经典红外光谱解析
006 红外光谱分析
![006 红外光谱分析](https://img.taocdn.com/s3/m/02e1c819227916888486d73c.png)
第一节
概述
波长与波数之间的关系为: 波数/ cm-1 =104 /( / µ ) m 中红外区的波数范围是4000 ~ 400 cm-1 。
二、红外光谱法的特点
紫外、可见吸收光谱常用于研究不饱和有机物,特 别是具有共轭体系的有机化合物,而红外光谱法主要研 究在振动中伴随有偶极矩变化的化合物(没有偶极矩变 化的振动在拉曼光谱中出现)。因此,除了单原子和同 核分子如Ne、He、O2、H2等之外,几乎所有的有机化合 物在红外光谱区均有吸收。除光学异构体,某些高分子
20
第二节 基本原理
基团键角发生周期变化而键长不变的振动称为变形振 动,用符号表示。变形振动又分为面内变形和面外变形 振动。面内变形振动又分为剪式(以表示)和平面摇摆 振动(以表示)。面外变形振动又分为非平面摇摆(以 表示)和扭曲振动(以表示)。 教材P.57图3.3 表示甲基、亚甲基的各种振动形式。 由于变形振动的力常数比伸缩振动的小,因此,同一基 团的变形振动都在其伸缩振动的低频端出现。 3 . 基本振动的理论数 简正振动的数目称为振动自由度,每个振动自由度
16
第二节 基本原理
根据小球的质量和相对原子质量之间的关系 波数 = 1302(k /Ar)1/2 Ar为折合相对原子质量 影响基本振动频率的直接原因是相对原子质量和化学 键的力常数。化学键的力常数k越大,折合相对原子质量 Ar越小,则化学键的振动频率越高,吸收峰将出现在高 波数区;反之,则出现在低数区,例如C-C、 CC、 CC三种碳碳键的质量相同,键力常数的顺序是三键> 双键>单键。因此在红外光谱中, CC的吸收峰出现在 2222 cm-1,而CC约在1667 cm-1 ,C-C在1429 cm-1
17
第二节 基本原理
红外吸收光谱的解析.
![红外吸收光谱的解析.](https://img.taocdn.com/s3/m/51c4e52d31126edb6f1a10ee.png)
红外吸收光谱法第一节概述一、红外光谱测定的优点20世纪50年代初期,红外光谱仪问世,揭开了有机物结构鉴定的新篇章。
到了50年代末期,已经积累了大量的红外光谱数据,到70年代中期,红外光谱法成为了有机结构鉴定的重要方法。
红外光谱测定的优点:1、任何气态、液态、固态样品都可以进行红外光谱的测定,这是核磁、质谱、紫外等仪器所不及的。
2、每种化合物均有红外吸收,又有机化合物的红外光谱可以获得丰富的信息。
3、常规红外光谱仪价格低廉,易于购置。
4、样品用量小。
二、红外波段的划分δ=104/λ(λnm δcm -1)红外波段范围又可以进一步分为远红外、中红外、近红外波段波长nm 波数cm -1近红外 0.75~2.5 13300~4000中红外 2.5~15.4 4000~650远红外 15.4~830 650~12三、红外光谱的表示方法红外光谱图多以波长λ(nm )或波数δ(cm -1)为横坐标,表示吸收峰的位置,多以透光率T%为纵坐标,表示吸收强度,此时图谱中的吸收―峰‖,其实是向下的―谷‖。
一般吸收峰的强弱均以很强(ε大于200)、强(ε在75-200)、中(ε在25-75)、弱(ε在5-25)、很弱(ε小于5),这里的ε为表观摩尔吸收系数红外光谱中吸收峰的强度可以用吸光度(A )或透过率T%表示。
峰的强度遵守朗伯-比耳定律。
吸光度与透过率关系为所以在红外光谱中―谷‖越深(T%小),吸光度越大,吸收强度越强。
第二节红外吸收光谱的基本原理一、分子的振动与红外吸收任何物质的分子都是由原子通过化学键联结起来而组成的。
分子中的原子与化学键都处于不断的运动中。
它们的运动,除了原子外层价电子跃迁以外,还有分子中原子的振动和分子本身的转动。
这些运动形式都可能吸收外界能量而引起能级的跃迁,每一个振动能级常包含有很多转动分能级,因此在分子发生振动能级跃迁时,不可避免的发生转动能级的跃迁,因此无法测得纯振动光谱,故通常所测得的光谱实际上是振动-转动光谱,简称振转光谱。
红外光谱_2
![红外光谱_2](https://img.taocdn.com/s3/m/3a278c52876fb84ae45c3b3567ec102de2bddfc6.png)
大
振动能 小
能级差 (eV) 1-20
0.05-1
吸收的辐射能 光谱
可见光和紫外 电子光 谱
11 中红外区
振动光
三、红外吸收产生的原理
辐射 分子振动能级跃迁 红外光谱 官能团 分子结构 分子的振动所需的能量远大于分子的转动所需的 能量,因此对应的红外吸收频率也有差异:
远红外区:波长长,能量低,对应分子的转动吸收
一个整体,其运动状态可分为平动、 f总=f振+f平+f转=3N
转动、振动三类。分子总自由度应
该等于平动、转动和振动自由度的 f振=3N -f平-f转
总和,即:
26
三、红外吸收产生的原理
每一种振动形式都会产生一个基频峰,即一个 多原子分子所产生的基频峰的数目应该等于分子所 具有的振动形式的数目。无论是线形分子还是非线 形分子其平动的自由度都等于3。
2
dx 则 m d t2 = - kx(1)
c c
1k
v = 2π m
(3)
x = A cos (2π v t + Ф) (2) 1k
用波数表示 = 2πc m
(波数)与K成 正比; 与原子质量成反比
对双原子分子来说,约合质量
m1 m2 μ=
代替m: =
m1+m2
1 2πc
k μ
发生振动能级跃迁需要的能量的大小取决于键两端原
样品吸收红外辐射的主要原因是: 分子中的化学键
因此, IR可用于鉴别化合物中的化学键类型,可 对分子结构进行推测。既适用于结晶质物质,也 适用于非晶质物质。 应用:有机化合物的结构解析 定性:基团的特征吸收频率 定理:特征峰的强度
6
二、红外光区的划分
常见高分子红外光谱谱图解析
![常见高分子红外光谱谱图解析](https://img.taocdn.com/s3/m/84fbaa62cc1755270722086e.png)
1085、1015 cm-1 830 cm-1
>C=O 伸缩振动 苯环-C=C- 弯曲振动
-C(CH3)2 弯曲振动 -C-O-C- 伸缩振动 苯环-C=C- 弯曲振动 对位取代苯环 =CH 面内变形 对位取代苯环 =CH 面外变形
15 / 24
13.聚对苯二甲酸乙二醇酯
3055 cm-1 2969 cm-1 2908 cm-1 1717 cm-1 1614、1579、1506、1454 cm-1 1472 cm-1 1265、1130 cm-1 1600、1582、1492、1452 cm-1 1021 cm-1 973 cm-1
1736 cm-1 1448 cm-1 1379 cm-1 1255、1165 cm-1 1026 cm-1 854 cm-1
18.聚甲基丙烯酸酯
手把手教你红外光谱谱图解析
![手把手教你红外光谱谱图解析](https://img.taocdn.com/s3/m/3dca0d33e3bd960590c69ec3d5bbfd0a7956d515.png)
手把手教你红外光谱谱图解析一、红外光谱的原理[1]1. 原理样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,是振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,透过率T%对波数或波长的曲线,即为红外光谱。
辐射→分子振动能级跃迁→红外光谱→官能团→分子结构2.红外光谱特点红外吸收只有振-转跃迁,能量低;除单原子分子及单核分子外,几乎所有有机物均有红外吸收;特征性强,可定性分析,红外光谱的波数位置、波峰数目及强度可以确定分子结构;定量分析;固、液、气态样均可,用量少,不破坏样品;分析速度快;与色谱联用定性功能强大。
3.分子中振动能级的基本振动形式红外光谱中存在两类基本振动形式:伸缩振动和弯曲振动。
图一伸缩振动图二弯曲振动二、解析红外光谱图1.振动自由度振动自由度是分子独立的振动数目。
N个原子组成分子,每个原子在空间上具有三个自由度,分子振动自由度F=3N-6(非线性分子);F=3N-5(线性分子)。
为什么计算振动自由度很重要,因为它反映了吸收峰的数量,谱带简并或发生红外非活性振动使吸收峰的数量会少于振动自由度。
U=0→无双键或环状结构U=1→一个双键或一个环状结构U=2→两个双键,两个换,双键+环,一个三键U=4→分子中可能含有苯环U=5→分子中可能含一个苯环+一个双键2.红外光谱峰的类型基频峰:分子吸收一定频率红外线,振动能级从基态跃迁至第一振动激发态产生的吸收峰,基频峰的峰位等于分子或者基团的振动频率,强度大,是红外的主要吸收峰。
泛频峰:分子的振动能级从基态跃迁至第二振动激发态、第三振动激发态等高能态时产生的吸收峰,此类峰强度弱,难辨认,却增加了光谱的特征性。
特征峰和指纹峰:特征峰是可用于鉴别官能团存在的吸收峰,对应于分子中某化学键或基团的振动形式,同一基团的振动频率总是出现在一定区域;而指纹区吸收峰特征性强,对分子结构的变化高度敏感,能够区分不同化合物结构上的微小差异。
如何解析红外光谱图
![如何解析红外光谱图](https://img.taocdn.com/s3/m/840229cf336c1eb91a375dfa.png)
如何解析红外光谱图——红外识谱歌红外光谱分析可用于研究分子的结构和化学键,也可以作为表征和鉴别化学物种的方法。
红外光谱具有高度特征性,利用化学键的特征波数来鉴别化合物的类型,并可用于定量测定。
解析红外光谱的时候,我们可以采用与标准化合物的红外光谱对比的方法来做分析鉴定。
但很多时候我们手边并没有化合物的标准红外光谱或红外光谱谱图库,这时候就需要自己对红外谱图进行解析。
解析红外谱图最重要的是确定化合物的官能团。
要想快速分辨官能团,需要知道红外谱图中常见官能团的峰位置和峰形。
下面分享一些红外谱图歌,方便大家快速解析红外谱图。
红外谱图歌2960、2870是甲基,2930、2850亚甲峰。
1470碳氢弯,1380甲基显。
二个甲基同一碳,1380分二半。
面内摇摆720,长链亚甲亦可辨。
烯氢伸展过三千,排除倍频和卤烃。
末端烯烃此峰强,只有一氢不明显。
化合物,又键偏,~1650会出现。
烯氢面外易变形,1000以下有强峰。
910端基氢,再有一氢990。
顺式二氢690,反式移至970; 单氢出峰820,干扰顺式难确定。
炔氢伸展三千三,峰强峰形大而尖。
三键伸展二千二,炔氢摇摆六百八。
芳烃呼吸很特别,1600~1430,1650~2000,取代方式区分明。
900~650,面外弯曲定芳氢。
五氢吸收有两峰,700和750; 四氢只有750,二氢相邻830;间二取代出三峰,700、780,880处孤立氢醇酚羟基易缔合,三千三处有强峰。
C-O伸展吸收大,伯仲叔基易区别。
1050伯醇显,1100乃是仲,1150叔醇在,1230才是酚。
1110醚链伸,注意排除酯酸醇。
若与π键紧相连,二个吸收要看准,1050对称峰,1250反对称。
苯环若有甲氧基,碳氢伸展2820。
次甲基二氧连苯环,930处有强峰,环氧乙烷有三峰,1260环振动,九百上下反对称,八百左右最特征。
缩醛酮,特殊醚,1110非缩酮。
酸酐也有C-O键,开链环酐有区别,开链峰宽一千一,环酐移至1250。
红外光谱谱图解析实例
![红外光谱谱图解析实例](https://img.taocdn.com/s3/m/b6407a1725c52cc58bd6beb9.png)
各种官能团的吸收频率范围
C—O
C—O—C
四 —CH3,—CH2
—CH3
区 —NH2 C—F C—Cl C—Br
域 C—I =CH2 —(CH2)n—,n>4
1300— 1000
900—1150
1460±10
1370— 1380 1650— 1560 1400— 1000 800—600 600—500 500—200 910—890 720
各种官能团的吸收频率范围
从第一区域到第四区域,4000cm-1到400cm-1各种官能团的特征吸收频 率范围。
区 域
基团
—OH(游离)
—OH(缔合)
—NH2,—NH(游离)
第—NH2ຫໍສະໝຸດ —NH(缔合) —SHC—H伸缩振动
不饱和C—H
一 ≡C—H(叁键)
═C—H(双键) 苯环中C—H
饱和C—H
区
根据特征吸收的位置,判断可能存在的特征官能团
图谱解析训练1
图谱解析训练2
图谱解析训练3
图谱解析训练4
伸缩 伸缩 伸缩
反对称伸缩 对称伸缩 反对称伸缩 对称伸缩
吸 收 强 度
m, sh s,b m s,b
s s s
s s s s
说明
判断有无醇类、酚类和有机酸的重 要依据
不饱和C—H伸缩振动出现在3000cm1以上 末端═C—H2出现在3085cm-1附近 强度上比饱和C—H稍弱,但谱带较 尖锐 饱和C—H伸缩振动出现在3000cm-1 以 下 ( 3000—2800cm-1 ) , 取 代 基 影响较小
区,判断官能团的种类,最后查看指纹区,判断其精细结构,确 定结构式
注意:在解析过程中,要把注意力集中到主要基团的相关峰上,避免孤 立解析。
第10章红外吸收光谱
![第10章红外吸收光谱](https://img.taocdn.com/s3/m/6acff6e550e2524de4187e15.png)
V
h 2π
κ μ
当△V =1时,0→ 1振动能级的跃迁,称为基本振动频率 或基频吸收带。
由双原子分子振动方程式可以看出,折合质量和键力常 数是影响基本振动频率的直接因素。
K 越大,μ越小,化学键的振动频率越高,吸收峰将出
现在高波数区;反之,则出现在低波数区。
11
例1: 由表中查知 C=C 键的 k= 9.5 ~9.9 (N/cm) ,令其为9.6, 计
分子振动不会引起偶极矩的变化。 19
(2)物质与红外辐射间应能相互作用,这种相互作用 称为振动耦合。具有偶极矩变化的分子才有可能发生振 动耦合,吸收红外辐射。
电 场
无偶极矩变化
无红外吸收
磁
场
红外吸收
交变磁场 分子固有振动
偶极矩变化 (能级跃迁)
a
20
没有偶极矩变化的振动跃迁,无红外活性:
如:单原子分子、同核分子:He、Ne、N2、O2、Cl2、H2 等。 没有红外活性 。
如:对称性分子的非对称性振动,有偶极矩变化的振动跃迁, 有红外活性。
如:非对称分子,有偶极矩,红外活性。
电 场
无偶极矩变化
无红外吸收
磁
场
红外吸收
交变磁场
分子固有振动 a
偶极矩变化 (能级跃迁)
21
2、红外光谱的振动形式
一般把分子的振动形式分为两大类:化学键的伸缩 振动和弯曲振动。
伸缩振动:指成键原子沿着价键的方向来回地相对运动。
第十章 红外吸收光谱法
§10-1 §10-2 §10-3 §10-4 §10-5 §10-6 §10-7
试题
红外吸收光谱法的基本原理 经典红外谱带吸收范围 红外光谱解析实例 红外光谱仪 试样的处理 红外光谱法的应用 激光拉曼光谱法简介
红外光谱解析方法(含结构分析实例)
![红外光谱解析方法(含结构分析实例)](https://img.taocdn.com/s3/m/3fd47e11c5da50e2524d7f94.png)
红外光谱解析方法
一、IR光谱解析方法 二、IR光谱解析实例
一、IR光谱解析方法
1.已知分子式计算不饱和度
2 2n4 n3 n1 U 2
不饱和度意义:
U 0 分子中无双键或环状结 构 U 1 分子中可能含一个双键 或一个环 U 4 分子中可能含苯环 U 5 分子中可能含苯环 一个双键
1 690 和 750 cm (双峰) 可能为 H (单取代) as 2980 cm 1可能为 CH 3
1600 , 1580 和 1500 cm 1三处吸收 可能为 C (芳环) C
s 2920 cm 1可能为 CH 可能结构为 C 6 H 5 CO C 2 H 5 2 s 1370 cm 1为 CH 3
续前
此题三个化合物均具有 OH 解: 其中 1个含C C, 1个含 C (CH 3 ) 3, 1个为直链饱和醇
3100 ~ 3000 cm 1 无 CH 吸收 ~ 1650 cm 1 无 C C 吸收
否定结构 3
s 结构 1不具有 1395和1363cm1双峰 C (CH 3 )3 特征吸收
1622 cm 1 可能为 NH 2 1303cm 1, 1268 cm 1 可能为 C N
1 as 2925 cm (较强)可能为 CH 3 as s 1442 cm 1和1380 cm 1分别为 CH 和 CH 3 3
续前 故峰的归属如下:
H 3030 cm 1
该化合物为结构 2
练习 (书后P276题15)
H 3030
as CH 3
C (芳) 1588 , 1494 和1471 C
红外光谱解析方法
![红外光谱解析方法](https://img.taocdn.com/s3/m/57fff73b1611cc7931b765ce050876323012747d.png)
红外光谱解析方法红外光谱解析方法是一种常用的分析化学方法,可以用于对化合物的结构进行研究和鉴定。
红外光谱解析方法主要利用化合物在红外光的作用下,不同官能团的振动与转动引起红外光吸收的特性来分析化合物的结构。
本文将介绍一些常用的红外光谱解析方法,并给出一些结构分析实例。
首先,红外光谱解析方法通常是通过红外光谱仪测量化合物在特定波数范围内的光谱图像,然后根据不同官能团的振动频率和光谱峰的位置、强度等特征来进行结构分析。
以下是一些常用的红外光谱解析方法:1. 官能团峰位置分析法:不同官能团具有不同的红外光谱吸收特点,可以通过观察红外光谱图中各个官能团的吸收峰的位置来判断化合物中存在的官能团。
例如,羧酸官能团的C=O振动通常在1700-1725 cm^-1之间,酮和酰胺官能团的C=O振动通常在1650-1750 cm^-1之间。
2.官能团峰强度分析法:通过观察红外光谱图中各个官能团的吸收峰的强度可以推测化合物中该官能团的相对含量。
例如,苯环的C-H伸缩振动通常表现为较强的峰,而取代基的C-H伸缩振动通常较弱。
3.官能团复合分析法:化合物通常由多个官能团组成,各个官能团的振动频率和位置可以相互影响。
通过综合分析化合物中多个官能团的吸收峰的位置、强度等特征,可以进一步确定化合物的结构。
例如,当化合物同时含有羟基和羧基时,其红外光谱图中会出现OH和CO的吸收峰,它们的相对位置和强度可以提供更多的结构信息。
下面给出一个红外光谱解析的实例:假设有一个未知化合物,它的分子式为C5H10O,并测得其红外光谱图如下:(图略)根据红外光谱图,我们可以进行如下的结构分析:从红外光谱图中我们可以观察到两个很强的特征峰,一个位于2750-2850 cm^-1之间,一个位于1725-1740 cm^-1之间。
根据我们的经验,2750-2850 cm^-1之间的峰通常是C-H的伸缩振动,而1725-1740 cm^-1之间的峰通常是C=O的伸缩振动。
红外光谱知识讲解
![红外光谱知识讲解](https://img.taocdn.com/s3/m/1c911514e2bd960590c677b3.png)
2.线型分子:n个原子有3n个自由度,但有 3个平动和2个绕轴转动无能量变化,沿其 键轴方向的转动不可能发生,转动只需两 个自由度,线型分子分子基本振动自由度 为3n-5,对应于(3n-5)个基本振动方式 (简正振动) 。
27
如: CO2 分子,理论振动数为3×3-5=4
CO2简正振动形式
28
由于原子的种类和化学键的性质不同, 以及各化学键所处的环境不同,导致不同 化合物的吸收光谱有各自的特征,据此可 以对化合物进行定性分析。
24
3.2.2 多原子分子的红外吸收频率 双原子分子仅有一种振动方式,但多原 子分子比较复杂,有多种振动方式。
1. 理论振动数(峰数): 设一个分子由n个原子组成,其运动自由度 应等于各原子运动自由度之和。 一个原子在空间的位置由三个坐标确定, 对n个原子组成的多原子分子,需用3n个坐 标确定,即分子有3n个自由度。但分子是整 体,有:
C-H与C-D健的振动频率 C-D相比是
(1) C-H> C-D
(2) C-H< C-D
(3) C-H= C-D
(4) 不一定谁大谁小
(1 )
36
已知下列单键伸缩振动中 C-C C-N C-O
键力常数k/(N·cm-1) 4.5 5.8 5.0 λ/μm 6 6.46 6.85
C)强、宽峰覆盖相近的弱、窄峰
D)吸收峰太弱,仪器不能分辨,或者超过 了仪器可以测定的波长范围。
32
3.2.3 红外光谱的分子振动形式与谱带 分子的振动方式分为两大类:
1.伸缩振动ν :原子沿键轴方向伸缩,键长变 化但键角不变的振动,亦称伸展振动。
对称伸缩振动(νs )
反对称伸缩振动(ν as )
红外光谱谱图解析
![红外光谱谱图解析](https://img.taocdn.com/s3/m/ae5c7c621eb91a37f1115c29.png)
• 倍频峰又分为一级倍频峰、二级倍频峰等 等。当非谐振子从n = 0向n = 2振动能级 跃迁时所吸收光的频率称为一级倍频峰, 从n = 0向n = 3振动能级跃迁时所吸收光 的频率称为二级倍频峰 • 一级倍频峰很弱,二级倍频峰更弱
• 一级倍频峰的波数并非正好等于基频峰波 数的两倍。一级倍频总是小于基频的两倍, 这是因为非谐振子振动能级是不等距的, 其能级间隔随着振动量子数n的增加而慢慢 减小
6
倍频峰 (Overtone)
• 根据谐振子选择定则,谐振子只能在相邻的 两个振动能级之间跃迁, 即Δn=±1。而且 各个振动能级之间的间隔都是相等的
• 实际分子不是谐振子。量子力学证明,非谐 振子的选择定则不再局限于Δn=±1。Δn可 以等于其它整数,即Δn=±1,±2, ±3,……。也就是说,对于非谐振子,可以 从振动能级n = 0向n = 2或n = 3,或向更高 的振动能级跃迁。非谐振子的这种振动跃迁 称为倍频振动。倍频振动频率称为倍频峰
苯的拉曼光谱
反对称伸缩振动
(Asymmetric Stretching Vibration)
直线形三原子基团反对称伸缩振动
弯曲形三原子基团反对称伸缩振动 H2O,-CH2-,-NH2,-NO2
CO2
平面形四原子基团反对称伸缩振动
四面体形五原子基团反对称伸缩振动
NO3-,BO3-,CO32-
NH4+,SO42+,PO43+ ,SiO42-
H N O O H
H
平面型 硝酸钠中的NO3- 的对称伸缩振动 1071cm-1(拉曼活性)
四面体型 甲基-CH3的对称伸缩振动 2872±5cm-1
O
S
O O
O
红外光谱分析
![红外光谱分析](https://img.taocdn.com/s3/m/34bb232bdcccda38376baf1ffc4ffe473368fdb2.png)
红外光谱分析红外光谱分析是一种重要的分析技术,广泛应用于化学、生物、材料等领域。
通过测量物质在红外光谱范围内的吸收和发射特性,可以得到物质分子的结构信息,实现物质的鉴定、定量分析和质量控制等目的。
本文将从红外光谱的基本原理、仪器设备、样品制备和数据解析等方面介绍红外光谱分析的相关知识。
一、基本原理红外光谱分析基于物质对红外辐射的吸收特性。
红外辐射是电磁波谱中的一部分,波长范围在0.78μm至1000μm之间,对应的频率范围在3000GHz至0.3THz之间。
物质分子由原子组成,原子核围绕电子运动,当受到外界的电磁波激发时,分子内部的键振动和转动将发生改变,导致物质吸收特定波长的红外辐射。
不同物质的分子结构和化学键在红外光谱图上表现出特征性的吸收峰,通过观察这些吸收峰的位置和强度可以确定物质的成分和结构。
二、仪器设备进行红外光谱分析需要使用红外光谱仪。
常见的红外光谱仪包括傅立叶变换红外光谱仪(FTIR)和光散射式红外光谱仪(IR)。
FTIR光谱仪通过傅立叶变换技术将红外辐射转换为光谱图,具有高灵敏度和快速测量的优点,适用于定性和定量分析。
光散射式红外光谱仪则通过散射光信号进行检测,适用于固态样品和表面分析。
三、样品制备在进行红外光谱分析前,需要对样品进行适当的制备处理。
液态样品可以直接涂覆在透明吸收的样品基底上进行测试,固态样品通常需要将样品捣碎并与适当的载体混合后进行测试。
在取样和制备过程中需要避免空气和水分的干扰,避免发生氧化和水解反应,影响测试结果的准确性。
四、数据解析红外光谱分析得到的数据通常以吸收光谱图的形式呈现。
吸收光谱图的横轴表示波数或波长,纵轴表示吸收强度,吸收峰的位置和形状反映了物质的分子结构。
数据解析是红外光谱分析的关键步骤,需要借助专业的光谱库和软件进行分析和比对,以确定样品的成分和结构信息。
在实际应用中,红外光谱分析可用于鉴定有机化合物、无机物质、生物大分子等多种样品,广泛应用于医药、食品、环境、材料科学等领域。
红外光谱谱图解析完整版
![红外光谱谱图解析完整版](https://img.taocdn.com/s3/m/4d42539f7fd5360cbb1adbd7.png)
在判断存在某基团时,要尽可能地找出其各种相关吸收带,切不可仅 根据某一谱带即下该基团存在的结论。
同理,在判断某种基团不存在时也要特别小心,因为某种基团的特征
振动可能是非红外活性的,也可能因为分子结构的原因,其特征吸收变
得极弱。
(五)提出结构式
如果分子中的所有结构碎片都成为已知(分子中的所有原子和不饱和
—CH2—CO—CH2— 1715 cm-1 酮
—CH2பைடு நூலகம்CO—O—
1735 cm-1 酯
—CH2—CO—NH— 1680 cm-1 酰胺
2021/8/3
编辑版pppt
12
(四)从分子中减去己知基团所占用的原子,从分子的总不饱和度中 扣除已知基团占用的不饱和度。根据剩余原子的种类和数目以及剩余的 不饱和度,并结合红外光谱,对剩余部分的结构做适当的估计
2021/8/3
编辑版pppt
3000 cm-1 以上
18
(2) 叁键(C C)伸缩振动区(2500 2000 cm-1 )
在该区域出现的峰较少; ①RC CH (2100 2140 cm-1 )
RC CR’ (2190 2260 cm-1 )
R=R’ 时,无红外活性
②RC N (2100 2140 cm-1 )
度均已用完),那么就可以推导出分子的结构式。在推导结构式时,应
把各种可能的结构式都推导出来,然后根据样品的各种物理的、化学的
性质以及红外光谱排除不合理的结构。
2021/8/3
编辑版pppt
13
(六)确证解析结果 按以下几种方法验证 1、设法获得纯样品,绘制其光谱图进行对照,但必须考虑 到样品的处理技术与测量条件是否相同。 2、若不能获得纯样品时,可与标准光谱图进行对照。当谱 图上的特征吸收带位置、形状及强度相一致时,可以完全确 证。当然,两图绝对吻合不可能,但各特征吸收带的相对强 度的顺序是不变的。 常见的标准红外光谱图集有Sadtler红外谱图集、Coblentz 学会谱图集、API光谱图集、DMS光谱图集。
(完整版)红外光谱知识讲解
![(完整版)红外光谱知识讲解](https://img.taocdn.com/s3/m/c47bbf72172ded630a1cb650.png)
17
问题
某物质能吸收红外光波, 产生红外吸收谱图, 其分子结构是
(1) 具有不饱和键
(2) 具有共轭体系
(3) 发生偶极矩的净变化 (4) 具有对称性
丁二烯分子中C=C键伸缩振动如下:
A. ← → ← →
CH2=CH-CH=CH2 B. ← → → ←
C)强、宽峰覆盖相近的弱、窄峰
D)吸收峰太弱,仪器不能分辨,或者超 过了仪器可以测定的波长范围。
32
3.2.3 红外光谱的分子振动形式与谱带 分子的振动方式分为两大类:
1.伸缩振动ν:原子沿键轴方向伸缩,键长变
化但键角不变的振动,亦称伸展振动。
对称伸缩振动(νs )
反对称伸缩振动(νas )
33
2.弯曲振动δ:沿键的垂直方向振动,基团 键角发生周期性变化,但键长不变的振动。 又称变形振动或变角振动。
(1) C-H (2) N-H (3) O-H (4) F-H
(1)
如果C-H键和C-D键的力常数相同, 则C-H键的振动频率
C-H与C-D健的振动频率 C-D相比是
(1) C-H> C-D
(2) C-H< C-D
(3) C-H= C-D
(4) 不一定谁大谁小
(1 )
36
已知下列单键伸缩振动中 C-C C-N C-O
9
(4) 红外光谱图的表示方法 横坐标为吸收波长(m),或吸收频率(波 数:cm-1),纵坐标常用百分透过率T%表示
10
从谱图可得信息: 1 吸收峰的位置(吸收频率:波数cm-1) 2 吸收峰的强度 ,常用:
vs (very strong), s (strong), m (medium), w (weak), vw (very weak),
红外光谱分析
![红外光谱分析](https://img.taocdn.com/s3/m/63e6f7d431126edb6e1a10d1.png)
红外光谱分析红外光谱与分子的结构密切相关,是研究表征分子结构的一种有效手段,与其它方法相比较,红外光谱由于对样品没有任何限制,它是公认的一种重要分析工具。
在分子构型和构象研究、化学化工、物理、能源、材料、天文、气象、遥感、环境、地质、生物、医学、药物、农业、食品、法庭鉴定和工业过程控制等多方面的分析测定中都有十分广泛的应用。
红外光谱可以研究分子的结构和化学键,如力常数的测定和分子对称性等,利用红外光谱方法可测定分子的键长和键角,并由此推测分子的立体构型。
根据所得的力常数可推知化学键的强弱,由简正频率计算热力学函数等。
分子中的某些基团或化学键在不同化合物中所对应的谱带波数基本上是固定的或只在小波段范围内变化,因此许多有机官能团例如甲基、亚甲基、羰基,氰基,羟基,胺基等等在红外光谱中都有特征吸收,通过红外光谱测定,人们就可以判定未知样品中存在哪些有机官能团,这为最终确定未知物的化学结构奠定了基础。
由于分子内和分子间相互作用,有机官能团的特征频率会由于官能团所处的化学环境不同而发生微细变化,这为研究表征分子内、分子间相互作用创造了条件。
分子在低波数区的许多简正振动往往涉及分子中全部原子,不同的分子的振动方式彼此不同,这使得红外光谱具有像指纹一样高度的特征性,称为指纹区。
利用这一特点,人们采集了成千上万种已知化合物的红外光谱,并把它们存入计算机中,编成红外光谱标准谱图库,人们只需把测得未知物的红外光谱与标准库中的光谱进行比对,就可以迅速判定未知化合物的成份。
下面将对红外光谱分析的基本原理做一个简单的介绍。
红外吸收光谱是物质的分子吸收了红外辐射后,引起分子的振动- 转动能级的跃迁而形成的光谱,因为出现在红外区,所以称之为红外光谱。
利用红外光谱进行定性定量分析的方法称之为红外吸收光谱法。
红外辐射是在1800年由英国的威廉.赫谢(Willian Hersher) 尔发现的。
一直到了1903 年,才有人研究了纯物质的红外吸收光谱。
红外光谱解析
![红外光谱解析](https://img.taocdn.com/s3/m/6efad277a8956bec0975e33c.png)
讲授提要
第一节:朗勃-比尔定律与紫外吸收光谱图 第二节:电子跃迁的类型 第三节:各类有机化合物的电子跃迁 第四节:紫外光谱在有机化学中的应用
49
远紫区: 4~200nm 紫外光区:4 ~400nm (也称真空紫外区)
近紫区: 200~400nm 可见光区: 400~800nm 紫外光谱仪所用波长: 200~800nm UV:200~800nm (近紫和可见光区)
(CH3)2C = C(CH3)2
HC
CH
不产生吸收.
2、频率相同的峰彼此重叠。
3、强的宽峰掩盖与它频率相近的弱峰。
4、有时吸收频率在仪器的工作频率之外。
7
第二节 红外光谱的表示
横坐标:波长(λ)、波数(ν)表示吸收的位置; 纵坐标:透射百分率(T%)或吸光度(A)表示吸收的强度。8
第三节 影响红外吸收的主要因素
51
二、紫外吸收光谱图
λmax :279nm(吸收位置) 溶剂:环己烷
εmax :14.8 (吸收强度)
52
第二节 电子跃迁的类型
σ*
能 量 ΔE
π* n
π
σ
E E E E * > n * > * > n *
53
第三节 各类有机化合物 的电子跃迁
一、饱和有机化合物的电子跃迁
41
根据红外光谱判断化合物类型:
~1715cm-1酮羰基
42
缔合羟基吸收峰:醇
43
~1810cm-1酰氯羰基
44
根据红外光谱判断化合物的结构式:
45
46
47
第二部分 紫外光谱(UV)
λ = 200 ~ 800nm △E = 145 ~ 627KJ.mol-1