三个角都相等的三角形是等边三角形。
2.3、线段的垂直平分线(1)线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等。
判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。
(2)三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
(3)如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A、B为圆心,以大于AB的一半长为半径作弧,两弧交于点M、N;作直线MN,则直线MN就是线段AB的垂直平分线。
2.4、角平分线(1)角平分线的性质及判定定理性质:角平分线上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上。
(苏科版)初三下册数学知识点总结
(苏科版)初三下册数学知识点总结一元二次方程的基本概念1.一元二次方程3x2+5x-2=0的常数项是-2.2.一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.3.一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.4.把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0.知识点2:直角坐标系与点的位置1.直角坐标系中,点A(3,0)在y轴上。
2.直角坐标系中,x轴上的任意点的横坐标为0. 3.直角坐标系中,点A(1,1)在第一象限. 4.直角坐标系中,点A(-2,3)在第四象限. 5.直角坐标系中,点A(-2,1)在第二象限.知识点3:已知自变量的值求函数值1.当x=2时,函数y=2x3的值为1. 2.当x=3时,函数y=1的值为1.x23.当x=-1时,函数y=1的值为1.x3知识点4:基本函数的概念及性质1.函数y=-8x是一次函数. 2.函数y=4x+1是正比例函数. 3.函数y12x是反比例函数. 4.抛物线y=-3(x-2)2-5的开口向下. 5.抛物线y=4(x-3)2-10的对称轴是x=3. 6.抛物线y12(x1)22的顶点坐标是(1,2).7.反比例函数y的图象在第一、三象限. 知识点5:数据的平均数中位数与众数1.数据13,10,12,8,7的平均数是10. 2.数据3,4,2,4,4的众数是4.3.数据1,2,3,4,5的中位数是3.知识点6:特殊三角函数值知识点7:圆的基本性质1.半圆或直径所对的圆周角是直角.2.任意一个三角形一定有一个外接圆. 3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆.4.在同圆或等圆中,相等的圆心角所对的弧相等. 5.同弧所对的圆周角等于圆心角的一半. 6.同圆或等圆的半径相等. 7.过三个点一定能够作一个圆. 8.长度相等的两条弧是等弧.9.在同圆或等圆中,相等的圆心角所对的弧相等. 10.经过圆心平分弦的直径垂直于弦。
九年级苏教版数学知识点梳理
九年级苏教版数学知识点梳理初三数学知识点1、二次根式:形如式子为二次根式;性质:是一个非负数;2、二次根式的乘除:3、二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并.4、海伦-秦九韶公式:,S是的面积,p为.1:等号两边都是整式,且只有一个未知数,未知数的次是2的方程.2:配方法将方程的一边配成完全平方式,然后两边开方;因式分解法:左边是两个因式的乘积,右边为零.1:一元二次方程在实际问题中的应用2:韦达定理设是方程的两个根,那么有3:一个图形绕某一点转动一个角度的图形变换性质:对应点到中心的距离相等;对应点与旋转中心所连的线段的夹角等于旋转角旋转前后的图形全等.2中心对称:一个图形绕一个点旋转180度,和另一个图形重合,则两个图形关于这个点中心对称;中心对称图形:一个图形绕某一点旋转180度后得到的图形能够和原来的图形重合,则说这个图形是中心对称图形;3关于原点对称的点的坐标1圆、圆心、半径、直径、圆弧、弦、半圆的定义2垂直于弦的直径圆是图形,任何一条直径所在的直线都是它的对称轴;垂直于弦的直径平分弦,并且平方弦所对的两条弧;平分弦的直径垂直弦,并且平分弦所对的两条弧.3弧、弦、圆心角在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.4圆周角在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径.5点和圆的位置关系点在圆外d>r点在圆上d=r点在圆内dR+r外切d=R+r相交R-r九年级数学学习方法技巧自学能力的培养是深化学习的必由之路在学习新概念、新运算时,老师们总是通过已有知识自然而然过渡到新知识,水到渠成,亦即所谓“温故而知新”。
因此说,数学是一门能自学的学科,自学成才最典型的例子就是数学家华罗庚。
我们在课堂上听老师讲解,不光是学习新知识,更重要的是潜移默化老师的那种数学思维习惯,逐渐地培养起自己对数学的一种悟性。
九年级数学苏科版知识点大全
九年级数学苏科版知识点大全九年级数学是学生数学学习的最后一年,在这一年里,学生将会接触到更加深入和复杂的数学知识。
本文将为大家总结九年级数学苏科版的知识点大全,帮助学生更好地准备和复习数学考试。
一、整式与分式整式是指只包含数和变量的式子,其中变量的指数只能是非负整数。
分式是指整式的商,其中分母不为零。
在九年级数学中,学生需要掌握整式的加减乘除运算,以及分式的化简与运算。
二、方程与不等式方程是指含有未知数的等式,对于一次方程、二次方程和分式方程,九年级的数学要求学生掌握解方程的方法与技巧。
不等式是指含有不等关系的代数式,学生需要学会解不等式和区间的表示。
三、图形的性质与变换九年级的数学将进一步研究图形的性质与变换。
学生需要熟悉各种常见图形的性质,如三角形、四边形和圆等,以及它们的角度、边长和面积计算方法。
同时,学生还需要学会图形在平面上的平移、旋转、翻转和对称等变换。
四、函数与解析几何函数是数学中的重要概念,九年级数学要求学生了解函数的定义、性质和图像,以及一次函数、二次函数和分段函数的特点。
解析几何是代数与几何相结合的学科,学生需要学习平面直角坐标系、直线方程和圆的方程等内容。
五、统计与概率统计学是数学中的一门重要学科,九年级数学将要求学生学习统计的基本概念与方法,包括数据的收集整理、频数表与频率分布表的制作、统计量的计算和数据的分析等。
概率是统计学的一个重要分支,学生需要学习事件与概率的关系、事件的独立性和互斥性等内容。
六、三角函数与平面向量三角函数是数学中的重要概念,九年级数学要求学生学习正弦、余弦和正切等三角函数的定义和性质,以及它们的应用。
平面向量是代数与几何相结合的数学工具,学生需要学习向量的表示、运算和模的计算等内容。
七、立体几何与体积计算立体几何是数学中的一门重要学科,九年级数学要求学生学习各种常见立体的性质与特点,如长方体、正方体、圆柱体、圆锥体和球等。
同时,学生还需要学会计算立体的体积和表面积,以及解决相关的问题。
苏教版九年级数学全册知识点汇总
第一章教学内容:证明(二)重点:直角三角形,线段垂直平分线与角平分线的证明难点:证明逆命题的真假,角平分线的证明及其对逆命题的理解易错点:线段的垂直平分线和角平分线的定理及逆定理的判别第二章教学内容:一元一次方程重点:用配方法,公式法,分解因式法解一元一次方程难点:黄金分割点的理解,用配方法解方程易错点:利用因式分解法和公式法解方程第三章教学内容:证明(三)重点:特殊的平行四边形的性质与判定,平行四边形的性质与判定难点:特殊的平行四边形的证明易错点:各定理之间的判别第四章教学内容:视图与投影重点:某物体的三视图与投影难点:理解平行投影与中心投影的区别易错点:三视图的理解,中心投影与平行投影的区别第五章教学内容:反比例函数重点:反比例函数的表达式,反比例函数的图像的概念与性质难点:反比例函数的运用,猜想,证明与拓展易错点:主要区别反比例函数与 x轴和与y轴无限靠近第六章教学内容:频率与概率定义和命题:频率与概率的概念难点:理解用频率去估计概率易错点:频率是样本中才出现的,概率是整体中出项的苏教版九年级数学上知识点汇总第一章图形与证明(二)1.1 等腰三角形的性质定理:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称“三线合一”)。
等腰三角形的两底角相等(简称“等边对等角”)。
等腰三角形的判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称“等角对等边”)。
1.2 直角三角形全等的判定定理:斜边和一条直角边对应相等的两个直角三角形全等(简称“HL”)。
角平分线的性质:角平分线上的点到这个角的两边的距离相等。
角平分线的判定:角的内部到角的两边距离相等的点,在这个角的平分线上。
直角三角形中,30°的角所对的直角边事斜边的一半。
1.3 平行四边形的性质与判定:定义:两组对边分别平行的四边形是平行四边形。
定理1:平行四边形的对边相等。
定理2:平行四边形的对角相等。
定理3:平行四边形的对角线互相平分。
苏教版数学九年级知识点总结
圆是轴对称图形,过圆心的任意一条直线都是它的对称轴。 垂径定理:垂直于弦的直径平分弦以及弦所对的两条弧。
常见正确结论:平分弦(不是直径)的直径垂直于弦。
4. 弧、弦、弦心距、圆心角、圆周角之间的关系定理: 圆是中心对称图形,圆心是它的对称中心。 定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各
离相等。
三角形内切圆半径: r 2S C
直角三角形内切圆半径: r a b c 2
8.正多边形和圆 (1)正多边形:各边相等,各角也相等的多边形叫做正多边形。 (2)正多边形和圆的关系:只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个 圆就是这个正多边形的外接圆。
3
(3)正多边形的中心:正多边形的外接圆的圆心叫做这个正多边形的中心。 (4)正多边形的半径:正多边形的外接圆的半径叫做这个正多边形的半径。
直径:经过圆心的弦叫做直径。(如图中的 CD);直径等于半径的 2 倍。
(2)弧:圆上任意两点间的部分叫做圆弧,简称弧。
半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
弧用符号“⌒”表示,以 A,B 为端点的弧记作“ ”,读作“圆弧 AB”或“弧 AB”。
大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个 字母表示) (3)圆心角:顶点在圆心的角叫做圆心角。 (4)圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角。 (5)弦心距: 圆心到弦的距离叫做弦心距。 (6)弓形的高: 从圆心向弦作垂线,垂线被弦和弧所截的线段的长,称为弓形的高.
苏教版数学九年级知识点总结
第 1 章 一元二次方程
苏教版九年级数学全册知识点汇总
第一章教学内容:证明(二)重点:直角三角形,线段垂直平分线与角平分线的证明难点:证明逆命题的真假,角平分线的证明及其对逆命题的理解易错点:线段的垂直平分线和角平分线的定理及逆定理的判别第二章教学内容:一元一次方程重点:用配方法,公式法,分解因式法解一元一次方程难点:黄金分割点的理解,用配方法解方程易错点:利用因式分解法和公式法解方程第三章教学内容:证明(三)重点:特殊的平行四边形的性质与判定,平行四边形的性质与判定难点:特殊的平行四边形的证明易错点:各定理之间的判别第四章教学内容:视图与投影重点:某物体的三视图与投影难点:理解平行投影与中心投影的区别易错点:三视图的理解,中心投影与平行投影的区别第五章教学内容:反比例函数重点:反比例函数的表达式,反比例函数的图像的概念与性质难点:反比例函数的运用,猜想,证明与拓展易错点:主要区别反比例函数与 x轴和与y轴无限靠近第六章教学内容:频率与概率定义和命题:频率与概率的概念难点:理解用频率去估计概率易错点:频率是样本中才出现的,概率是整体中出项的苏教版九年级数学上知识点汇总第一章图形与证明(二)1.1 等腰三角形的性质定理:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称“三线合一”)。
等腰三角形的两底角相等(简称“等边对等角”)。
等腰三角形的判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称“等角对等边”)。
1.2 直角三角形全等的判定定理:斜边和一条直角边对应相等的两个直角三角形全等(简称“HL”)。
角平分线的性质:角平分线上的点到这个角的两边的距离相等。
角平分线的判定:角的内部到角的两边距离相等的点,在这个角的平分线上。
直角三角形中,30°的角所对的直角边事斜边的一半。
1.3 平行四边形的性质与判定:定义:两组对边分别平行的四边形是平行四边形。
定理1:平行四边形的对边相等。
定理2:平行四边形的对角相等。
定理3:平行四边形的对角线互相平分。
有关九年级数学知识点总结苏教版
有关九年级数学知识点总结苏教版九年级数学知识点总结1、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
(1)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0。
(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值就是数轴上表示这个数的点到原点的距离。
(3)几个非负数的和等于零则每个非负数都等于零。
注意:│a│≥0,符号"││"是"非负数"的标志;数a的绝对值只有一个;处理任何类型的题目,只要其中有"││"出现,其关键一步是去掉"││"符号。
2、解一元二次方程解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
(1)直接开平方法:用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±m。
直接开平方法就是平方的逆运算。
通常用根号表示其运算结果。
(2)配方法通过配成完全平方式的方法,得到一元二次方程的根的方法。
这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。
1)转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)。
2)系数化1:将二次项系数化为1。
3)移项:将常数项移到等号右侧。
4)配方:等号左右两边同时加上一次项系数一半的平方。
5)变形:将等号左边的代数式写成完全平方形式。
6)开方:左右同时开平方。
7)求解:整理即可得到原方程的根。
(3)公式法公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。
3、圆的必考知识点(1)圆在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。
苏教版【数学】九年级全册知识点梳理
第一章一元二次方程一元二次方程1、一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
2、一元二次方程的一般形式)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。
二、一元二次方程的解法1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如b a x =+2)(的一元二次方程。
根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。
2、配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。
配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。
3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x 4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
三、一元二次方程根的判别式根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即acb 42-=∆四、一元二次方程根与系数的关系如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x -=+21,ac x x =21。
苏科版九年级数学下册知识点归纳总结
苏科版九年级数学下册知识点归纳总结第五章二次函数一、二次函数概念:1.二次函数的概念:一般地,形如的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数,而可以为零.二次函数的定义域是全体实数.三、二次函数图象的平移1. 平移步骤:方法一:⑴将抛物线解析式转化成顶点式,确定其顶点坐标;⑵保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:2. 平移规律在原有函数的基础上“值正右移,负左移;值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二:⑴沿轴平移:向上(下)平移个单位,变成(或)⑵沿轴平移:向左(右)平移个单位,变成(或)四、二次函数与的比较从解析式上看,与是两种不同的表达形式,后者通过配方可以得到前者,即,其中.五、二次函数图象的画法五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点、与轴的交点,(若与轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.六、二次函数的性质1. 当时,抛物线开口向上,对称轴为,顶点坐标为.当时,随的增大而减小;当时,随的增大而增大;当时,有最小值.2. 当时,抛物线开口向下,对称轴为,顶点坐标为.当时,随的增大而增大;当时,随的增大而减小;当时,有最大值.七、二次函数解析式的表示方法1. 一般式:(,,为常数,);2. 顶点式:(,,为常数,);3. 两根式:(,,是抛物线与轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数二次函数中,作为二次项系数,显然.⑴当时,抛物线开口向上,的值越大,开口越小,反之的值越小,开口越大;⑵当时,抛物线开口向下,的值越小,开口越小,反之的值越大,开口越大.总结起来,决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决定开口的大小.2. 一次项系数在二次项系数确定的前提下,决定了抛物线的对称轴.⑴在的前提下,当时,,即抛物线的对称轴在轴左侧;当时,,即抛物线的对称轴就是轴;当时,,即抛物线对称轴在轴的右侧.⑵在的前提下,结论刚好与上述相反,即当时,,即抛物线的对称轴在轴右侧;当时,,即抛物线的对称轴就是轴;当时,,即抛物线对称轴在轴的左侧.总结起来,在确定的前提下,决定了抛物线对称轴的位置.的符号的判定:对称轴在轴左边则,在轴的右侧则,概括的说就是“左同右异”总结:3. 常数项⑴当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正;⑵当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为;⑶当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为负.总结起来,决定了抛物线与轴交点的位置.总之,只要都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于轴对称关于轴对称后,得到的解析式是;关于轴对称后,得到的解析式是;2. 关于轴对称关于轴对称后,得到的解析式是;关于轴对称后,得到的解析式是;3. 关于原点对称关于原点对称后,得到的解析式是;关于原点对称后,得到的解析式是;4. 关于顶点对称(即:抛物线绕顶点旋转180°)关于顶点对称后,得到的解析式是;关于顶点对称后,得到的解析式是.5. 关于点对称关于点对称后,得到的解析式是根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与轴交点情况):一元二次方程是二次函数当函数值时的特殊情况.图象与轴的交点个数:①当时,图象与轴交于两点,其中的是一元二次方程的两根.这两点间的距离.②当时,图象与轴只有一个交点;③当时,图象与轴没有交点.当时,图象落在轴的上方,无论为任何实数,都有;当时,图象落在轴的下方,无论为任何实数,都有.2. 抛物线的图象与轴一定相交,交点坐标为,;3. 二次函数常用解题方法总结:⑴求二次函数的图象与轴的交点坐标,需转化为一元二次方程;⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶根据图象的位置判断二次函数中,,的符号,或由二次函数中,,的符号判断图象的位置,要数形结合;⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸与二次函数有关的还有二次三项式,二次三项式本身就是所含字母的二次函数;下面以时为例,揭示二次函数、二次三项式和一元二次方程之间二次函数图像参考:十一、函数的应用二次函数应用十二、二次函数考查重点与常见题型1.考查二次函数的定义、性质,有关试题常出现在选择题中,如:2.综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数的图像在第一、二、三象限内,那么函数的图像大致是()A BC D3.考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为,求这条抛物线的解析式。
9年级下册数学复习知识点苏教版
9年级下册数学复习知识点苏教版回首历史,有成就的人,都是掌握住现实才实现了自己的梦想。
前车之鉴,我们只有努力学习才能实现自己的人生目标。
下边本文库为您介绍9 年级下册数学复习知识点苏教版。
知识点一3.二次项系数 a 决定抛物线的张口方向和大小。
当 a>0 时,抛物线向上张口;当a|a| 越大,则抛物线的张口越小。
决定对称轴地点的要素4.一次项系数 b 和二次项系数 a 共同决定对称轴的地点。
当 a 与 b 同号时(即 ab>0),对称轴在 y 轴左;由于若对称轴在左侧则对称轴小于 0,也就是 - b/2a当a与b异号时(即ab0,所以b/2a要小于0,所以 a、b 要异号可简单记忆为左同右异,即当 a 与 b 同号时(即 ab>0),对称轴在 y 轴左;当 a 与 b 异号时(即 ab 事实上, b 有其自己的几何意义:抛物线与 y 轴的交点处的该抛物线切线的函数分析式(一次函数)的斜率 k 的值。
可经过对二次函数求导获得。
决定抛物线与 y 轴交点的要素5.常数项 c 决定抛物线与 y 轴交点。
抛物线与 y 轴交于( 0, c)抛物线与 x 轴交点个数6.抛物线与 x 轴交点个数Δ= b -4ac>0时,抛物线与x 轴有 2 个交点。
Δ= b -4ac=0时,抛物线与x 轴有 1 个交点。
Δ= b -4ac当a>0时,函数在x= -b/2a处获得最小值f(-b/2a)=4ac-b²/4a ;在 {x|x{x|x>-b/2a}上是增函数;抛物线的张口向上;函数的值域是 {y|y ≥4ac -b /4a}相反不变当 b=0 时,抛物线的对称轴是y 轴,这时,函数是偶函数,分析式变形为y=ax +c (a≠0)特别值的形式7.特别值的形式①当x=1 时 y=a+b+c②当 x=-1 时 y=a-b+c③当 x=2 时 y=4a+2b+c④当 x=-2 时 y=4a-2b+c知识点二二次函数的性质8.定义域: R值域:(对应分析式,且只议论 a 大于 0 的状况, a 小于 0 的状况请读者自行推测)①[( 4ac-b )/4a ,正无量);②[t ,正无量)奇偶性:当 b=0 时为偶函数,当 b≠0 时为非奇非偶函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017初三下册数学知识点总结苏教版
导读:本文2017初三下册数学知识点总结苏教版,仅供参考,如果觉得很不错,欢迎点评和分享。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a0),对称轴在y轴左; 因为若对称轴在左边则对称轴小于0,也就是- b/2a0, 所以b/2a要小于0,所以a、b要异号可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y 轴左;当a与b异号时(即ab0时,抛物线与x轴有2个交点。
Δ= b^2-4ac=0时,抛物线与x轴有1个交点。
_______Δ= b^2-4ac0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b²/4a;在{x|x-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2/4a}相反不变当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a≠0)特殊值的形式7.特殊值的形式①当x=1时y=a+b+c②当x=-1时y=a-b+c③当x=2时y=4a+2b+c④当x=-2时y=4a-2b+c二次函数的性质8.定义域:R值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)奇偶性:当b=0时为偶函数,当b≠0时为非奇非偶函数。
周期性:无解析式:①y=ax^2+bx+c[一般式]⑴a≠0⑵a>0,则抛物线开口朝上;a0,图象与x轴交于两点:([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0);Δ=0,图象与x轴交于一点:(-b/2a,0);Δ0 且X≧(X1+X2)/2时,Y随X的
增大而增大,当a>0且X≦(X1+X2)/2时Y随X的增大而减小此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方程连用)。
交点式是Y=A(X-X1)(X-X2) 知道两个x 轴交点和另一个点坐标设交点式。
两交点X值就是相应X1 X2值。
26.2 用函数观点看一元二次方程1. 如果抛物线与x轴有公共点,公共点的横坐标是,那么当时,函数的值是0,因此就是方程的一个根。
2. 二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。
这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。
26.3 实际问题与二次函数在日常生活、生产和科研中,求使材料最省、时间最少、效率等问题,有些可归结为求二次函数的值或最小值。